【北师大版】2017-2018学年高中数学必修三习题汇编94页(含答案)
2017-2018学年高中数学北师大版必修三教师用书 第2章
2.3 循环结构1.理解循环结构的概念,把握循环结构的三个构成要素.(重点)2.体会循环结构在有关重复计算的算法设计中的重要作用,能识别和理解循环结构的框图及其功能.(难点)3.掌握三种算法结构的区别与联系.教材整理循环结构阅读教材P93~P101回答下列问题.1.循环结构的概念(1)定义:按照一定条件,反复执行某一步骤的算法结构称为循环结构,反复执行的部分称为循环体.(2)循环变量:控制着循环的开始和结束的变量,称为循环变量.(3)循环的终止条件:决定是否继续执行循环体的判断条件,称为循环的终止条件.2.循环结构的基本模式在画出循环结构的算法框图之前,需要确定三件事:(1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.这样,循环结构的算法框图的基本模式如图2213所示:图2213判断(正确的打“√”,错误的打“×”)(1)循环结构中一定有选择结构.( )(2)循环结构中循环体只能反复执行几次.( )(3)判断是否继续执行循环体的条件是唯一的.( )【解析】(1)√,在循环结构中,需有循环的终止条件,这就需要选择结构.(2)×,在循环结构中,只要满足执行条件,该循环体可以执行很多次,而不仅仅是几次.(3)×,在算法框图中,判断框内的条件可以不同,只要等价变形就行.【答案】(1)√(2)×(3)×(1)根据如图2214所示框图,当输入x为6时,输出的y=( )图2214A.1 B.2 C.5 D.10(2)执行如图2215所示的程序框图,则输出s的值为( )图2215A.34 B .56 C.1112 D.2524【精彩点拨】 (1)解题的关键是判断什么时候退出循环;(2)先判断条件是否成立,再确定是否循环,一步一步进行求解.【自主解答】 (1)当x =6时,x =6-3=3,此时x =3≥0; 当x =3时,x =3-3=0,此时x =0≥0; 当x =0时,x =0-3=-3,此时x =-3<0,则y =(-3)2+1=10.(2)由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,此时输出s =2524,故选D.【答案】 (1)D (2)D高考中对算法框图的考查类型之一就是读图,解决此类问题的关键是根据算法框图理解算法的功能.考查的重点是算法框图的输出功能、算法框图的补充,以及算法思想和基本的运算能力、逻辑思维能力.试题难度不大,大多可以按照算法框图的流程逐步运算而得到.1.执行如图2216所示的程序框图,输出的k 值为( )【导学号:63580025】图2216A .3B .4C .5D .6【解析】 程序框图运行如下:k =0,a =3×12=32,k =1,此时32>14;a =32×12=34,k=2,此时34>14;a =34×12=38,k =3,此时38>14;a =38×12=316,k =4,此时316<14,输出k =4,程序终止.【答案】 B如图2217,给出计算2+4+6+…+20的值的一个程序框图,其中判断框内应填入的条件是( )图2217A .i ≥10B .i >10C .i ≤9D .i <9【精彩点拨】 明确循环结构的类型,结合循环次数,依据初始条件,逐步写出循环过程,确定循环条件.【自主解答】 第一次循环:S =0+12,n =4,i =2;第二次循环:S =0+12+14,n =6,i =3;第三次循环:S =0+12+14+16,n =8,i =4;…第十次循环:S =0+12+14+16+…+120,n =22,i =11.此时已得到所求,故应结束循环.所以应填i >10.故选B. 【答案】 B对于循环结构的程序框图的条件填充,首先要弄清循环结构是当型循环还是直到型循环,二是确定循环次数.若混淆两种循环结构,则得到相反的循环条件.2.执行如图2218所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )图2218A .s ≤34B .s ≤56C .s ≤1112D .s ≤2524【解析】 由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,输出k =8,所以应填s ≤1112.【答案】 C探究1【提示】 在循环结构中需要判断是否继续循环,故循环结构中一定含有选择结构. 探究2 循环结构中判断框中条件是唯一的吗?【提示】 不是,在具体的算法框图设计时,判断框中的条件可以不同,但不同的表示应该有共同的确定的结果.探究3 在循环结构中,循环体是否可以被无限次地执行?【提示】 不可以,循环体执行的次数是有限的,符合一定条件时就会终止循环.设计算法求11×3+13×5+15×7+…+151×53的值,要求画出算法框图.【精彩点拨】 这是一个累加求和问题,共26项相加,因此不宜运用顺序结构采用逐一相加的策略,可设计一个计数变量i ,一个累加变量S ,用循环结构来实现这一算法.【自主解答】 算法如下: 1.S =0; 2.i =1; 3.S =S +1i i +;4.i =i +2;5.如果i >51,执行第6步;否则,返回重新执行第3步和第4步; 6.输出S .算法框图如图所示:1.确定循环变量及初始值,循环变量用于控制循环的次数,也就是控制参与累加、累乘的项的个数.通常情况下,累加问题循环变量的初值设为0,累乘问题循环变量的初值设为1.2.确定循环体.循环体是循环结构的核心,通常由两部分构成:一是进行累加、累乘,二是设置控制变量的增加值.3.确定循环终止的条件,实质是一个条件分支结构,根据累加、累乘的项数确定终止循环的条件.3.利用循环结构写出12+23+…+100101的算法并画出相应的算法框图.【解】 算法如下: 1.S =0; 2.i =1; 3.S =S +ii +1;4.i =i +1;5.如果i 不大于100,转第3步,否则输出S . 相应框图如下图所示:1.下列关于循环结构的说法正确的是( ) A .循环结构中,判断框内的条件是唯一的 B .判断框中的条件成立时,要结束循环向下执行C .循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D .循环结构就是无限循环的结构,执行程序时会永无止境地运行下去【解析】 判断框内的条件不唯一,故A 错;判断框内的条件成立时可能执行,也可能不执行,故B 错.由于循环结构不是无限循环的,故C 正确,D 错.【答案】 C2.如图2219所示,该框图运行后输出的结果为( )图2219A.2 B.4 C.8 D.16【解析】第一次循环:b=21=2,a=1+1=2;第二次循环:b=22=4,a=2+1=3;第三次循环:b=23=8,a=3+1=4,退出循环,输出b=8.【答案】 C3.阅读如图2220所示的算法框图,输出的i值等于( )图2220A.2 B.3C.4 D.5【解析】①s=0,i=1;②a=1×21,s=0+1×21,i=2;③a=2×22=8,s=2+8=10,i=3;④a=3×23=24,s=34,i=4. 此时结束循环,输出i=4.【答案】 C4.如图2221所示,程序框图(算法流程图)的输出结果是( )图2221A.34 B.55 C.78 D.89【解析】运行程序:z=x+y=1+1=2<50,x=y=1,y=z=2;第一次循环:z=1+2=3<50,x=y=2,y=z=3;第二次循环:z=2+3=5<50,x=y=3,y=z=5;第三次循环:z=3+5=8<50,x=y=5,y=z=8;第四次循环:z=5+8=13<50,x=y=8,y=z=13;第五次循环:z=8+13=21<50,x=y=13,y=z=21;第六次循环:z=13+21=34<50,x=y=21,y=z=34;第七次循环:z=21+34=55>50,输出z=55,故选B.【答案】 B5.执行如图2222所示的程序框图,输出的S值为________.图2222【解析】k=0,S=1;S=1,k=1;S=2,k=2;S=8,k=3,k<3不成立,输出S =8.【答案】86.设计求1×2×3×4×…×2 016的算法,并画出相应的算法框图.【解】算法如下:1.设m的值为1;2.设i的值为2;3.如果i≤2 016则执行第四步,否则转回执行第六步;4.计算m乘i并将结果赋给m;5.计算i加1并将结果赋给i,转回执行第三步;6.输出m的值并结束算法.算法框图如下图所示:。
2017-2018学年高中数学北师大版必修三教师用书 第3章
§1随机事件的概率1.1 频率与概率1.2 生活中的概率1.通过试验,理解当试验次数较大时试验频率稳定于理论概率,并据此估计某一事件发生的概率,进而理解概率的含义.(重点)2.对生活中的一些问题能从概率的角度作出合理的解释.(难点)3.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.教材整理概率阅读教材P119~P126,完成下列问题.1.随机事件的概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).我们有0≤P(A)≤1.2.频率与概率的关系频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小.在实际问题中,某些随机事件的概率往往难以确切得到,因此,我们常常通过做大量的重复试验,用随机事件发生的频率作为它的概率的估计值.3.生活中的概率概率和日常生活有着密切的联系,对生活中的随机事件,我们可以利用概率知识做出合理的判断与决策.判断(正确的打“√”,错误的打“×”)(1)没有空气和水,人类可以生存下去是不可能事件.( )(2)三角形的两边之和大于第三边是随机事件.( )(3)在标准大气压下,水在1 ℃结冰是不可能事件,它的概率为0.( )(4)任意事件A发生的概率P(A)总满足0<P(A)<1.( )【解析】(1)√.由不可能事件的概念可知.(2)×.三角形两边之和大于第三边是必然事件.(3)√.标准大气压下,水在1 ℃不会结冰.(4)×.0≤P(A)≤1.【答案】(1)√(2)×(3)√(4)×【导学号:63580033】①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到至少15个电话;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥手电筒的电池没电,灯泡发亮.【精彩点拨】用随机事件的定义进行判断.【自主解答】根据必然事件、不可能事件及随机事件的定义可知,①是必然事件,②④是随机事件,③⑤⑥是不可能事件.要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的.其次再看它是一定发生,还是不一定发生,还是一定不发生,一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.1.给出下列事件:①明天进行的某场足球赛的比分是2∶1;②下周一某地的最高气温和最低气温相差10 ℃;③同时掷两枚骰子,向上一面的点数之和不小于2;④射击1次,命中靶心; ⑤当x 为实数时,x 2+4x +4<0.其中,必然事件有________,不可能事件有________,随机事件有________. 【解析】 ①②④可能发生也可能不发生是随机事件,③是必然事件,⑤是不可能事件. 【答案】 ③ ⑤ ①②④掷一颗均匀的正方体骰子得到6点的概率是16,是否意味着把它掷6次能得到1次6点?【精彩点拨】 解答本题应利用概率的意义作答.【自主解答】 把一颗均匀的骰子掷6次相当于做6次试验,因为每次试验的结果都是随机的,所以做6次试验的结果也是随机的,这就是说,每掷一次总是随机地出现一个点数,可以是1点,2点,也可以是其他点数,不一定出现6点,所以掷一颗骰子得到6点的概率是16,并不意味着把它掷6次能得到1次6点.1.概率是随机事件发生可能性大小的度量,是随机事件A 的本质属性,随机事件A 发生的概率是大量重复试验中事件A 发生的频率的近似值.2.由概率的定义我们可以知道随机事件A 在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.2.掷一枚硬币,连续出现5次正面向上,有人认为下次出现反面向上的概率大于12.这种理解正确吗?【解】 不正确.掷一次硬币,作为一次试验,其结果是随机的,但通过做大量的试验,呈现一定的规律性,即“正面朝上”“反面朝上”的可能性都为12.连续5次正面向上这种结果是可能的,对下一次试验来说,仍然是随机的,其出现正面和反面的可能性还是12,不会大于12.用0,1,…,9这10个数字中的任意5个表示“正面朝上”,其余5个表示“反面朝上”,每产生一个随机数就完成一次模拟.例如,可用0,1,2,3,4表示“正面朝上”,用5,6,7,8,9表示“反面朝上”.具体过程如下:(1)制作一个如下形式的表格,在随机数表中随机选择一个开始点,完成100次模拟,并将结果记录在下表中.(2)(3)汇总全班同学的结果,给出出现“正面朝上”的频率.探究1 根据上面的模拟结果,你对出现“正面朝上”的频率有怎样的认识?【提示】出现“正面朝上”的频率是一个变化的量,但是当试验次数比较大时,出现“正面朝上”的频率在0.5附近摆动,这与历史上大量抛掷硬币的试验结果是一致的.探究2 在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?【提示】通过大量重复试验得到事件A发生的频率的稳定值,即概率.表一和表二分别表示从甲、乙两个厂家随机抽取的某批篮球产品的质量检查情况:表一(1));(2)若从两个厂家生产的这批篮球产品中任取一个,质量检查为优等品的概率分别是多少?(3)若该两厂的篮球价格相同,你打算从哪一厂家购货?【精彩点拨】 (1)随机抽取的某批篮球产品的质量检查中“篮球是优等品”是随机事件;(2)计算随机事件“篮球是优等品”的频率f =m n;(3)利用表中随机事件“篮球是优等品”的频率去估算概率.【自主解答】 (1)依据频率公式计算表一中“篮球是优等品”的各个频率为0.90,0.92,0.97,0.94,0.95,0.95;表二中“篮球是优等品”的各个频率为0.86,0.89,0.91,0.91,0.89,0.90.(2)由(1)可知,抽取的篮球数不同,随机事件“篮球是优等品”的频率也不同.表一中的频率都在常数0.95的附近摆动,则在甲厂随机抽取一个篮球检测时,质量检查为优等品的概率大约为0.95;表二中的频率都在常数0.90的附近摆动,则在乙厂随机抽取一个篮球检测时,质量检查为优等品的概率大约为0.90.(3)根据概率的定义可知:概率是从数量上反映一个随机事件发生可能性的大小.因为P 甲>P 乙,表示甲厂生产出来的篮球是优等品的概率更大.因此应该选择甲厂生产的篮球.概率的确定方法:理论依据:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率.计算频率:频率=频数试验次数.得出概率:从频率估计出概率.3.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10道智力题,每道题10分,然后作了统计,统计结果如下:贫困地区:(2)估计两个地区参加测试的儿童得60分以上的概率.【解】(1)贫困地区:0.550.问题:有四个阄,其中两个分别代表两件奖品,四个人按顺序依次抓阄来决定这两件奖品的归属.为了搞清楚是不是先抓的人中奖率一定大,有人设计了一个模拟试验如下:口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,白球代表奖品,每4人一组,按顺序依次从中摸出1球并记录结果,每组重复试验20次.下表是汇总了8组学生的数据得到的结果.【提示】先抓的人中奖率并不最大,先抓后抓摸到白球的频率是基本相同的.探究4 你认为第一个人、第二个人、第三个人、第四个人摸到奖品的概率相等吗?你认为摸奖的次序对中奖率有影响吗?【提示】从试验中的数据可以认为这四个人摸到奖品的概率是相等的.没有影响,也就是说中奖率的大小与抓阄的先后没有关系.下列说法正确的是( )A .由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,则一定为一男一女B .一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D .10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1 【精彩点拨】 本题主要考查概率的意义,概率从数量上客观地反映了随机事件发生的可能性的大小.【自主解答】 对于A ,一对夫妇生一个孩子,是做一次试验,生男孩、女孩的概率都是12.生两个孩子相当于做两次试验,每一次试验生男孩、女孩的概率都是12.因此第二个孩子的性别可能是男,也可能是女,故A 错误.对于B ,一次摸奖活动中,摸一次奖相当于做一次随机试验.摸5张票相当于做5次随机试验.可能中奖也可能不中,故B 错误.10张奖票无论谁先摸中奖的概率相同,故C 错误. 【答案】 D1.概率是描述随机事件发生的可能性大小的度量,事件A 的概率越大,其发生的可能性就越大,概率越小,事件A 发生的可能性就越小,但不能决定其一定发生或不发生.2.随机事件在一次试验中发生与否是随机的,但随机中含有规律性,而概率恰是其规律性在数量上的反映.概率是客观存在的,它与试验次数,以及哪一个具体的试验都没有关系,运用概率知识,可以帮助我们澄清日常生活中人们对一些现象的错误认识.4.已知使用一剂某种药物治愈某种疾病的概率为90%,则下列说法正确的是( ) A .如果有100个这种病人各使用一剂这样的药物,则有90人会治愈 B .如果一个患有这种疾病的病人使用两剂这样的药物就一定会治愈 C .说明使用一剂这种药物治愈这种疾病的可能性是90% D .以上说法都不对【解析】 概率是指一个事件发生的可能性的大小.治愈某种疾病的概率为90%,说明使用一剂这种药物治愈这种疾病的可能性是90%,但不能说明使用一剂这种药物一定可以治愈这种疾病,只能说是治愈的可能性较大,故选C.【答案】 C1.下列事件中,是随机事件的是( ) A .长度为3,4,5的三条线段可以构成一个三角形 B .长度为2,3,4的三条线段可以构成一个直角三角形 C .方程x 2+2x +3=0有两个不相等的实根 D .函数y =log a x (a >0且a ≠1)在定义域上为增函数【解析】 A 为必然事件,B 、C 为不可能事件,a >1时发生,0<a <1时不发生.D 为随机事件.【答案】 D2.下列说法正确的是( ) A .任一事件的概率总在(0,1)内 B .不可能事件的概率不一定为0 C .必然事件的概率一定为1 D .以上均不对【解析】 任一事件的概率总在内,不可能事件的概率为0,必然事件的概率为1. 【答案】 C3.在一次掷硬币试验中,掷100次,其中有48次正面朝上.设反面朝上为事件A ,则事件A 出现的频数为________,事件A 出现的频率为________.【解析】 100次试验中,48次正面朝上,则52次反面 朝上.又频率=频数试验次数=52100=0.52.【答案】 52 0.52 4.给出下列三个结论:①小王任意买1张电影票,座号是3的倍数的可能性比座号是5的倍数的可能性大; ②高一(1)班有女生22人,男生23人,从中任找1人,则找出的女生可能性大于找出男生的可能性;③掷1枚质地均匀的硬币,正面朝上的可能性与反面朝上的可能性相同. 其中正确结论的序号为________. 【解析】 根据概率的意义可知①③正确. 【答案】 ①③5.某种疾病治愈的概率是30%,有10个人来就诊,如果前7个人没有治愈,那么后3个人一定能治愈吗?如何理解治愈的概率是30%?【解】不一定.如果把治疗一个病人当作一次试验,治愈的概率是30%,是指随着试验次数的增加,大约有30%的病人能治愈,对于一次试验来说,其结果是随机的.因此,前7个病人没有治愈是有可能的,而对后3个病人而言,其结果仍是随机的,即有可能治愈,也有可能不治愈.。
北师大版高中数学必修3 课后习题答案
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,取出2的到小数点后第i 位的不足近似值,赋给a ;取出2的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-. 第四步,若m d <,则得到25的近似值为5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF ENDINPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THENPRINT “Please input again.” ELSEIF t>0 AND t<=180 THEN y=0.2 ELSEIF (t -180) MOD 60=0 THEN y=0.2+0.1*(t-180)/60 ELSEy=0.2+0.1*((t-180)\60+1) END IF END IFPRINT “y=”;y END IF ENDINPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第二章统计2.1随机抽样练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)+≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.a k k显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)(1)散点图如下: 2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈. 4、略 5、0.13 6、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
2017-2018学年高中数学北师大版三教学案:第三章§2第3课时互斥事件含答案
第3课时互斥事件[核心必知]1.互斥事件(1)定义:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.(2)规定:事件A+B发生是指事件A和事件B至少有一个发生.(3)公式:①在一个随机试验中,如果随机事件A和事件B是互斥事件,那么有P(A+B)=P(A)+P(B).②一般地,如果随机事件A1,A2,…,A n中任意两个是互斥事件,那么有P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).2.对立事件(1)定义:在一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作对立事件,事件A 的对立事件记为错误!.(2)性质:P(A)+P(错误!)=1,即P(A)=1-P(错误!).[问题思考]1.P(A+B)=P(A)+P(B)成立的条件是什么?提示:事件A与B是互斥事件.2.互斥事件与对立事件有什么区别和联系?提示:对立事件一定是互斥事件,互斥事件不一定是对立事件.讲一讲1。
判断下列给出的条件,是否为互斥事件,是否为对立事件,并说明理由:从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃";(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”.[尝试解答](1)是互斥事件,不是对立事件.从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)既是互斥事件,又是对立事件.从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌",两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,当然不可能是对立事件.从40张扑克牌中任意抽取1张,“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”这两个事件可能同时发生,如抽得点数为10,因此,二者不是互斥事件,当然不可能是对立事件.1.判断两个事件是否为互斥事件,主要看它们能否同时发生,若不同时发生,则这两个事件是互斥事件,若能同时发生,则这两个事件不是互斥事件.判断两个事件是否为对立事件,主要看是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.2.“互斥事件”与“对立事件”都是对两个事件而言的.对立事件必是互斥事件,但互斥事件不一定是对立事件.练一练1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.“至少有1个白球”和“都是红球”B.“至少有1个白球"和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球"和“都是红球”解析:选C 该试验有三种结果:“恰有1个白球"、“恰有2个白球"、“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件而不是对立事件.答案:讲一讲2.玻璃盒子中装有各色球12只,其中5红、4黑、2白、1绿,从中任取1球.设事件A为“取出1只红球",事件B为“取出1只黑球”,事件C为“取出1只白球”,事件D为“取出1只绿球”.已知P(A)=512,P(B)=错误!,P(C)=错误!,P(D)=错误!。
【新课标-精品卷】2018年最新北师大版高中数学必修三《古典概型的特征和概率计算公式》课时练习及解析
2017-2018学年(新课标)北师大版高中数学必修三2.1 古典概型的特征和概率计算公式课时目标 1.了解基本事件的特点.2.理解古典概型的定义.3.会应用古典概型的概率公式解决实际问题.1.古典概型具有以下两个特征:(1)试验的可能结果只有________,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性________.我们把具有这样两个特征的随机试验的数学模型称为古典概型.2.古典概型的概率计算公式P(A)=_______________=__________.3.在古典概型中,计算事件A的概率,关键是_____________和__________.一、选择题1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有( )A.1个B.2个C.3个D.4个2.下列是古典概型的是( )①从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小;②同时掷两颗骰子,点数和为7的概率;③近三天中有一天降雨的概率;④10个人站成一排,其中甲、乙相邻的概率.A.①、②、③、④B.①、②、④C.②、③、④D.①、③、④3.下列是古典概型的是( )A.任意抛掷两枚骰子,所得点数之和作为基本事件时B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币至首次出现正面为止4.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318B.4 18C.518D.6185.一袋中装有大小相同的八个球,编号分别为1,2,3,4,5,6,7,8,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于14”为事件A,则P(A)等于( )A.132B.1 64C.332D.3646.有五根细木棒,长度分别为1,3,5,7,9 (cm),从中任取三根,能搭成三角形的概率是( )A.320B.25C.15D.310题号 1 2 3 4 5 6答案二、填空题7.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.8.甲,乙两人随意入住三间空房,则甲、乙两人各住一间房的概率是________.9.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是________.三、解答题10.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球.11.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n<m +2的概率.能力提升12.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )A .P 10=110P 1 B .P 10=19P 1 C .P 10=0 D .P 10=P 113.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A 、B 、C ,田忌的三匹马分别为a 、b 、c ;三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c. (1)正常情况下,求田忌获胜的概率;(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A ,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.§2古典概型2.1 古典概型的特征和概率计算公式知识梳理1.(1)有限个 (2)相同 2.事件A 包含的可能结果数试验的所有可能结果数 mn3.计算试验的所有可能结果(基本事件)数n 事件A包含的可能结果(基本事件)数m 作业设计1.C [该生选报的所有可能情况是:{数学和计算机},{数学和航空模型},{计算机和航空模型},所以基本事件有3个.]2.B [①②④为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而③不适合等可能性,故不为古典概型.]3.C [A 项中由于点数的和出现的可能性不相等,故A 不是;B 中的基本事件是无限的,故B 不是;C 项满足古典概型的有限性和等可能性,故C 是;D 项中基本事件既不是有限个也不具有等可能性.]4.C [正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件,两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于518.] 5.C [事件A 包括(6,8),(7,7),(7,8),(8,6),(8,7),(8,8)这6个基本事件,由于是有放回地取,基本事件总数为8×8=64(个),∴P(A)=664=332.]6.D [任取三根共有10种情况,构成三角形的只有3、5、7,5、7、9,3、7、9三种情况,故概率为310.]7.14解析 可重复地选取两个数共有4×4=16(种)可能,其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为416=14.8.23解析 设房间的编号分别为A 、B 、C ,事件甲、乙两人各住一间房包含的基本事件为:甲A 乙B ,甲B 乙A ,甲B 乙C ,甲C 乙B ,甲A 乙C ,甲C 乙A 共6个,基本事件总数为3×3=9,所以所求的概率为69=23.9.310解析 基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),而两数都是奇数的有3种,故所求概率P =310.10.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的方法总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4). ∴取出的两个球全是白球的概率为P(A)=615=25.(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种. ∴取出的两个球一个是白球,另一个是红球的概率为P(B)=815.11.解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件有:(1,3),(1,4),(2,4),共3个. 所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n<m +2的事件的概率为1-P 1=1-316=1316.12.D [摸球与抽签是一样的,虽然摸球的顺序有先后,但只需不让后人知道先抽的人抽出的结果,那么各个抽签者中签的概率是相等的,并不因抽签的顺序不同而影响到其公平性.所以P 10=P 1.]13.解 比赛配对的基本事件共有6个,它们是:(Aa ,Bb ,Cc),(Aa ,Bc ,Cb),(Ab ,Ba ,Cc),(Ab ,Bc ,Ca),(Ac ,Ba ,Cb),(Ac ,Bb ,Ca). (1)经分析:仅有配对为(Ac ,Ba ,Cb)时,田忌获胜,且获胜的概率为16.(2)田忌的策略是首场安排劣马c 出赛,基本事件有2个:(Ac ,Ba ,Cb),(Ac ,Bb ,Ca),配对为(Ac ,Ba ,Cb)时,田忌获胜且获胜的概率为12.答 正常情况下,田忌获胜的概率为16,获得信息后,田忌获胜的概率为12.。
2017-2018学年高中数学北师大版必修三教师用书 第2章
§1算法的基本思想1.通过对解决具体问题过程与步骤的分析,体会算法的思想,了解算法的含义及其基本特征.(重点)2.通过分析具体问题,抽象出算法的过程,培养抽象概括能力、语言表达能力和逻辑思维能力.(难点)3.通过算法的学习,进一步让学生体验到数学与现实世界的关系、数学与计算机技术的关系,从而提高学生学习数学的兴趣.教材整理算法阅读教材P75~P83“练习”以上部分,完成下列问题.1.算法的概念算法是解决某类问题的一系列步骤或程序,只要按照这些步骤执行,都能使问题得到解决.一般来说,“用算法解决问题”都是可以利用计算机帮助完成的.2.算法的基本思想在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.这种解决问题的思想方法称为算法的基本思想.3.算法的特征(1)确定性:算法的每一步必须是确切定义的,且无二义性,算法只有唯一的一条执行路径,对于相同的输入只能得出相同的输出.(2)有穷性:一个算法必须在执行有穷次运算后结束.在所规定的时间和空间内,若不能获得正确结果,其算法也是不能被采用的.(3)可行性:算法中的每一个步骤必须能用实现算法的工具——可执行指令精确表达,并在有限步骤内完成,否则这种算法也是不会被采纳的.(4)输入:算法一定要根据输入的初始数据或给定的初值才能正确执行它的每一步骤.(5)输出:算法一定能得到问题的解,有一个或多个结果输出,达到求解问题的目的,没有输出结果的算法是没有意义的.(6)此外,还要求算法应具有通用性:算法应适用于某一类问题中的所有个体,而不是只能用来解决一个具体问题.判断(正确的打“√”,错误的打“×”)(1)求解某一类问题的算法是唯一的.( )(2)算法执行后一定产生确定的结果.( )(3)算法只能解决一个问题,不能重复使用.( )(4)算法的步骤必须有限.( )【解析】(1)×,根据算法特点知求解某一类问题的算法不唯一.(2)√,由算法特征知算法具有确定性.(3)×,算法能解决一类问题且能重复使用.(4)√,由算法的有限性特征知步骤必须有限.【答案】(1)×(2)√(3)×(4)√下列对算法的理解不.正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤C.算法中的每一步都应当有效地执行,并得到确定的结果D.一个问题只能设计出一个算法【精彩点拨】先正确理解算法的概念及其特点,然后逐一验证每个选项是否正确.【自主解答】解答这类问题的方法为特征判断法,主要从以下三方面判断:看是否满足顺序性.算法实际上就是顺序化的解题过程,是指可以用计算机来解决某一问题的程序或步骤.看是否满足明确性.算法的每一步都是确定的,而不是含糊的、模棱两可的.看是否满足有限性.一个算法必须在有限步后结束.如果一个解题步骤永远不能结束,那么就永远得不到答案.因此,有始无终的解题步骤不是算法.,此外,算法的不唯一性也要考虑到.1.下列语句中是算法的有( )①做饭需要刷锅、淘米、加水、加热这些步骤;②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.A.1个B.2个C.3个D.4个【解析】①说明了做饭的步骤;②中给出了一元一次方程这一类问题的解决方式;④中给出了求1+2+3+4的一个过程,最终得出结果;对于③,并没有说明如何去算,故①②④是算法,③不是算法.【答案】 C写出解方程x2-2x-3=0的一个算法.【精彩点拨】本题是一个求一元二次方程的解的问题,方法很多,可用配方法,也可用判别式法.【自主解答】法一:算法步骤如下:1.移项得x2-2x=3. ①2.①两边同加1并配方得(x-1)2=4. ②3.②两边开方得x-1=±2.③4.解③得x=3或x=-1.法二:1.计算方程的判别式并判断其符号: Δ=22+4×3=16>0;2.将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac2a,得x 1=3,x 2=-1.设计一个具体问题的算法,通常按以下步骤:认真分析问题,找出解决此题的一般数学方法; 借助有关变量或参数对算法加以表述; 将解决问题的过程划分为若干步骤; 用简练的语言将这个步骤表示出来.2.写出求方程组⎩⎪⎨⎪⎧3x -2y =14, ①x +y =-2 ②的解的算法.【导学号:63580021】【解】 法一:1.②×2+①,得到5x =14-4. ③ 2.解方程③,可得x =2. ④ 3.将④代入②,可得2+y =-2. ⑤4.解⑤得y =-4.5.得到方程组的解为⎩⎪⎨⎪⎧ x =2,y =-4.法二:1.由②式移项可以得到x =-2-y . ③ 2.把③代入①,得y =-4. ④3.把④代入③,得x =2.4.得到方程组的解为⎩⎪⎨⎪⎧x =2,y =-4.探究1 【提示】 是,因为算法的步骤是明确的和有限的.有时可能需要大量重复的计算,但只要按部就班的去做,总能得到确定的结果.探究2 做任何一件事情都得有算法吗?【提示】 不一定,做任何一件事不一定均有结果,而算法要求必须有结果.探究3 算法与解法的区别与关系.【提示】 (1)区别⎩⎪⎨⎪⎧解法:解决某一个问题的一种方法,有局限性.算法:解决某一类问题的步骤,有普遍性.(2)关系:一般与特殊,抽象与具体.各种比赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.【精彩点拨】 对非数值型计算问题的算法要明确过程和限制条件,建立过程模型,通过模型进行算法设计.【自主解答】 算法如下: 1.先假定第一个为“最高分”;2.将第二个分数与“最高分”比较,如果它比“最高分”还高,就假定这个分数为“最高分”;否则“最高分”不变;3.如果还有其他分数,重复第二步;4.一直到没有可比的分数为止,这时假定的“最高分”就是所有评委打分中的最高分.非数值型计算问题,如:排序、查找、变量变换、文字处理等需先建立过程模型,通过模型进行算法设计与描述.设计具体数学问题的算法,实际上就是寻求一类问题的算法,它可以通过计算机来完成.3.在解放战争中,有一名战士接到命令,要求在最短的时间内配制出三副炸药,但是由于条件艰苦,称量物品的天平只剩下50 g 和5 g 两个砝码.现有465 g 硫黄,要平均分成三份,如何设计算法才能使称量的次数最少?需称量多少次?【解】 算法如下:1.计算出465 g 硫黄分成三等份,每份应为155 g. 2.用5 g 砝码称出5 g 硫黄. 3.用50 g 砝码称出50 g 硫黄.4.用50 g 砝码和50 g 硫黄共同称出100 g 硫黄.5.把5 g,50 g,100 g 硫黄混合,构成155 g 硫黄,也就是一份硫黄. 6.用这一份硫黄再称出155 g 硫黄,余下的作为一份. 由上述方法可以看出,这样的操作共需要称量4次.1.下列说法正确的是( )A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结论C.解决某一个具体问题,算法不同所得的结果不同D.算法执行步骤的次数不可以很大,否则无法实施【解析】如判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种,所以B对.而A项算法不等同于解法,故不正确.C项,解决某一个具体问题,算法不同所得的结果应该相同,否则算法不正确.D项,算法可以为很多次,但不可以为无限次.【答案】 B2.下列四种自然语言叙述中,能称作算法的是( )A.在家里一般是妈妈做饭B.在野外做饭叫野炊C.研究函数奇偶性可以按“判断定义域是否关于原点对称,考查f(x)与f(-x)满足的关系”的程序进行D.做饭必须要有米【解析】只有C项能按一定的程序或步骤完成.【答案】 C3.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( ) A.13分钟B.14分钟C.15分钟D.23分钟【解析】做④的同时可以做②③,故共可用时2+10+3=15分钟.【答案】 C4.有以下六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法________.(写序号) 【解析】按照拨打电话的顺序设计,同时考虑所有可能的情况.【答案】③②①⑤④⑥5.已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分,求他的总分S和平均成绩x的一个算法为:1.取A=89,B=96,C=99;2.________;3.________;4.输出计算的结果.【解析】由题意知,先算S=A+B+C,接着计算x=S÷3.【答案】计算S=A+B+C 计算x=S÷3。
2017-2018学年高中数学 第三章 不等式 3.4 简单线性规划 3.4.1习题精选 北师大版必
4.1二元一次不等式(组)与平面区域课后篇巩固探究A组1.不等式2x+y+1<0表示的平面区域在直线2x+y+1=0的()A.右上方B.右下方C.左上方D.左下方答案:D2.不等式组表示的平面区域是()A.矩形B.三角形C.直角梯形D.等腰梯形解析:画出平面区域(如图阴影部分),该区域是等腰梯形.答案:D3.直线2x+y-10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个解析:如图所示,不等式组表示的平面区域为阴影部分,直线与阴影只有一个公共点(5,0).答案:B4.若不等式组表示的平面区域经过四个象限,则实数λ的取值范围是()A.(-∞,4)B.[1,2]C.(1,4)D.(1,+∞)答案:D5.若点A(3,3),B(2,-1)在直线x+y-a=0的两侧,则a的取值范围是.解析:由题意得(3+3-a)(2-1-a)<0,解得1<a<6.答案:(1,6)6.若用三条直线x+2y=2,2x+y=2,x-y=3围成一个三角形,则三角形内部区域(不包括边界)可用不等式(组)表示为.答案:7.若不等式组表示的平面区域是一个三角形,则a的取值范围是.解析:如图,当直线y=a位于直线y=5和y=7之间(不含y=7)时满足条件,故a的取值范围应是5≤a<7.答案:[5,7)8.导学号33194067设f(x)=x2+ax+b,若1≤f(-1)≤2,2≤f(1)≤4,试求点(a,b)构成的平面区域的面积.解f(-1)=1-a+b,f(1)=1+a+b,由得不等式组即作出不等式组表示的平面区域(如图阴影部分所示).可知平面区域为矩形ABCD,|AB|=,|BC|=,所以所求区域面积为=1.9.某工厂生产甲、乙两种产品,需要经过金工和装配两个车间加工,有关数据如下表:列出满足生产条件的数学关系式,并画出相应的平面区域.解设分别生产甲、乙两种产品x件和y件,于是满足条件所以满足的生产条件是图中阴影部分中的整数点.B组1.在平面直角坐标系中,若点A(-2,t)在直线x-2y+4=0的上方,则t的取值范围是()A.(-∞,1)B.(1,+∞)C.(-1,+∞)D.(0,1)解析:在直线方程x-2y+4=0中,令x=-2,则y=1,则点(-2,1)在直线x-2y+4=0上,又点(-2,t)在直线x-2y+4=0的上方,由图可知,t的取值范围是t>1,故选B.答案:B2.若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是()A. B. C. D.解析:不等式组表示的平面区域是如图所示阴影部分的△ABC.由得A(1,1),又B(0,4),C,所以S△ABC=×1=.设y=kx+与3x+y=4的交点为D(x D,y D),则S△BCD=S△ABC=,所以x D=,所以y D=,所以=k×,所以k=.答案:A3.已知点(1,2)和点(-1,3)在直线2x+ay-1=0的同一侧,则实数a的取值范围是.解析:因为(2a+1)(3a-3)>0,所以a<-或a>1.答案:∪(1,+∞)4.导学号33194068若区域A为不等式组表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为.解析:如图,区域A表示的平面区域为△OBC内部及其边界组成的图形,当a从-2连续变化到1时扫过的区域为四边形ODEC所围成的区域.又D(0,1),B(0,2),E,C(-2,0).所以S四边形ODEC=S△OBC-S△BDE=2-.答案:5.以原点为圆心的圆全部在不等式组表示的平面区域的内部,则圆的面积的最大值为.解析:根据条件画出平面区域如图中阴影所示,要使以原点为圆心的圆面积最大,则圆与直线x-y+2=0相切.此时半径r=,此时圆面积为S=π()2=2π.答案:2π6.导学号33194069若不等式组表示的平面区域是一个三角形,则a的取值范围是.解析:不等式表示的平面区域如图,当x+y=a过A时,表示的区域是△AOB,此时a=.当a>时,表示区域是三角形.当x+y=a过B(1,0)时,表示的区域是△DOB,此时a=1;当0<a<1时,表示区域是三角形;当a<0时,不表示任何区域,当1<a<时,表示区域是四边形.故当0<a≤1或a≥时,表示的平面区域为三角形.答案:(0,1]∪7.已知点P(1,-2)及其关于原点对称点均在不等式2x+by+1>0表示的平面区域内,求b的取值范围.解点P(1,-2)关于原点对称点为P'(-1,2),由题意知解得<b<.故满足条件的b的取值范围为.8.一个小型家具厂计划生产两种类型的桌子A和B.每类桌子都要经过打磨、着色、上漆三道工序.桌子A需要10 min打磨,6 min着色,6 min上漆;桌子B需要5 min打磨,12 min着色,9 min上漆.如果一个工人每天打磨和上漆分别至多工作450 min,着色每天至多工作480 min,请列出满足生产条件的数学关系式,并在直角坐标系中画出每天生产两类桌子数量的允许范围.解设家具厂每天生产A类桌子x张,B类桌子y张.对于A类x张桌子需要打磨10x min,着色6x min,上漆6x min;对于B类y张桌子需要打磨5y min,着色12y min,上漆9y min.所以题目中包含的限制条件为上述条件表示的平面区域如图中阴影部分所示,每天生产两类桌子数量的允许范围为阴影内的整数点.。
2017-2018学年高中数学北师大版三教学案:第一章§4数据的数字特征含答案
[核心必知]1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数:①平均数的定义:如果有n个数x1、x2、…、x n,那么错误!=错误!,叫作这n个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数.样本平均数:样本中所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=错误!.(2)方差的求法:标准差的平方s2叫作方差.s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2].其中,x n是样本数据,n是样本容量,错误!是样本均值.(3)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)-n错误!2]=错误!(x错误!+x错误!+…+x错误!)-错误!2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1。
据报道,某公司的33名职工的月工资(单位:元)如下:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答](1)平均数是错误!=1 500+错误!≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是错误!′=1500+错误!≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为错误!(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(五) Word版含答案
一、选择题1.在某项体育比赛中,七位裁判为一选手打出的分数为:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.92,2 B.92,2.8 C.93,2 D.93,2.82.已知一组数据为-3,5,7,x,11,且这组数据的众数为5,那么数据的中位数是( ) A.7 B.5 C.6 D.113.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则( )A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m0,平均数为x,则( )A.m e=m0=x B.m e=m0<x C.m e<m0<x D.m0<m e<x5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.57.2 3.6 B.57.2 56.4 C.62.8 63.6 D.62.8 3.6二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=________.7.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:则以上两组数据的方差中较小的一个为s2=________.8.(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4 则(1)平均命中环数为________;(2)命中环数的标准差为________.三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差.10.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.答 案1. 解析:选B 去掉最高分95和最低分89后,剩余数据的平均数为x =90+90+93+94+935=92,方差为s 2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.2. 解析:选B 这组数据的众数为5,则5出现的次数最多,∴x =5,那么这组数据按从小到大排列为-3,5,5,7,11,则中位数为5.3. 解析:选B A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .4. 解析:选D 易知中位数的值m e =5+62=5.5,众数m 0=5,平均数x =130×(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈6,所以m 0<m e <x .5. 解析:选D 设该组数据为x 1,x 2,…,x n ,则1n(x 1+x 2+…+x n )=2.8,1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6,所以,所得新数据的平均数为1n [(x 1+60)+(x 2+60)+…+(x n +60)]=1n(x 1+x 2+…+x n )+60=2.8+60=62.8.所得新数据的方差为1n[(x 1+60-62.8)2+(x 2+60-62.8)2+…+(x n +60-62.8)2]=1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6.6. 解析:由中位数的定义知x +172=16,∴x =15.答案:157. 解析:计算可得两组数据的平均数均为7, 甲班的方差s 2甲=-2+02+02+-2+025=25; 乙班的方差s 2乙=-2+02+-2+02+-25=65.则两组数据的方差中较小的一个为s 2甲=25.答案:258. 解析:(1)由公式知,平均数为110(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s 2=110(0+1+0+4+4+9+4+9+0+9)=4⇒s =2.答案:(1)7 (2)2 9. 解:(1)平均数x =150×(2×6+3×16+4×15+5×13)=18550=3.7. 众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s 2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97,所以标准差s ≈0.985.10. 解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(十八) Word版含答案
一、选择题1.抽查10件产品,记事件A 为“至少有2件次品”,则A 的对立事件为( ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品 D .至少有2件正品2.同时掷三枚硬币,那么互为对立事件的是( ) A .至少有1枚正面向上和最多有1枚正面向上 B .最多1枚正面向上和恰有2枚正面向上 C .不多于1枚正面向上和至少有2枚正面向上 D .至少有2枚正面向上和恰有1枚正面向上3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件,抽得正品的概率为( )A .0.09B .0.98C .0.97D .0.964.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A .60%B .30%C .10%D .50%5.如果事件A 与B 是互斥事件,则( ) A .A ∪B 是必然事件 B.A -与B -一定是互斥事件 C.A -与B -一定不是互斥事件 D.A -∪B -是必然事件 二、填空题6.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为________.(只考虑整数环数)7.盒中有大小、形状相同的黑球、白球和黄球,从中摸出一个球,摸出黑球的概率为0.42,摸出黄球的概率为0.18,则摸出白球的概率为________,摸出的球不是黄球的概率为________,摸出的球是黄球或黑球的概率为________.8.事件A ,B 互斥,它们都不发生的概率为25,且P (A )=2P (B ),则P (A -)=________.三、解答题9.某医院一天内派出医生下乡医疗,派出医生的人数及其概率如下:(1)求派出至多2名医生的概率; (2)求派出至少3名医生的概率.10.在数学考试中(满分100分),小明的成绩在90分以上(包括90分)的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09.(1)求小明在数学考试中成绩在80分以上(包括80分)的概率; (2)求小明考试不及格(低于60分)的概率.答 案1. 解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.2. 答案:C3. 解析:选D 设“抽得正品”为事件A ,“抽得乙级品”为事件B ,“抽得丙级品”为事件C ,由题意,事件B 与事件C 是互斥事件,而事件A 与并事件(B +C )是对立事件;所以P (A )=1-P (B +C )=1-[P (B )+P (C )]=1-0.03-0.01=0.96. 4. 解析:选D 甲不输,包含两个事件:甲获胜,甲、乙和棋. ∴甲、乙和棋概率P =90%-40%=50%.5. 解析:选D A 、B 可以都不发生,∴选项A 错,A -、B -可以同时发生,即A 、B 可以都不发生,∴选项B 错.当A 与B 是对立事件时A -与B -是互斥事件,∴选项C 错,因为A 、B 互斥,所以A -、B -中至少有一个发生,故选项D 正确.6. 解析:因为某战士射击一次“中靶的环数大于5”事件A 与“中靶的环数大于0且小于6”事件B 是互斥事件,故P (A +B )=0.95.∴P (A )+P (B )=0.95,∴P (B )=0.95-0.75=0.2. 答案:0.27. 解析:P {摸出白球}=1-0.42-0.18=0.4.P {摸出的球不是黄球}=1-0.18=0.82. P {摸出的球是黄球或黑球}=0.42+0.18=0.6.答案:0.4 0.82 0.68. 解析:由题意知P (A +B )=1-25,即P (A )+P (B )=35.又P (A )=2P (B ),联立方程组解得P (A )=25,P (B )=15,故P (A -)=1-P (A )=35.答案:359. 解:记派出医生的人数为0,1,2,3,4,5及其以上分别为事件A 0,A 1,A 2,A 3,A 4,A 5,显然它们彼此互斥.(1)至多2名医生的概率为P (A 0+A 1+A 2)=P (A 0)+P (A 1)+P (A 2)=0.18+0.25+0.36=0.79. (2)法一:至少3名医生的概率为P (C )=P (A 3+A 4+A 5)=P (A 3)+P (A 4)+P (A 5) =0.1+0.1+0.01=0.21.法二:“至少3名医生”的反面是“至多2名医生”,故派出至少3名医生的概率为 1-P (A 0+A 1+A 2)=1-0.79=0.21.10. 解:分别记小明的考试成绩“在90分以上(包括90分)”“在80~89分”“在70~79分”“在60~69分”为事件B ,C ,D ,E .由题意知,这4个事件彼此互斥.(1)小明的考试成绩在80分以上(包括80分)的概率为P (B +C )=P (B )+P (C )=0.18+0.51=0.69.(2)小明考试及格的概率,即成绩在60分以上(包括60分)的概率为P (B +C +D +E )=P (B )+P (C )+P (D )+P (E )=0.18+0.51+0.15+0.09=0.93.而小明考试不及格与小明考试及格为对立事件,所以小明考试不及格(低于60分)的概率为1-P (B +C +D +E )=1-0.93=0.07.。
2017-2018学年高中数学北师大版必修三习题:课下能力提升(二)
一、选择题1.抽签法中确保样本代表性的关键是( )A.抽签B.搅拌均匀 C.逐一抽取 D.抽取不放回2.下列问题中,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量3.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则应编号为( )A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,94.在简单随机抽样中,某一个个体被抽到的可能是( )A.与第n次抽样有关,第一次被抽中的可能性大些B.与第n次抽样有关,最后一次被抽中的可能性较大C.与第n次抽样无关,每次被抽中的可能性相等D.与第n次抽样无关,每次都是等可能被抽取,但各次被抽取的可能性不一样5.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为20%,用随机数表法在该中学抽取容量为n的样本,则n=( )A.80 B.160 C.200 D.280二、填空题6.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 607.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数法抽取样本的过程中,所编的号码的位数是________.8.从一群玩游戏的小孩中随机抽出k人,一人分一个桃子后,让他们返回继续玩游戏,一会儿后,再从中任意抽出m人,发现其中有n个小孩曾分过桃子,估计一共有小孩子________人.三、解答题9.从90件产品中抽取12件进行质检,写出用随机数表法抽取这一样本的过程.10.公共汽车管理部门要考察一下其所管辖的30辆公共汽车的卫生状况,现决定从中抽取10辆进行检查.如果以抽签法做实验,请叙述具体的做法;如果该管理部门管辖的是70辆车,利用随机数法抽取一个简单随机样本,样本容量为30.答 案1. 解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算,再放回)也不影响样本的代表性,抽签也一样.2. 解析:选B 根据简单随机抽样的特点进行判断.A 的总体容量较大,用简单随机抽样比较麻烦;B 的总体容量较小,用简单随机抽样比较方便;C 中,由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样;D 中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.3. 解析:选D 用随机数法抽取样本,为了方便读数,所编的号码的位数尽量少,且所有号码的位数相同.4. 解析:选C 在总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等.5. 解析:选C 由n400+320+280=0.2, 解得n =200.6. 解析:由随机数法的抽取规则可得.答案:18,00,38,58,32,26,25,397. 解析:由于所编号码的位数和读数的位数要一致,因此所编号码是四位数,从0000到1 000,或者从0001到1001等等.答案:四 8. 解析:估计一共有小孩x 人,则有k x =n m ,∴x =km n. 答案:km n9. 解:第一步 对90件产品按00,01,02,…,89进行编号.第二步 在随机数表中随机地确定一个数作为开始,如第6行第3列的数3.第三步从数3开始向右读下去,每次读两位,若遇到不在00到89中的数则跳过去,遇到已读过的数也跳过去,便可依次得到35,79,00,33,70,60,16,20,38,82,77,57.第四步取与这12个数相对应的产品组成样本.10. 解:(1)抽签法的步骤:第一步编号.给所管辖的30辆车编号;第二步定签.可以用各种不同的签,最简单的可以用纸条,将30辆车的编号写在纸条上;第三步抽取.将纸条混合均匀,依次随机地抽取10个;第四步调查.调查抽出的纸条所对应的车辆.(2)随机数法的步骤:第一步编号.将70辆车编上号:00,01,02, (69)第二步选数.由于总体是一个两位数的编号,所以从随机数表中随机选取一个位置开始,向某一方向依次选取两位数字,大于69的舍去,重复的舍去,直到取满30个数为止;第三步调查.调查抽出的数所对应的车辆.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(四) Word版含答案
一、选择题1.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从该图中得到( ) A.条形统计图 B.茎叶图C.扇形统计图 D.折线统计图2.某班学生在课外活动中参加文娱、美术、体育小组的人数之比为3∶1∶6,则在扇形统计图中表示参加体育小组人数的扇形圆心角是( )A.108° B.216° C.60° D.36°3.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B.0.4 C.0.5 D.0.64.某同学对高一(1)班和高一(2)班两个班级今年的获奖情况进行了统计,制成两个统计图(如图所示),你认为哪个图比较恰当( )A.①恰当 B.②恰当 C.①②都恰当 D.①②都不恰当5.2013年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如下:试估计成绩高于11级分的人数为( )A.8 000 B.10 000 C.20 000 D.60 000二、填空题6.某校高一(1)班有50名学生,综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是________.7.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.8.某校为了了解学生的睡眠情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用如图所示的条形图表示.根据条形图可得这50名学生这一天平均每人的睡眠时间为________ h.三、解答题9.某赛季甲、乙两名篮球运动员每场比赛得分原始记录如下:甲运动员的得分:13,23,8,26,38,16,33,14,28,39;乙运动员的得分:49,24,12,31,50,44,15,25,36,31.用茎叶图将甲、乙运动员的成绩表示出来.10.某地农村某户农民年收入如下(单位:元):土地收入打工收入养殖收入其他收入4 320 3 600 2 357 843请用不同的统计图来表示上面的数据.答案1. 解析:选B 所有的统计图中,仅有茎叶图完好无损地保存着所有的数据信息.2. 解析:选B 参加体育小组人数占总人数的63+1+6=60%,则扇形圆心角是360°×60%=216°.3. 解析:选B 由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4.4. 解析:选 B 图②较恰当.由图②我们可以很清楚地看出运动类的获奖次数(1)班比(2)班多一些,而学习类的获奖次数(1)班比(2)班少一些.5. 解析:选B 由题意结合条形图分析得成绩高于11级分的考生数的百分比大约为(2.3+3+0.9+1.7)%=7.9%,所以考生大约为:7.9%×120 000=9480(人).故最接近的人数为10 000.6. 解析:由扇形图可知:评价等级为A的人数占总人数的38%,由此可知高一(1)班的50名学生中有50×38%=19人在该等级中.答案:197. 解析:甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45;乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.答案:45 468. 解析:法一:要确定这50名学生的平均睡眠时间,就必须计算其总睡眠时间.总睡眠时间为5.5×0.1×50+6×0.3×50+6.5×0.4×50+7×0.1×50+7.5×0.1×50=27.5+90+130+35+37.5=320.故平均睡眠时间为320÷50=6.4 (h).法二:根据图形得平均每人的睡眠时间为t=5.5×0.1+6×0.3+6.5×0.4+7×0.1+7.5×0.1=6.4(h).答案:6.49. 解:制作茎叶图的方法是:将所有的两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.甲、乙运动员的得分茎叶图如图.10. 解:用条形统计图表示,如图所示.用折线统计图表示,如图所示.用扇形统计图表示,如图所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【北师大版】2017-2018学年高中数学必修三习题汇编目录2017-2018学年高中数学北师大版必修三习题:课下能力提升(一)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(二)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(三)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(四)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(五)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(六)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(七)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(八)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(九)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十一)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十二)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十三)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十四)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十五)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十六)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十七)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十八)Word版含答案2017-2018学年高中数学北师大版必修三习题:课下能力提升(十九)Word版含答案2017-2018学年高中数学北师大版必修三习题:阶段质量检测(一)Word版含答案2017-2018学年高中数学北师大版必修三习题:阶段质量检测(二)Word版含答案2017-2018学年高中数学北师大版必修三习题:阶段质量检测(三)Word版含答案一、选择题1.现从80件产品中随机抽出10件进行质量检验,下列说法正确的是( )A.80件产品是总体B.10件产品是样本C.样本容量是80D.样本容量是102.下列调查时,必须采用“抽样调查”的是( )A.调查某城市今年7月份的温度变化情况B.调查某一品牌5万瓶化妆品是否符合质量标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班50名学生100米短跑的成绩3.下列哪个问题不宜用普查( )A.为了缓解城市的交通情况,某市准备出台限制私家车的政策,为此要进行民意调查B.对你所在学校的学生最喜欢的体育活动情况的调查C.某轮胎厂要对一个批次轮胎的寿命进行调查D.对上海市常住人口家庭收入情况的调查4.为了调查北京市2015年家庭的收入情况,在该问题中总体是( )A.北京市B.北京市的所有家庭的收入C.北京市的所有人口D.北京市的工薪阶层5.下列调查中属于抽样调查的是( )①每隔5年进行一次人口普查;②某商品的质量优劣;③某报社对某个事件进行舆论调查;④高考考生的身体检查.A.②③ B.①④C.③④ D.①②6.下面的各事件中,适合抽样调查的有________.①调查除夕之夜我国有多少人观看中央电视台春节联欢晚会;②调查某工厂生产的一万件西服中有无不合格产品;③评价一个班级升学考试的成绩;④调查当今中学生中,对交通法规的了解情况;⑤调查山东省初中生每人每周的零花钱数.7.随着人们健康意识的提高,有色食品的质量引起消费者的特别关注,检验员为了检查彩色豆腐是否具有染色现象,应采用__________的方法检验.8.某地区发现了新型流感病毒,在病毒发作区,对与病毒携带者亲密接触的人要进行检查,所采用的方法是________.三、解答题9.有人说“如果抽样方法设计得好,用样本进行视力调查与对24 300名学生进行视力普查的结果会差不多,而且对于教育部门掌握学生视力状况来说,因为节省了人力、物力和财力,抽样调查更可取”,你认为这种说法有道理吗?为什么?10.为了了解高一一班语文老师的教学情况,从全班50名同学中抽取了成绩在前10名的10名同学进行问卷调查,这种抽样方法合理吗?为什么?答案1. 解析:选D 在该问题中,80件产品的质量是总体,所以A错误;所抽取的10件产品的质量是样本,所以B错误;总体容量是80,所以C错误;样本容量是10,所以D正确.2. 解析:选B 调查化妆品是否符合质量标准,具有“破坏性”,必须使用抽样调查.3. 答案:C4. 答案:B5. 解析:选A ①④为普查,②③为抽样调查.6. 答案:①②④⑤7. 解析:这是破坏性的检验,不可能进行普查,应当采取抽样调查的方法进行检验,对随机抽取的部分产品进行检验,根据得到的检验结果,就可以得到这批产品是否具有染色现象,因为同一批豆腐,从中随机抽取一部分代表全体产品的质量是合理的.答案:抽样调查8. 答案:普查9. 解:这种说法有道理,因为一个好的抽样方法能够保证调查结果接近于普查的结果,因此只要根据误差的要求取合适的样本进行调查会和普查的结果差不多,而且抽样调查还可以节省人力、物力和财力.10. 解:这种抽样方法不合理,它不具有随机性,不能保证每个个体被抽到的机会相等,并且成绩的好坏也可能会影响到对老师印象的偏见.在抽样时,一定要做到随机性,尽量避免人为的主观因素的影响.一、选择题1.抽签法中确保样本代表性的关键是( )A.抽签B.搅拌均匀 C.逐一抽取 D.抽取不放回2.下列问题中,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量3.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则应编号为( )A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,94.在简单随机抽样中,某一个个体被抽到的可能是( )A.与第n次抽样有关,第一次被抽中的可能性大些B.与第n次抽样有关,最后一次被抽中的可能性较大C.与第n次抽样无关,每次被抽中的可能性相等D.与第n次抽样无关,每次都是等可能被抽取,但各次被抽取的可能性不一样5.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为20%,用随机数表法在该中学抽取容量为n的样本,则n=( )A.80 B.160 C.200 D.280二、填空题6.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 607.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数法抽取样本的过程中,所编的号码的位数是________.8.从一群玩游戏的小孩中随机抽出k人,一人分一个桃子后,让他们返回继续玩游戏,一会儿后,再从中任意抽出m人,发现其中有n个小孩曾分过桃子,估计一共有小孩子________人.三、解答题9.从90件产品中抽取12件进行质检,写出用随机数表法抽取这一样本的过程.10.公共汽车管理部门要考察一下其所管辖的30辆公共汽车的卫生状况,现决定从中抽取10辆进行检查.如果以抽签法做实验,请叙述具体的做法;如果该管理部门管辖的是70辆车,利用随机数法抽取一个简单随机样本,样本容量为30.答案1. 解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算,再放回)也不影响样本的代表性,抽签也一样.2. 解析:选B 根据简单随机抽样的特点进行判断.A的总体容量较大,用简单随机抽样比较麻烦;B的总体容量较小,用简单随机抽样比较方便;C中,由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样;D中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.3. 解析:选D 用随机数法抽取样本,为了方便读数,所编的号码的位数尽量少,且所有号码的位数相同.4. 解析:选C 在总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等.5. 解析:选C 由n400+320+280=0.2,解得n=200.6. 解析:由随机数法的抽取规则可得.答案:18,00,38,58,32,26,25,397. 解析:由于所编号码的位数和读数的位数要一致,因此所编号码是四位数,从0000到1 000,或者从0001到1001等等.答案:四8. 解析:估计一共有小孩x 人,则有k x =n m ,∴x =km n .答案:km n9. 解:第一步 对90件产品按00,01,02,…,89进行编号.第二步 在随机数表中随机地确定一个数作为开始,如第6行第3列的数3.第三步 从数3开始向右读下去,每次读两位,若遇到不在00到89中的数则跳过去,遇到已读过的数也跳过去,便可依次得到35,79,00,33,70,60,16,20,38,82,77,57.第四步 取与这12个数相对应的产品组成样本.10. 解:(1)抽签法的步骤:第一步 编号.给所管辖的30辆车编号;第二步 定签.可以用各种不同的签,最简单的可以用纸条,将30辆车的编号写在纸条上; 第三步 抽取.将纸条混合均匀,依次随机地抽取10个;第四步 调查.调查抽出的纸条所对应的车辆.(2)随机数法的步骤:第一步 编号.将70辆车编上号:00,01,02, (69)第二步 选数.由于总体是一个两位数的编号,所以从随机数表中随机选取一个位置开始,向某一方向依次选取两位数字,大于69的舍去,重复的舍去,直到取满30个数为止;第三步 调查.调查抽出的数所对应的车辆.一、选择题1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( )A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样2.(四川高考)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808 C.1 212 D.2 0123.(湖南高考)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.134.下列抽样中不是系统抽样的是( )A.从标有1~15号的15个球中,任选3个作为样本.将15个球按从小号到大号排序,随机选i0号作为起始号码,以后选i0+5,i0+10(超过15则从1再数起)号入样B.工厂生产的产品,在用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽取一件产品进行检验C.进行某一市场调查时,规定在商场门口随机抽取一个人进行询问调查,直到调查到事先规定的调查人数为止D.在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的听众留下来座谈5.某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人.为了了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,依次为简单随机抽样、系统抽样、分层抽样顺序的是( )方法1:将140人从1~140编号,然后制作出编号1~140的形状、大小相同的号签,并将号签放入同一箱子里均匀搅拌,然后从中依次抽取20个号签,编号与号签相同的20个人被选出;方法2:将140人分成20组,每组7人,并将每组7人按1~7编号,在第一组采用抽签法抽出k 号(1≤k ≤7),其余各组k 号也被抽出,20个人被选出;方法3:按20∶140=1∶7的比例,从教师中抽出13人,从教辅行政人员中抽出4人,从总务后勤人员中抽出3人.从各类人员中抽取所需人员时,均采用随机数法,可抽到20人.A .方法2,方法1,方法3B .方法2,方法3,方法1C .方法1,方法2,方法3D .方法3,方法1,方法2二、填空题6.(浙江高考)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为________.8.一个总体中有100个个体,随机编号为0、1、2、…、99,依编号顺序平均分成10个小组,组号依次为1、2、3、…、10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.三、解答题9.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.答 案1. 解析:选A 对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体数量少,样本容量也小,故②为简单随机抽样.2. 解析:选B 依题意得知,甲社区驾驶员的人数占总人数的1212+21+25+43=12101,因此有96N=12101,解得N =808. 3. 解析:选D 由分层抽样可得,360=n 260,解得n =13. 4. 解析:选C 分析各选项中抽样的特点,与系统抽样的概念、特点进行比较.A 、D 显然是系统抽样.B 项中,传送带的速度是恒定的,实际上是将某一段时间内生产的产品分成一组,且可以认为这些产品已经排好,又总在某一位置抽取样品,这正好符合系统抽样的概念.选项C 因事先不知道总体的个数,而且抽样时不能保证每个个体等可能入样,因此它不是系统抽样.5. 解析:选C 结合简单随机抽样、系统抽样、分层抽样的定义判断.6. 解析:由分层抽样得,此样本中男生人数为560×280560+420=160. 答案:1607. 解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8. 答案:88. 解析:第k 组的号码为(k -1)10,(k -1)10+1,…,(k -1)·10+9,当m =6、k =7时,第k 组抽取的号码m +k 的个位数字为3,所以(7-1)×10+3=63.答案:639. 解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.10. 解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为200×34×40%=60;抽取的中年人人数为200×34×50%=75;抽取的老年人人数为200×34×10%=15.一、选择题1.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从该图中得到( )A.条形统计图 B.茎叶图C.扇形统计图 D.折线统计图2.某班学生在课外活动中参加文娱、美术、体育小组的人数之比为3∶1∶6,则在扇形统计图中表示参加体育小组人数的扇形圆心角是( )A.108° B.216° C.60° D.36°3.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B.0.4 C.0.5 D.0.64.某同学对高一(1)班和高一(2)班两个班级今年的获奖情况进行了统计,制成两个统计图(如图所示),你认为哪个图比较恰当( )A.①恰当 B.②恰当 C.①②都恰当 D.①②都不恰当5.2013年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如下:试估计成绩高于11级分的人数为( )A.8 000 B.10 000 C.20 000 D.60 000二、填空题6.某校高一(1)班有50名学生,综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是________.7.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.8.某校为了了解学生的睡眠情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用如图所示的条形图表示.根据条形图可得这50名学生这一天平均每人的睡眠时间为________ h.三、解答题9.某赛季甲、乙两名篮球运动员每场比赛得分原始记录如下:甲运动员的得分:13,23,8,26,38,16,33,14,28,39;乙运动员的得分:49,24,12,31,50,44,15,25,36,31.用茎叶图将甲、乙运动员的成绩表示出来.10.某地农村某户农民年收入如下(单位:元):土地收入打工收入养殖收入其他收入4 320 3 600 2 357 843请用不同的统计图来表示上面的数据.答案1. 解析:选B 所有的统计图中,仅有茎叶图完好无损地保存着所有的数据信息.2. 解析:选 B 参加体育小组人数占总人数的63+1+6=60%,则扇形圆心角是360°×60%=216°.3. 解析:选B 由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4.4. 解析:选B 图②较恰当.由图②我们可以很清楚地看出运动类的获奖次数(1)班比(2)班多一些,而学习类的获奖次数(1)班比(2)班少一些.5. 解析:选B 由题意结合条形图分析得成绩高于11级分的考生数的百分比大约为(2.3+3+0.9+1.7)%=7.9%,所以考生大约为:7.9%×120 000=9480(人).故最接近的人数为10 000.6. 解析:由扇形图可知:评价等级为A的人数占总人数的38%,由此可知高一(1)班的50名学生中有50×38%=19人在该等级中.答案:197. 解析:甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45;乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.答案:45 468. 解析:法一:要确定这50名学生的平均睡眠时间,就必须计算其总睡眠时间.总睡眠时间为 5.5×0.1×50+6×0.3×50+6.5×0.4×50+7×0.1×50+7.5×0.1×50=27.5+90+130+35+37.5=320.故平均睡眠时间为320÷50=6.4 (h).法二:根据图形得平均每人的睡眠时间为t=5.5×0.1+6×0.3+6.5×0.4+7×0.1+7.5×0.1=6.4(h).答案:6.49. 解:制作茎叶图的方法是:将所有的两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.甲、乙运动员的得分茎叶图如图.10. 解:用条形统计图表示,如图所示.用折线统计图表示,如图所示.用扇形统计图表示,如图所示.一、选择题1.在某项体育比赛中,七位裁判为一选手打出的分数为:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.92,2 B.92,2.8 C.93,2 D.93,2.82.已知一组数据为-3,5,7,x,11,且这组数据的众数为5,那么数据的中位数是( ) A.7 B.5 C.6 D.113.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则( )A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m0,平均数为x,则( )A.m e=m0=x B.m e=m0<x C.m e<m0<x D.m0<m e<x5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.57.2 3.6 B.57.2 56.4 C.62.8 63.6 D.62.8 3.6二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=________.7.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:则以上两组数据的方差中较小的一个为s2=________.8.(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4 则(1)平均命中环数为________;(2)命中环数的标准差为________.三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差.10.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.答案1. 解析:选B 去掉最高分95和最低分89后,剩余数据的平均数为x =90+90+93+94+935=92,方差为s 2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.2. 解析:选B 这组数据的众数为5,则5出现的次数最多,∴x =5,那么这组数据按从小到大排列为-3,5,5,7,11,则中位数为5.3. 解析:选B A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .4. 解析:选D 易知中位数的值m e =5+62=5.5,众数m 0=5,平均数x =130×(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈6,所以m 0<m e <x .5. 解析:选D 设该组数据为x 1,x 2,…,x n ,则1n(x 1+x 2+…+x n )=2.8,1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6,所以,所得新数据的平均数为1n [(x 1+60)+(x 2+60)+…+(x n +60)]=1n(x 1+x 2+…+x n )+60=2.8+60=62.8.所得新数据的方差为1n[(x 1+60-62.8)2+(x 2+60-62.8)2+…+(x n +60-62.8)2]=1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6.6. 解析:由中位数的定义知x +172=16,∴x =15.答案:157. 解析:计算可得两组数据的平均数均为7, 甲班的方差s 2甲=-2+02+02+-72+025=25; 乙班的方差s 2乙=-2+02+-2+02+-25=65. 则两组数据的方差中较小的一个为s 2甲=25.答案:258. 解析:(1)由公式知,平均数为110(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s2=110(0+1+0+4+4+9+4+9+0+9)=4⇒s =2. 答案:(1)7 (2)29. 解:(1)平均数x =150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s 2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97,所以标准差s ≈0.985.10. 解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.一、选择题1.下列说法不.正确的是( )A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是( )A.32,0.4 B.8,0.1 C.32,0.1 D.8,0.43.将一个容量为50的样本数据分组后,分组与频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.则估计小于30的数据大约占总体的( )A.94% B.6% C.92% D.12%4.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生人数为( )A.46 B.48 C.50 D.605.设矩形的长为a,宽为b,其比满足b:a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639。