现控第1章

合集下载

第1章过程控制系统概述习题与思考题

第1章过程控制系统概述习题与思考题

第1章 过程控制系统概述习题与思考题1.1 什么是过程控制系统,它有那些特点?1.2 过程控制的目的有那些?1.3 过程控制系统由哪些环节组成的,各有什么作用?过程控制系统有那些分类方法?1.4 图1.11是一反应器温度控制系统示意图。

A 、B 两种物料进入反应器进行反应,通过改变进入夹套的冷却水流量来控制反应器的温度保持不变。

试画出该温度控制系统的方框图,并指出该控制系统中的被控过程、被控参数、控制参数及可能影响被控参数变化的扰动有哪些?1.5 锅炉是化工、炼油等企业中常见的主要设备。

汽包水位是影响蒸汽质量及锅炉安全的一个十分重要的参数。

水位过高,会使蒸汽带液,降低了蒸汽的质量和产量,甚至会损坏后续设备;而水位过低,轻则影响汽液平衡,重则烧干锅炉甚至引起爆炸。

因此,必须对汽包水位进行严格控制。

图1.12是一类简单锅炉汽包水位控制示意图,要求:1)画出该控制系统方框图。

2)指出该控制系统中的被控过程、被控参数、控制参数和扰动参数各是什么。

3)当蒸汽负荷突然增加,试分析该系统是如何实现自动控制的。

V-1图1.12 锅炉汽包水位控制示意图1.6 评价过程控制系统的衰减振荡过渡过程的品质指标有那些?有那些因素影响这些指标?1.7 为什么说研究过程控制系统的动态特性比研究其静态特性更意义?1.8 某反应器工艺规定操作温度为800 10℃。

为确保生产安全,控制中温度最高不得超过850℃。

现运行的温度控制系统在最大阶跃扰动下的过渡过程曲线如图1.13所示。

1)分别求出稳态误差、衰减比和过渡过程时间。

2)说明此温度控制系统是否已满足工艺要求。

T/℃图1.13 某反应器温度控制系统过渡过程曲线1.9 简述过程控制技术的发展。

1.10 过程控制系统与运动控制系统有何区别?过程控制的任务是什么?设计过程 控制系统时应注意哪些问题?第3章 过程执行器习题与思考题3.1 试简述气动和电动执行机构的特点。

3.2 调节阀的结构形式有哪些?3.3 阀门定位器有何作用?3.4 调节阀的理想流量特性有哪些?实际工作时特性有何变化?3.5 已知阀的最大流量min v q =50m 3,可调范围R=30。

第一章控制系统的基本概念

第一章控制系统的基本概念
图1.5 闭环控制系统的组成
1.给定元件 主要用于产生给定信号或输入信号。例如,图1.2中电位计 里的可变电阻。 2.反馈元件 它测量被控制量或输出量,产生主反馈信号。一般,为了便 于传输,主反馈信号多为电信号。因此,反馈元件通常是一些用 电量来测量非电量的元件。 必须指出,在机械、液压、气动、机电、电机等系统中存在 着内在反馈。这是一种没有专设反馈元件的信息反馈,是系统内 部各参数相互作用而产生的反馈信息流,如作用力与反作用力之 间形成的直接反馈。内在反馈回路由系统动力学特性确定,它所 构成的闭环系统是一个动力学系统。 3.比较元件 用来接收输入信号和反馈信号并进行比较,产生反映两者差 值的偏差信号。例如,图1.2中的电位计。
准确地复现控制信号
的变化规律(此即伺
服的含义)。控制指
令可以由操作者根据
需要随时发出,也可
以由目标物或相应的 测量装置发出。
图1.7 液压仿形车床工作原理图
图1.7所示为液压仿形车床工作原理图。当阀心8处于图示中 间位置时,没有压力油进入液压缸前后两腔,液压缸不动。当阀 心偏离中位,例如向前伸出时,节流口2、4保持关闭,节流口1、 3打开,压力油经节流口3进入液压缸前腔,而其后腔的油液经 节流口1流回油箱,缸体带动刀具向前运动;同样,当阀心偏离 中位向后收缩时,节流口1、3关闭,2、4打开,压力油经节流 口2进入液压缸后腔,而缸前腔的油液则经节流口4流回油箱, 缸体带动刀具向后运动。图中,液压缸缸体和控制阀阀体连成一 体,形成液压缸运动的负反馈,使液压缸缸体与阀心的运动距离 和方向始终保持一致,所以液压缸缸体(刀具)完全跟随阀心 (触销8)运动。因此,这是一个随动(伺服)系统。
若参数配置不当,很容易引起振荡, 由11台小型电动机驱动

智能控制理论及其应用-第一章概述

智能控制理论及其应用-第一章概述

1.2 智能控制的产生及其发展
(3)智能控制的发展
国际智能自动化学会(International Society Of Intelligent Automation,简称ISIA) 筹委会主席是模糊数学与模糊系统 的创始人L.A.Zadeh教授。筹委会第一次会议已于1995 年10月在加拿大温哥华召开。她的成立将在世界范围内对于 推动智能自动化的研究起到促进作用。 我国也十分重视智能控制理论和应用的研究。1993年在 北京召开了“全球华人智能控制与智能自动化大会”,1994年 在北京和沈阳召开了智能控制两个学术会议,1995年中国智 能自动化学术会议暨智能自动化专业委员会成立大会在天津 召开。
1.2 智能控制的产生及其发展
(1)智能控制的孕育
1966年,Mendel进一步在空间飞行器的学习控制系统 中应用了人工智能技术,并提出了“人工智能控制”的概 念。 1967年,Leondes和Mendel首先正式使用“智能控制” 一词,并把记忆、目标分解等一些简单的人工智能技术用 于学习控制系统,提高了系统处理不确定性问题的能力。 这就标志着智能控制的思想已经萌芽。
1.3 传统控制与智能控制
智能控制的产生来源于被控系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能,可以概括为,智能 控制是“三高三性”的产物,它的创立和发展需要对当代多种 前沿学科、多种先进技术和多种科学方法,加以高度综合和 利用。 因此,智能控制无疑是控制理论发展的高级阶段。
1.4 智能控制理论的主要特征
1.2 智能控制的产生及其发展
(3)智能控制的发展
美国《IEEE控制系统》杂志1991、1993~1995年多次发 表《智能控制专辑》,英国《国际控制》杂志1992年也发表了 《智能控制专辑》,日文《计测与控制》杂志1994年发表了 《智能系统特集》,德文《电子学》杂志自1991年以来连续发 表多篇模糊逻辑控制和神经网络方面的论文;俄文《自动化与 遥控技术》杂志1994年也发表了自适应控制的人工智能基础及 神经网络方面的研究论文。 如果说智能控制在80年代的应用和研究主要是面向工业过 程控制,那么90年代,智能控制的应用已经扩大到面向军事、 高技术领域和日用家电产品等领域。今天,“智能性”已经成为 衡量“产品”和“技术”高低的标准。

第1章 经典控制理论的概念

第1章 经典控制理论的概念

现代控制理论
第1章 经典控制理论的概念
5、自适应控制 是指一类控制系统,既能适应内部参数变化,又能适 应外部环境变化,而自动调整控制作用,使系统满足要求。
现代控制理论
第1章 经典控制理论的概念
本章小结
1、回顾经典控制理论中的相关知识; 2、了解控制理论的发展及现代控制理论的主要研究内容,
特别是现代控制理论与经典控制理论的区别;
图1.6 加入校正装置的系统方块图
现代控制理论
第1章 经典控制理论的概念
对于串联校正而言,常用的三种串联校正法有:超前 校正、滞后校正、滞后-超前校正。
超前校正: 滞后校正:
G(s)
Ts 1
Ts 1
(α>1)
Ts 1 G ( s) (β>1) Ts 1
滞后-超前校正:G ( s) 现代控制理论源自第1章 经典控制理论的概念
3、最佳估计(滤波) 当系统中有随机干扰时,其综合就必须同时应用概率 和统计的方法来进行,即在系统数学模型已经建立的基础 上,通过对系统输入输出数据的测量,利用统计方法对系 统的状态进行估计。主要方法是卡尔曼滤波。 4、系统辨识 要研究系统的状态,首先要建立系统在状态空间中的 数学模型,由于系统比较复杂,所以往往不能通过解析的 方法直接建立其数学模型,而主要通过试验或运行的数据 来估计出控制对象的数学模型及参数。即如何根据系统的 输入输出数据来确定系统的数学模型。
现代控制理论
第1章 经典控制理论的概念
四、现代控制理论的主要研究内容
1、线性系统理论 这是现代控制理论中最基础、最成熟的部分。用状态 空间分析法来分析和研究线性系统,主要有:控制系统的 状态空间描述、状态方程求解、系统的能控性和能观测性、 状态反馈和状态观测器、系统的稳定性理论,它揭示了系 统的内在联系。 2、最优控制 在给定的限制条件和性能指标下,寻找使系统性能指 标最佳的控制规律。主要有两种方法:庞德亚金的极大值 原理和贝尔曼的动态规划。

《自动控制原理教学课件》第1章绪论

《自动控制原理教学课件》第1章绪论
通信技术研究所
:19
常用术语: (1)系统输出:被控变量 (2)给定值(参考输入):系统的给定输入,由 控制者决定被控变量的期望值。 (3)扰动:系统不需要而又难于避免的输入,它 使得被控量偏离给定值。扰动即可来自系统内部又 可来自外部 (4)偏差:给定值-测量值
通信技术研究所
:20
ห้องสมุดไป่ตู้
前向通路:信号从输入端沿箭头方向到达输出端的 传输通路。 主反馈通路:系统输出量经测量装置反馈到输入端 的传输通路。
通信技术研究所
:33
练习
一、名词解释 1.自动控制 2.闭环控制 3.自动控制系统 二.填空 1.典型的自动控制系统由 、 、 、 、 组成。 2.对控制系统系统性能评价从三个方面进行,即 三个基本要求_______、_______ 、________ 。 3.系统中需要加以控制的目标装置,称__________ 。 4.__ __是系统能否正常工作的前提条件;_ _反映 系统在动态过程中系统跟踪控制信号或抑制扰动的能力; 稳态误差越小的系统,说明系统的_______ _越好。
通信技术研究所
:24
按描述系统的数学模型分类 (1)线性系统 (2)非线性 按控制系统传递信号性质 (1)连续系统 (2)离散系统 按系统参数是否随时间变化 (1)定常系统
d nc d n1c dc d mr d m1r dr an n an1 n1 a1 a0c bm m bm1 m1 b1 b0 r dt dt dt dt dt dt
通信技术研究所
:23
1.2.2 其他分类 按输入信号特征分类 (1)恒值系统(自稳定系统) c(t ) r (t ) , r (t ) 常数 控制任务: 分析设计重点:研究干扰对被控对象的影响, 克服扰动 (2)随动系统 控制任务: c(t ) r (t ) r (t ) 随机变化 分析设计重点:系统跟踪的快速性、准确性 (3)程序控制系统 控制任务: 预先规定时间函数变化

自动控制原理第一章自动控制原理

自动控制原理第一章自动控制原理

如图1-5所示。
给定量 控制器
干扰量
被控量 受控对象
自控系统
图1-5 自动控制系统
第一章 自动控制概论
• 如水位自动控制系统:
比较元件
进 水 + 连 杆
测量 元件
实 际 水 位 浮 子
输出量
M 电 机
干扰 信号
出 水
<
受控对象
图1-3 水位自动控制系统原理图
第一章 自动控制概论
1.2.2 自动控制系统的基本组成
基 本 要 求
通过学习本课程,获得自动控制
系统的基本概念和基本理论;掌握分 析自动控制系统或过程控制系统的基 本方法。
自动控制理论
经典控制理论 线性控制系统
连续控制系统
第 二 章 第 三 章 第 四 章 第 五 章
现代控制理论 非线性控制系统
离散控制系统
第 六 章
第 七 章
第 八 章
第一章 自动控制概论
控制理论和现代控制理论两大部分。
经典控制理论也就是自动控制原理,是20世纪 40年代到50年代形成的一门独立学科。早期的控制
系统较为简单,只要列出微分方程并求解之,就可 以用时域法分析他们的性能。第二次世界大战前后,
由于生产和军事的需要,各国均在大力研制新型武
器,于是出现了较复杂的控制系统,这些控制系统
自动控制的任务—利用控制器操纵受控对象,使其
被控量按技术要求变化。若r(t)—给定量,c(t)—被
控量,则自控的任务之数学表达式为:使被控量满 足c(t) ≈r(t)。自控系统的组成如1-6图所示。
输入量 输出量
串 联 校 正
放 大
执 行
受 控 对 象

第一章 自动控制理论概述

第一章 自动控制理论概述
第一章 自动控制基本概念
第一章 自动控制基本概念
§1-1 §1-2 §1-3 §1-4 引言 自动控制的基本概念 自动控制系统的组成和分类 自动控制系统的基本要求
控制工程基础
第一章 自动控制基本概念
本章重点
1. 自动控制的含义; 自动控制的含义; 反馈和反馈控制的概念、反馈控制的特点; 2. 反馈和反馈控制的概念、反馈控制的特点; 3. 控制系统的组成和分类和特点。 控制系统的组成和分类和特点。
控制工程基础
第一章 自动控制基本概念
• 自动控制技术在工农业生产、国防、航空航天等 各个领域中起着重要的作用! • 广泛应用于各种工程学科领域,并扩展到生物、医 学、环境、经济管理和其它许多社会生活领域。 • 独立的学科并与其它学科相互渗透、相互促进。
• 《自动控制理论》是自动控制技术的基础理论,是 一门理论性较强的工程科学。 现代的工程技术人员和科学工作者, 现代的工程技术人员和科学工作者,必须具备 一定的自动控制理论基础知识! 一定的自动控制理论基础知识!
输入r(t) 输出c(t) 实际 1 2 1 0 t 0 t 控制工程基础 理想的 调节过程
本章难点
1. 深刻理解反馈的概念和思想; 深刻理解反馈的概念和思想; 2. 确定控制系统的被控对象、被控量、给定量 确定控制系统的被控对象、被控量、 等等,绘制方块图, 等等,绘制方块图,分析实际控制系统的基 本原理。 本原理。
控制工程基础
第一章 自动控制基本概念
§1-1 引言 -
以系统论、信息论和控制论为代表的科学方法论; 系统论、信息论和控制论为代表的科学方法论; 为代表的科学方法论 是一门新兴的学科, 是一门新兴的学科,为人类认识世界和改造世界提 供了强有力的武器。 供了强有力的武器。 关于控制论的几种说法 说法一: 控制论”是关于机器的理论。 说法一:“控制论”是关于机器的理论。 说法二: 控制论”是电子计算机和电子学的理论。 说法二:“控制论”是电子计算机和电子学的理论。 说法三: 控制论”是类似于数学的一门学科。 说法三:“控制论”是类似于数学的一门学科。 说法四: 控制论” 说法四:“控制论”是关于动物和机器中控制和通 信的科学。(维纳定义) 。(维纳定义 信的科学。(维纳定义)

第1章--自动控制原理课件

第1章--自动控制原理课件
45
下面从系统特性角度分类。 一、按系统构成元件是否线性分类 1 线性控制系统 由线性元件构成的系统是线性控制系统。或者 说,如果系统满足叠加原理,则称其为线性系统。 2 非线性控制系统 在控制系统中,如果有一个以上的元件具有非 线性,则称这个系统为非线性控制系统。或者说, 如果不能应用叠加原理,则系统是非线性的。 严格地说,绝对的线性控制系统是不存在的。 为了简化,在一定条件下,可以对某些非线性特性 作线性化处理。这样,非线性控制系统就可以近似 为线性控制系统。
22
指出:被控对象、测量元件、比较机构、放大机构 和执行机构 该系统方框图:
23
三、方框图的画法: 用方框表示系统中的各个组成部件,在每个 方框中填入它所表示部件的名称或其功能函数的 表达式,而不必画出它们的具体结构。 根据信号在系统中的传递方向,用有向线段 依次把它们连接起来,就得到整个系统的框图。
3
经典控制理论(20世纪60年代以前):主 要解决单输入单输出问题,所研究的系统多半 是线性定常系统。 现代控制理论:20世纪60年代, 随着高精 度数字计算机的诞生,为解决复杂控制系统提 供了实现上的可能性。现代控制理论涉及多变 量控制系统、最优控制理论、系统辨识与模式 识别、最优估计、自适应控制、自学习控制、 模糊控制、专家系统、神经元及其网络控制等 等。
4
第二节 自动控制系统的一般概念
一、自动控制技术及其应用
1 自动控制: 在没有人直接参与的条件下,通过 控制器使被控对象或过程自动地按 要求的规律运行。 2 自动控制系统: 能够完成自动控制功能的基本体 系,称为自动控制系统。 3 自动控制理论: 分析与综合自动控制系统的理论称 为自动控制理论。 4 应用: 自动控制技术已经应用在工程、军事和科 学技术等各个领域,包括:航空、航天、 航海、冶金、机械、能源、电子、生物、 医疗、化工、石油、建筑等。 5

第1章 自动控制系统概述

第1章  自动控制系统概述

(1)开环控制系统结构简单、稳定性好,但不能自 动补偿扰动对输出量的影响。当系统扰动量产生 的偏差可以预先进行补偿或影响不大时,采用开 环控制是有利的。
(2)闭环控制系统具有反馈环节,它能依靠负反馈 环节进行自动调节,以补偿扰动对系统产生的影 响。闭环控制极大地提高了系统的精度。但闭环 系统使系统稳定性变差,需要重视并加以解决。

本章作业
P15: 1-7 1-8

我国古代的自动控制技术
东汉时期张衡制造了浑天仪和地动仪
三国时期的马钧、南朝时的祖冲之创造和复制 了指南车。
产业革命时期,自动控制技术取得了巨大的发展
1748年瓦特发明的蒸汽机中的离心调节器

1868年麦克斯韦利用描述系统的微分方 程解释了这种现象,并提出了判别低阶 系统稳定性的判据 1877年和1895年劳斯[英]和数学家胡尔 维茨[瑞士]提出了可以判别高阶线性系统 的稳定性的判据


(3)自动控制系统通常由给定元件、检测元件、比较 环节、放大元件、执行元件、控制对象和反馈环节 等部件组成。系统的作用量和被控制量有:输入量、 反馈量、扰动量、输出量和各中间变量。 框图可直观地表达系统各环节(或各部件)间的因果关 系,可以表达各种作用量和中间变量的作用点和传 递情况以及它们对输出量的影响。
特点:无反馈环节 优点:结构简单,系统稳定性好,成本也低 缺点:当控制过程受到各种扰动因素影响时,将会直接影 响输出量,而系统不能自动进行补偿。特别是当无法预计的 扰动因素使输出量产生的偏差超过允许的限度时 ,开环控制 系统便无法满足技术要求
适用场合:在输出量和输入量之间的关系固定,且内部参 数或外部负载等扰动因素不大,或这些扰动因素产生的误差 可以预计确定并能进行补偿,应尽量采用开环控制系统。

《自动控制原理》第一章-自动控制原理精选全文完整版

《自动控制原理》第一章-自动控制原理精选全文完整版
● 放大环节: 由于经过计算机处理的信号通常是标准化的 弱信号,不能驱动被控对象,因此需要加以放大。放大环 节的输出必须有足够的能量,一般需要幅值的放大和功率 的放大,才能实现驱动能力。
● 执行环节: 其作用是产生控制量,直接推动被控对象的 控制量发生变化。如电动机、调节阀门等就是执行元件。
常用的名词术语
1.稳定性
一个控制系统能正常工作的首要条件。 稳定系统:当系统受到外部干扰后,输出会偏离正 常工作状态,但是当干扰消失后,系统能够回复到 原来的工作状态,系统的输出不产生上述等幅振荡、 发散振荡或单调增长运动。
2.动态性能指标
反映控制系统输出信号跟随输入信号的变化情况。 当系统输入信号为阶跃函数时,其输出信号称为 阶跃响应。
时,线性系统的输出量也增大或缩小相同倍数。
即若系统的输入为 r(t) 时,对应的输出为 y(t),则
当输入量为 Kr(t)时,输出量为 Ky(t) 。
(2)非线性系统
● 特点:系统某一环节具有非线性特性,不满足叠加原理。 ● 典型的非线性特性:继电器特性、死区特性、饱和特性、
间隙特性等。
图1-5 典型的非线性特性
对被控对象的控制作用,实现控制任务。
图1-3 闭环控制系统原理框图
Hale Waihona Puke (3)复合控制系统 工作原理:闭环控制与开环控制相结合的一种自动控制系 统。在闭环控制的基础上,附加一个正馈通道,对干扰信 号进行补偿,以达到精确的控制效果。
图1-4 复合控制系统原理框图
2.按系统输入信号分类
(1)恒值控制系统 系统的输入信号是某一恒定的常值,要求系统能够克服 干扰的影响,使输出量在这一常值附近微小变化。
举例:连续生产过程中的恒温、恒压、恒速等自动控制 系统。

自动控制原理第一章第四节

自动控制原理第一章第四节

t 1 [t U (t T0 )dt] T0 Ti
t t T0 : c(t ) Ti
T0 t T0 : c(t ) Ti
响应随时间线性增长,当输入突然消失,积分停止,输 出维持不变,故积分环节具有记忆功能。
14
例:用集成运放构成的反相积分器(积分环节)
U 0 ( s) 1 1 传递函数为: G( s ) U i ( s) RCs Ti s
0
t
其传递函数:G ( s ) C ( s ) 1 积分环节的单位阶跃响应为:
Ti s
Ti为积分时间常数
1 C (t ) t Ti
13
积分环节具有记忆功能 (举例说明)
1 c(t ) Ti 1 Ti
t 0
r (t )dt
0 0
t
[U (t ) U (t T )]dt
典型二阶环节的动态方程为:
其传递函数 :
d 2 c( t ) dc( t ) 2 T 2T c( t ) Kr ( t ) 2 dt dt
C ( s) K K /T2 G( s ) 2 2 2 R( s ) T s 2Ts 1 s 2s / T 1 / T 2
U a ( s ) Ea ( s ) Ra ( s ) La s E a ( s ) ce Ω( s ) M D ( s) cM Ia ( s) M D - M L ( s) ( s ) Js Ia ( s)
34
将输入Ua(s)放在左端,输出Ω (s)放在图形右端, 将同一变量的信号线连接起来,得系统方框图如图 所示。
(Ti = RC)
15
4.
微分环节

自动控制原理 第一章习题及答案

自动控制原理 第一章习题及答案

一、 习 题 及 解 答第1章习题及解答1-1 根据图1-15所示的电动机速度控制系统工作原理图,完成:(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。

解 (1)负反馈连接方式为:,d a ↔c b ↔;(2)系统方框图如图解1-1 所示。

1-2 图1-16是仓库大门自动控制系统原理示意图。

试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。

图1-16 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。

与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。

反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。

系统方框图如图解1-2所示。

1-3 图1-17为工业炉温自动控制系统的工作原理图。

分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。

图1-17 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置,该触点由可逆转的直流电动机驱动。

炉子的实际温度用热电偶测量,输出电压f u 。

f u 作为系统的反馈电压与给定电压r u 进行比较,得出所控制偏差电压,经电压放大器、功率放大器放大成后,作为 况下,炉温等于某个期望值e u a u 控制电动机的电枢电压。

在正常情T °C ,热电偶的输出电压f u 正好等于给定电压r u 。

此时,0=−=f r e u u u 故01,==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。

这时,炉子散失量正好等于从加热器吸的热取的热量,形成稳定的热平衡状态,温度保持恒定。

现代控制原理第二章课后答案

现代控制原理第二章课后答案

第二章被控对象的数学模型第一章自动控制系统基本概念1.简述被控对象、被控变量、操纵变量、扰动(干扰)量、设定(给定)值和偏差的含义?答:自动控制系统中常用的几个术语其含义是:被控对象自动控制系统中,工艺参数需要控制的生产过程、设备或机器等。

被控变量被控对象内要求保持设定数值的工艺参数。

操纵变量受控制器操纵的,用以克服干扰的影响,使被控变量保持设定值的物料量或能量。

扰动量:除操纵变量外,作用于被控对象并引起被控变量变化的因素。

设定值:被控变量的预定值。

偏差:被控变量的设定值与实际值之差。

2.自动控制系统按其基本结构形式可分为几类?其中闭环控制系统中按设定值的不同形式又可分为几种?简述每种形式的基本含义。

答:自动控制系统按其基本结构形式可分为闭环自动控制系统和开环自动控制系统。

闭环自动控制是指控制器与被控对象之间既有倾向控制又有反向联系的自动控制。

如图1—1(a)即是一个闭环自动控制。

图中控制器接受检测元件及变送器送来的测量信号,并与设定值相比较得到偏差信号,再根据偏差的大小和方向,调整蒸汽阀门的开度,改变蒸汽流量,使热物科出口温度回到设定值上。

从图l—1(b)所示的控制系统方块图可以清楚看出,操纵变量(蒸汽流量)通过被控对象去影响被控变量,而被控变量又通过自动控制装置去影响操纵变量。

从信号传递关系上看,构成了一个闭合回路。

在闭环控制系统中,按照没定值的不同形式又可分为:(1)定值控制系统定值控制系统是指设定值恒定不变的控制系统。

定值控制系统的作用是克服扰动对被控变量的影响,使被控变量最终回到设定值或其附近。

以后无特殊说明控制系统均指定值控制系统而言。

(2)随动控制系统随动控制系统的设定值是不断变化的。

随动控制系统的作用是使被控变量能够尽快地、准确无误地跟踪设定值的变化而变化。

(a)(b)图1-1闭环自动控制基本结构(3)程序控制系统程序控制系统的设定值也是变化的,但它是一个已知的时间函数,即设定值按一定的时间程序变化。

现代控制系统第十二版课后习题1章答案中文版吐血整理

现代控制系统第十二版课后习题1章答案中文版吐血整理

第1章控制系统导论基础练习题下面的系统都可以用框图来表示它们的因果关系和反馈回路(有反馈时)。

试辨识每个方框的功能,指出其中的输入变量、输出变量和待测变量。

必要时请参考图1.3。

E1.1描述能测量下列物理量的典型传感器:(a)线性位置(b)速度(或转速)(c)非重力加速度(d)旋转位置(或角度)(e)旋转速度(f)温度(g)压力(h)液体(或气体)流速(i)扭矩(j)力【解析】(a)位置传感器:用来测量机器人自身位置的传感器。

(b)转速传感器:是将旋转物体的转速转换为电量输出的传感器。

(c)重力加速度传感器:能够感知到加速力的变化的传感器。

(d)角度传感器:用来检测角度的传感器。

(e)转速传感器:是将旋转物体的转速转换为电量输出的传感器。

(f)温度传感器:指能感受温度并转换成可用输出信号的传感器。

(g)压力传感器:是能感受压力信号,并能按照一定的规律将压力信号转换成可用的输出的电信号的传感器。

(h)流量传感器:测定吸入发动机的空气流量的传感器。

液体流量计传感器:用来测量各种导电液体介质的体积流量的传感器。

(i)扭矩传感器:将扭力的物理变化转换成精确的电信号的传感器。

(j)测力传感器:在受到外力作用后,粘贴在弹性体的应变片随之产生形变引起电阻变化,电阻变化使组成的惠斯登电桥失去平衡输出一个与外力成线性正比变化的电量电信号的传感器。

E1.2描述能实现下列转化的典型执行机构:(a)流体能到机械能(b)电能到机械能(c)机械形变到电能(d)化学能到运动能【解析】(a)液压马达、液压缸(b)电动机(c)形变发电装置(d)内燃机E1.3精密的光信号源可以将功率的输出精度控制在1%之内。

激光器由输入电流控制,产生所需要的输出功率。

作用在激光器上的输入电流由一个微处理器控制,微处理器将预期的功率值,与由传感器测量得到的,并与激光器的实际输出功率成比例的信号进行比较。

试辨识指明输出变量、输入变量、待测变量和控制装置,从而完成这个闭环控制系统的如图E1.3所示的框图。

自动控制原理第一章绪论控制系统的一般概念

自动控制原理第一章绪论控制系统的一般概念

模糊控制 神经网络
智能控制理论
遗传算法
温度计
炉子 电热丝
调压器 220
自动控制
炉子 热电偶 _ 电热丝 +
给定信号 _+
u
ub
ur
电压 放大器
电动机
功率 +
放大器 _E
减速器 调压器
220
二.自动控制要解决的基本问题
自动控制是使一个或一些被控制 的物理量按照另一个物理量即控制量 的变化而变化或保持恒定,一般地说 如何使控制量按照给定量的变化规律 变化,就是一个控制系统要解决的基 本问题。
缺点:被控量可能出现振荡,甚至发散。
适用场合:系统元件参数变化和扰动无法预计的场合。
§3 反馈控制系统的组成
校正元件:基于偏差信号按一定函数规律产生供执行元件执行的 控制命令对系统进行校正以改善系统的动态和静态性能
如:由放大器、电阻、电容组成的具有预定传递函数的电路。 执行元件:也称执行器。用来执行校正元件产生的控制命令,以便
• 闭环控制(closed-loop control)
闭环控制工作原理: 外部作用:
给定量:使 c跟踪r 干扰量:使 c偏离r
控制目的:排除干扰因素、影响、使被控量随给定量变化。
1)、有反馈,能够成闭回路 是按偏差控制的、
2)、偏差信号起控制作用
具有负反馈的闭环系统
优点:具有自动修正被控制量出现偏离的能力,可以修 正元件参数变化以及外界扰动引起的误差,控制精 度高。
• 被控变量:简称被控量,指被控对象输出需按控制要 求变化的物理量,在单输出系统中,也就是系统得输 出量。
• 控制通道:控制变量通过被控对象(被控过程)到控 制系统输出的通道。

现代控制理论 第一章 绪论

现代控制理论 第一章 绪论

控制论之父— 控制论之父 —维纳 维纳
2.我国著名科学家钱学森将控制理论应用于工程实 2.我国著名科学家钱学森将控制理论应用于工程实 我国著名科学家钱学森 并与1954年出版了《工程控制论》 1954年出版了 践,并与1954年出版了《工程控制论》。
钱学森
从四十年代到五十年代末,经典控制理论的 发展与应用使整个世界的科学水平出现了巨大 的飞跃,几乎在工业、农业、交通运输及国防 建设的各个领域都广泛采用了自动化控制技术。 (可以说工业革命和战争促使了经典控制理论 的发展)。
闭环与开环控制系统的比较
优点 闭环 采用了反馈, 采用了反馈,因而使系统的响 应对外部干扰和内部系统的参 数变化均相当不敏感。 数变化均相当不敏感。 控制精度高 构造简单,维护容易; 构造简单,维护容易; 成本比相应的闭环系统低; 成本比相应的闭环系统低; 不存在不稳定性问题; 不存在不稳定性问题; 当输出量难于测量, 当输出量难于测量,或者要测 量输出量在经济上不允许时, 量输出量在经济上不允许时, 采用开环比较合适( 采用开环比较合适(比如洗衣 机)。 扰动和标定尺度的变化 将引起误差, 将引起误差,从而使系统 的输出量偏离希望的数值; 的输出量偏离希望的数值; 精度通常较低, 精度通常较低,无自动 纠偏能力。 纠偏能力。 缺点 存在稳定、振荡、超调等问题; 存在稳定、振荡、超调等问题; 系统性能分析和设计较麻烦。 系统性能分析和设计较麻烦。
1.5控制理论中的一些术语
(6)反馈控制 ) 是这样一种控制,它能够在存在扰动的情况下, 是这样一种控制,它能够在存在扰动的情况下,力图 减少系统的输出量与某种参考输入量之间的偏差, 减少系统的输出量与某种参考输入量之间的偏差,且 其工作原理是基于这种偏差。 其工作原理是基于这种偏差。 这里的扰动是指不可预测的扰动。 这里的扰动是指不可预测的扰动。对于可预测或已知 的扰动,总是可以在系统内部加以补偿。 的扰动,总是可以在系统内部加以补偿。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择状态变量如下:
x1 z x1 x2 z x2 x3 z
┆ xn1 xn z(n1)
xn z(n) a0 x1 a1x2 an1xn b0u
y
b z(n1) n1
b1z
b0 z
b0 x1
b1x2
bn1xn
写成矩阵形式
x1
x2
0 0
1 0
0 1
0 0
0 1
m
例1-2 建立电枢控制直流他励电动机的状态空间表达式
电枢回路的电压方程为
LD
diD dt
RDiD
Ke
uD
系统运动方程式为
KmiD
f
JD
d
dt
(式中, Ke 为电动势常数; Km 为转矩常数; J D 为折合到电动
机轴上的转动惯量; f 为折合到电动机轴上的粘性摩擦系数。)
ansn a1s a0
例1-4 已知描述系统的微分方程为 y18y 192y 640y 160u 640u
试求系统的状态空间表达式。
解 (1)待定系数法
选择状态变量如下 x1 y 0u
x2 x1 1u
其中
0 b3 0
x3 x2 2u
1 b2 a20 0
2 b1 a10 a01 160 192 0 640 0 160
xn xn1 n1u
x1
x2
0 0
1 0
0 1
0 0
0 0
x1
x2
1 2
u
xn
0
a0
0 a1
0 a2
0 a3
1 an1
xn
n1
n
x1
y 1
0
0
0u
系统状态图如下
xn
(二)辅助变量法
设 n 阶微分方程为:
y(n)
0
0
0
x1 x2
0 u
xn
0
a0
0 a1
0 a2
0 a3
1 an1
xn
0 1
x1
y b0
b1
bn1
xn
注:如果输入项的导数阶次和输出项导数阶次相同,则有d。
Y (s) bnsn b1s b0 d bn1sn1 b1s b0
R(s) ansn a1s a0
C
adjsI detsI
A A
b
d
例1-5 系统状态方程式为
x
0 6
1 0 5 x 1u
y 1 1x
求系统传递函数。
解: g(s) CsI A 1b 1 16s
在水平方向,应用牛顿第二定律:
M
d2 y dt2
d2 m dt2
( y l sin ) u
在垂直于摆杆方向,应用牛顿第二定律:
m
d2 dt2
(
y
l
sin
)
mg
sin
而有:
d (sin ) (cos )
dt
d2 dt2
(sin
)
( sin
)
2
cos
d (cos ) (sin )
dt
0
b0
系统的状态图如下:
x1
y 1
0
0
xn
1.2.2 微分方程中含有输入信号导数项
(一)待定系数法
首先考察三阶系统,其微分方程为
y a2y a1y a0 y b3u b2u b1u b0u
选择状态变量:
x1 y 0u x2 y 0u 1u x1 1u x3 y 0u 1u 2u x2 2u
选择状态变量 x1 z x2 z x1 x3 z x2
于是系统的状态空间表达式为
x1 0
x2
0
x3 640
1 0 192
0 x1 0
1
x2
0u
18x3 1
x1
y 640
160
0
x2
x3
1.3 传递函数矩阵
传递函数——系统初始松弛(即:初始条件为零)时,输出量 的拉氏变换式与输入量的拉氏变换式之比。
(2)状态变量选取的非惟一性
在前面的例子中,如果重新选择状态变量 x1 uC
则其状态方程为
x1
x2
0 1
LC
1 R
L
x1 x2
0 1
LC
u
输出方程为:
y 1
0
x1 x2
x2 x1 uC
(3)系统状态变量的数目是惟一的
1.1.4 状态空间表达式建立的举例
例1-1 建立右图所示机械系统的状态空间表达式 (注:质量块 m 的重量已经和弹簧 k 的初始拉伸相 抵消)
3 b0 a00 a11 a22 640 18160 2240
于是系统的状态空间表达式为
x1 0
x2
0
x3 640
1 0 192
0 x1 0
1
x2
160
u
18x3 2240
x1
y 1
0
0
x2
x3
(2)辅助变量法 引入辅助变量z
z18z192z 640z u y 160z 640z
a y(n1) n1
a1 y
a0 y
b u(n1) n1
b1u
b0u
Laplace变换,求传递函数
Y (s) R(s)
bn1sn1 bn2sn2 b1s b0 ansn an1sn1 a1s a0
引入辅助变量 z
返回到微分方程形式:
z(n)
a z(n1) n1
a1z
a0 z
u
以及 bn1z(n1) b1z b0 z y
x2
2 u
Ax
bu
x3 a0 a1 a2 x3 3
x1
y x1 0u 1
0
0
x2
0u
Cx
du
x3
系统的状态图
一般情况下,n 阶微分方程为:
y(n)
a y(n1) n1
a1 y
a0
y
bnu ( n )
b u(n1) n1
b1u
b0u
选择 n 个状态变量为 系统方程为
x1 y 0u x2 x1 1u x3 x2 2u
系统的状态方程和输出方程一起,称为系统状态空间表达式,或称 为系统动态方程,或称系统方程。
设: x1 i(t) x2 uC (t)
C 0 1
x
x1
x2
A
R
L 1
-
1 L
0
C
x Ax bu
则可以写成状态空间表达式:
y Cx
1
b
L 0
推广到一般形式:
x Ax Bu y Cx Du
根据牛顿第二定律
F
F ky
f
dy dt
m
d2 dt
y
2
即:
m
d2 dt
y
2
f
dy dt
ky
F
选择状态变量 x1 y x2 y x1
则:
x1 x2
x2
k m
y
f m
dy dt
1 m
F
k m
x1
f m
x2
1 m
F
机械系统的系统方程为
x1 x2
0
k m
1 f
m
x1 x2
i(t) 和 uC (t) 可以表征该电路系统的行为,就是该系统的一组状态
变量
1.1.2 状态空间表达式
前面电路的微分方程组可以改写如下,并且写成矩阵形式:
di(t) R i(t) uC (t) u(t)
dt L
LL
di(t)
dt duC (t)
1RL
dt C
1 L 0
其中,待定系数为: 0 b3 1 b2 a20 2 b1 a10 a21 2 b0 a00 a11 a22
于是
x1 x2 1u x2 x3 2u x3 a0 x1 a1x2 a2 x3 3u
写成矩阵形式
x1 0 1 0 x1 1
x
x2
0
0
1
可选择电枢电流 iD 和角速度 为状态变量,电动机的电 枢电压 uD为输入量,角速度 为输出量。
状态空间表达式 状态图如下:
diD dt
d
KRLmDD
dt J D
Ke LD f
JD
iD
1
LD 0
uD
y 0
1iD
例1-3 建立单极倒立摆系统的状态空间表达式。 单级倒立摆系统是许多重要的宇宙空间应用的一个简单模型。
第1章 控制系统数学模型
本课程的任务是系统分析和系统设计。而不论是系统分析还是系统 设计,本课程所研究的内容是基于系统的数学模型来进行的。因此, 本章首先介绍控制系统的数学模型。
本章内容为: 1、状态空间表达式 2、由微分方程求出系统状态空间表达式 3、传递函数矩阵 4、离散系统的数学模型 5、线性变换
1.3.1 传递函数
单入-单出线性定常系统的状态空间表达式为
x Ax bu
y Cx du
在初始松弛时,求Laplace变换,并且化简
状态变量对输入量的传递函数
Gxu (s) sI
A 1b
adjsI detsI
A A
b
输出量对输入量的传递函数(即:传递函数)
g yu (s)
CsI
A 1b
d
x2 x3 y
┆ xn1 xn y(n1)
xn y(n) a0 x1 a1x2 an1xn b0u
相关文档
最新文档