数列必会常见题型归纳
必修五数列常考二十种题型
必修五数列二十种题型归纳总结考点1 等差数列考法一:等差数列定义的运用1.已知数列{}n a 中,12a =,122nn n a a +=++,证明数列{}2n n a -为等差数列,并求数列{}n a 的通项公式;【解析】因为()()11222n n n na a++---=,且1120a -=,所以数列{}2nn a -为首项为0,公差为2的等差数列.所以202(1)n n a n -=+-,即22(1)nn a n =+-.2.已知数列{}n a 中,135a =,112n n a a -=- ()*2,n n N ≥∈,数列{}n b 满足11n n b a =-()*n N ∈。
(1)求证:数列{}n b 为等差数列。
(2)求数列{}n a 的通项公式。
【解析】(1)证明:由题意知,1111111121n n n n n a b a a a ---===----,又1111n n b a --=-,故()*1111112,11n n n n n a b b n n N a a -----=-=≥∈--,又易知111512b a ==--,故数列{}n b 是首项为52-,公差为1的等差数列。
(2)由(1)知()()15711122n b b n d n n =+-=-+-⨯=-,所以由()*11n n b n N a =∈-,可得125127n n n a b n -=+=-,故数列{}n a 的通项公式为2527n n a n -=-。
考法二:等差中项性质1.等差数列x ,33x +,66x +,⋅⋅⋅的第四项等于【解析】由题得2(33)+(66),0x x x x +=+∴=.所以等差数列的前三项为0,3,6,公差为3,所以等差数列的第四项为9.2.等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++= 【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==3.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S = 【解析】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯= 4.已知0a >,0b >,并且1a ,12,1b 成等差数列,则4a b +的最小值为 【解析】因为0a >,0b >,且1a ,12,1b 成等差数列,所以111a b+=,因此()114441459a b a b a b a b b a ⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当4a bb a =,即3a =,32b =时,等号成立. 5.在等差数列 {}n a 中,若12015,a a 为方程 210160x x -+= 的两根,则 210082014++=a a a 【解析】12015,a a 为方程 210160x x -+= 的两根,1201510a a ∴+=,由等差数列的性质得1008210a =,即10085a =,2100820141008315a a a a ∴++==. 6.等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值是 【解析】依题意,由4681012120a a a a a ++++=,得85=120a ,即8=24a 所以()()()91191197111197811112232416333333a a a a a a a a a a a -=-=++-=+==⨯=7.在ABC ∆中,若()lg sin A ,()lg sin B ,()lg sin C 成等差数列,b =,则当B 取最大值时,sin sin sin a b cA B C【解析】因为()lg sin A ,()lg sin B ,()lg sin C 成等差数列所以()()()2lg sin lg sin lg sin B A C =+所以2sin sin sin B A C =由正弦定理得2b ac =由余弦定理2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=当且仅当a c =时取等号,()0,B π∈0,3B π⎛⎤∴∈ ⎥⎝⎦所以max 3B π=此时32sin sin sin sin 32a b cbA B CB8.三角形的角A,B,C 所对的边分别为 a,b,c ,若角A,B,C 依次成等差数列,且a =1,b =√3,则三角形的面积S =【解析】∵A,B,C 依次成等差数列,∴A +B +C =3B =180∘,B =60∘,因为a =1,b =√3,∴由余弦定理得b 2=a 2+c 2−2accosB ,得c =2,∴S ΔABC =12acsinB =√329.已知1x >,1y >,且lg x ,2,lg y 成等差数列,则x y +有最小值 【解析】由题意可知:lg 0,lg 0x y >> ,且:4lg lg2210x y xy +=⨯⇒= , 由均值不等式有:200x y +≥= ,当且仅当100x y == 时等号成立.10.设有四个数的数列{}n a ,该数列前3项成等比数列,其和为m,后3项成等差数列,其和为6. 则实数m 的取值范围为___【解析】设{}n a 的前4项为a b c d ,,,,由于数列{}n a 的前3项成等比数列,其和为m ,后3项成等差数列, 其和为6,所以2(1)(2)2(3)6(4)a b c m b ac c b d b c d ++=⎧⎪=⎪⎨=+⎪⎪++=⎩,由(3)(4)得36,2c c ==,所以22(1)2(2)4(3)a b m b a b d ++=⎧⎪=⎨⎪=+⎩即22(1)(2)24(3)a b m b a b d ++=⎧⎪⎪=⎨⎪=-⎪⎩,先将(2)代入(1),然后将(3)代入(1)得()()24422d d m -+-+=,整理得()21335222m d =-+≥. 考法三:前n 项和的性质1.设等差数列{}n a 的前n 项和为n S ,若11m a =,21121m S -=,则m 的值为 【解析】因为()2121121m m S m a -=-=,所以2111m -=,故6m =.2.已知等差数列{a n }的前n 项和为S n ,若5359a a =,则95s s =【解析】∵等差数列{a n }中,5359a a =,∴5193152529a a a a a a +==+,∴1995159()952159()25a a S S a a +==⨯=+,3.已知等差数列{}n a 的前n 项和为n S ,且1010S =,2030S =,则30S = ;【解析】数列{a n }为等差数列则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.S 10,S 20-S 10,S 30-S 20仍然成等差数列.因为在等差数列{a n }中有S 10=10,S 20=30,()302201030S ⨯=+-所以S 30=60.4.数列{}n a 的通项公式为262n a n =-,要使数列{}n a 的前n 项和n S 最大,则n 的值为 【解析】因为262n a n =-,所以数列{}n a 是以124a =为首项,公差2d =-的等差数列, 所以()211252n n n na d n n S -=+=-+由二次函数的性质可得:当13n =或12时,n S 最大。
数列常见题型总结经典
高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。
(完整版)数列全部题型归纳(非常全面,经典)
数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列na4)12323...(1)(2)n a a a na n n n +++=++求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==L ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式。
数列综合讲义十三种题型归纳梳理
数列综合讲义第1讲 累加法、累乘法、差商法求通项 题型1 累加法1.已知数列{}n a 满足11a =,213a =,若1111(2)3(2,*)n n n n n a a a a a n n N -+-++=∈,则数列{}n a 的通项n a = .【解析】111123(2,)n n n n n n a a a a a a n n N +-+-++=∈,∴1111112()n n n n a a a a +--=-,2111312a a -=-= ∴数列111{}n n a a +-是等比数列,首项与公比都为2,∴1112n n na a +-= 2n ∴时,1212122212121n n n n n a ---=++⋯⋯++==--,则数列{}n a 的通项121n n a =-∴则数列{}n a 的通项121n n a =- 2.若数列{}n a 满足11a =,且对于任意*n N ∈都有11n n a a n +=++,则1220172018201911111a a a a a ++⋯+++= . 【解析】由11n n a a n +=++,得11n n a a n +-=+,112211()()()n n n n n a a a a a a a a ---∴=-+-+⋯+-+(1)(1)(2)212n n n n n +=+-+-+⋯++=∴12112()(1)1n a n n n n ==-++ 则1220172018201911111111111120192(1)22334201920201010a a a a a ++⋯+++=-+-+-+⋯+-= 3.已知数列{}n a 满足11a =,213a =,且*111123(2,)n n n n n n a a a a a a n n N -+-++=∈(1)证明:数列111n n a a +⎧⎫-⎨⎬⎩⎭是等比数列 (2)求数列1{2n n a a +}n 的前n 项和【解析】(1)证明:当2n 且*n N ∈时,在111123n n n n n n a a a a a a -+-++=两边同除以11n n n a a a -+,得11123n n n a a a +-+=,1111112()n n n n a a a a +--=-,1111211n nn n a a a a +--=-为常数,且21112a a -= 所以数列111n n a a +⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列. (2)设数列{}12nn n a a +的前n 项和为n S由(1)知1112n n n a a +-=,1111112221n n n n a a a ++-=-=⋯=-=-,∴11121n n a ++=-,11121n n a ++=- 又由1112n n n a a +-=,112n n n n n a a a a ++=-,所以122311111()()()121n n n n n S a a a a a a a a +++=-+-+⋯+-=-=-- 题型2 累乘法1.已知数列{}n a 满足11a =,且1(1)n n na n a +=+,则(n a = ) A .1n + B .n C .1n -D .2n -【解析】数列{}n a 满足11a =,且1(1)n n na n a +=+,可得11321111321n n n a a a a a an n n +-===⋯====+- 可得n a n =,选B2.已知数列{}n a 满足1(2)(1)n n n a n a ++=+,且213a =,则(n a = )A .11n + B .121n - C .121n n -- D .11n n -+ 【解析】1(2)(1)n n n a n a ++=+,∴112n n a n a n ++=+,∴3234a a =,4345a a =,11n n a n a n -⋯=+ 以上各式两边分别相乘得1(2)1n a n n =+,由1n =时也适合上式,所以11n a n =+,选A 3.已知数列{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,若数列{}n b 满足12n n n b b +=+,且12b =,则式子312123n nb b b b a a a a +++⋯+的值是( ) A .122n n +- B .(1)22n n -+ C .(1)22n n +- D .1(1)22n n +-+【解析】根据题意,数列{}n a 满足2211(1)0n n n n n a na a a +++-+=,变形可得11[(1)]()0n n n n n a na a a +++-+= 又由数列{}n a 是首项为1的正项数列,则有1(1)0n n n a na ++-=,变形可得:11n n a na n +=+ 则有11n n a n a n --=,则有1211211211112n n n n n a a a n n a a a a a n n n -----=⨯⨯⋯⋯+⨯=⨯⨯⋯⋯⨯⨯=-,故1n a n= 数列{}n b 满足12n n n b b +=+,即12n n n b b +-=,则有112n n n b b ---=则有12112211()()()22222n n n n n n n n b b b b b b b b -----=-+-+⋯⋯+-+=++⋯⋯++=,故2n n b = 则2n n n b n a =⨯,设312123n n nbb b b S a a a a =+++⋯+,则212222n n S n =⨯+⨯+⋯⋯⨯,① 则有231212222n n S n +=⨯+⨯+⋯⋯⨯,②-②可得:231112(21)2(222)22(1)2221nn n n n nS n n n +++--=+++⋯⋯-⨯=-⨯=---变形可得:1(1)22n n S n +=-+,选D4.设{}n a 是首项为1的正项数列,且2211(1)0(1n n n n n a na a a n +++-+==,2,3,)⋯,则4a = 14,n a = . 【解析】2211(1)0(1n n n n n a na a a n +++-+==,2,3,)⋯,11[(1)]()0n n n n n a na a a ++∴+-+= 又0n a >,1(1)n n n a na +∴+=,11a =,111n na a ∴=⨯=,1n a n ∴=,414a =,故答案为:14;1n5.已知数列{}n a 满足123a =,12n n na a n +=+,求通项公式n a . 【解析】12n n n a a n +=+,∴12n n a n a n +=+ 1232112321n n n n n n n a a a a a a a a a a a a -----∴=⋯12321211433n n n n n n ---=⋯⨯+-43(1)n n =+,43(1)n a n n ∴=+.6.已知数列{}n a 满足13a =,131(1)32n n n a a n n +-=+,求n a 的通项公式. 【解析】数列{}n a 满足13a =,131(1)32n n n a a n n +-=+,∴134(2)31n n a n n a n --=-, 13211221n n n n n a a a aa a a a a a ---∴=⋯3437523313485n n n n --=⋯--631n =-,当1n =时也成立,631n a n ∴=-题型3 差商法1.已知数列{}n a 中,11a =,对所有*n N ∈,都有212n a a a n ⋯=,则3(a = ) A .32B .3C .9D .94【解析】因为数列{}n a 中,11a =,对所有*n N ∈,都有212n a a a n ⋯=,所以3n =时,21233a a a =,2n =时,2122a a =,所以394a =.选D . 2.已知数列满足11222()2n n na a a n N -+++⋯+=∈.(Ⅰ)求数列{}n a 的通项;(Ⅱ)若n n nb a =,求数列{}n b 的前n 项和n S ;(Ⅲ)求证221n S n n +-.【解析】()1I n =时,112a =,112222n n n a a a -++⋯+=,2n ∴时,21211222n n n a a a ---++⋯+=两式相减可得,1122n n a -=,∴12n n a = ()II 解:2n n nnb n a ==,∴231222322n n S n =+++⋯+,231212222n n S n +=++⋯+ 两式相减可得,23112(12)22222212n nn n n S n n ++--=+++⋯+-=--∴1(1)22n n S n +=-+()III 证明:由()II 可知,12(1)2(1)(11)n n n S n n +-=-=-+0110112111111(1)()(1)()(1)(3)23n n n n n n n n n C C C n C C C n n n n ++++++++=-++⋯+-++=-+=+-∴2223n S n n ---,∴221n S n n +-3.已知数列n a 满足21*123222()2n n na a a a n N -+++⋯+=∈.(Ⅰ)求数列{}n a 的通项;(Ⅱ)若n n nb a =求数列{}n b 的前n 项和n S .【解析】(Ⅰ)1n =时,112a =,21123222..2n n n a a a a -+++⋯+=⋯(1) 2n ∴时,22123112222n n n a a a a ---+++⋯+=⋯.(2) (1)-(2)得1122n n a -=即12n n a =,又112a =也适合上式,∴12n n a = (Ⅱ)2n n b n =,∴231222322n n S n =+++⋯+(3),23121222(1)22n n n S n n +=++⋯+-+(4) (3)-(4)可得231121212122nn n S n +-=+++⋯+-1112(12)222212n n n n n n +++-=-=---∴1(1)22n n S n +=-+4.已知数列{}n a 满足112324296n n a a a a n -+++⋯+=-. (1)求数列{}n a 的通项公式; (2)设2||(3log )3n n a b n =-,探求使123111116n m b b b b -+++⋯+>恒成立的m 的最大整数值.【解析】(1)当1n =时,1963a =-=,当2n 时,112324296n n a a a a n -+++⋯+=-,① 2123124296(1)n n a a a a n --+++⋯+=--,②①-②得,126n n a -=-,232n n a -∴=-;23,13,22n n n a n -=⎧⎪∴=⎨-⎪⎩,(2).2||(3log )3n n a b n =-,1231(3log )33b ∴=-=,1113b =;2n 时,2||(3log )3n n a b n =-223||2(3log )(3(2))3n n n n --=-=--(1)n n =+;1111n b n n =-+; ∴123111116n m b b b b -+++⋯+>可化为:11111111()()()3233416m n n -+-+-+⋯+->+; 即11112316m n -+->+恒成立,即511616m n -->+恒成立,故1136m ->成立,故m 的最大整数值为2.5.已知数列{}n a 满足1231(1)(41)23(1)6n n n n n a a a n a na -+-+++⋯+-+=.(Ⅰ)求2a 的值; (Ⅱ)若111nn i i i T a a =+=∑,则求出2020T 的值; (Ⅲ)已知{}n b 是公比q 大于1的等比数列,且11b a =,35b a =,设1n n c b λ+=,若{}n c 是递减数列,求实数λ的取值范围【解析】(Ⅰ)由题意,数列{}n na 的前n 项和(1)(41)6n n n n S +-=.当1n =时,有1111a S ⋅==,所以11a =. 当2n 时,1(1)(41)(1)(45)66n n n n n n n n n na S S -+---=-=-22[(1)(41)(1)(45)][(431)(495)](21)66n nn n n n n n n n n n =+----=+---+=-.所以,当2n 时,21n a n =-; 又11a =符合,2n 时n a 与n 的关系式,所以21n a n =-,所以2a 的值为3. (Ⅱ)由(Ⅰ)可知21n a n =-. 可令11111111()(21)(21)22121n n n n n c a a a a n n n n ++===-⋅-+-+因为111nn i i i T a a =+=∑所以12233411111n n n T a a a a a a a a +=+++⋯+11111111[(1)()()()]2335572121n n =-+-+-+⋯+--+11(1)22121n n n =-=++ 所以2020T 的值为20204041. (Ⅲ)由111b a ==,359b a ==得29q =.又1q >,所以3q = 所以1113n n n b b q --==,123n n n n c b λλ+==-⋅因为{}n c 是递减数列,所以1n n c c +<,即112323n n n n λλ++-⋅<-⋅.化简得232n n λ⋅> 所以*n N ∀∈,12()23nλ>⋅恒成立 又12()23n ⎧⎫⋅⎨⎬⎩⎭是递减数列,所以12()23n ⎧⎫⋅⎨⎬⎩⎭的最大值为第一项1121()233a =⨯=所以13λ>,即实数λ的取值范围是1(,)3+∞6.已知数列{}n a 满足12a =,1121222(*)n n n n a a a na n N -+++⋯+=∈ (Ⅰ)求{}n a (Ⅱ)求证:1223111132(*)61112n n a a a n n n N a a a +----<++⋯+<∈--- 【解析】(Ⅰ)由1121222n n n n a a a na -+++⋯+=可得3121212222n n n na a na a a +-+++⋯+= 所以当2n 时,3121211(1)2222n n n n a a n a a a ----+++⋯+= 因此,有111(1)(2)222n n nn n n a na n a n ----=-,即122(1)n n n a na n a +=--,整理得12(2)n n a a n +=,又12a =,212a a = 所以数列{}n a 是首项为2,公比为2的等比数列,求得2n n a =(Ⅱ)记1111212112121212n nn nn n n a b a +++---==<=---,故122311111111112222n n a a a na a a +---++⋯+<++⋯+=---, 又112111212111111122121212222422232n nn nn n n n nn a b a ++++----====-=------⨯-⨯,所以1223111(1)1111111326211112233223612n n nn a a a n n n n a a a +-----++⋯+-=-+⨯>-=----. 综上可得:122311113261112n n a a a n n a a a +----<++⋯+<---. 7.已知数列{}n a 满足11121(22)2(*)n n n a a a n N n -+++⋯+=∈.(1)求1a ,2a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S 对任意的正整数n 恒成立,求实数k 的取值范围. 【解析】(1)由题意得1112222n n n a a a n -+++⋯+=,所以:21124a =⨯=,312222a a +=⨯.解得:26a =.由1112222n n n a a a n -+++⋯+=, 所以212122(1)2(2)n n n a a a n n --++⋯+=-,相减得1122(1)2n n n n a n n -+=--, 得22n a n =+,1n =也满足上式.所以{}n a 的通项公式为22n a n =+. (2)数列{}n a kn -的通项公式为:22(2)2n a kn n kn k n -=+-=-+说以:该数列是以4k -为首项,公差为2k -的等差数列,若4n S S 对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以4524(2)2025(2)20a k k a k k -=-+⎧⎨-=-+⎩解得12552k . 所以实数k 的取值范围是125[,]52.8.(1)设数列{}n a 满足211233333n n n a a a a -+++⋯+=,*n N ∈,求数列{}n a 的通项公式;(2)已知等比数列{}n a 的各项均为正数,且12231a a +=,23269a a a =,求数列{}n a 的通项公式. 【解析】(1)由211233333n n n a a a a -+++⋯+=①,得113a =,且22123113333n n n a a a a ---+++⋯+=②①-②得:1133n n a -=,∴1(2)3n n a n =,验证1n =时上式成立,∴13n n a =(2)设等比数列{}n a 的公比为q由12231a a +=,23269a a a =,且0n a >,得1122342319a a q a a +=⎧⎨=⎩,∴134(23)13a q a a +=⎧⎨=⎩,解得:113a q ==,∴13n n a = 第2讲 已知n S 求n a1.已知n S 为数列{}n a 的前n 项和,且2log (1)1n S n +=+,则数列{}n a 的通项公式为( ) A .2n n a =B .3122n n n a n =⎧=⎨⎩C .12n n a -=D .12n n a +=【解析】由2log (1)1n S n +=+,得112n n S ++=,当1n =时,113a S == 当2n 时,12n n n n a S S -=-=,所以数列{}n a 的通项公式为3,12,2n n n a n =⎧=⎨⎩,选B2.已知n S 为数列{}n a 的前n 项和,12a =-,1n n a S +=,那么5(a = ) A .4- B .8- C .16- D .32-【解析】2n 时,1n n a S +=,1n n a S -=,可得:1n n n a a a +-=,化为12n n a a +=,1n =时,212a a ==-∴数列{}n a 从第二项起为等比数列,公比为2,首项为2-,那么352216a =-⨯=-,选C3.已知数列{}n a 的前n 项和为n S ,24a =,*(1)()2nn n a S n N +=∈,则数列{}n a 的通项公式为( ) A .*2()n a n n N =∈B .*2()n n a n N =∈C .*2()n a n n N =+∈D .2*()n a n n N =∈【解析】因为数列{}n a 的前n 项和为n S ,24a =,*(1)()2nn n a S n N +=∈∴当2n =时,22121(21)22a S a a a +==+⇒=,把1n =代入检验,只有答案A B 成立,排除CD 当3n =时,331233(31)62a S a a a a +==++⇒=;排除B ,选A 4.已知数列{}n a 的前n 项和为n S ,且14121n n S a n +-=-,11a =,*n N ∈,则{}n a 的通项公式(n a = ) A .nB .1n +C .21n -D .21n +【解析】14121n n S a n +-=-,1(21)41n n n a S +∴-=-①,1(23)41(2)n n n a S n -∴-=-② ①-②得:1(21)(23)4(2)n n n n a n a a n +---=,整理得:121(2)21n n a n n a n ++=- 1232112321n n n n n n n a a a a a a a a a a a a -----∴=⋯21232553123252731n n n n n n ---=⋯---21(2)n n =-,11a =,符合上式21n a n ∴=-,选C5.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22a =,2121(*)n n a S n n N +=++∈,若对任意的*n N ∈,123111120nn a n a n a n a λ+++⋯+-++++恒成立,则实数λ的取值范围为( ) A .(-∞,2] B .(-∞,1] C .1(,]4-∞ D .1(,]2-∞【解析】22a =,2121(*)n n a S n n N +=++∈,2n ∴时,22112()121n n n n n a a S S a +--=-+=+化为:222121(1)n n n n a a a a +=++=+,0na >,11n n a a +∴=+,即11n n a a +-= 1n =时,212224a a +==,解得11a =,∴数列{}n a 为等差数列,首项为1,公差为1 11n a n n ∴=+-=,∴123111111111222n n n a n a n a n a n n n nn +++⋯+=++⋯⋯+=+++++++ 对任意的*n N ∈,123111120n n a n a n a n a λ+++⋯+-++++恒成立,122λ∴,解得14λ ∴实数λ的取值范围为(-∞,1]4,选C6.已知数列{}n a 满足:12a =,21(1)0(*)n n n a S S n N ++-=∈,其中n S 为{}n a 的前n 项和.若对任意的n 均有12(1)(1)(1)n S S S n ++⋯+恒成立,则的最大整数值为( )A .2B .3C .4D .5【解析】当1n 时,由条件21(1)0(*)n n n a S S n N ++-=∈可得21(1)n n n nS S S S +--=-,整理得221(21)n n n n n S S S S S +-=--+,化简得:121n n n S S S +=-从而111n n n S S S +--=-,故111111n n S S +-=-- 由于:1111S =-,所以:数列1{}1n S -是以1111S =-为首项,1为公差的等差数列,则:11n n S =-, 整理得:1n n S n+=,依题只须12(1)(1)(1)()n min S S S n++⋯+12(1)(1)(1)()n S S S f n n ++⋯+=,则12(1)(1)(23)1()1(1)n n S f n n n f n n n ++++==>++,故11()(1)31ninS f n f +=== 3max∴=,选B7.已知数列{}n a 的前n 项和为n S ,满足22(*)n S n n n N =+∈,则数列{}n a 的通项公式n a = n .设211(1)nn n n n a b a a ++=-,则数列{}n b 的前n 项和n T =( ).【解析】22(*)n S n n n N =+∈,212(1)1(2,*)n S n n n n N -∴=-+-∈,两式相减得:22n a n =,即(2)n a n n =又212112a =+=,11a ∴=,也符合上式,n a n ∴=,又2112111(1)(1)(1)()(1)1nn n n n n n a n b a a n n n n +++=-=-=-+++1111111(1)()()(1)()223341n n T n n ∴=-+++-+-⋯+-++121,,1111,,11n n n n n n n n n n +⎧⎧---⎪⎪⎪⎪++==⎨⎨⎪⎪-+-⎪⎪++⎩⎩为奇数为奇数为偶数为偶数8.已知数列{}n a 的前n 项和为S ,若11a =,12n n S a +=,则数列{}n a 的通项公式n a =( ). 【解析】当2n 时,12n n S a -=①,12n n S a +=②②-①得12n n n a a a +=-,即13n n a a +=,故数列{}n a 从第二项起为等比数列,又22a =,则223n n a -=⨯ 当1n =时,11a =,故2*1,123,2,n n n a n n N -=⎧=⎨⨯∈⎩9.已知数列{}n a 的前n 项和为n S ,且1211121n nS S S n ++⋯+=+,则数列{}n a 的通项公式n a = 【解析】数列{}n a 的的前n 项和为n S ,且1211121n nS S S n ++⋯+=+① 当2n 时,12111122n n S S S n--++⋯+=② ①-②得122221(1)n n n S n n n n -=-=++,所以(1)2n n n S += 故1(1)(1)22n n n n n n n a S S n -+-=-=-=(首项1符合通项), 故n a n =10.已知数列{}n a 的前n 项和为n S ,且231122n S n n =++,则数列{}n a 的通项公式n a =( ).【解析】231122n S n n =++,可得113a S ==当2n 时,22131311(1)(1)1312222n n n a S S n n n n n -=-=++-----=-则数列{}n a 的通项公式3,131,2n n a n n =⎧=⎨-⎩,故答案为:3,131,2n n n =⎧⎨-⎩ 11.已知数列{}n a 的各项均为正数,n S 为其前n 项和,且对任意的*n N ∈,均有n a ,n S ,2n a 成等差数列,则n a =( )【解析】各项均为正数的数列{}n a 的前n 项和为n S对任意*n N ∈,总有n a ,n S ,2n a 成等差数列,22n n n S a a ∴=+,21112n n n S a a ---=+两式相减,得22112n n n n n a a a a a --=+--,111()()n n n n n n a a a a a a ---∴+=+- 又n a ,1n a -为正数,11n n a a -∴-=,2n ,{}n a ∴是公差为1的等差数列 当1n =时,21112S a a =+,得11a =,或10a =(舍),n a n ∴=. 第3讲 构造辅助数列求通项1.已知数列{}n a 满112,413n n a a a +==+,则数列{}n a 的通项公式为( ).【解析】知数列{}n a 满112,413n n a a a +==+,则设14()n n a p a p ++=+,整理得13p =,所以113413n n a a ++=+(常数),则数列1{}3n a +是以1113a +=为首项,4为公比的等比数列.所以11143n n a -+=,整理得1143n n a -=-(首项符合通项).故数列的通项公式:1143n n a -=-.2.已知数列{}n a 的首项12a =,1122n n n a a ++=+,则{}n a 的通项n a =( ). 【解析】由1122n n n a a ++=+两边同除以12n +可得,11122n n n n a a ++=+,即11122n nn na a ++-=, 所以数列2n n a ⎧⎫⎨⎬⎩⎭以1为首项,1为公差的等差数列所以2n n a n =,所以2n n a n =. 3.数列{}n a 中12a =,11)(2)n n a a +=+,*n N ∈,则{}n a 的通项公式为( ).变式:已知数列{}n a 中12a =,312n n a a +=,*n N ∈,则{}n a 的通项公式为( ).【解析】由11)(2)1)2n n n a a a +=+=+,得11)(n n a a +=,120a =,∴数列{n a -构成以21为公比的等比数列,则11)(21)1)nn n a --=,则1)n n a =故答案为:1)n n a = 变式:由12a =,312n n a a +=,可知0n a >,两边取对数,得132n n lga lga lg +=+,∴11123(2)22n n lga lg lga lg ++=+, 11322022lga lg lg +=≠,∴数列1{2}2n lga lg +构成以322lg 为首项,以3为公比的等比数列,则11332322222n n n lga lg lg lg -+==,∴31122(31)2222n n n lga lg lg lg =-=-,则1(31)22n n a -=. 4.已知数列{}n a 满足12a =,且*112(2,)1n n n na a n n N a n --=∈+-,则n a = 221nn n - .【解析】由*112(2,)1n n n na a n n N a n --=∈+-,可得:11122n n n n a a --=+,于是1111(1)2n n n n a a ---=-,又11112a -=-,∴数列{1}n n a -是以12-为首项,12为公比的等比数列,故112n n n a -=-,*2()21n n n n a n N ∴=∈-. 5.已知数列{}n a 满足1a a =,*121()n n a a n N +=+∈. (1)若数列{}n a 是等差数列,求通项公式n a ;(2)已知2a =,求证数列{1}n a +是等比数列,并求通项公式n a .【解析】(1)数列{}n a 是等差数列,1a a =,121(*)n n a a n N +=+∈,设数列的公差为d ,则(1)n a a n d =+-. 2((1))1a nd a n d ∴+=+-+,即21nd d a =--对*n N ∈成立,于是0d =. n a a ∴=,且21a a =+,解得1a =-.1n a ∴=-;证明:(2)2a =,121(*)n n a a n N +=+∈,112(1)n n a a +∴+=+.1130a +=≠,∴数列{1}n a +是以3为首项,公比为2的等比数列.∴1132n n a -+=.∴1321n n a -=-.6.已知数列{}n a 满足:132a =,且*113(2,)21n n n na a n n N a n --=∈+-. (1)求1212nna a a ++⋯+的值; (2)求证:*2151()263n n a a a n n N n++⋯++-∈; (3)设*()nn a b n N n=∈,求证:122n b b b ⋯<.【解析】(1)132a =,且*113(2,)21n n n na a n n N a n --=∈+-,∴112113n n n a n a na --+-=,121133n n n n a a --=+⨯.∴1312n n n n a a --=+,113(1)1n n n n a a --∴-=-. 故可得{1}n n a -是以13-位首项,以13为公比的等比数列,∴1111()33n n n a --=-,∴11()3n n n a =-.∴1211[1()]1211133()122313n n n n n n a a a -++⋯+=-=-+-.(2)11()3n n n a =-,∴3121131313n n n n n a n ==++--, 1*2121[1()]11115193()()1222336313n n nn a aa n n n n N n--∴++⋯+++=++-=+-∈-. (3)331n n n n a b n ==-,现用数学归纳法证明122n b b b ⋯<313n n-,(2)n . 当2n =时,1239271623191169b b ==<=--919-.假设当n k =(2)k 时,122k b b b ⋯<313k k -,当1n k =+时,1212k k b b b b +⋯<11313331k kk k ++--.要证明 2 11113133123313k k k k k k +++--<-,只需证明1133(k k ++1231)3(31)k k k +-<-, 只要证133k +⨯(1231)(31)k k +-<-,222221333231k k k k ++++-<-⨯+,即证213231k k ++>⨯-,即证131k +>-. 而131k +>- 显然成立,1n k ∴=+ 时,112113123k k k k b b b b ++-⋯<,综上得1121131223k k k k b b b b ++-⋯<<.又当1n =时,12b <,所以1212k k b b b b +⋯< 第4讲 分组求和1.数列1,1,2,3,5,8,13,21,⋯最初是由意大利数学家斐波拉契于1202年研究兔子繁殖问题中提出来的,称之为斐波拉契数列.又称黄金分割数列.后来发现很多自然现象都符合这个数列的规律.某校数学兴趣小组对该数列探究后,类比该数列各项产生的办法,得到数列{}:1n a ,2,1,6,9,10,17,⋯,设数列{}n a 的前n 项和为n S .(1)请计算123a a a ++,234a a a ++,345a a a ++.并依此规律求数列{}n a 的第n 项n a =( ).(2)31n S +=( ).(请用关于n 的多项式表示,其中2222(1)(21)123)6n n n n +++++⋯+=【解析】(1)由题意得11a =,22a =,31a =,46a =,59a =,610a =,717a =,计算:1234a a a ++=,2349a a a ++=,34516a a a ++=,⋯ 可归纳得数列{}n a 满足的递推关系式为212(1)n n n a a a n ++++=+,由212(1)n n n a a a n ++++=+,2123(2)n n n a a a n +++++=+,两式相减得323n n a a n +-=+. 可得1211,23n n n n a a a n --=⎧=⎨+⎩. (2)由212(1)n n n a a a n ++++=+可得2222212345678932313(11),(41),(71),(31)961n n n a a a a a a a a a a a a n n n --++=+++=+++=+⋯++=-=-+ 312345632313()()()n n n n S a a a a a a a a a --∴=++++++⋯+++,222329(12)6(12)(1)(21)(1)319636222n n n n n n n n n n n n=++⋯+-++⋯+++++=-+=+- 由323n n a a n +-=+得:41213a a -=+,74243a a -=+,107273a a -=+,⋯,31322(32)3n n a a n +--=-+, ∴2311(321)2(1432)323322n n n a a n n n n n +-+-=++⋯+-+=+=+,∴231321n a n n +=++ ∴322323133131933321312222n n n S S a n n n n n n n n ++=+=+-+++=+++. 2.求数列的前n 项和:2111111,4,7,,32,n n a a a -+++⋯+-⋯.【解析】设21111(11)(4)(7)(32)n n S n a a a -=++++++⋯++-将其每一项拆开再重新组合得21111(1)(14732)n n S n a a a-=+++⋯+++++⋯+- 当1a =时,(31)(31)22n n n n n S n -+=+=,当1a ≠时,111(31)(31)12121n n n n n a a n n a S a a-----=+=+-- 3.数列{}n a 中,*1112,,()22n n n a a a a n N n +-=-=∈+,n P 为抛物线24y x =与直线n y a =的交点,过n P 作抛物线的切线交直线1x =-于点n Q ,记n Q 的纵坐标为n b . (Ⅰ)求n a ,n b 的通项公式;(Ⅱ)求数列{}n b 的前n 项和n S .(附2222(1)(21):123)6n n n n +++++⋯+=【解析】(Ⅰ)*1,()2n n n a a n N n +=∈+,由112a =易得0n a ≠,11,(2)1n n a n n a n --=+,1212111232121143(1)n n n n n a a a a n n n a a a a n n n n n ------⨯⨯⋯⨯==⨯⨯⨯⋯⨯⨯=+-+,112a =, 故1(2)(1)n a n n n =+,经检验1n =时也符合,故n a 的通项公式为*1()(1)n a n N n n =∈+.对24y x =两边取导数,可得2y y'=,0(x ,0)y 处切线斜率为002(0)k y y =≠,切线方程为0000022()2y y x x y x y y =-+=+, 与1x =-的交点的纵坐标为0022y y -+,故n b 的通项公式为*212(1)()22(1)n n n a b n n n N a n n =-+=-++∈+. (Ⅱ)2111111112(1)22()2(1)21nn n n n k k k k S k k k k k k k k =====-++=--+-++∑∑∑∑ (1)(21)112(1)(1)621n n n n n n ++=-⨯-++-+(1)(24)32(1)n n n n n ++=-++.4.已知数列{}n a 满足11a =,2*12(1)()n n na n a n n n N +-+=+∈.(1)求证:数列1n a n ⎧⎫+⎨⎬⎩⎭为等比数列:(2)求数列{}n a 的前n 项和n S .【解析】(1)由212(1)n n na n a n n +-+=+,两边同除以(1)n n +得1211n n a an n+-⨯=+,∴11222(1)1n n n a a an n n++=⨯+=++.11201a +=≠,∴10n a n +≠,∴11121n na n a n+++=+, ∴数列1n a n ⎧⎫+⎨⎬⎩⎭是以2为首项,2为公比的等比数列. (2)由(1)有12nn a n+=,∴2n n a n n =-,1212(1).12222(123)122222n n n n n S n n n +=⨯+⨯+⋯+-+++⋯+=⨯+⨯+⋯+-. 令1212222n n T n =⨯+⨯+⋯+,23412122232(1)22n n n T n n +=⨯+⨯+⨯+⋯+-+,∴231112(12)222222(1)2212n nn n n n T n n n +++⨯--=+++⋯+-=-=---,∴1(1)22n n T n +=-+.则前n 项和1(1)(1)222n n n n S n ++=-+-. 5.已知正项数列{}n a 的前三项分别为1,3,5,n S 为数列的前n 项和,满足:22321(1)(1)(3)(n n nS n S n n An Bn A +-+=+++,B R ∈,*)n N ∈.(1)求A ,B 的值; (2)求数列{}n a 的通项公式;(3)若数列{}n b 满足122(1)()222n n nb b b n a n N ++=++⋯+∈,求数列{}n b 的前n 项和n T . (参考公式:222112(1)(21))6n n n n ++⋯+=++【解析】(1)正项数列{}n a 的前三项分别为1,3,5,n S 为数列的前n 项和,满足:22321(1)(1)(3)(n n nS n S n n An Bn A +-+=+++,B R ∈,*)n N ∈.分别令1n =,2,可得:222122(3)S S A B -=++,2232233(2442)S S A B -=++,又111S a ==,23a =,35a =,24S =,39S =.24212(3)A B ∴-⨯=++,2229343(2442)A B ⨯-⨯=++, 化为:427A B A B +=⎧⎨+=⎩,解得3A =,1B =.(2)由(1)可得:22321(1)(1)(33)n nnSn S n n n n +-+=+++化为:22213311n n S S n n n n+-=+++.∴22222222222112211()()()3[(1)(2)1]3(121)11221n n n n n S S S S S S S S n n n n n n n n n ---=-+-+⋯+-+=-+-+⋯++++⋯+-+--- (1)(21)(1)3362n n n n n n ---=⨯+⨯+3n =,0n S >.2n S n ∴=.(3)由(2)可得:2n 时,221(1)21n n n a S S n n n -=-=--=-. 数列{}n b 满足122(1)()222n n n b b b n a n N ++=++⋯+∈,即122(1)(21)()222n n b b b n n n N ++-=++⋯+∈, 1n ∴=时,122b =,解得14b =.当2n 时,11221(23)222n n b b bn n ---=++⋯+,可得:412n nb n =-,即(41)2n n b n =-. ∴数列{}n b 的前n 项和23472112(41)2n n T n =+⨯+⨯+⋯+-.231243272(45)2(41)2n n n T n n +=-+⨯+⨯+⋯+-+-,231112(21)84(222)(41)24(41)2(54)2821n n n n n n T n n n +++-∴-=+++⋯+--=⨯--=---,1(45)28(1n n T n n +∴=-+=时也成立).6.设等差数列{}n a 的前n 项和为n S ,39S =,45627a a a ++=. (1)求数列{}n a 的通项公式;(2)若2n n b a =,求数列{}n b 前n 项和n T .参考公式:222(1)(21)126n n n n ++++⋯⋯+=.【解析】(1)设等差数列{}n a 的公差为d ,由1322a a a +=,知3239S a ==,即23a =. 又由4565327a a a a ++==,得59a =.52932523a a d --∴===-.2(2)32(2)21n a a n d n n ∴=+-=+-=-; (2)由222(21)441n nb a n n n ==-=-+. ∴2224(12)4(12)n T n n n =++⋯+-++⋯++(1)(21)(1)4462n n n n n n +++=⨯-⨯+3(1)(21)14[441]623n n n n nn +++-=⨯-⨯+⨯=7.已知数列{}n a 的前n 项和为3n n S =,数列{}n b 满足11b =-,*1(21)()n n b b n n N +=+-∈. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n b 的通项公式n b ;(3)求数列{}n b 的前n 项和n T .参考公式:22221123(1)(21)6n n n n +++⋯+=++.【解析】(1)数列{}n a 的前n 项和为3n n S =,1n ∴=时,113a S ==.2n 时,1113323n n n n n n a S S ---=-=-=⨯.13,123,2n n n a n -=⎧∴=⎨⨯⎩. (2)数列{}n b 满足11b =-,*1(21)()n n b b n n N +=+-∈,即121n n b b n +-=-. 112211()()()n n n n n b b b b b b b b ---∴=-+-+⋯+-+(23)(25)311n n =-+-+⋯++-2(231)22n n n n --==-. (3)数列{}n b 的前n 项和22221(1)(1)(25)1232(12)(1)(21)2626n n n n n n T n n n n n ++-=+++⋯+-++⋯+=++-⨯=.8.已知数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=. (1)求数列{}n a 的通项公式;(2)设(31)32(32)nn a nn a b n n -=++,求数列{}n b 的前n 项和n T .【解析】(1)数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=,① 当2n 时,1231(1)258(34)2n n n a a a n a --+++⋯+-=,② ①-②得:(1)(1)(31)22n n n n n n a n +--=-=,故(2)31n n a n n =-,当1n =时,解得112a =,首项符合通项,故31n n a n =-.(2)由(1)得:(31)3311222()(32)(31)(32)3132nn a n n n n a b n n n n n n -=+=+=+-+-+-+, 所以12111111(222)()25583132nn T n n =++⋯++-+-+⋯+--+2(21)1121232n n ⨯-=+--+1132322n n +=--+ 9.已知数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=. (1)求数列{}n a 的通项公式;(2)设(31)22nn a n nn b a -=+,求数列{}n b 的前n 项和n T . 【解析】(1)数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=,① 当2n 时,1231(1)258(34)2n n n a a a n a --+++⋯+-=,② ①-②得:(1)(1)(31)22n n n n n n a n +--=-=,故(2)31n n a n n =-,当1n =时,解得112a =,首项符合通项, 故31n na n =-. (2)设(31)2222(31)nn a n n n n b n a -=+=+-,所以122(21)(231)2232212n n n n n T n n +-+-=+⨯=++--.10.已知数列{}n a 满足*1(1)(1)()n n nS n S n n n N +=+++∈,且11a =. (1)求数列{}n a 的通项公式; (2)设(2)1(1)(1)(1)n n n n a b n n n ++=≠+-,记23n n T b b b =++⋯+,求n T .【解析】(1)*1(1)(1)()n n nS n S n n n N +=+++∈,且11a =.∴111n n S S n n +=++,即111n n S Sn n+-=+, ∴数列{}n S n 是等差数列,首项为1,公差为1.∴1(1)n Sn n n=+-=,2n S n ∴=. ∴当2n 时,221(1)21n n n a S S n n n -=-=--=-.当1n =时也成立,21n a n ∴=-.(2)2n 时,(2)1(2)(21)111232()(1)(1)(1)(1)11n n n n a n n n b n n n n n n n +++-+===++-+-+--+,23(1)(523)1111111112[(1)()()()()]232435211n n n n T b b b n n n n -++∴=++⋯+=+-+-+-+⋯+-+---+2111342(1)21n n n n =+-++--+24231(1)n n n n n +=+--+.11.在数列{}n a 中,13a =,12(2)(2n n a a n n -=+-,*)n N ∈. (1)求证:数列{}n a n +是等比数列,并求{}n a 的通项公式; (2)求数列{}n a 的与前n 项和n S .【解析】(1)证明:13a =,12(2)(2n n a a n n -=+-,*)n N ∈.12(1)n n a n a n -∴+=+-,∴数列{}n a n +是等比数列,首项为4,公比为2.11422n n n a n n -+∴=⨯-=-.(2){}n a 与前n 项和231(222)(12)n n S n +=++⋯+-++⋯+4(21)(1)212n n n -+=--22242n n n ++=-- 12.单调递增数列{}n a 满足21231()2n na a a a a n +++⋯+=+. (1)求1a ,并求数列{}n a 的通项公式;(2)设111,21,n n n a n a n c a n -+-⎧=⎨⨯+⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T . 【解析】(1)21231()2n n a a a a a n +++⋯+=+,①∴当1n =时,2111(1)2a a =+,解得11a =,当2n 时,2123111(1)2n n a a a a a n --+++⋯+=+-,② ①-②并整理,得2211(1)2n n n a a a -=-+,∴221(1)0n n a a ---=,解得11nn a a --=或11(2)n n a a n -+= 又{}n a 单调递增数列,故11n n a a --=,{}n a ∴是首项是1,公差为1的等差数列,n a n ∴=⋯ (2)111,21,n n n a n a n c a n -+-⎧=⎨⨯+⎩为奇数为偶数,∴13212(242)[1232(21)2]n n T n n n -=++⋯++⨯+⨯+⋯-⨯+ 1321(1)[1232(21)2]n n n n n -=++⨯+⨯+⋯-⨯+,记13211232(21)2n n S n -=⨯+⨯+⋯-⨯③ 352141232(21)2n n S n +=⨯+⨯+⋯-⨯④,由③-④得4622132222(21)2n n n S n +-=+++⋯+--,∴24622132222(21)22n n n S n +-=+++⋯+---,214(14)3(21)2214n n n S n +--=----,∴214(14)(21)22933n n n n S +--=++,21(65)21099n n n S +-=+,∴2122(65)210299n n n T n n +-=+++.⋯(13分)第5讲 裂项求和1.已知等差数列{}n a 的前n 项和为n S ,且912162a a =+,24a =,则数列1{}n S 的前20项的和为( )A .1920 B .2021C .2122D .2223【解析】由912162a a =+及等差数列通项公式得1512a d +=,又214a a d ==+,12a d ∴==,2(1)222n n n S n n n -∴=+⨯=+,∴1111(1)1n S n n n n ==-++, ∴数列1{}n S 的前20项的和为1111111120112233420212121-+-+-+⋯+-=-=,选B 2.已知数列{}n a 的前n 项和n S 满足(1)2n n n S +=,则数列11{}n n a a +的前10项的和为 . 【解析】数列{}n a 的前n 项和n S 满足(1)2n n n S +=,可得1n =时,111a S ==, 2n 时,1(1)(1)22n n n n n n na S S n -+-=-=-=,上式对1n =也成立,故n a n =,*n N ∈, 11111(1)1n n a a n n n n +==-++,则数列11{}n n a a +的前10项的和为111111101122310111111-+-+⋯+-=-=. 3.数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11{}n na a -+的前n 项和为5,则n = . 【解析】数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,2214n n a a +∴-=,2214n n a a +∴=+,1n a +∴ 12a =,2a ∴=3a ∴=4a =,⋯由此猜想n a =.11142,n n n n a a a a a ++=-=+,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,∴21321111()(2)544n n n a a a a a a a ++-+-+⋯+-=-=,22∴=,解得1121n +=,120n ∴=. 4.已知数列{}n a 中,11a =,214a =,且1(1)(2n n n n a a n n a +-==-,3,4,)⋯. (1)求3a 、4a 的值;(2)设*111()n n b n N a +=-∈,试用n b 表示1n b +并求{}n b 的通项公式; (3)设*1sin3()cos cos n n n c n N b b +=∈,求数列{}n c 的前n 项和n S .【解析】(1)数列{}n a 中,11a =,214a =, 且1(1)(2nn nn a a n n a +-==-,3,4,)⋯,∴2321(21)1412724a a a -===--,34312(31)17131037a a a ⨯-===--,∴317a =,4110a = (2)当2n 时,1(1)1111(1)(1)(1)1n n n n n n n a n a n a n a n a n a +---=-==----,∴当2n 时,11n n n b b n -=-, 故*11,n n n b b n N n++=∈,累乘得1n b nb =,13b =,3n b n ∴=,*n N ∈ (3)1sin 3cos cos n n n c b b +=sin(333)tan(33)tan3cos(33)cos3n n n n n n+-==+-+,12n n S c c c ∴=++⋯+(tan6tan3)(tan9tan6)(tan(33)tan3)n n =-+-+⋯++-tan(33)tan3n =+-5.已知等差数列{}n a 的前n 项和为n S ,且223n n a a =+,33S =,数列{}n b 为等比数列,13310b b a +=,24610b b a +=.(1)求数列{}n a ,{}n b 的通项公式; (2)若11(1)(1)(1)n n n n n b c b b b -+=+++,求数列{}n c 的前n 项和n T ,并求使得2116n T λλ<-恒成立的实数λ的取值范围.【解析】(1)设等差数列{}n a 的公差为d ,223n n a a =+,33S =,21123a a a d ∴=+=+,1333a d +=, 解得11a =-,2d =.12(1)23n a n n ∴=-+-=-.设等比数列{}n b 的公比为q ,13310b b a +=,24610b b a +=.∴21(1)103b q +=⨯,31()109b q q +=⨯, 解得13b =,3q =.3n n b ∴=.(2)1111113311[](1)(1)(1)(31)(31)(31)8(31)(31)(31)(31)n n n n n n n n n n n n n b c b b b -+-+-+===-++++++++++, ∴数列{}n c 的前n 项和13113[]824(31)(31)64n n n T +=-<⨯++,2116n T λλ<-恒成立,化为2316416λλ-,即264430λλ--,解得:14λ,或316λ-. 6.设等差数列{}n a 的前n 项和为n S ,且5125S S =,212n n a a -=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b a =,且n b,2n ,*n N ∈,求证:{}n b 的前n 项和n T <.【解析】(1)设等差数列{}n a 的公差为d ,5125S S =,212n n a a -=,11545252a d a ⨯∴+=,111(1)[(21)1]2a n d a n d +-=+--,解得11a =,2d =.12(1)21n a n n ∴=+-=-.(2)证明:2(121)2n n n S n +-==.n b =,2n ,*n N ∈,则:{}n b 的前n项和1n T b =+⋯⋯+11==222()2()a b a b ++,a ,0b >,a b ≠.1∴+=.n T ∴<.7.已知数列{}n a 的前n 项和为n S ,且2321112322n S S S S n n n +++⋯+=+. (1)求数列{}n a 的前n 项和n S 和通项公式n a ; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求使得715n T >的最小正整数n . 【解析】(1)2321112322n S S S S n n n +++⋯+=+,① ∴2312111(1)(1)23122n S S S S n n n -+++⋯+=-+--,2n ,② ①②两式相减得nS n n=,2n 故2n S n =,2n ,又11S =,从而2n S n =,*n N ∈ 易得11,11,1,221,2n nn S n n a S S n n n -==⎧⎧==⎨⎨--⎩⎩,21n a n ∴=-.(2)由(1)得1111()(21)(21)22121n b n n n n ==--+-+,故12311111111(1)(1)2335212122121n n nT b b b b n n n n =+++⋯+=-+-+⋯+-=-=-+++.由715n T >得7n >, 又当*n N ∈时,n T 单调递增,故所求最小正整数n 为8.。
数列的19种经典题型
数列的19种经典题型一、公差不等于零的等差数列1. 前n项和:求出前n项的和Sn=a1+a2+…+an,Sn=n/2*(a1+an);2. 等比数列的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为等比数列的公比,则Sn = a1(1-q^n)/(1-q);3. 概率的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为概率的公比,则Sn = a1(1-q^n)/(1-q);4. 等差数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若d为等差数列的公差,则Pn = (a1 + (n-1)*d) * (a1 + (n-2)*d) * … * a1;5. 等比数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若q为等比数列的公比,则Pn = a1 *q^(n-1) * q^(n-2) * … * a1;6. 概率的前n项乘积:求出前n项的乘积Pn =a1*a2*…*an,若q为概率的公比,则Pn = a1 * q^(n-1) * q^(n-2) * … * a1;7. 等差数列的通项公式:若a1,a2,…,an为等差数列,若d为该数列的公差,则an = a1+(n-1)*d;列,若q为该数列的公比,则an = a1*q^(n-1);9. 概率的通项公式:若a1,a2,…,an为概率的序列,若q为该数列的公比,则an = a1*q^(n-1);10. 等差数列中某项的值:若a1,a2,…,an为等差数列,若d为该数列的公差,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
11. 等比数列中某项的值:若a1,a2,…,an为等比数列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
12. 概率的某项的值:若a1,a2,…,an为概率的序列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
(完整版)数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
高考数列常考题型归纳总结汇总
n
解法:一般地,要先在原递推公式两边同除以q n +1,得:
a n +1q
n +1
=
p q
∙
a n q
n
+
1q
引入辅助数列
{b n }(其中b n
=
a n q
n
),得:b n +1=
p q
b n +
1q
再待定系数法解决。
例:已知数列{a n }中,a 1=解:在a n +1=
52
⋅⋅3=85
n -3。1
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+⋅⋅⋅+(n -1 a n -1
(n ≥2,则{a n }的通项a n =⎨
⎧1⎩___
n =1
n ≥2
解:由已知,得a n +1=a 1+2a 2+3a 3+⋅⋅⋅+(n -1 a n -1+na n,用此式减去已知式,得当n ≥2时,a n +1-a n =na n,即a n +1=(n +1 a n,又a 2=a 1=1,
1
56
, a n +1=
1
1n +1
a n +(,求a n。32
1n +12n n +1
a n +(两边乘以2n +1得:2∙a n +1=(2∙a n +1 323
22
令b n =2n ∙a n,则b n +1=b n +1,解之得:b n =3-2( n
人教版高考数学一轮专项复习:数列题型11种(含解析)
数列题型11种(方法+例题+答案)1.作差法求通项公式2.累乘法求通项公式3.累加法求通项公式4.构造法求通项公式(一)5.构造法求通项公式(二)6.取倒法求通项公式7.分组求和法求前n项和8.错位相减法求前n项和9.裂项相消法求前n项和10.数列归纳法与数列不等式问题11.放缩法与数列不等式问题1、作差法求数列通项公式已知n S (12()n a a a f n +++= )求n a ,{11,(1),(2)n n n S n a S S n -==-≥注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015∙湛江)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015∙茂名)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015∙中山)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。
(1)求数列}{n a ,}{n b 的通项公式4、(2015∙揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a (1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014∙汕头)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014∙肇庆)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014∙江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。
数列题型及解题方法
数列题型及解题方法数列是高中数学中的重要内容,也是考试中经常出现的题型之一。
掌握数列的相关知识和解题方法对于提高数学成绩至关重要。
本文将从常见的数列题型入手,结合解题方法进行详细介绍,希望能够帮助大家更好地理解和掌握数列的相关知识。
一、等差数列。
等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都是一个常数。
这个常数就是公差,通常用d表示。
等差数列的通项公式为,$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,n表示项数,d表示公差。
解题方法:1. 求和公式,等差数列的前n项和公式为$S_n =\frac{n}{2}(a_1 + a_n)$,利用这个公式可以快速求得等差数列的前n项和。
2. 求首项和公差,已知等差数列的前几项或者部分信息,可以通过列方程组求得首项和公差。
3. 求项数,已知等差数列的前几项和或者部分信息,可以通过列方程求得项数。
二、等比数列。
等比数列是指一个数列中,从第二项开始,每一项与它的前一项的比值都是一个常数。
这个常数就是公比,通常用q表示。
等比数列的通项公式为,$a_n = a_1 q^{(n-1)}$,其中$a_n$表示第n 项,$a_1$表示首项,n表示项数,q表示公比。
解题方法:1. 求和公式,等比数列的前n项和公式为$S_n =\frac{a_1(1-q^n)}{1-q}$,利用这个公式可以快速求得等比数列的前n项和。
2. 求首项和公比,已知等比数列的前几项或者部分信息,可以通过列方程组求得首项和公比。
3. 求项数,已知等比数列的前几项和或者部分信息,可以通过列方程求得项数。
三、特殊数列。
除了等差数列和等比数列之外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。
这些数列在考试中也可能会出现,需要我们对其特点和解题方法有所了解。
解题方法:1. 斐波那契数列,斐波那契数列的特点是每一项都是前两项的和,即$a_n = a_{n-1} + a_{n-2}$。
高中数学数列常考点题型归纳总结最新版
数列重难点归纳总结必考点1: 数列的概念与通项公式1.数列的定义按照一定顺序排列的一列数,称为数列.数列中的每一项叫做数列的项.数列的项在这列数中是第几项,则在数列中是第几项.一般记为数列{}n a . 对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么就是不同数列 (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 2.数列的分类3.数列是一种特殊的函数数列是一种特殊的函数,其定义域是正整数集N *和正整数集N *的有限子集.所以数列的函数的图像不是连续的曲线,而是一串孤立的点. 4.数列的通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式.5.数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩例题1: 已知数列{}n a 的前n 项和为n S ,121n S n n+=+,则17a a +=( ) A .30 B .29C .28D .27【解析】121n S n n+=+,∴ 221n S n n =+-, ∴ 21121112a S ==⨯+-=,22776(2771)(2661)27a S S =-=⨯+--⨯+-=,∴ 1729a a +=,选B例题2: 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =________ 【解析】由2n a n =,若对于任意{},n n N b +∈的第n a 项等于{}n a 的第n b 项,则2()n n a b n b a b ==,则22221429311641()(),(),,()b b b b b b b b =====,所以2149161234()b b b b b b b b =,所以21491612341234123412341234lg()lg()2lg(2lg()lg()()lg )b b b b b b b b b b b b b b b b b b b b b b b b ===. 【小结】1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.3.对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律,写出通项公式.必考点2: 数列的性质数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.所以数列的函数的图像不是连续的曲线,而是一串孤立的点,因此,在研究数列问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 数列的性质主要指:1.数列的单调性----递增数列、递减数列或是常数列;2.数列的周期性.例题3: 0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( )A .11010B .11011C .10001D .11001【解析】由i mi a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑ 52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;例题4: 已知数列{}n a 中,2n a n n λ=-,若{}n a 为递增数列,则λ的取值范围是( )A .(),3-∞B .(],3-∞C .(),2-∞D .(],2-∞【解析】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立,所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=,所以3λ<,选A. 【小结】1.解决数列的单调性问题可用以下三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. (2)用作商比较法,根据1n na a + (a n >0或a n <0)与1的大小关系进行判断. (3)结合相应函数的图象直观判断. 2.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 3.求数列最大项或最小项的方法(1)利用不等式组⎩⎪⎨⎪⎧ a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项; (2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项. 3.前n 项和最值的求法(1)先求出数列的前n 项和n S ,根据n S 的表达式求解最值;(2)根据数列的通项公式,若0m a ≥,且10m a +<,则m S 最大;若0m a ≤,且10m a +>,则m S 最小,这样便可直接利用各项的符号确定最值.必考点3: 由递推公式推导通项公式例题5: 在数列{}n a 中,11a =,()*11nn na a n N a +=∈+,则这个数列的通项n a ,可以是( ) A .1nB .121n - C .12n n+ D .2n 【解析】∵11n n n a a a +=+,等式两边同时取倒数得:1111n n a a +=+,则()*1111n nn a a N +∈-=, ∴132211-121111111111+n n n n n a a a a a a a a a a --⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111+1nn a ⇒=++++=1n a n⇒=,当1n = 时,1111a == 亦成立,综上所述()*1n a n N n=∈,选A. 例题6: 已知数列{}n a 满足:11a =,2123n n a a a a n a ++++=.(1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S . 【解析】(1)令123n n S a a a a =++++,则2n n S n a =,当2n ≥时,211(1)n n S n a --=-,所以2211(1)n n n n S S n a n a ---=--,即221(1)(1)n n n a n a --=-,所以221(1)111n n a n n a n n ---==-+,所以32412311231,,,,3451n n a a a a n a a a a n --===⋅⋅⋅=+, 所以3241231123213451n n a a a a n n a a a a n n ---⋅⋅⋅⋅⋅=⨯⨯⨯⋅⋅⋅⨯⨯+, 因为 11a =,所以2(1)n a n n =+,1a 满足此式,所以2(1)n a n n =+;(2)因为2112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,所以12311111212231n n S a a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝=⎭++⎣++⎦122111n n n ⎛⎫=-= ⎪++⎝⎭ 【小结】递推公式推导通项公式方法: (1)累加法:1()n n a a f n +-=(2)累乘法:1()n na f n a += (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq ) 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. (4)待定系数法:n n n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1nn n a pa rq +=+其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q++=⋅+,令n n n q a b =,得:q b q p b nn 11+=+,再按第(3)种情况求解.(5)待定系数法:b an pa a n n ++=+1(100)p a ≠≠,,解法:一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列.(6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列.(7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数). 解法:把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q +=⎧⎨=-⎩,再按第(4)种情况求解.(8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解.必考点4: 由前n 项和公式推导通项公式,即n a 与n S 的关系求通项n a例题7: 已知数列{a n }的前n 项和21n S n n =-+,则这个数列的通项公式为( )A .21n a n =-B .12n naC .22n a n =-D .1,122,2n n a n n =⎧=⎨-≥⎩【解析】当1n =时,111111a S ==-+=当2n ≥时,()()221111122n n n a S S n n n n n -=-=-+--+--=-1a 不满足22n a n =- 1,122,2n n a n n =⎧∴=⎨-≥⎩,选D【小结】已知S n 求a n 的三个步骤 (1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式. (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写..必考点5: 等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥.2.等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA +=. a ,A ,b 成等差数列⇔2a bA +=. 4.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列. 5.注意区分等差数列定义中同一个常数与常数的区别.例题8: 已知等差数列{}n a 中,()12n n n a a -≥>,若324314a a a ==,,则1a =( ) A .1-B .0C .14D .12【解析】设公差为d ,则2224333()().a a a d a d a d =-+=-因为324314a a a ==,,所以23=14d -,则214d =.由()12n n n a a -≥>,可得0d >,所以12d =.所以13121202a a d =-=-⨯=.选B.例题9: 设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.【解析】设等差数列{}n a 的公差为d ,13334366a d d d =∴+++=∴=,,,36(1)6 3.n a n n ∴=+-=-【小结】1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列;(3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔{}n a 是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔ {}n a 是等差数列;(5){}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 提醒:判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.2.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.必考点6: 等差数列的前n 项和等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 例题10: 记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【解析】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d ,根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++=,即:()2252d d -++-+=,整理可得:66d =,解得:1d = 根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=,∴1025S =.例题11:将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.【解析】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=- 【小结】1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用.5.等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题.6.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.必考点7: 等差数列的相关性质1.等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列, 如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+,特殊地,2m p q =+时,则2m p q a a a =+,m a 是p q a a 、的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即232,,n n n n n S S S S S --成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①-S S nd =奇偶; ②1n n S a S a +=奇偶;(Ⅱ)若项数为奇数,设共有21n -项,则①S S -偶奇n a a ==中(中间项);②1S nS n =-奇偶. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若{}n a 与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 6.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值. 例题12: 在等差数列{}n a 中,若34567750a a a a a ++++=,则28a a +=( )A .360B .300C .240D .200【解析】因为34567750a a a a a ++++=,37465282a a a a a a a ++==+=,所以28300a a +=,选B例题13: 等差数列{a n }的前n 项和为S n ,且S 10=20,S 20=15,则S 30=( )A .10B .30-C .15-D .25【解析】由题意知:10S ,1200S S -,3020S S -成等差数列()()20101030202S S S S S ∴-=+-,即30102015S -=+-,解得:3015S =-,选C例题14: 若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n =__________时,{}n a 的前n 项和最大.【解析】由等差数列的性质,,,又因为,所以所以,所以,,故数列的前8项最大.必考点8: 等差数列综合问题例题15:已知等差数列{}n a 的前n 项和为n S ,12a =,318S =.(1)求{}n a 的通项公式; (2)设1302n n b a =-,数列{}n b 的前n 项和为n T ,求n T 的最小值. 【解析】(1)方法一:由()1333182a a S +==,又因为12a =,所以310a =. 所以数列{}n a 的公差31102422a a d --===,所以()()1121442n a a n d n n =+-=+-⨯=-. 方法二:设数列的公差为d .则3113322S a d =+⨯⨯32318d =⨯+=.得4d =.所以()()1121442n a a n d n n =+-=+-⨯=-. (2)方法一:由题意知()1130423023122n n b a n n =-=--=-.令10,0.n n b b +≤⎧⎨>⎩得()2310,21310.n n -≤⎧⎨+->⎩解得293122n <≤.因为*n N ∈,所以15n =. 所以n T 的最小值为()()()151215...2927...1225T b b b =+++=-+-++-=-. 方法二:由题意知()1130423023122n n b a n n =-=--=-. 因为()[]121312312n n b b n n +-=+---=⎡⎤⎣⎦, 所以数列{}n b 是首项为129b =-,公差为2的等差数列. 所以()()22129230152252n n n T n n n n -=-+⨯=-=--. 所以当15n =时,数列{}n b 的前n 项和n T 取得最小值,最小值为15225T =-. 例题16:已知数列{}n a 中148,2a a ==,且满足212n n n a a a +++=.(1) 求数列{}n a 的通项公式; (2) 设n S 是数列{}na 的前n 项和,求nS.【解析】(1)由题意得数列{n a }是等差数列,4141a a d -==--2,*210()n a n n N ∴=-+∈;(2)令0,5n a n ≥≤得,即当5n ≤时,0n a ≥,6n ≥时,0n a <, ∴当5n ≤时,n 12S a a =++…+n a =12+n a a a ++=-29n n + 当6n ≥时, 12n n S a a a =+++=125+a a a ++-(67+n a a a ++)12=(+)n a a a -++125+2(+)a a a ++()229220940n n n n =--++⨯=-+229(5)940(6)n n n n S n n n ⎧-+≤∴=⎨-+≥⎩ .例题17:记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+, 所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤,解得110n ≤≤, 所以n 的取值范围是:110()n n N *≤≤∈【小结】求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n nn a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用.必考点9: 等差数列与数学文化例题18:我国古代《九章算术》一书中记载关于“竹九”问题:“今有竹九节,下三节容量四升,上四节容量三升,问五、六两节欲均容各多少?意思是下三节容量和为4升,上四节容量和为3升,且每一节容量变化均匀,问第五、六两节容量分别是多少?在这个问题中,最下面一节容量是______,九节总容量是______. 【解析】设由下到上九节容量分别记为129,,...,a a a ,则129,,...,a a a 成等差数列,设公差为d ,且1234a a a ++=,67893a a a a +++=,即1231334a a a a d ++=+=,678914263a a a a a d +++=+=,所以19566a =,766d =-,故91982019222S a d ⨯=+=例题19:《张丘建算经》卷上有一题:今有女善织,日益功疾,初日织五尺,金一月日织九匹三丈意思就是说:有一位善于纺织的女子,从第二天起,每天比前一天多织相同量的布,第一天织了5尺布,现在一个月共织了390尺布(按30天计),记该女子第n 天织布的量为n a ,则1318a a +=_________,每天比前一天多织布________尺.【解析】由题数列{}n a 是公差为d 等差数列,则1303030()3902a a S +==,得13026a a +=,故1318a a +=13026a a +=,又15a =,得3021a =129a d =+,得21529d =+,得1629d =. 【小结】数学文化中的等差数列,主要涉及通项公式、求和公式基本量的计算,认真阅读题干,注意转化是关键.1.(2020·全国高三课时练习(理))已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138 B .135C .95D .23【解析】∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=,∴1011091040135952S a d ⨯=+⨯=-+=. 2.(北京高考真题(理))已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( ) A .165-B .33-C .30-D .21-【解析】∵对任意的p ,q ∈N *,满足a p +q =a p +a q ,∴p =q =n 时,有a 2n =2a n . 又a 2=-6,∴a 8=2a 4=4a 2=-24,故a 10=a 2+a 8=-30.3.(2020·全国高三二模(文))已知等差数列{}n a 中,n S 为其前n 项和,248a a ⋅=,515S =,则10a =( ) A .10B .4-C .10或4-D .10-或4【解析】设等差数列{}n a 的首项为1a ,公差为d ,则()()()()1111383385101532a d a d d d a d a d⎧⎧++=-+=⇔⎨⎨+==-⎩⎩211d d ⇒=⇒=或1d =-.当1d =时,11a =,所以n a n =;当1d =-时,15a =,所以6n a n =-,所以1010a =或4-.选C 4.(2020·全国高三三模(文))记等差数列{}n a 的前n 项和为n S .若311a =,675S =,则12a =( ) A .28B .31C .38D .41【解析】由题知:3161211656752a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得153a d =⎧⎨=⎩.所以12511338=+⨯=a .选C 5.(2020·全国高三其他(理))已知n S 为等差数列{}n a 的前n 项和,若77217S a =-,则10S =( ) A .12B .15C .18D .21【解析】解:由17747772172a a S a a +=⨯==-,得473a a +=, 所以4710310101522a a S +=⨯=⨯=.选B . 7. (2019·河北高三月考(文))已知等差数列{}n a 的前n 项和为n S ,若20200a >,且201920200a a +<, 则满足0n S >的最小正整数n 的值为( ) A .2019 B .2020C .4039D .4040【解析】20200a >,且201920200a a +<,20190a ∴<.14039403920204039()403902a a S a +∴==>,140384038201920204038()2019()02a a S a a +==+<, 则满足0n S >的最小正整数n 的值为4039.选C.8.(2019·甘肃兰州一中高二期中)已知等差数列{}n a ,,,n m a m a n ==则m n a +=( ) A .mB .nC .0D .m n +【解析】设等差数列的公差为d ,由题得111(1),1,1(1)a n d md a m n a m d n +-=⎧∴=-=+-⎨+-=⎩. 所以1(1)(1)0m n a m n m n +=+-++-⨯-=.选C 9.(2019·全国高考真题(理))记为等差数列的前n 项和.已知,则( ) A .B .C .D .【解析】分析:等差数列通项公式与前n 项和公式.本题还可用排除,对B ,,,排除B ,对C ,,排除C .对D ,,排除D ,故选A .详解:由题知,,解得,∴,故选A .10.(2009·宁夏高考真题(文))等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =( ) A .38B .20C .10D .9【解析】因为{}n a 是等差数列,所以112m m m a a a -++=,则由2110m m m a a a -++-=可得220m m a a -=,解得0m a =或2m a =. 因为12121(21)(21)382m m m a a S m m a --+=⨯-=-=,所以0m a ≠,故2m a =.代入可得,2(21)38m -=,解得10m =11.(2020·江苏盐城 高二期末)【多选题】设d ,n S 分别为等差数列{}n a 的公差与前n 项和,若1020S S =,则下列论断中正确的有( ) A .当15n =时,n S 取最大值 B .当30n =时,0n S = C .当0d >时,10220a a +> D .当0d <时,1022a a >【解析】因为1020S S =,所以111092019102022a d a d ⨯⨯+=+,解得1292a d =-. 对选项A ,因为无法确定1a 和d 的正负性,所以无法确定n S 是否有最大值,故A 错误. 对选项B ,13030292930301529022a d S d d ⨯⎛⎫=+=⨯-+⨯= ⎪⎝⎭,故B 正确. 对选项C ,()10221612921521502a a a a d d d d ⎛⎫+=2=+=-+=> ⎪⎝⎭,故C 正确. 对选项D ,1012918119222a a d d d d =+=-+=-,22129421321222a a d d d d =+=-+=, 因为0d <,所以10112a d =-,22132a d =-,1022a a <,故D 错误.选BC12.(2020·诸城市教育科学研究院高二期中)【多选题】已知n S 是等差数列{}n a (n *∈N )的前n 项和,且564S S S >>,以下有四个命题,其中正确的有( )A .数列{}n S 中的最大项为10SB .数列{}n a 的公差0d <C .100S >D .110S <【解析】564S S S >>,故60a <,50a >且560a a +>,故数列{}n S 中的最大项为5S ,A 错误; 数列{}n a 的公差0d <,B 正确;()()110105610502a a S a a +⨯==+>,C 正确;()111116111102a a S a+⨯==<,D 正确;选BCD .13.(2020·河北新华 石家庄二中高一期中)【多选题】设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( )A .14S 是唯一最小值B .15S 是最小值C .290S =D .15S 是最大值【解析】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=,∴129291529()2902a a S a +===,选CD.14.(2020·山东烟台三中高二期中)【多选题】已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .100a =B .10S 最小C .712S S =D .190S =【解析】13611112323661590a a S a a d a d a d +=∴++=+∴+=即100a =,A 正确; 当0d <时,n S 没有最小值,B 错误;127891011121012750S S a a a a a a S S -=++++==∴=,C 正确;1191910()191902a a S a +⨯===,D 正确.选ACD15.(2019·全国高考真题(文))记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【解析】317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 16.(2019·北京高考真题(理))设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________.【解析】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.17.(2018·全国高考真题(理))记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16.所以当n =4时,S n 取得最小值,最小值为–16. 18.(2017·全国高考真题(文))设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前项和.【解析】(1)数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .n ≥2时,a 1+3a 2+…+(2n ﹣3)a n ﹣1=2(n ﹣1).∴(2n ﹣1)a n =2.∴a n 221n =-. 当n =1时,a 1=2,上式也成立.∴a n 221n =-. (2)21121(21)(21)2121n a n n n n n ==-+-+-+. ∴数列{21n a n +}的前n 项和1111113352121n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1122121n n n -=++. 必考点10: 等比数列的有关概念1. 等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:)0(1≠=+q q a a nn ,(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零)2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n .说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n mna q a -=. 3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项) 4. 等差数列与等比数列的区分与联系 (1)如果数列{}n a 成等差数列,那么数列{}na A(na A总有意义)必成等比数列.(2)如果数列{}n a 成等比数列,且0n a >,那么数列{log }a n a (0a >,且1a ≠)必成等差数列.(3)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列.数列{}n a 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果由一个等差数列与一个等比数列的公共项顺次组成新数列,那么常选用“由特殊到一般”的方法进行讨论,且以等比数列的项为主,探求等比数列中哪些项是它们的公共项,构成什么样的新数列. 例题20: 设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A .12B .24C .30D .32【解析】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.选D.例题21:已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.【解析】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =.将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =; (2){}n b 是首项为1,公比为2的等比数列.由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【小结】1.等比数列的基本运算:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解. 2.等比数列的判定方法 (1)定义法:对于数列{}n a ,若)0(1≠=+q q a a nn ,则数列{}n a 是等比数列; (2)等比中项:对于数列{}n a ,若212++=n n n a a a ,则数列{}n a 是等比数列;(3)通项公式法n n a cq = (,c q 均是不为0的常数,n N ∈*)⇔{}n a 是等比数列.必考点11: 等比数列的前n 项和一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1或11n n a a qS q -=-;当1q =时,1na S n =(错位相减法). 说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是nq ,通项公式中是1-n q 不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况.例题22: 记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1B .2–21–nC .2–2n –1D .21–n –1【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n n n n nn n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.选B.例题23:等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nnS --=.由63m S =得()2188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.必考点12: 等比数列的相关性质1.等比数列的性质:(1)在等比数列{}n a 中,从第2项起,每一项是它相邻二项的等比中项;(2)在等比数列{}n a 中,相隔等距离的项组成的数列是等比数列, 如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等比数列{}n a 中,对任意m ,n N +∈,m n m n q a a -=;(4)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2m p q a a a =,m a 是p q a a 、的等比中项. 也就是: =⋅=⋅=⋅--23121n n n a a a a a a ,如图所示:n n a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321.(5)若数列{}n a 是等比数列,且公比不为-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列. 如下图所示:k kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++. (6)两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n n a b ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列. (7)若数列{}n a 是等比数列,则{}n ka ,2{}n a 仍为等比数列.2. 公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即21a a -,32a a -,43a a -,…成等比数列,且公比为()21322121a a qa a q a a a a --==--.3.等比数列的单调性 当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列,当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.4. 等差数列和等比数列比较判定方法(1)定义法; (2)中项公式法:212+++=n n n a a a ()n N ∈*⇔{}n a 等差数列(3)通项公式法:n a pn q =+(,p q 为常数,n N ∈*)⇔ {}n a 为等差数列;(4)前n 项和公式法:2n S An Bn =+(,A B 为常数, n N ∈*)⇔ {}n a 为等差数列; (5) {}n a 为等比数列,且0n a >,那么数列{log }a n a (0a >,且1a ≠)为等差数列(1)定义法(2)中项公式法:212++=n n n a a a()n N ∈* (0n a ≠)⇔ {}n a 为等比数列(3)通项公式法:nn a cq = (,c q 均是不为0的常数,n N ∈*)⇔{}n a 为等比数列(4) {}n a 为等差数列⇔{}n aA (n aA 总有意义)为等比数列性质(1)若m ,n ,p ,q N +∈,且m n p q +=+,则m n p q a a a a +=+(2)()n m a a n m d =+- (3) 232,,n n n n n S S S S S --,…仍成等差数列(1)若m ,n ,p ,q N +∈,且m n p q +=+,则m n p q a a a a =(2) m n m n q a a -=(3)等比数列依次每n 项和(0n S ≠),即232,,n n n n n S S S S S --,…仍成等比数列前n 项和11()(1)22n n n a a n n S na d +-==+ 1q =时,1na S n =;当1≠q 时,qq a S n n --=1)1(1或11n n a a qS q -=-. 例题24: 等比数列中,已知1234567820,10a a a a a a a a +++=+++=,则数列的前16项和为( )A .20B .752C .1252D .752-【解析】由题意得,48420,10S S S =-=,则84412S S S -=,根据等比数列的性质可知4841281612,,,S S S S S S S ---构成公比为12等比数列,4841281612520,10,5,2S S S S S S S =-=-=-=,且812167530,35,2S S S ===,故选B . 例题25:数列{}n a 的各项都是正数,且数列{}3log n a 是等差数列,若564718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .2+log 35【解析】因为数列{}3log n a 是等差数列,所以13133log log log n n n n a a a d a ++-==,所以*13,d n nan N a +=∈, 所以数列{}n a 是等比数列,所以5647a a a a =,又564718a a a a +=,所以56479a a a a ==, 所以1102947569a a a a a a a a =====,所以53132310312103log log log log ()log 910a a a a a a +++===,选B【小结】应用等比数列性质解题时的两个关注点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)等比数列的项经过适当的组合后组成的新数列也具有某种性质,例如在等比数列中,S k ,S 2k -S k ,S 3k -S 2k ,…也成等比数列,公比为q k (q ≠-1).必考点13: 等比数列基本运算例题26: 已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( )A .16B .8C .4D .2【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .例题27:设等比数列{a n }满足124a a +=,318a a -=.(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【解析】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =.必考点14: 等比数列的前n 项和公式的综合应用例题28:设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求12n a a a e e e +++.【解析】(I )设等差数列{}n a 的公差为d ,∵235ln2a a +=,∴1235ln2a d +=, 又1ln2a =,∴ln2d =.∴()11ln2n a a n d n =+-=. (II )由(I )知ln2n a n =, ∵2ln 2=2nn a nln n e e e ==,∴{}n a e是以2为首项,2为公比的等比数列.∴212ln2ln2ln2nna a a e e e ee e+++=+++2=222n +++1=22n +-.∴12n a a a e e e +++ 1=22n +-例题29: 已知等比数列{}n a 的公比(0,1)q ∈,前n 项和为n S .若331S a +=,且2116a +是1a 与3a 的等差中项. (I )求n a ;(II )设数列{}n b 满足10b =,1()n n n b b a n *+-=∈N ,数列{}n n a b 的前n 项和为n T .求证:1()3n T n *<∈N . 【解析】(I )由33=1S a +,得12321a a a ++=①. 再由2116a +是1a ,3a 的等差中项,得1321216a a a ⎛⎫+=+ ⎪⎝⎭,即132128a a a +-=②. 由①②,得()123132282a a a a a a ++=+-,即32161770a a a -+=,亦即261770q q -+=,解得12q =或73,又()0,1q ∈,故12q =. 代入①,得1211122a q q ==++,所以111111222n nn n a a q --⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,即()*12n n a n N =∈;(II )证明:对任意*n N ∈,()111111*********nn n nna q S a q⎛⎫-⎪-⎝⎭===-=---,()()()11213211201n n n n n n b b b b b b b b a a a S a ++=+-+-++-=++++==-,即11n n b a +=-. 又10b =,若规定00112a ==,则()*11n n b a n N -=-∈. 于是()*1n n n n n a b a a a n N-=-∈,从而()()1201121111111241123214n n n n n n nT a a a a a a a a a -⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭ ⎪=+++-+++=--=-+ ⎪ ⎪⎝⎭- ⎪⎝⎭12121113211323323n n n ---⋅-=-<⋅⋅,即()*13n T n N <∈.【小结】1.等比数列前n 项和S n 相关的结论(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1).(2)分段求和:S n +m =S n +q n S m ⇔q n =S n +m -S nS m (q 为公比).2.等比数列最值有关问题的解题思路求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.必考点15: 等差数列、等比数列的综合问题例题30:设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.。
数列通项公式二十三大题型汇总S
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ZZ Z Z Z Z Z Z Z Z Z Z Z ZZZZZZZZZZZZ ZZ ZZ 数列通项公式二十三大题型汇总一、重点题型归纳1.题型1公式法公式法:根据等差数列或等比数列的通项公式a n =a 1+(n -1)d ,或a n =a 1q n -1进行求解;【例1】已知等比数列a n 的前n 项和为S n ,且S n =λ⋅3n -1,则a 5=()A .54B .93C .153D .162【例2】若a n -2n 是等比数列,且a 1=5,a 4=89,则a 100-a 992=()A .399-2B .399-1C .399+2D .399+12.题型2累加法累加法:当数列a n 中有a n -a n -1=f n ,即第n 项与第n -1项的差是个有规律的数列,就可以利用这种方法;【例3】已知数列a n 满足a 2=2,a 2n =a 2n -1+3n n ∈N * ,a 2n +1=a 2n +-1 n +1n ∈N * ,则数列a n第2023项为()A .31012-52B .31012-32C .31011-52D .31011-32【例4】已知定义数列a n +1-a n 为数列a n 的“差数列”,若a 1=2,a n 的“差数列”的第n 项为2n ,则数列a n 的前2023项和S 2023=()A .22022-1B .22022C .22024D .22024-23.题型3累乘法累乘法:当数列a n 中有a na n -1=f n ,即第n 项与第n -1项商是个有规律的数列,就可以利用这种方法;【例5】已知数列a n 满足a n +1+a na n +1-a n =2n ,a 1=1,则a 2023=()A .2023B .2024C .4045D .4047【例6】定义:在数列a n 中,a n +2a n +1-a n +1a n=d n ∈N * ,其中d 为常数,则称数列a n 为“等比差”数列.已知“等比差”数列a n 中,a 1=a 2=1,a 3=3,则a 24a 22=()A .1763B .1935C .2125D .2303μάθημα︱e iπ+1=0微信公众号:数学史话4.题型4已知前n 项和S n 消S n 型S n 与a n 的关系式法:由S n 与a n 的关系式,类比出S n -1与a n -1的关系式,然后两式作差,最后检验出a 1,是否满足用上面的方法求出的通项;【例7】已知S n 是各项均为正数的数列a n 的前n 项和,S n +1=2a n +12S n ,a 3a 5=64,若λa n -S 2n -65≤0对n ∈N *恒成立,则实数λ的最大值为()A .82B .16C .162D .32【例8】已知数列a n 的前n 项和S n 满足S n =2a n -4,数列b n 满足b n =2n -1a n ,则下列各式一定成立的是()A .b n ≥b 1B .b n ≥b 2C .b n ≤b 2D .b n ≤b 35.题型5已知前n 项和S n 消a n 型S n 与a n 的关系式法:由S n 与a n 的关系式,类比出S n -1与a n -1的关系式,然后两式作差,最后检验出a 1,是否满足用上面的方法求出的通项;【例9】数列a n 的前n 项和为S n ,a 1=12,若该数列满足a n +2S n S n -1=0n ≥2 ,则下列命题中错误的是()A .1S n是等差数列B .S n =12nC .a n =-12n n -1D .S 2n 是等比数列【例10】已知数列a n 的前n 项和为S n ,a 1=1,且n 2-1+1 S n =nS n -1+a n (n ≥2且n ∈N *),若S k=135,则k =()A .46B .49C .52D .556.题型6待定系数法在数列a n 中,a n =ka n -1+b (k 、b 均为常数,且k ≠1,k ≠0).一般化方法:设a n +m =k a n -1+m ,得到b =k -1 m ,m =b k -1,可得出数列a n +b k -1是以k 的等比数列,可求出a n ;【例11】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.用他名字定义的函数称为高斯函数f x =x ,其中x 表示不超过x 的最大整数.已知正项数列a n 的前n 项和为S n ,且S n =12a n +1a n ,令b n =1S n +S n +2,则b 1+b 2+⋯+b 99 =()A .7B .8C .17D .18【例12】已知数列a n 的前n 项和为S n ,若S n +a n =n n ∈N * ,则log 21-a 2023 =()微信公众号:数学史话︱数是万物的本原-毕达哥拉斯A.-2023B.-12023C.12023D.2023【例13】数列{a n}满足a1=4,a n+1=3a n-2,∀n∈N*,λa n-1<a n-28,则实数λ的取值范围是()A.(-∞,-9)B.(-∞,-8)C.(-12,-9)D.(-12,-7)7.题型7与概率结合问题【例14】甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,则6次传球后球在甲手中的概率为.【例15】有人玩都硬币走跳棋的游戏,已知硬币出现正反面为等可能性事件,棋盘上标有第0站,第1站,第2站,⋯,第8站,一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站(从k到k+1).若掷出反面,棋子向前跳两站(从k到k+2),直到棋子跳到第7站(胜利大本营)或跳到第8站(失败集中营)时,该游戏结束.设棋子跳到第n站概率为P n,则P7 =.8.题型8倒数法倒数变换法,适用于a n+1=Aa nBa n+C(A,B,C为常数);二、取对数运算;三、待定系数法:1、构造等差数列法;2、构造等比数列法:①定义构造法。
最基础最全面的数列题型总结(附答案)
1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式。
如(1)已知,则在数列的最大项为__(答:);(2)数列的通项为,其中均为正数,则与的大小关系为___(答:);(3)已知数列中,,且是递增数列,求实数的取值范围(答:);2.等差数列的有关概念:(1)等差数列的判断方法:定义法或。
如设是等差数列,求证:以b n=为通项公式的数列为等差数列。
(2)等差数列的通项:或。
如(1)等差数列中,,,则通项(答:);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:)(3)等差数列的前和:,。
如(1)数列中,,,前n项和,则=_,=_(答:,);(2)已知数列的前n项和,求数列的前项和(答:。
(4)等差中项:若成等差数列,则A叫做与的等差中项,且。
提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,…(公差为);偶数个数成等差,可设为…,,…(公差为2)3.等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
(3)当时,则有,特别地,当时,则有。
如(1)等差数列中,,则=____(答:27);(2)在等差数列中,,且,是其前项和,则A、都小于0,都大于0 B、都小于0,都大于0 C、都小于0,都大于0 D、都小于0,都大于0 (答:B)(4) 若、是等差数列,则、 (、是非零常数)、、,…也成等差数列,而成等比数列;若是等比数列,且,则是等差数列。
如等差数列的前n项和为25,前2n项和为100,则它的前3n和为。
数列题型总结(全)
11、设平面内的向量 点 是直线 上的一个动点,求当 取最小值时, 的坐标及 的余弦值。
12、设向量 , , , , , 与 的夹角为 , 与 的夹角为 ,且 ,求 的值。
参考答案
二、1、1、 ∥ ,
2、(1) .
= =
∵ ,∴ ,∴ .
∴ max= .
(2)由已知 ,得 .
一:定义法:
例:(1)设 是等差数列,证明:数列 (c>0, 是等比数列。(2)设 是正项等比数列,证明
(c>0, 是等差数列。
变式一:数列 的前n项和记为 ,已知 (n=2,3,4…),证明:数列 是等比数列。
变式二:已知定义在R上的函数f(x)和数列 满足下列条件: , ,其中a为常数,k为非零实数。令 是等比数列。
数列题型归纳(全)
题型一:求等差数列的公差或取值范围
例一:等差数列 的前n项和 ,若 =4, =20,则该数列的公差d等于
变式一:等差数列 中, ,则该数列的 的公差为
变式二:已知等差数列的首项为31,若从第16项开始小于1,则此数列的公差d的取值范围是
题型二:求等比数列的公比
例一:在等比数列 中, ,则公比q的值为
=
= .
3、(1)
由 得 又
(2)由 ,得
又 =
所以, = 。
三、1—6 B D A D A A
7、. 8、 9、只要满足 即可10、(5,2)或(-5,-2)
11、设 点 在直线 上, 与 共线,而
即 有 .
故当且仅当 时, 取得最小值 ,此时
于是
12、
变式一:设数列 , 都是等差数列,若
变式二:在等差数列 中,已知 ,则该数列前11项和等于
数列必会常见题型归纳
数列必会基础题型题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想)1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.5在等差数列{a n }中,(1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8.6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S ..6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .题型二:求数列通项公式: (A )给出前n 项和求通项公式1、⑴n n S n 322+=; ⑵13+=n n S .2、设数列{}n a 满足2*12333()3n na a a a n N +++=∈n-1…+3,求数列{}n a 的通项公式B )给出递推公式求通项公式⑴已知关系式)(1n f a a n n +=+,可利用迭加法或迭代法;11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----1.已知数列{}n a 满足141,21211-+==+n a a a n n ,求数列{}n a 的通项公式。
数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
初中数列题型及解题方法
初中数列题型及解题方法数列是初中数学中的重要概念,也是数学学习中的基础知识。
常见的数列题型包括等差数列、等比数列、斐波那契数列等。
下面将介绍这些数列的概念和解题方法。
一、等差数列等差数列是指数列中相邻两项之差相等的数列。
其通项公式为:an = a1 + (n-1)d,其中a1为首项,d为公差。
1.求和公式等差数列的前n项和Sn可以使用求和公式直接计算:Sn = (a1 + an) * n / 2。
2.解题方法对于等差数列的问题,常见的解题方法有:(1)已知前n项和Sn和公差d,求首项a1:使用求和公式Sn = (a1 + a1+(n-1)d) * n / 2,将已知数据代入即可求得a1。
(2)已知首项a1、公差d和项数n,求前n项和Sn:使用求和公式Sn = (a1 + a1+(n-1)d) * n / 2,将已知数据代入即可求得Sn。
(3)已知首项a1、公差d和前n项和Sn,求项数n:将Sn =(a1 + a1+(n-1)d) * n / 2中的Sn替换为已知值,整理方程求解n。
二、等比数列等比数列是指数列中相邻两项之比相等的数列。
其通项公式为:an = a1 * q^(n-1),其中a1为首项,q为公比。
1.求和公式等比数列的前n项和Sn可以使用求和公式直接计算:Sn = (a1 * (q^n - 1)) / (q - 1),其中q ≠ 1。
2.解题方法对于等比数列的问题,常见的解题方法有:(1)已知首项a1、公比q和项数n,求前n项和Sn:使用求和公式Sn = (a1 * (q^n - 1)) / (q - 1),将已知数据代入即可求得Sn。
(2)已知首项a1、公比q和前n项和Sn,求项数n:将Sn =(a1 * (q^n - 1)) / (q - 1)中的Sn替换为已知值,整理方程求解n。
(3)已知首项a1、公比q和项数n,求第n项an:使用通项公式an = a1 * q^(n-1),将已知数据代入即可求得an。
高考数列常考题型归纳总结
类型 1
an 1 an f (n)
解法: 把原递推公式转化为 an1 an f (n) , 利用累加法(逐差 相加法)求解。 例:已知数列 a n 满足 a1 , a n1 a n 解:由条件知: a n1 a n
2
1 2
1 ,求 a n 。 n n
1 1 1 1 1 1 1 (1 ) ( ) ( ) ( ) 2 2 3 3 4 n 1 n 1 所以 an a1 1 n 1 1 1 3 1 a1 , a n 1 2 2 n 2 n
类型 2
an1 f (n)an
2n ,n 1, 2,3, Sn
4 3 1 3 2 3
,证明:
T 2
i 1 inຫໍສະໝຸດ 3解: (I)当 n 1 时, a1 S1 a1 a1 2 ; 当 n 2 时, an S n S n1 an 2 n1 ( an1 2 n ) ,即
an1 2an t t 3 . 故 递 推 公 式 为 an1 3 2(an 3) , 令 bn an 3 , 则 b1 a1 3 4 , 且
bn1 an1 3 2 . 所 以 bn 是 以 bn an 3
b1 4 为首项,2 为公比的等比数列,则 bn 4 2 n1 2n1 ,所以
得 (n 1) 个等式累乘之,即
a a a 2 a3 a 4 1 2 3 n 1 1 n n n a1 a2 a3 an1 2 3 4 a1 n
又 a1 , an
2 3
2 3n
例:已知 a1 3 , an1 解: an
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列必会基础题型
题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想)
1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;
2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .
3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.
4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,
中间两数之和为36,求这四个数. 5在等差数列{a n }中,
(1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8.
6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.
7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形.
B )根据数列的性质求解(整体思想)
1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;
2、设n S 、n T 分别是等差数列{}n a 、
{}n a 的前n 项和,327++=n n T S n n ,则=5
5b a
. 3、设n S 是等差数列{}n a 的前n 项和,若
==5
935,95S S
a a 则( ) 4、等差数列{}n a ,{}n
b 的前n 项和分别为n S ,n T ,若231n n S n
T n =+,则n n
a b =( )
5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S ..
6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .
题型二:求数列通项公式: (A )给出前n 项和求通项公式
1、⑴n n S n 322
+=; ⑵13+=n n S .
2、设数列{}n a 满足2
*12333()3
n n
a a a a n N +++=
∈n-1
…+3,求数列{}n a 的通项公式
B )给出递推公式求通项公式
⑴已知关系式)(1n f a a n n +=+,可利用迭加法或迭代法;
1
1232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----
1.已知数列{}n a 满足1
41
,212
11-+==+n a a a n n ,求数列{}n a 的通项公式。
2. 已知数列{}n a 满足1121
1n n a a n a +=++=,,求数列{}n a 的通项公式。
3.已知数列{}n a 满足112313n
n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4.设数列}{n a 满足21=a ,1
2123-+⋅=-n n n a a ,求数列}{n a 的通项公式 (2)、已知关系式)(1n f a a n n ⋅=+,可利用迭乘法.
1. 已知数列{}n a 满足112(1)53n
n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
2.已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
3.已知31=a ,n n a n n a 2
3131
+-=+ )1(≥n ,求n a 。
(3)倒数变换法 适用于分式关系的递推公式,分子只有一项 1. 已知数列{}n a 满足112,12
n
n n a a a a +=
=+,求数列{}n a 的通项公式。
C )构造新数列待定系数法
1. 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
2.在数列
{}
n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项
n a =______________
3.已知数列{}n a 满足*
111,21().n n a a a n N +==+∈求数列{}n a 的通项公式; 4.已知数列{}n a 满足112356n
n n a a a +=+⨯=,,求数列{}n a 的通项公式。
题型三:证明数列是等差或等比数列 A)证明数列等差
例1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n n
S b n
n .求证:数列{}n b 是等差数列.
例2、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=2
1
.求证:{n S 1}
是等差数列; B )证明数列等比
1、设{a n }是等差数列,b n =n
a ⎪⎭
⎫
⎝⎛21,求证:数列{b n }是等比数列;
2、设n S 为数列{}n a 的前n 项和,已知()21n
n n ba b S -=-
⑴证明:当2b =时,{}
12n n a n --⋅是等比数列;⑵求{}n a 的通项公式
3、已知数列{}n a 满足*
12211,3,32().n n n a a a a a n N ++===-∈
⑴证明:数列{}1n n a a +-是等比数列;⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111
*44
...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.
题型四:求数列的前n 项和 基本方法: 1)公式法,
d n n na a a n S n n 2)1(2)(11-+=+= ⎪⎩⎪⎨⎧≠--==)1(1)1()
1(11q q
q a q na S n n 公比含字母时一
定要讨论
例:1.已知等差数列}{n a 满足,11=a 32=a ,求前n 项和}{n S
2. 等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12
3.已知等比数列}{n a 满足,11=a 32=a ,求前n 项和}{n S 2)裂项相消法,数列的常见拆项有:
1111
()()n n k k n n k
=-++;
n n n n -+=++11
1;
例1、求和:S =1+
n
++++++++++ 32113211211
2数列{a n }的通项公式是a n =1
1++n n ,若前n 项之和为10,则项数n 为( )
3、求和:
n
n +++++++++11
341231121 . 3)错位相减法,
例、若数列{}n a 的通项n
n n a 3)12(⋅-=,求此数列的前n 项和n S
例:1.求和2
1123n n S x x nx -=+++
+
2.求和:n n a
n a a a S ++++=
32321 3.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,
3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫
⎨⎬
⎩⎭
的前n 项和n S .
题型五:数列单调性最值问题
基础知识:在等差数列中,求S n 的最大(小)值,关键是找出某一项,使这一项及它前面的项皆取正(负)值或0,而它后面的各项皆取负(正)值.
⑴ a 1> 0,d <0时,解不等式组 ⎩⎨⎧<≥+00
1
n n
a a 可解得S n 达到最 值时n 的值.
⑵ a 1<0,d>0时,解不等式组 ⎪⎩
⎪
⎨
⎧
可解得S n 达到最小值时n 的值.
基本题型练习:
1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,
=n . 2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值;
3、数列{}n a 中,12832
+-=n n a n ,求n a 取最小值时n 的值. 4、数列{}n a 中,22+-=n n a n ,求数列{}n a 的最大项和最小项.
5、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*
n ∈N .
(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*
n ∈N ,求a 的
取值范围.。