宿城区第三高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载

宿州市高中2018-2019学年高二上学期第二次月考试卷数学

宿州市高中2018-2019学年高二上学期第二次月考试卷数学

宿州市高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.2.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1 D.3.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是()A.=0.7x+0.35 B.=0.7x+1 C.=0.7x+2.05 D.=0.7x+0.454.已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.3 D.25.函数f(x)=()x2﹣9的单调递减区间为()A.(﹣∞,0)B.(0,+∞)C.(﹣9,+∞)D.(﹣∞,﹣9)6.若某算法框图如图所示,则输出的结果为()A.7 B.15 C.31 D.637.若A(3,﹣6),B(﹣5,2),C(6,y)三点共线,则y=()A.13 B.﹣13 C.9 D.﹣98.设F1,F2为椭圆=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为()A.B.C.D.9.设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=()A.﹣1﹣i B.1+i C.﹣1+i D.1﹣i则几何体的体积为()4【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力.11.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .212.正方体的内切球与外接球的半径之比为( )A .B .C .D .二、填空题13.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.14.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .15.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.16.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ . 17.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.18.若全集,集合,则三、解答题19.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.20.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y 30 40 60 50 70(1)画出散点图; (2)求线性回归方程; (3)预测当广告费支出7(百万元)时的销售额.21.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;22.已知函数f(x)=x3+ax+2.(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.23.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cosθ的值.24.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?宿州市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。

宿城区高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷

宿城区高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷

宿城区高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 2. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA .1B .2C .3D .44. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .135. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .26. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 7. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()8. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .10.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .11.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .312.在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( ) A .48B .±48C .96D .±96二、填空题13.已知实数x ,y 满足约束条,则z=的最小值为 .14.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.15.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.16.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .17.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .18.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题19.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.(1)求数列{a n }的通项公式;(2)设,T n 是数列{b n }的前n 项和,求:使得对所有n ∈N *都成立的最大正整数m .20.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .21.若函数f (x )=sin ωxcos ωx+sin 2ωx ﹣(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横坐标依次构成公差为π的等差数列. (Ⅰ)求ω及m 的值;(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和.22.设函数f (x )=x+ax 2+blnx ,曲线y=f (x )过P (1,0),且在P 点处的切线斜率为2 (1)求a ,b 的值;(2)设函数g (x )=f (x )﹣2x+2,求g (x )在其定义域上的最值.23.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.24.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]宿城区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.2.【答案】B【解析】解:∵(﹣4+5i)i=﹣5﹣4i,∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B.3.【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A.【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.4.【答案】D【解析】考点:等差数列.5.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x|=2,P∴S△POF=|0F|•|x P|=.故选:C.6.【答案】C【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.故选C.7.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.8.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.9.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D10.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.11.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.12.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.二、填空题13.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.15.【答案】B 【解析】16.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用.17.【答案】 ①②④ .【解析】解:①连结BD ,B ′D ′,则由正方体的性质可知,EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.②连结MN ,因为EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF 的面积最小.所以②正确.③因为EF ⊥MN ,所以四边形MENF 是菱形.当x ∈[0,]时,EM 的长度由大变小.当x ∈[,1]时,EM 的长度由小变大.所以函数L=f (x )不单调.所以③错误.④连结C ′E ,C ′M ,C ′N ,则四棱锥则分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.因为三角形C ′EF 的面积是个常数.M ,N 到平面C'EF 的距离是个常数,所以四棱锥C'﹣MENF 的体积V=h (x )为常函数,所以④正确. 故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.18.【答案】【解析】三、解答题19.【答案】【解析】解:(1)由题意知:S n=n2﹣n,当n≥2时,a n=S n﹣S n﹣1=3n﹣2,当n=1时,a1=1,适合上式,则a n=3n﹣2;(2)根据题意得:b n===﹣,T n=b1+b2+…+b n=1﹣+﹣+…+﹣=1﹣,∴{T n}在n∈N*上是增函数,∴(T n)min=T1=,要使T n >对所有n ∈N *都成立,只需<,即m <15,则最大的正整数m 为14.20.【答案】(1)12-=n a n ,nn b 21=;(2)n nn T 2323+-=. 【解析】试题分析:(Ⅰ1)设d 为等差数列{}n a 的公差,且0>d ,利用数列的前三项分别加上3,1,1后成等比数列,求出d ,然后求解n b ;(2)写出n n n T 212...232321321-++++=利用错位相减法求和即可. 试题解析:解:(1)设d 为等差数列{}n a 的公差,0>d ,由11=a ,d a +=12,d a 213+=,分别加上3,1,1后成等比数列,] 所以)24(2)2(2d d +=+ 0>d ,∴2=d ∴122)1(1-=⨯-+=n n a n又1log 22--=n n b a ∴n b n -=2log ,即n n b 21=(6分)考点:数列的求和. 21.【答案】【解析】解:(Ⅰ)∵f (x )=sin ωxcos ωx+sin 2ωx ﹣=ωx+(1﹣cos2ωx)﹣=2ωx﹣2ωx=sin(2ωx﹣),依题意得函数f(x)的周期为π且ω>0,∴2ω=,∴ω=1,则m=±1;(Ⅱ)由(Ⅰ)知f(x)=sin(2ωx﹣),∴,∴.又∵x∈[0,2π],∴.∴y=f(x)在x∈[0,2π]上所有零点的和为.【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题.22.【答案】【解析】解:(1)f(x)=x+ax2+blnx的导数f′(x)=1+2a+(x>0),由题意可得f(1)=1+a=0,f′(1)=1+2a+b=2,得;(2)证明:f(x)=x﹣x2+3lnx,g(x)=f(x)﹣2x+2=3lnx﹣x2﹣x+2(x>0),g′(x)=﹣2x﹣1=﹣,可得g(x)max=g(1)=﹣1﹣1+2=0,无最小值.23.【答案】【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C 9r =C 9r 2r ,由﹣r=0,得r=3,∴常数项为:C 9323=672; (2)令x=1,得(1+2)9=39.【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.24.【答案】(1)13|{<<-x x 或}3>x ;(2). 【解析】试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1。

宿城区第三中学校2018-2019学年高二上学期第二次月考试卷数学

宿城区第三中学校2018-2019学年高二上学期第二次月考试卷数学

宿城区第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣12. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%3. 已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a4. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .565. 命题“存在实数x ,使x >1”的否定是( ) A .对任意实数x ,都有x >1 B .不存在实数x ,使x ≤1 C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤16. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .17. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -8. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( )A .-14B .-12C .-34D .-549. 在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形10.如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .211.在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C.D .212.下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|二、填空题13.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .14.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 .15.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .16.已知函数f (x )=,若f (f (0))=4a ,则实数a= .17.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .18.已知一个算法,其流程图如图,则输出结果是.三、解答题19.某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t 0 3 6 9 12 15 18 21 24y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?20.如图,在Rt△ABC中,∠ACB=,AC=3,BC=2,P是△ABC内一点.(1)若P是等腰三角形PBC的直角顶角,求PA的长;(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.21.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧的中点;(Ⅱ)求证:BF=FG.22.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.23.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)24.已知直线l :(t 为参数),曲线C 1:(θ为参数).(Ⅰ)设l 与C 1相交于A ,B 两点,求|AB|;(Ⅱ)若把曲线C 1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最小值.宿城区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.2.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.3.【答案】A【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a,且b>1,又c=2log52=log54<1,∴c<b<a.故选:A.4.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.5.【答案】C【解析】解:∵命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”故选C6.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f (2)=f (﹣2)=f (2), 则f (2)=0, 故f (89)+f (90)=0+1=1,故选:D .【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.7. 【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算. 8. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.9. 【答案】A 【解析】解:∵,又∵cosC=,∴=,整理可得:b 2=c 2,∴解得:b=c .即三角形一定为等腰三角形.故选:A .10.【答案】A【解析】解:结合向量数量积的几何意义及点O 在线段AB ,AC 上的射影为相应线段的中点,可得,,则•==16﹣18=﹣2; 故选A .【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题11.【答案】B【解析】考点:正弦定理的应用.12.【答案】A【解析】解:满足“∀x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.二、填空题13.【答案】3.【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.14.【答案】②③④.【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|∴|PA|+|PB|≥2=2k,③正确;对于④,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.15.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.16.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.17.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.18.【答案】5.【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.三、解答题19.【答案】【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,∴=10,且相隔9小时达到一次最大值说明周期为12,因此,,故(0≤t≤24)(2)要想船舶安全,必须深度f(t)≥11.5,即∴,解得:12k+1≤t≤5+12k k∈Z又0≤t≤24当k=0时,1≤t≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1:00﹣5:00),(13:00﹣17:00).【点评】本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.20.【答案】【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,整理得:PA=;(2)在△PBC中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得:==,∴PB=sinθ,PC=sin(﹣θ),∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),则当θ=时,△PBC面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.21.【答案】【解析】解:(I)∵CF=FG∴∠CGF=∠FCG∴AB圆O的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(II)∵∴∠GBC=∠FCB∴CF=FB同理可证:CF=GF∴BF=FG【点评】本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE ⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.22.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a +b )2=a +b +2ab ≤2(a +b )=4, ∴a +b ≤2,∴f (x )≥a +b =2≥a +b , 即f (x )≥a +b .23.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤.综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =时,min 59180y =设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个24.【答案】【解析】解:(I )l 的普通方程为y=(x ﹣1),C1的普通方程为x 2+y 2=1,联立方程组,解得交点坐标为A (1,0),B (,﹣)所以|AB|==1;(II )曲线C 2:(θ为参数).设所求的点为P (cos θ, sin θ),则P 到直线l 的距离d== [sin ()+2]当sin ()=﹣1时,d 取得最小值.。

宿城区二中2018-2019学年高二上学期第二次月考试卷数学

宿城区二中2018-2019学年高二上学期第二次月考试卷数学

宿城区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=Asin (ωx ﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位 D .向右平移个长度单位2. 下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 67 3. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 4. 半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 35. 在三角形中,若,则的大小为( )A .B .C .D .6. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .7. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A.i≥7?B.i>15?C.i≥15?D.i>31?8.设x,y满足线性约束条件,若z=ax﹣y(a>0)取得最大值的最优解有数多个,则实数a 的值为()A.2 B.C.D.39.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日D.2日和11日10.如果a>b,那么下列不等式中正确的是()A.B.|a|>|b| C.a2>b2D.a3>b311.“”是“A=30°”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件12.已知e为自然对数的底数,若对任意的1[,1]xe∈,总存在唯一的[1,1]y∈-,使得2ln1yx x a y e-++=成立,则实数a的取值范围是()A.1[,]eeB.2(,]eeC.2(,)e+∞ D.21(,)ee e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.二、填空题13.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.14.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R .若=,则a+3b 的值为 .15.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.17. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.如图所示是y=f (x )的导函数的图象,有下列四个命题:①f(x)在(﹣3,1)上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f(x)的极小值点.其中真命题为(填写所有真命题的序号).三、解答题19.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.20.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f (x )在[﹣2,﹣]的最值.21.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .22.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).23.将射线y=x (x ≥0)绕着原点逆时针旋转后所得的射线经过点A=(cos θ,sin θ).(Ⅰ)求点A 的坐标;(Ⅱ)若向量=(sin2x ,2cos θ),=(3sin θ,2cos2x ),求函数f (x )=•,x ∈[0,]的值域.24.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.宿城区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.2.【答案】D【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立对于B:设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5 ∴B选项不成立对于C:设函数y=x0.3,则此函数单调递增∴3.50.3>3.40.3 ∴C选项不成立对于D:设函数f(x)=log7x,g(x)=log6x,则这两个函数都单调递增∴log76<log77=1<log67∴D选项成立故选D3.【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).4. 【答案】A【解析】解:2πr=πR ,所以r=,则h=,所以V=故选A5. 【答案】A【解析】 由正弦定理知,不妨设,,,则有,所以,故选A答案:A6. 【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A7.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.8.【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax﹣y(a>0)得y=ax﹣z,∵a>0,∴目标函数的斜率k=a>0.平移直线y=ax﹣z,由图象可知当直线y=ax﹣z和直线2x﹣y+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax﹣z和直线x﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=.故选:B.9.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.10.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.11.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.12.【答案】B【解析】二、填空题13.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA⊥底面ABC,且ABC∆为直角三角形,且5,,6AB VA h AC===,所以三棱锥的体积为115652032V h h=⨯⨯⨯==,解得4h=.考点:几何体的三视图与体积.14.【答案】﹣10.【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.15.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.16.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.17.【答案】①②④ 【解析】18.【答案】 ①【解析】解:由图象得:f (x )在(1,3)上递减,在(﹣3,1),(3,+∞)递增, ∴①f (x )在(﹣3,1)上是增函数,正确, x=3是f (x )的极小值点,②④不正确;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确, 故答案为:①.三、解答题19.【答案】(1)3,2,1;(2)710. 【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,BB ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710. 考点:1、分层抽样的应用;2、古典概型概率公式. 20.【答案】【解析】解:(1)∵f (x )=x 3+3ax 2+bx , ∴f'(x )=3x 2+6ax+b ,又∵f (x )在x=﹣1时有极值0, ∴f'(﹣1)=0且f (﹣1)=0, 即3﹣6a+b=0且﹣1+3a ﹣b=0, 解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x )=3x 2+4x+1,令f'(x )=0得x=﹣或x=﹣1, 又∵f (﹣2)=﹣2,f(﹣)=﹣,f (﹣1)=0,f(﹣)=﹣,∴f (x )max =0,f (x )min =﹣2.21.【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++. 【解析】试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-+211()a a a +-+求得.试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵1222n n b b ++=+,又121224b a a +=-+=,∴2312(21)(2222)22222221nn n n a n n n +-=++++-+=-+=--.∴224(12)(22)2(4)122n n n n n S n n +-+=-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 22.【答案】【解析】解:由12x 2﹣ax ﹣a 2>0⇔(4x+a )(3x ﹣a )>0⇔(x+)(x ﹣)>0,①a >0时,﹣<,解集为{x|x <﹣或x >}; ②a=0时,x 2>0,解集为{x|x ∈R 且x ≠0};③a <0时,﹣>,解集为{x|x <或x >﹣}.综上,当a >0时,﹣<,解集为{x|x <﹣或x >};当a=0时,x 2>0,解集为{x|x ∈R 且x ≠0};当a <0时,﹣>,解集为{x|x <或x >﹣}.23.【答案】【解析】解:(Ⅰ)设射线y=x (x ≥0)的倾斜角为α,则tan α=,α∈(0,).∴tan θ=tan (α+)==,∴由解得,∴点A的坐标为(,).(Ⅱ)f(x)=•=3sinθ•sin2x+2cosθ•2cos2x=sin2x+cos2x=sin(2x+)由x∈[0,],可得2x+∈[,],∴sin(2x+)∈[﹣,1],∴函数f(x)的值域为[﹣,].【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.24.【答案】(1)()f x在1(,)e-∞-,1(,)e+∞上单调递增,在1(,0)e-,1(0,)e上单调递减;(2)1[,)2+∞. 【解析】试题解析:(1)由条件可得221'(1)1f e ea=-=-,∴1a=,由21()f x e xx=+,可得2222211'()e xf x ex x-=-=,由'()0f x>,可得2210,0,e xx⎧->⎨≠⎩解得1xe>或1xe<-;由'()0f x<,可得2210,0,e xx⎧-<⎨≠⎩解得10xe-<<或10xe<<.所以()f x在1(,)e-∞-,1(,)e+∞上单调递增,在1(,0)e-,1(0,)e上单调递减.(2)令()lng t t t=,当(0,)s∈+∞,(1,]t e∈时,()0f s>,()ln0g t t t=>,由()ln kf s t t ≥,可得ln ()t tk f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立, 即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max()()g t f s ⎡⎤=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值.由(1)可知,()f s 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,故()f s 的最小值为1()2f e e=,由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立,所以()g t 在(1,]e 上的最大值为()ln g e e e e ==, 所以只需122e k e ≥=, 所以实数的取值范围是1[,)2+∞.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).。

宿迁市三中2018-2019学年高二上学期第二次月考试卷数学

宿迁市三中2018-2019学年高二上学期第二次月考试卷数学

宿迁市三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .4 2. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .23. “a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 5. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]6. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .307. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力. 8.+(a ﹣4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠49. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .10.已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±311.已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .12.抛物线y 2=2x 的焦点到直线x ﹣y=0的距离是( )A .B .C .D .二、填空题13.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .14.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 15.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

宿城区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析

宿城区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析

宿城区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内 2. 下列函数中,为偶函数的是( )A .y=x+1B .y=C .y=x 4D .y=x 53. 已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确4. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 5. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.08 6. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2] B .(1,2) C .[2,+∞) D .(2,+∞)7. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 8. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( ) A .(﹣1,0) B .(﹣1,1) C .(0,1) D .(1,3)9. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( ) A .3B.C .±D .以上皆非10.函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞)C .(﹣9,+∞)D .(﹣∞,﹣9)11.设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( ) A .(][],20,10-∞- B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-12.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. B. C. D.二、填空题13.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.14.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= . 15.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .16.△ABC外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .17.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.18.已知奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f(1﹣m)+f(1﹣2m)<0的实数m的取值范围是.三、解答题19.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?20.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(a∈R).时,求f(x)在区间[1,e]上的最大值和最小值;(1)当a=12(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。

宿州市高级中学2018-2019学年高二上学期第二次月考试卷数学

宿州市高级中学2018-2019学年高二上学期第二次月考试卷数学

宿州市高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()A.﹣1 B.2 C.﹣5 D.﹣33.下列命题中的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=﹣1”是“x2+5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1>0”D.命题“在△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题4.在中,、、分别为角、、所对的边,若,则此三角形的形状一定是()A.等腰直角B.等腰或直角C.等腰D.直角5.(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.6.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.7. 函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)8. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)9. 已知集合,则A0或 B0或3C1或D1或310.已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 211.某几何体的三视图如图所示,该几何体的体积是( )A .B .C .D .12.已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .14.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .15.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .16.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.17.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = . 18.已知f (x )=x (e x +a e -x )为偶函数,则a =________.三、解答题19.如图,四边形ABCD 内接于⊙O ,过点A 作⊙O 的切钱EP 交CB 的延长线于P ,己知∠PAB=25°. (1)若BC 是⊙O 的直径,求∠D 的大小;(2)若∠DAE=25°,求证:DA 2=DC •BP .20.已知椭圆C 1: +=1(a >b >0)的离心率为e=,直线l :y=x+2与以原点为圆心,以椭圆C 1的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程;(2)抛物线C 2:y 2=2px (p >0)与椭圆C 1有公共焦点,设C 2与x 轴交于点Q ,不同的两点R ,S 在C 2上(R ,S 与Q 不重合),且满足•=0,求||的取值范围.21.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.22.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点, (Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB ,△MDE 的面积分别为S 1、S 2,若,求直线AB 的方程.23.解关于x的不等式12x2﹣ax>a2(a∈R).24.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.宿州市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.2.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.3.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.4.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B5.【答案】B【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f(a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.6.【答案】B7.【答案】C【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).故选:C.【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.8.【答案】B【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.9. 【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。

宿州市三中2018-2019学年高二上学期第二次月考试卷数学

宿州市三中2018-2019学年高二上学期第二次月考试卷数学

宿州市三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或10 2. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.3. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <4. 等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为( )A .14B .18C .21D .275. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B .C .D .66. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1) C. D.7. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( ) AB .2 CD.【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.8. 函数2(44)x y a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .19. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A.(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D.(﹣,+∞)10.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β11.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 12.设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( ) A .{x|x <﹣2或x >4} B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4}二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .15.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .16.直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐)之间距离的最小值为17.若执行如图3所示的框图,输入,则输出的数等于18.已知函数f(x)=,若f(f(0))=4a,则实数a=.三、解答题19.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.20.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n21.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.22.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.23.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.24.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.宿州市三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D 【解析】试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 00>≤x x ,当0≤x 时,212=x,解得1-=x ,当0>x 时,21lg =x ,解得10=x ,所以输入的是1-或10,故选D.考点:1.分段函数;2.程序框图.11111] 2. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.3. 【答案】B【解析】解:设点F 2(c ,0),由于F 2关于直线PF 1的对称点恰在y 轴上,不妨设M 在正半轴上, 由对称性可得,MF 1=F 1F 2=2c ,则MO==c ,∠MF1F 2=60°,∠PF 1F 2=30°,设直线PF 1:y=(x+c ),代入双曲线方程,可得,(3b 2﹣a 2)x 2﹣2ca 2x ﹣a 2c 2﹣3a 2b 2=0,则方程有两个异号实数根,则有3b 2﹣a 2>0,即有3b 2=3c 2﹣3a 2>a 2,即c >a ,则有e=>.故选:B .4. 【答案】A【解析】解:由等差数列的通项公式可得,a 3+a 4=2a 1+5d=9,a 1+d=3 解方程可得,a 1=2,d=1 ∴a 1a 6=2×7=14 故选:A【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题5. 【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.6.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.7.【答案】C8.【答案】C【解析】考点:指数函数的概念.9.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.10.【答案】D【解析】解:对于A,α∥β,l⊂α,n⊂β,l,n平行或异面,所以错误;对于B,α∥β,l⊂α,l 与β可能相交可能平行,所以错误;对于C,l⊥n,m⊥n,在空间,l与m还可能异面或相交,所以错误.故选D.11.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]12.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.二、填空题13.【答案】【解析】因为,所以,所以,所以答案:14.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.15.【答案】.【解析】解:直线x﹣y=1的斜率为1,(m+3)x+my﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.16.【答案】.【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d==≥,∴点P(a,b)与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.17.【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。

宿城区高中2018-2019学年高二下学期第二次月考试卷数学

宿城区高中2018-2019学年高二下学期第二次月考试卷数学

宿城区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 在下面程序框图中,输入44N =,则输出的S 的值是( )A .251B .253C .255D .260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类. 2. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+13. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力. 4. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________5. 变量x 、y 满足条件,则(x ﹣2)2+y 2的最小值为( )A .B .C .D .56. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .7. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能8. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .9. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.10.集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}11.函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)12.下面是关于复数的四个命题:p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为1. 其中真命题为( ) A .p 2,p 3 B .p 1,p 2C .p 2,p 4D .p 3,p 4二、填空题13.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .14.定积分sintcostdt= .15.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 . 16.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号). 17.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 . 18.经过A (﹣3,1),且平行于y 轴的直线方程为 .三、解答题19.已知函数f (x )=sinx ﹣2sin 2(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值.20.已知椭圆+=1(a >b >0)的离心率为,且a 2=2b .(1)求椭圆的方程;(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.21.已知曲线C 的参数方程为(y 为参数),过点A (2,1)作平行于θ=的直线l 与曲线C 分别交于B ,C 两点(极坐标系的极点、极轴分别与直角坐标系的原点、x 轴的正半轴重合).(Ⅰ)写出曲线C 的普通方程; (Ⅱ)求B 、C 两点间的距离.22.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .23.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.24.设函数f (θ)=,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x ,y ),且0≤θ≤π.(Ⅰ)若点P 的坐标为,求f (θ)的值;(Ⅱ)若点P (x ,y )为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.25.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间;(Ⅱ)若函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,求a 的最小值;(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.26.已知复数z=m (m ﹣1)+(m 2+2m ﹣3)i (m ∈R ) (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围.宿城区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B2. 【答案】A【解析】解:∵x ∈(0,1)时,f (x )=x+1,f (x )是以2为周期的偶函数, ∴x ∈(1,2),(x ﹣2)∈(﹣1,0), f (x )=f (x ﹣2)=f (2﹣x )=2﹣x+1=3﹣x , 故选A .3. 【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .4. 【答案】B【解析】解:∵指数函数的反函数是对数函数, ∴函数y=3x 的反函数为y=f (x )=log 3x , 所以f (9)=log 33=1. 故选:B .【点评】本题给出f (x )是函数y=3x (x ∈R )的反函数,求f (3)的值,着重考查了反函数的定义及其性质,属于基础题.5. 【答案】D【解析】解:作出不等式组对应的平面区域,设z=(x ﹣2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图象知CD 的距离最小,此时z 最小.由得,即C (0,1),此时z=(x ﹣2)2+y 2=4+1=5,故选:D .【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及两点间的距离公式,利用数形结合是解决此类问题的基本方法.6. 【答案】B【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11.又a 3=5,得d=,∴a 1=a 3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B .7. 【答案】A 【解析】试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为{}4,2.考点:复合函数求值. 8. 【答案】B【解析】解:若,则(a+b )(sinB ﹣sinA )﹣sinC (a+c )=0,由正弦定理可得:(a+b )(b ﹣a )﹣c (a+c )=0,化为a 2+c 2﹣b 2=﹣ac ,∴cosB==﹣,∵B ∈(0,π),∴B=,故选:B .【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.9.【答案】A【解析】10.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.11.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B.12.【答案】C【解析】解:p:|z|==,故命题为假;1p2:z2===2i,故命题为真;,∴z的共轭复数为1﹣i,故命题p3为假;∵,∴p4:z的虚部为1,故命题为真.故真命题为p2,p4故选:C.【点评】本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题.二、填空题13.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.14.【答案】 .【解析】解: 0sintcostdt=0sin2td (2t )=(﹣cos2t )|=×(1+1)=.故答案为:15.【答案】3a ≤- 【解析】试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质. 16.【答案】BC 【解析】【分析】验证发现,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合, A .M 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出, B .存在定点P 不在M 中的任一条直线上,观察直线的方程即可得到点的坐标.C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,由直线系的几何意义可判断,D .M 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出. 【解答】解:因为点(0,2)到直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合,A .由于直线系表示圆x 2+(y ﹣2)2=1的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点(0,2)不可能,故A 不正确;B .存在定点P 不在M 中的任一条直线上,观察知点M (0,2)即符合条件,故B 正确;C .由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,故C 正确;D .如下图,M 中的直线所能围成的正三角形有两类,其一是如△ABB ′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等, 故本命题不正确. 故答案为:BC .17.【答案】(0,5).【解析】解:∵y=a x的图象恒过定点(0,1),而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,∴函数f(x)=a x+4的图象恒过定点P(0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.18.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.三、解答题19.【答案】【解析】解:(1)∵f(x)=sinx﹣2sin2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.20.【答案】【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0).联立直线y=x+m与椭圆的方程得,即3x2+2mx+m2﹣2=0,△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,x1+x2=﹣,所以x0==﹣,y0=x0+m=,即M(﹣,).又因为M点在圆x2+y2=5上,可得(﹣)2+()2=5,解得m=±3与m2<3矛盾.故实数m不存在.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.21.【答案】【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.(Ⅱ)依题意,直线l的参数方程为(t为参数),代入抛物线方程得可得,∴,t1t2=14.∴|BC|=|t1﹣t2|===8.【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.22.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,∵a 3=2,S 8=22.∴,解得,∴{a n }的通项公式为a n =1+(n ﹣1)=.(2)∵b n ===﹣,∴T n =2+…+=2=.23.【答案】(1)详见解析;(2)3λ=.【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM ,∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分24.【答案】【解析】解(Ⅰ)由点P的坐标和三角函数的定义可得:于是f(θ)===2(Ⅱ)作出平面区域Ω(即△ABC)如图所示,其中A(1,0),B(1,1),C(0,1).因为P∈Ω,所以0≤θ≤,∴f(θ)==,且,故当,即时,f(θ)取得最大值2;当,即θ=0时,f(θ)取得最小值1.【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.25.【答案】(1)f(x)的单调减区间为(0,2],单调增区间为[2,+∞);(2)函数f(x)在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,12)上无零点,只需要对x ∈(0,12)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增;当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①)又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增; 当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:.④综合①④可知,当a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使f(x i)=g(x0)成立.26.【答案】【解析】解:(1)z为实数⇔m2+2m﹣3=0,解得:m=﹣3或m=1;(2)z为纯虚数⇔,解得:m=0;(3)z所对应的点在第四象限⇔,解得:﹣3<m<0.。

宿豫区三中2018-2019学年高二上学期第二次月考试卷数学

宿豫区三中2018-2019学年高二上学期第二次月考试卷数学

宿豫区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( ) A .{﹣2} B .{2} C .{﹣2,2} D .∅2. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}23. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .钱B .钱C .钱D .钱4. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( )A .B .C .D .5. 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6} 6. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i7. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}8. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .C .D .26cm9. 下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y=|x|(x ∈R ) B .y=(x ≠0) C .y=x (x ∈R ) D .y=﹣x 3(x ∈R ) 10.抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)11.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种12.函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)二、填空题13.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 . 14.设是空间中给定的个不同的点,则使成立的点的个数有_________个.15.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.17.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.18.求函数在区间[]上的最大值.三、解答题19.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.20.(本小题满分12分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.(1)求cos C的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.21.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.22.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.23.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第 5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组 各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组 至少有一名志愿者被抽中的概率.24.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.宿豫区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算3.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.4.【答案】D【解析】解:依题意可知F坐标为(,0)∴B的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣,所以点B到抛物线准线的距离为=,则B到该抛物线焦点的距离为.故选D.5.【答案】B【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B6.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.7.【答案】D【解析】解:∵M∪N=M,∴N⊆M,∴集合N不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础.8.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 9. 【答案】D【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件, y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件, y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件, 故选:D10.【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.11.【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 12.【答案】A【解析】解:∵f (0)=﹣2<0,f (1)=1>0,∴由零点存在性定理可知函数f (x )=3x +x ﹣3的零点所在的区间是(0,1). 故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.二、填空题13.【答案】 (﹣2,0)∪(2,+∞) .【解析】解:设g (x )=,则g (x )的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)>0成立,即当x>0时,g′(x)>0,∴当x>0时,函数g(x)为增函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是减函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).故答案为:(﹣2,0)∪(2,+∞).14.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。

宿迁市高中2018-2019学年高二上学期第二次月考试卷数学测试卷

宿迁市高中2018-2019学年高二上学期第二次月考试卷数学测试卷

宿迁市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)2. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )A .M >N >PB .P <M <NC .N >P >M3. 在正方体1111ABCD A BC D 中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 4. 下列函数在其定义域内既是奇函数又是增函数的是( ) A .B .C .D .5. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)6. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部7. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)8. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A.点A处B.线段AD的中点处C.线段AB的中点处D.点D处9.定义:数列{a n}前n项的乘积T n=a1•a2•…•a n,数列a n=29﹣n,则下面的等式中正确的是()A.T1=T19B.T3=T17C.T5=T12D.T8=T1110.等比数列{a n}满足a1=3,a1+a3+a5=21,则a2a6=()A.6 B.9 C.36 D.7211.已知命题p:∃x∈R,cosx≥a,下列a的取值能使“¬p”是真命题的是()A.﹣1 B.0 C.1 D.212.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.二、填空题13.已知点A的坐标为(﹣1,0),点B是圆心为C的圆(x﹣1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为.14.一质点从正四面体A﹣BCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,…对于N∈n*,第3n次运动回到点A,第3n+1次运动经过的棱与3n﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为.15.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是.16.已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则△MNF 的重心到准线距离为.17.已知线性回归方程=9,则b=.18.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为.三、解答题19.已知函数f (x )=lnx 的反函数为g (x ).(Ⅰ)若直线l :y=k 1x 是函数y=f (﹣x )的图象的切线,直线m :y=k 2x 是函数y=g (x )图象的切线,求证:l ⊥m ;(Ⅱ)设a ,b ∈R ,且a ≠b ,P=g (),Q=,R=,试比较P ,Q ,R 的大小,并说明理由.20.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.22.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.23.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.24.将射线y=x (x ≥0)绕着原点逆时针旋转后所得的射线经过点A=(cos θ,sin θ).(Ⅰ)求点A 的坐标;(Ⅱ)若向量=(sin2x ,2cos θ),=(3sin θ,2cos2x ),求函数f (x )=•,x ∈[0,]的值域.宿迁市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5]. ∴当x=3时,f (x )min =﹣2. 当x=5时,.∴函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是[﹣2,2].故选:C .2. 【答案】A【解析】解:∵0<a <b <c <1, ∴1<2a <2,<5﹣b <1,<()c <1,5﹣b =()b >()c >()c ,即M >N >P ,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.3. 【答案】D 【解析】试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 4. 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性 【试题解析】若函数是奇函数,则故排除A 、D ;对C :在(-和(上单调递增,但在定义域上不单调,故C 错;故答案为:B 5. 【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增, 又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.6.【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部.读结构图的顺序是按照从上到下,从左到右的顺序.故选C.【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.7.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.8.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.9.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C10.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.11.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.12.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。

宿城区三中2018-2019学年高二上学期第二次月考试卷数学

宿城区三中2018-2019学年高二上学期第二次月考试卷数学

宿城区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 2. 已知函数f (x )的定义域为[﹣1,4],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图所示.)A .2B .3C .4D .53. 在极坐标系中,圆的圆心的极坐标系是( )。

ABC D4. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i5. 若x ,y 满足且z=y ﹣x 的最小值为﹣2,则k 的值为( ) A .1B .﹣1C .2D .﹣26. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定7. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( )A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}8. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.9. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-10.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .24011.下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinx C .f (x )=D .f (x )=x 2|x|12.“双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件二、填空题13.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .14.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)15.= .16.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为.17.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.18.设实数x,y满足,向量=(2x﹣y,m),=(﹣1,1).若∥,则实数m的最大值为.三、解答题19.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.20.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.21.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1; (II )求证:EF ∥平面B 1BCC 1; (III )求四棱锥B ﹣A 1ACC 1的体积.22.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.23.已知椭圆+=1(a >b >0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.24.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积4V =,求A 到平面PBC 的距离.111]宿城区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.2. 【答案】C【解析】解:根据导函数图象,可得2为函数的极小值点,函数y=f (x )的图象如图所示:因为f (0)=f (3)=2,1<a <2,所以函数y=f (x )﹣a 的零点的个数为4个. 故选:C .【点评】本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.3. 【答案】B 【解析】,圆心直角坐标为(0,-1),极坐标为,选B 。

宿城区实验中学2018-2019学年高二上学期第二次月考试卷数学卷

宿城区实验中学2018-2019学年高二上学期第二次月考试卷数学卷

宿城区实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .11a b< C .22a b > D .33a b >2. 若椭圆+=1的离心率e=,则m 的值为( )A .1B .或C .D .3或3. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .24. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( )A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可.5. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)6. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A .B .C .D .07. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个8. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.9. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 10.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.11.在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形12.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学

宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学

宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1C .x 2﹣=1D .﹣=13. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .44. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .5. 若A (3,﹣6),B (﹣5,2),C (6,y )三点共线,则y=( )A .13B .﹣13C .9D .﹣96. 下列语句所表示的事件不具有相关关系的是( )A .瑞雪兆丰年B .名师出高徒C .吸烟有害健康D .喜鹊叫喜7. 在三棱柱中,已知平面,此三棱111ABC A B C -1AA ⊥1=22ABC AA BC BAC π=∠=,, 柱各个顶点都在一个球面上,则球的体积为( )A .B .C.D .323π16π253π312π8. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥1B .a ≤1C .a ≥﹣1D .a ≤﹣39. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3B4C5D610.设复数z满足z(1+i)=2(i为虚数单位),则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i11.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A.B.C.D.π12.已知正方体的不在同一表面的两个顶点A(﹣1,2,﹣1),B(3,﹣2,3),则正方体的棱长等于()A.4B.2C.D.2二、填空题13.若直线x﹣y=1与直线(m+3)x+my﹣8=0平行,则m= .14.设等差数列{a n}的前n项和为S n,若﹣1<a3<1,0<a6<3,则S9的取值范围是 .15.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是 .16.已知函数f(x)=,则关于函数F(x)=f(f(x))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.17.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)= .18.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为 .三、解答题19.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.20.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.21.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.22.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.23.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.24.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题. 2.【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x,则有a2+b2=c2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.3.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.4.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.5.【答案】D【解析】解:由题意,=(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D.【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.6.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.7.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.8.【答案】A【解析】解:由|x+1|≤2得﹣3≤x≤1,即p:﹣3≤x≤1,若p是q的充分不必要条件,则a≥1,故选:A.【点评】本题主要考查充分条件和必要条件的判断,比较基础.9.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 10.【答案】A【解析】解:∵z(1+i)=2,∴z===1﹣i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.11.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.12.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.二、填空题13.【答案】 .【解析】解:直线x﹣y=1的斜率为1,(m+3)x+my﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.14.【答案】 (﹣3,21) .【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.15.【答案】 .【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,∵mn﹣m﹣n=3,∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),∴(m﹣1)+(n﹣1)≥2,∴m+n≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.16.【答案】 ②④ 【解析】解:①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,此时有无穷多个零点,故①错误;②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;(Ⅱ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.综上可得,当k<0时,函数有两零点,故②正确;③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,令f(f(x))=0,可得:,满足;(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;(Ⅲ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅳ)当x>1时,,此时f(f(x))=f()=k+1,令f(f(x))=0得:x=>1,满足;综上可得:当k>0时,函数有4个零点.故③错误,④正确.故答案为:②④.【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.17.【答案】 0.6 .【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.18.【答案】 300 .【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.三、解答题19.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.20.【答案】【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.21.【答案】【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.那么:A∩B={x|6≥x≥3}.∴C R(A∩B)={x|x<3或x>6}.(2)C={x|x≤a},∵A C,∴a≥6∴故得实数a的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.22.【答案】【解析】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.23.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题. 24.【答案】【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,∴,解得a2=4,b2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.。

宿迁市高级中学2018-2019学年高二上学期第二次月考试卷数学

宿迁市高级中学2018-2019学年高二上学期第二次月考试卷数学

宿迁市高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=e ln|x|+的大致图象为( )A .B .C .D .2. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±= 3. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( )A .89B .76C .77D .354. (2011辽宁)设sin (+θ)=,则sin2θ=( )A .﹣B .﹣C .D .5. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<6. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )A .y=x+2B .y=C .y=3xD .y=3x 37. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11C .10D .98. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .9. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .10.已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.11.已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .2 12.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞二、填空题13.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.14.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 15.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .16.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件: ①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .17.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .18.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.三、解答题19.若函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大,求a 的值.20.若点(p ,q ),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M (x ,y )横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M (x ,y )落在上述区域的概率?(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.21.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.(1)求顶点C的坐标;(2)求△ABC的面积.22.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)23.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.24.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).宿迁市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.2.【答案】A【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|=x0+p2,得5=x0+2.∴x0=3,则y20=24,所以M3,26,又点M在双曲线上,∴32a2-24=1,则a 2=925,a=35,因此渐近线方程为5x±3y=0.3.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.4.【答案】A【解析】解:由sin (+θ)=sin cos θ+cos sin θ=(sin θ+cos θ)=,两边平方得:1+2sin θcos θ=,即2sin θcos θ=﹣,则sin2θ=2sin θcos θ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.5. 【答案】D【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,(11)(3)(14)(1)(1)f f f f f ==-+=--=,又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D. 6. 【答案】 C【解析】解:模拟程序框图的运行过程,得; 该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C .【点评】本题考查了程序框图的应用问题,是基础题目.7. 【答案】B【解析】解:∵f (x )=f (x+2),∴函数f (x )为周期为2的周期函数, 函数g (x )=,其图象关于点(2,3)对称,如图,函数f (x )的图象也关于点(2,3)对称,函数f (x )与g (x )在[﹣3,7]上的交点也关于(2,3)对称, 设A ,B ,C ,D 的横坐标分别为a ,b ,c ,d , 则a+d=4,b+c=4,由图象知另一交点横坐标为3, 故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11, 即函数y=f (x )﹣g (x )在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.8.【答案】B【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),∴a n+1=3a n>0,∴数列{a n}是等比数列,公比q=3.又a2+a4+a6=9,∴=a5+a7+a9=33×9=35,则log(a5+a7+a9)==﹣5.故选;B.9.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.10.【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.11.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),∴AB 是正方体的体对角线,AB=,设正方体的棱长为x ,则,解得x=4.∴正方体的棱长为4,故选:A .【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.12.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。

宿豫区高中2018-2019学年高二上学期第二次月考试卷数学测试卷

宿豫区高中2018-2019学年高二上学期第二次月考试卷数学测试卷

宿豫区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=2. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非4. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .185. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.6. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.7. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44958. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( ) A .1 B. C. D .29. 抛物线y=﹣8x 2的准线方程是( ) A .y=B .y=2C .x=D .y=﹣210.已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a11.过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .412.下面是关于复数的四个命题:p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为1. 其中真命题为( ) A .p 2,p 3 B .p 1,p 2C .p 2,p 4D .p 3,p 4二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx ex x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)15.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .16.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .18.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .三、解答题19.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R . (1)当a=1时,解方程f (x )﹣1=0;(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围; (3)若函数f (x )有零点,求实数a 的取值范围.20.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)21.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.22.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.23.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.24.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.宿豫区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R . B .实数是复数,实数能比较大小.C .∵=,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确. 故选:C .2. 【答案】A【解析】解:==1+i ,其对应的点为(1,1),故选:A .3. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C4. 【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.法二:a =6 102,b =2 016,r =54, a =2 016,b =54,r =18, a =54,b =18,r =0. ∴输出a =18,故选D. 5. 【答案】B【解析】由||||a b a b +=-知,a b ⊥,∴(2)110a b t t ⋅=++⨯=,解得1t =-,故选B. 6. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,7. 【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.8.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.9.【答案】A【解析】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.10.【答案】B【解析】解:1<log23<2,0<8﹣0.4=2﹣1.2,sinπ=sinπ,∴a>c>b,故选:B.【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.11.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A12.【答案】C【解析】解:p:|z|==,故命题为假;1p2:z2===2i,故命题为真;,∴z的共轭复数为1﹣i,故命题p3为假;∵,∴p4:z的虚部为1,故命题为真.故真命题为p2,p4故选:C.【点评】本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题.二、填空题13.【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点,当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点.故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,).点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 14.【答案】 (4)【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,(2)命题“若x 2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.16.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.117.【答案】 4 .【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,∴sin 2B=sinAsinC ,由正弦定理可得:b 2=ac ,∵c=2a ,可得:b=a ,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC =acsinB==4.故答案为:4.18.【答案】 y=cosx .【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;故答案为:y=cosx .三、解答题19.【答案】【解析】解:(1)a=1时,f (x )=4x ﹣22x +2, f (x )﹣1=(2x )2﹣2•(2x )+1=(2x ﹣1)2=0,∴2x=1,解得:x=0;(2)4x﹣a•(2x+1﹣1)+1>0在(0,1)恒成立,a•(2•2x﹣1)<4x+1,∵2x+1>1,∴a>,令2x=t∈(1,2),g(t)=,则g′(t)===0,t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,而g(1)=2,g(2)=,∴a≥2;(3)若函数f(x)有零点,则a=有交点,由(2)令g(t)=0,解得:t=,故a≥.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.20.【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人.(Ⅱ)设“至少有1人体育成绩在”为事件,记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,.而事件的结果有7种,它们是:,,,,,,,因此事件的概率.(Ⅲ)a,b,c的值分别是为,,.21.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得,解得,故所求的m的取值范围是(,2).…(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得﹣1<m<1.…综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.22.【答案】【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,∴(x﹣1)(x﹣)>0,若>1,即0<m <1时,x ∈(﹣∞,1)∪(,+∞); 若=1,即m=1时,x ∈(﹣∞,1)∪(1,+∞); 若<1,即m >1时,x ∈(﹣∞,)∪(1,+∞).(2)若函数f (x )在(4,+∞)上单调递增,则函数g (x )=m+在(4,+∞)上单调递增且恒正.所以, 解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.23.【答案】【解析】(1)连接FH ,由题意,知CD BC ⊥,CD CF ⊥,∴CD ⊥平面BCFG . 又∵GH ⊂平面BCFG ,∴CD ⊥GH . 又∵EFCD ,∴EF GH ⊥……………………………2分由题意,得14BH a =,34CH a =,12BG a =,∴2222516GH BG BH a =+=, 22225()4FG CF BG BC a =-+=,22222516FH CF CH a =+=,则222FH FG GH =+,∴GH FG ⊥.……………………………4分又∵EFFG F =,GH ⊥平面EFG .……………………………5分∵GH ⊂平面AGH ,∴平面AGH ⊥平面EFG .……………………………6分24.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.。

宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学

宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学

宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=13. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .44. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .5. 若A (3,﹣6),B (﹣5,2),C (6,y )三点共线,则y=( )A .13B .﹣13C .9D .﹣96. 下列语句所表示的事件不具有相关关系的是( )A .瑞雪兆丰年B .名师出高徒C .吸烟有害健康D .喜鹊叫喜7. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π8. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1D .a ≤﹣39. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3B4C5D610.设复数z满足z(1+i)=2(i为虚数单位),则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i11.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A.B.C. D.π12.已知正方体的不在同一表面的两个顶点A(﹣1,2,﹣1),B(3,﹣2,3),则正方体的棱长等于()A.4 B.2 C.D.2二、填空题13.若直线x﹣y=1与直线(m+3)x+my﹣8=0平行,则m=.14.设等差数列{a n}的前n项和为S n,若﹣1<a3<1,0<a6<3,则S9的取值范围是.15.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是.16.已知函数f(x)=,则关于函数F(x)=f(f(x))的零点个数,正确的结论是.(写出你认为正确的所有结论的序号)①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.17.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)=.18.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为.三、解答题19.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.20.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.21.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.22.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.23.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.24.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.宿城区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.2.【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x,则有a2+b2=c2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.3.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.4.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.5.【答案】D【解析】解:由题意,=(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D.【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.6.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.7.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.8.【答案】A【解析】解:由|x+1|≤2得﹣3≤x≤1,即p:﹣3≤x≤1,若p是q的充分不必要条件,则a≥1,故选:A.【点评】本题主要考查充分条件和必要条件的判断,比较基础.9.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 10.【答案】A【解析】解:∵z(1+i)=2,∴z===1﹣i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.11.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.12.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.二、填空题13.【答案】.【解析】解:直线x﹣y=1的斜率为1,(m+3)x+my﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.14.【答案】(﹣3,21).【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.15.【答案】.【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,∵mn﹣m﹣n=3,∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),∴(m﹣1)+(n﹣1)≥2,∴m+n≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.16.【答案】②④【解析】解:①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,此时有无穷多个零点,故①错误;②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;(Ⅱ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.综上可得,当k<0时,函数有两零点,故②正确;③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,令f(f(x))=0,可得:,满足;(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;(Ⅲ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅳ)当x>1时,,此时f(f(x))=f()=k+1,令f(f(x))=0得:x=>1,满足;综上可得:当k>0时,函数有4个零点.故③错误,④正确.故答案为:②④.【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.17.【答案】0.6.【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.18.【答案】300.【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.三、解答题19.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.20.【答案】【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.21.【答案】【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.那么:A∩B={x|6≥x≥3}.∴C R(A∩B)={x|x<3或x>6}.(2)C={x|x≤a},∵A C,∴a≥6∴故得实数a的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.22.【答案】【解析】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n ==,∴T n =1+3•+5•+7•+9•+…+(2n ﹣1)•,∴T n =1•+3•+5•+7•+…+(2n ﹣3)•+(2n ﹣1)•,∴T n =2+++++…+﹣(2n ﹣1)•=3﹣,∴T n =6﹣.23.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2 ∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. ∴当a ≤0时,不合题意;当a >0时,,∴a=2;(Ⅱ)记,∴h (x )=∴|h (x )|≤1∵恒成立,∴k ≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.24.【答案】【解析】解:(Ⅰ)∵椭圆C :+=1(a >b >0)的短轴长为2,且离心率e=,∴,解得a 2=4,b 2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.。

宿城区民族中学2018-2019学年高二上学期二次月考试数学

宿城区民族中学2018-2019学年高二上学期二次月考试数学

宿城区民族中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是()A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)2.如果(m∈R,i表示虚数单位),那么m=()A.1 B.﹣1 C.2 D.03.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数,y=b xC.f(x)是偶函数D.f(x)是偶函数,4.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.5.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)6. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?7. 椭圆=1的离心率为( ) A .B .C .D .8. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.9. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定10.某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )A .5B .7C .9D .1111.已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A.①④B.②③C.③④D.②④12.下列计算正确的是()A、2133x x x÷=B、4554()x x=C、4554x x x=D、44550x x-=二、填空题13.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围.14x和所支出的维修费用y(万元)的统计资料如表:根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元.15.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为.16.设函数则______;若,,则的大小关系是______.17.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为.18.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.三、解答题19.已知不等式的解集为或(1)求,的值(2)解不等式.20.已知椭圆Γ:(a >b >0)过点A (0,2),离心率为,过点A 的直线l 与椭圆交于另一点M .(I )求椭圆Γ的方程;(II )是否存在直线l ,使得以AM 为直径的圆C ,经过椭圆Γ的右焦点F 且与直线 x ﹣2y ﹣2=0相切?若存在,求出直线l 的方程;若不存在,请说明理由.21.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21xf x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤22.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利总额y 元. (1)写出y 与x 之间的函数关系式; (2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.23.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++宿城区民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.2.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.3.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.4.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.5.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.6.【答案】C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的①可以是i>6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.7.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.8. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .9. 【答案】C【解析】解:设过右焦点F 的弦为AB ,右准线为l ,A 、B 在l 上的射影分别为C 、D连接AC 、BD ,设AB 的中点为M ,作MN ⊥l 于N根据圆锥曲线的统一定义,可得==e ,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB 为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|) ∴圆M 到l 的距离|MN|>r ,可得直线l 与以AB 为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F ,求以经过F 的弦AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.10.【答案】C【解析】解:若果树前n 年的总产量S 与n 在图中对应P (S ,n )点 则前n 年的年平均产量即为直线OP 的斜率 由图易得当n=9时,直线OP 的斜率最大 即前9年的年平均产量最高,故选C11.【答案】D【解析】解:∵命题p;对任意x∈R,2x2﹣2x+1≤0是假命题,命题q:存在x∈R,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D.12.【答案】B【解析】试题分析:根据()a aβααβ⋅=可知,B正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宿城区第三高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .2. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形3. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)4. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q5. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.56. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列7. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( ) A .(﹣∞,﹣2) B . D .上是减函数,那么b+c ( )A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣8. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 9. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部10.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A .B .C .D .11.若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)12.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣1二、填空题13.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .14.已知函数)(x f 的定义域R ,直线1=x 和2=x 是曲线)(x f y =的对称轴,且1)0(=f ,则=+)10()4(f f .15.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 .16.已知实数a >b ,当a 、b 满足 条件时,不等式<成立.17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .18.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .三、解答题19.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)20.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.21.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.22.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.23.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.24.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。

宿城区第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.2.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.3.【答案】C【解析】解:f(x)=e x+x﹣4,f(﹣1)=e﹣1﹣1﹣4<0,f(0)=e0+0﹣4<0,f(1)=e1+1﹣4<0,f(2)=e2+2﹣4>0,f(3)=e3+3﹣4>0,∵f(1)•f(2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C.4.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.5.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log0.56<log0.51=0.∴log0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.6.【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用7.【答案】B【解析】解:由f(x)在上是减函数,知f′(x)=3x2+2bx+c≤0,x∈,则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.8.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.9.【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部.读结构图的顺序是按照从上到下,从左到右的顺序.故选C.【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.10.【答案】C【解析】解:如图所示,△BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是.故选C.【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.11.【答案】A【解析】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∴(x﹣2)•f(x)<0的解集是(﹣3,0)∪(2,3)故选:A.12.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.二、填空题13.【答案】9+4.【解析】解:∵函数f(x)=x2+x﹣b+只有一个零点,∴△=a﹣4(﹣b+)=0,∴a+4b=1,∵a,b为正实数,∴+=(+)(a+4b )=9++≥9+2=9+4当且仅当=,即a=b 时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.14.【答案】2【解析】直线1=x 和2=x 是曲线)(x f y =的对称轴, ∴(2)()f x f x -=,(4)()f x f x -=,∴(2)(4)f x f x -=-,∴)(x f y =的周期2T =. ∴(4)(10)(0)(0)2f f f f +=+=.15.【答案】.【解析】解:如图:设∠AOB=2,AB=2,过点0作OC ⊥AB ,C 为垂足,并延长OC 交于D ,则∠AOD=∠BOD=1,AC=AB=1.Rt △AOC 中,r=AO==,从而弧长为 αr=2×=,故答案为.【点评】本题考查弧长公式的应用,解直角三角形求出扇形的半径AO 的值,是解决问题的关键,属于基础题.16.【答案】 ab >0【解析】解,当ab>0时,∵a>b,∴>,即>,当ab<0时,∵a>b,∴<,即<,综上所述,当a、b满足ab>0时,不等式<成立.故答案为:ab>0,.【点评】本题考查二类不等式饿性质,属于基础题.17.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.18.【答案】 4 .【解析】解:由题意,设P (4cos θ,2sin θ)则P 到直线的距离为d==,当sin (θ﹣)=1时,d 取得最大值为4,故答案为:4.三、解答题19.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫ ⎪⎝⎭. (2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤. 综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =时,min 59180y =设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<,所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个 20.【答案】【解析】解:(Ⅰ)元件A 为正品的概率约为.元件B 为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A 和1件元件B 可以分为以下四种情况:两件正品,A 次B 正,A 正B 次,A次B 次.∴随机变量X 的所有取值为90,45,30,﹣15.∵P (X=90)==;P (X=45)==;P (X=30)==;P (X=﹣15)==.∴随机变量X 的分布列为:EX=.(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5﹣n 件.依题意得 50n ﹣10(5﹣n )≥140,解得.所以 n=4或n=5. 设“生产5件元件B 所获得的利润不少于140元”为事件A ,则P (A )==.21.【答案】【解析】解:(1)设a 1=a ,由题意可得,解得,或,当时,a n =2n ﹣1,b n =2n ﹣1;当时,a n =(2n+79),b n =9•;(2)当d >1时,由(1)知a n =2n ﹣1,b n =2n ﹣1,∴c n ==,∴T n =1+3•+5•+7•+9•+…+(2n ﹣1)•,∴T n =1•+3•+5•+7•+…+(2n ﹣3)•+(2n ﹣1)•,∴T n =2+++++…+﹣(2n ﹣1)•=3﹣,∴T n =6﹣.22.【答案】【解析】解:(Ⅰ)∵全集U=R ,B={x|x <4},∴∁U B={x|x ≥4},又∵A={x|x 2﹣4x ﹣5≤0}={x|﹣1≤x ≤5},∴A ∩(∁U B )={x|4≤x ≤5}; (Ⅱ)∵A={x|﹣1≤x ≤5},C={x|x ≥a},且A ⊆C ,∴a 的范围为a ≤﹣1. 【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.23.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2 ∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. ∴当a ≤0时,不合题意;当a >0时,,∴a=2;(Ⅱ)记,∴h (x )=∴|h (x )|≤1∵恒成立,∴k ≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.24.【答案】【解析】解:∵S n=2-a n,即a n+S n=2,∴a n+1+S n+1=2.两式相减:a n+1-a n+S n+1-S n=0.即a n+1-a n+a n+1=0,故有2a n+1=a n,∵a n≠0,,∵b n+1=b n+a n(n=1,2,3,…),得b2-b1=1,,,,.将这n-1个等式相加,得又∵b1=1,.(2)证明:.而①-②得=8-(n=1,2,3,…).∴T n<8.(3)由(1)知由数列是递增数列,∴对恒成立,即恒成立,即恒成立,当为奇数时,即恒成立,∴,当为偶数时,即恒成立,∴,综上实数的取值范围为。

相关文档
最新文档