货郎担问题的几何解法
货郎担问题讲稿
贪心算法 送报线路安排 一个送报员从送报中心出发到五个小区 送报,最后要回到送报中心。 送报,最后要回到送报中心。送报中心到各 小区的距离及各小区间的距离均已知( 小区的距离及各小区间的距离均已知(见表 问送报员应按怎样的线路行驶较好? 1),问送报员应按怎样的线路行驶较好? ),问送报员应按怎样的线路行驶较好 距离单位为千米) (距离单位为千米)
阶段指标函数d : 设从城市1出发,第k-1阶段到达到城市j,
ji
则城市j与下一阶段(第k阶段)的目的地城市i之间的距离为d ji 最优指标函数 fk (S, i) :从城市1出发,经过S中k个城市,到 达城市i的最短距离.
则动态规划的顺序递推关系为:
m { fk1(S \ j, j) + d ji} in fk (S, i) = j∈S f0 (φ, i) = d1i , i = 2,3,, n, k =1,2,, n 1.
f1(S,2) = m f0 (φ,3) + d32, f0 (φ,4) + d42} in{
= m 7 + 8,9 + 5} =14, in{
* x2 ({4},2) = 4
即从城市1出发,途经1个城市去城2,应先到4,再到2。
城 城 市 1 2 3 4 0 8 5 6 6 0 8 5 7 9 0 5 9 7 8 0 市 1 2 3 4
当k=3时,从城市1出发,途经3个城市到达城市1的最短距离
f3({2,3,4},1) = m f2 ({2,3},4) + d41, f2 ({2,4},3) + d31, f2 ({3,4},2) + d21} in{ = m 22 + 6,18 + 5,20 + 8} = 23 in{
货郎问题
int main()
{
int i, j, k;
while(scanf("%d", &n) && n)
{
for(i = 1; i <= n; i++)
scanf("%d", d + i);
for(i = 0; i <= n; i++)
for(ห้องสมุดไป่ตู้ = 0; j <= n; j++)
{
ans = Min(ans, dp[n][i] + abs(d[i] - d[n]));
}
printf("%d\n", ans);
}
}
#include <stdio.h>
#include <stdlib.h>
const int inf = 1000000000;
int n;
int d[128];
int dp[128][128];
int Min(int a, int b)
{
return a < b ? a : b;
dp[i][j] = inf;
dp[0][0] = dp[1][0] = 0;
for(i = 2; i <= n; i++)
{
for(j = i - 1; j >= 0; j--)
dp[i][i - 1] = Min(dp[i][i - 1], dp[i - 1][j] + (j == 0 ? 0 : abs(d[j] - d[i])));
货郎担问题
《计算复杂性分析》实验报告
实验序号:6实验项目名称:货郎担问题
学 号
13
姓 名
魏倩
专业、班级
2011级信息与计算科学
实验地点
214年6月11日
一、实验目的及要求
1.理解掌握动态规划的基本思想
2.了解货郎担问题
3.用动态规划实现货郎担问题
4.分析动态规划的时间复杂性
六、教师评语
签名:
日期: 年 月 日
成绩
d=min(k(4,2)+h(2,3),k(4,3)+h(3,2));
v=min(a+k(1,2),b+k(1,3));
l=min(v,d+k(1,4));
四、实验结果与数据分析
输入城市数目:4
n =
4
输入城市间的距离:[0 6 7 9;8 0 9 7;5 8 0 8;6 5 5 0]
k =
0 6 7 9
8 0 9 7
5 8 0 8
6 5 5 0
>> a
a =
17
>> b
b =
21
>> d
d =
19
>> v
v =
23
>>
五、分析与讨论
动态规划的实质是分治思想和解决冗余,动态规划是一种将问题实例分解为更小的,相似的字问题。其所针对的问题有一个显著的特征,即它所对应的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。动态规划在最好的情况下的时间复杂性是O(n^2),最坏的情况下是O(n^2)。此次试验不足的地方是该程序只能解决4个城市之间的问题,有待改进。
货郎担问题 其他应用
用微分法可求得上式当x1=s1/3=3时,有最大值:f1(s1)= 3 3 3 3 因此,原问题的最优解为: x1= x2= x3= 3,最优值为:
例9 求解四个城市的推销员问题,其距离矩阵如下表所示:
i
j 1 2 3 4
1
2
3
4
0 8 5 6 6 0 8 5 7 9 0 5 9 7 8 0
解:k=0 f0(2,φ)=8, f0(3,φ)=5, f0(4,φ)=6 k=1 f1(2,{3})= f0(3,φ)+d32=5+9=14; f1(2,{4})= f0(4,φ)+d42=6+7=13 f1(3,{2})= f0(2,φ)+d23=8+8=16; f1(3,{4})= f0(4,φ)+d43=6+8=14 f1(4,{2})= f0(2,φ)+d24=8+5=13; f1(4,{3})= f0(3,φ)+d34=5+5=10
k=2 f2(2,{3,4})=min{ f1(4,{3})+ d42, f1(3,{4})+d32} =min{10+7,14+9}=17 p2(2,{3,4})=4 f2(3,{2,4})=min{ f1(4,{2})+ d43, f1(2,{4})+d23} =min{13+8,13+8}=21 p2(3,{2,4})=2或4 f2(4,{2,3})=min{ f1(2,{3})+ d24, f1(3,{2})+d34} =min{14+5,16+5}=19 p2(4,{2,3})=2 k=3 f 3(1,{2,3,4}) =min{f2(2,{3,4})+d21, f2(3,{2,4})+d31, f2(4,{2,3}+d41) =min{17+6,21+7,19+9}=23 员最短路线为 1→3→4→2→1 ,最短距离为23。 实际中很多问题都可以归结为货郎担问题,如物资运输中汽车 应走怎样的路线使路程最短;工厂中机床应如何布置,可使零件所 经过的路线最短等等。
算法分支限界法货郎担问题解法
标题:算法分支限界法在货郎担问题中的应用摘要:分支限界法是一种高效的解决组合优化问题的算法,本文将详细介绍分支限界法在货郎担问题中的应用,包括问题的描述、算法原理、实现步骤以及案例分析等内容。
一、问题描述货郎担问题,又称为旅行商问题(TSP),是一个经典的组合优化问题。
问题的描述为:有n个城市,货郎担需要从一个城市出发,经过所有的城市且只经过一次,最后回到出发的城市,要求找到一条最短的路径。
这是一个NP-hard问题,传统的穷举法在城市数量较大时难以找到最优解。
二、算法原理分支限界法是一种以深度优先搜索为基础的优化算法。
其核心思想是根据当前问题状态的下界(或上界)对搜索空间进行剪枝,从而减少搜索空间,提高搜索效率。
在货郎担问题中,分支限界法通过动态规划的方式记录已经访问过的城市,从而避免重复计算,同时利用启发式信息(如最近邻居、最小生成树等)进行路径选择,不断更新路径的下界,直至找到最优解或者搜索空间被完全剪枝。
三、实现步骤1. 初始化:设置初始的城市路径、已访问城市集合、路径长度、下界等参数。
2. 搜索:利用深度优先搜索,根据当前路径确定下一个访问的城市,并更新路径长度和下界。
3. 剪枝:根据当前路径长度与下界的关系,对搜索空间进行剪枝。
4. 回溯:如果搜索路径无法继续扩展,进行回溯,更新路径状态。
5. 结束条件:当所有城市都被访问过一次后,得到一条完整的路径,更新最优解。
四、案例分析假设有5个城市,它们的坐标为:A(0, 0)、B(1, 2)、C(3, 1)、D(5, 3)、E(4, 0)利用分支限界法求解货郎担问题,我们按照以下步骤进行计算:(1)初始化:选择一个城市作为出发点,并初始化已访问城市集合、路径长度和下界。
(2)搜索:根据当前路径选择下一个访问的城市,并更新路径长度和下界。
(3)剪枝:根据当前路径长度与下界的关系,进行搜索空间的剪枝。
(4)回溯:如果搜索路径无法继续扩展,进行回溯,更新路径状态。
六年级下册数学思维训练讲义-第十七讲 对策问题 人教版(含答案)
第十七讲对策问题第一部分:趣味数学怎样过河?一个农夫带着一条狗、一只鸡和一袋米去赶集。
路上遇到一条河,农夫要把这3样东西都运过去。
然而,只有一条船,而且船很小,每次只能运过去一样东西。
可是,如果农夫不在场,狗要吃鸡,鸡要去啄米。
现在,请你想一想,农夫怎样才能把这3样东西都运过河去,而且不受到任何损失呢?关键是狗不会吃米。
因此农夫应该这样做:第一步,带着鸡过河。
第二步,把鸡放在对岸,自己独自驾驶小船回到原处第三步,带着狗过河,到了对岸把狗放下,把鸡带上船,驶回原处。
第四步,把鸡留在原处,带着大米过河,放在对岸,然后独自划船回来。
最后,带着鸡过河。
第二部分:习题精讲专题简析:同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。
生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。
哪一方的策略更胜一筹,哪一方就会取得最终的胜利。
解决这类问题一般采用逆推法和归纳法。
例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。
挨到谁移走最后一根火柴就算谁输。
如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。
先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。
设先移的人为甲,后移的人为乙。
甲要取胜只要取走第999根火柴。
因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。
依次类推,甲取的与乙取的之和为8根火柴)。
由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。
所以,先移火柴的人要保证获胜,第一次应移走7根火柴。
练习1:1.一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。
货郎担问题
以一个例题来加以说明
设有5个工件需要在机床A,B上加工,加工的顺序是先A后 B,每个工件所需加工时间(单位:小时) 如下表. 问如何安 排加工顺序可使机床连续加工完所有的加工总时间最少?
机床 加工时间 工件号码
A 3 7 4 5
B 6 2 7 3
1 2 3 4
5
7
4
(2) 在工时矩阵M中找到最小的元素(若最 小的不止一个,可任选其一);若它在上行, 则将相应的工件排在最前面的位置;若它在 下行,则将相应的工件排在最后面的位置.
最小生成树的普里姆算法
最短路径问题
Dijkstra提出了一个按路径长度递增的顺序逐步 产生最短路径的方法,称为Dijkstra算法。
这是因为:1,各城市之间可能是复线2,两地之间可能会 使用不同的交通工具从而费用不同。
实际中很多问题都可以归结为货郎担这类问题. 如: 1,物资运输路线中,汽车应该走怎样的路线使路程 最短; 2,工厂里在钢板上要挖一些小圆孔,自动焊接机的 割咀应走怎样的路线使路程最短; 3,城市里有一些地方铺设管道时,管子应走怎样 的路线才能使管子耗费最少,等等 比如说,前面曾经遇到的排序问题,以前我们 是用0-1整数规划来解决这类问题的。 在这里,我们同样可以使用动态规划的方法。 而且相对简单了很多。
决策变量Pk(i,S)表示:从v1经k个中间城镇 的S集合到vi城镇的最短路线上邻接vi的前一个城 镇,则动态规划的顺序递推关系为:
fk(i,S)= j属于S
min{ fk-1(j,S、{ j }+dji}
f0(i,空集)=d1i (k=1,2,…,n-1, i=2,3,…n)
例1: 已知4个城市间距离如下表,求从v1出 发,经其余城市一次且仅一次最后返回v1的 最短路径和距离。
运筹答辩货郎担问题
求解结果与分析
原问题最短行走路线为 1→2→4→5→6→3→11→9→10→8→7→1,总 路径长度为:13986公里
算法②分支定界法
总结起来基本思想是:
Step1 将边权由小至大排序,初始界d0→∞。
Step2 在边权序列中依次选取n条边,判断是否构成H
圈,若是,d0←d(S),结束。
旅游路线设计ຫໍສະໝຸດ 小组成员选题-------
远离繁荣都市的喧嚣,品味自然的乐趣和历史的沉淀
北京 烟台 大连 连云港 苏州 西安 三亚 海口 珠海 湛江 桂林
北京 烟台 大连 连云 苏州 西安 三亚 海口 珠海 湛江 桂林 港
0 730 938 1004 1379 1159 3396 3065 2313 2655 2126 0 1805 592 1408 1703 3731 3368 2204 2504 2415 0 1795 2170 2228 4485 4122 3180 3798 3174 0 755 1050 2528 2938 1782 2653 1810 0 1425 3017 2672 1576 2221 1675 0 3267 2603 1825 2186 1957 0 308 845 614 1415 0 576 330 930 0 406 642 0 629 0
即最短路径为北京→烟台→连云港→苏州→西安→大连→桂 林→珠海→湛江→海口→三亚→北京
总结
本报告中,所旅游的城市数目较多,用传统动 态规划方法求解且手工计算的话,工作量相当 大。为此,我们通过软件编程来简化工作量。 此外,我们还进一步通过化货郎担问题为指派 问题的方法进行求解,加深了我们对该问题的 了解。
总结
考虑到实际问题的复杂性,该模型有待改进。 我们小组认为,在选定交通工具后,两城市之 间的旅行时间就大致确定了,这样花费也会相 应确定,或许,根据时间参数建立模型,计算 最佳旅游路线更符合实际,也更实用。
货郎担问题
实际中很多问题都可以归结为货郎担这类问题.
如: 1,物资运输路线中,汽车应该走怎样的路线使路 程最短;
2,工厂里在钢板上要挖一些小圆孔,自动焊接机 的割咀应走怎样的路线使路程最短;
3,城市里有一些地方铺设管道时,管子应走怎样 的路线才能使管子耗费最少,等等
比如说,前面曾经遇到
的排序问题,以前我们是 用0-1整数规划来解决这类 问题的。
货郎担问题当城市数目增加时,用动态规划方 法求解,无论是计算量还是存储量都会大大增加, 所以本方法只适用于n较小的情况.
在很多货郎担问题中,经常会看到dij不等于dji的情 况。
Vj
距离
1
2
3
4
Vi
1
0
6
7
9
2
8
0
9
7
3
5
8
0
8
4
6
5
5
0
• 这是因为:1,各城市之间可能是复线2,两地之 间可能会使用不同的交通工具从而费用不同。
以一个例题来加以说明
设有5个工件需要在机床A,B上加工,加工的顺序是先A后 B,每个工件所需加工时间(单位:小时) 如下表. 问如何安 排加工顺序可使机床连续加工完所有的加工总时间最少?
机床 加工时间 工件号码
1 2 3 4 5
A
B
3
6
7
2
4
7
5
3
7
4
: 解:工件的加工工时矩阵为
• 根据最优排序规则,最优加工顺序为: • 13542
建立动态规划模型:
设S表示从v1到vi中间所可能经过的城市集 合,S实际上是包含除v1和vi两个点之外的其余点 的集合,但S中的点的个数要随阶段数改变。 阶段: S中的点的个数
货郎担问题
赵勇 2015072014
一,问题由来 货郎担问题也叫旅行商问题,即TSP问题(Traveling Salesman Problem),是数学领域中著名问题之一。 二,问题描述 1,货郎担问题提法:有n个城市,用1,2,...,n表示,城市i,j之间的 距离为d(i,j),有一个货郎从城市1出发到其他城市一次且仅一次,最后 回到城市1,怎样选择行走路线使总路程最短? 2,旅行商问题的提法:假设有一个旅行商人要拜访n个城市,他必须 选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后 要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有 路径之中的最小值。 身边实例:快递小哥。
例 4.17 矩阵C 0 10 5 0 6 13 8 8 g(2, ɸ)=c21=5
15 9 0 920 10 12 0g(3, ɸ)=c31=6
g(4, ɸ)=c41=8
由(4.20)式得 g(2,{3})=c23+g(3, ɸ)=15 g(2,{4})=18 g(3,{2})=18 G(3,{4})=20 g(4,{2})=13 g(4,{3})=15 接着,计算在|S|=2且i不等于1,1不属于S,i不属于S情况下的g(i,S): g(2,{3,4}=min{c23+g(3,{4}),c24+g(4,{3})}=25 g(3,{2,4}=min{c32+g(2,{4}),c34+g(4,{2})}=25 g(4,{2,3}=min{c42+g(2,{3}),c43+g(3,{2})}=23 最后,由(4.19)式得 g(1,{2,3,4})=min{c12+g(2,{3,4}),c13+g(3,{2,4}),c14+g(4,{2,3})} =min{35,40,43}=35
LINGO软件求旅行商(货郎担)问题的程序与答案
PABCD P-A-C-B-D-Pdist=0 70 115 90 9570 0 46 21 50115 46 0 30 3290 21 30 0 4895 50 32 48 0;Global optimal solution found.Objective value: 248.0000Extended solver steps: 0Total solver iterations: 36Variable Value Reduced Cost N 5.000000 0.000000 U( 1) 0.000000 0.000000 U( 2) 3.000000 0.000000 U( 3) 1.000000 0.000000U( 5) 0.000000 0.000000 DIST( 1, 1) 0.000000 0.000000 DIST( 1, 2) 70.00000 0.000000 DIST( 1, 3) 115.0000 0.000000 DIST( 1, 4) 90.00000 0.000000 DIST( 1, 5) 95.00000 0.000000 DIST( 2, 1) 70.00000 0.000000 DIST( 2, 2) 0.000000 0.000000 DIST( 2, 3) 46.00000 0.000000 DIST( 2, 4) 21.00000 0.000000 DIST( 2, 5) 50.00000 0.000000 DIST( 3, 1) 115.0000 0.000000 DIST( 3, 2) 46.00000 0.000000 DIST( 3, 3) 0.000000 0.000000 DIST( 3, 4) 30.00000 0.000000 DIST( 3, 5) 32.00000 0.000000 DIST( 4, 1) 90.00000 0.000000 DIST( 4, 2) 21.00000 0.000000 DIST( 4, 3) 30.00000 0.000000 DIST( 4, 4) 0.000000 0.000000 DIST( 4, 5) 48.00000 0.000000 DIST( 5, 1) 95.00000 0.000000 DIST( 5, 2) 50.00000 0.000000 DIST( 5, 3) 32.00000 0.000000 DIST( 5, 4) 48.00000 0.000000 DIST( 5, 5) 0.000000 0.000000 X( 1, 1) 0.000000 0.000000 X( 1, 2) 0.000000 70.00000 X( 1, 3) 0.000000 115.0000 X( 1, 4) 0.000000 90.00000 X( 1, 5) 1.000000 95.00000 X( 2, 1) 1.000000 70.00000 X( 2, 2) 0.000000 0.000000 X( 2, 3) 0.000000 46.00000 X( 2, 4) 0.000000 21.00000 X( 2, 5) 0.000000 50.00000 X( 3, 1) 0.000000 115.0000 X( 3, 2) 0.000000 46.00000 X( 3, 3) 0.000000 0.000000 X( 3, 4) 1.000000 30.00000 X( 3, 5) 0.000000 32.00000 X( 4, 1) 0.000000 90.00000 X( 4, 2) 1.000000 21.00000X( 4, 4) 0.000000 0.000000 X( 4, 5) 0.000000 48.00000 X( 5, 1) 0.000000 95.00000 X( 5, 2) 0.000000 50.00000 X( 5, 3) 1.000000 32.00000 X( 5, 4) 0.000000 48.00000 X( 5, 5) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 0.0000002 248.0000 -1.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.00000012 0.000000 0.00000013 2.000000 0.00000014 3.000000 0.00000015 1.000000 0.00000016 6.000000 0.00000017 0.000000 0.00000018 3.000000 0.00000019 0.000000 0.00000020 3.000000 0.00000021 2.000000 0.00000022 7.000000 0.00000023 0.000000 0.00000024 6.000000 0.00000025 0.000000 0.00000026 2.000000 0.00000027 1.000000 0.00000028 3.000000 0.000000 PABCE P-E-B-C-A-Pdist=0 70 115 90 8570 0 46 21 60115 46 0 30 5590 21 30 0 5385 60 55 53 0;Global optimal solution found.Objective value: 261.0000Extended solver steps: 0Total solver iterations: 10Variable Value Reduced Cost N 5.000000 0.000000 U( 1) 0.000000 0.000000 U( 2) 3.000000 0.000000 U( 3) 1.000000 0.000000 U( 4) 2.000000 0.000000DIST( 1, 1) 0.000000 0.000000 DIST( 1, 2) 70.00000 0.000000 DIST( 1, 3) 115.0000 0.000000 DIST( 1, 4) 90.00000 0.000000 DIST( 1, 5) 85.00000 0.000000 DIST( 2, 1) 70.00000 0.000000 DIST( 2, 2) 0.000000 0.000000 DIST( 2, 3) 46.00000 0.000000 DIST( 2, 4) 21.00000 0.000000 DIST( 2, 5) 60.00000 0.000000 DIST( 3, 1) 115.0000 0.000000 DIST( 3, 2) 46.00000 0.000000 DIST( 3, 3) 0.000000 0.000000 DIST( 3, 4) 30.00000 0.000000 DIST( 3, 5) 55.00000 0.000000 DIST( 4, 1) 90.00000 0.000000 DIST( 4, 2) 21.00000 0.000000 DIST( 4, 3) 30.00000 0.000000 DIST( 4, 4) 0.000000 0.000000 DIST( 4, 5) 53.00000 0.000000 DIST( 5, 1) 85.00000 0.000000 DIST( 5, 2) 60.00000 0.000000 DIST( 5, 3) 55.00000 0.000000 DIST( 5, 4) 53.00000 0.000000 DIST( 5, 5) 0.000000 0.000000 X( 1, 1) 0.000000 0.000000 X( 1, 2) 0.000000 70.00000 X( 1, 3) 0.000000 115.0000 X( 1, 4) 0.000000 90.00000 X( 1, 5) 1.000000 85.00000 X( 2, 1) 1.000000 70.00000 X( 2, 2) 0.000000 0.000000 X( 2, 3) 0.000000 46.00000 X( 2, 4) 0.000000 21.00000 X( 2, 5) 0.000000 60.00000 X( 3, 1) 0.000000 115.0000 X( 3, 2) 0.000000 46.00000 X( 3, 3) 0.000000 0.000000 X( 3, 4) 1.000000 30.00000 X( 3, 5) 0.000000 55.00000 X( 4, 1) 0.000000 90.00000 X( 4, 2) 1.000000 21.00000 X( 4, 3) 0.000000 30.00000X( 4, 5) 0.000000 53.00000 X( 5, 1) 0.000000 85.00000 X( 5, 2) 0.000000 60.00000 X( 5, 3) 1.000000 55.00000 X( 5, 4) 0.000000 53.00000 X( 5, 5) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 0.0000002 261.0000 -1.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.00000012 0.000000 0.00000013 2.000000 0.00000014 3.000000 0.00000015 1.000000 0.00000016 6.000000 0.00000017 0.000000 0.00000018 3.000000 0.00000019 0.000000 0.00000020 3.000000 0.00000021 2.000000 0.00000022 7.000000 0.00000023 0.000000 0.00000024 6.000000 0.00000025 0.000000 0.00000026 2.000000 0.00000027 1.000000 0.00000028 3.000000 0.000000 PABDE P-E-D-B-A-Pdist=0 70 115 95 8570 0 46 50 60115 46 0 32 5595 50 32 0 2185 60 55 21 0;Global optimal solution found.Objective value: 254.0000Extended solver steps: 0Total solver iterations: 24Variable Value Reduced Cost N 5.000000 0.000000 U( 1) 0.000000 0.000000 U( 2) 3.000000 0.000000 U( 3) 2.000000 0.000000 U( 4) 1.000000 0.000000 U( 5) 0.000000 0.000000 DIST( 1, 1) 0.000000 0.000000DIST( 1, 3) 115.0000 0.000000 DIST( 1, 4) 95.00000 0.000000 DIST( 1, 5) 85.00000 0.000000 DIST( 2, 1) 70.00000 0.000000 DIST( 2, 2) 0.000000 0.000000 DIST( 2, 3) 46.00000 0.000000 DIST( 2, 4) 50.00000 0.000000 DIST( 2, 5) 60.00000 0.000000 DIST( 3, 1) 115.0000 0.000000 DIST( 3, 2) 46.00000 0.000000 DIST( 3, 3) 0.000000 0.000000 DIST( 3, 4) 32.00000 0.000000 DIST( 3, 5) 55.00000 0.000000 DIST( 4, 1) 95.00000 0.000000 DIST( 4, 2) 50.00000 0.000000 DIST( 4, 3) 32.00000 0.000000 DIST( 4, 4) 0.000000 0.000000 DIST( 4, 5) 21.00000 0.000000 DIST( 5, 1) 85.00000 0.000000 DIST( 5, 2) 60.00000 0.000000 DIST( 5, 3) 55.00000 0.000000 DIST( 5, 4) 21.00000 0.000000 DIST( 5, 5) 0.000000 0.000000 X( 1, 1) 0.000000 0.000000 X( 1, 2) 0.000000 70.00000 X( 1, 3) 0.000000 115.0000 X( 1, 4) 0.000000 95.00000 X( 1, 5) 1.000000 85.00000 X( 2, 1) 1.000000 70.00000 X( 2, 2) 0.000000 0.000000 X( 2, 3) 0.000000 46.00000 X( 2, 4) 0.000000 50.00000 X( 2, 5) 0.000000 60.00000 X( 3, 1) 0.000000 115.0000 X( 3, 2) 1.000000 46.00000 X( 3, 3) 0.000000 0.000000 X( 3, 4) 0.000000 32.00000 X( 3, 5) 0.000000 55.00000 X( 4, 1) 0.000000 95.00000 X( 4, 2) 0.000000 50.00000 X( 4, 3) 1.000000 32.00000 X( 4, 4) 0.000000 0.000000 X( 4, 5) 0.000000 21.00000X( 5, 2) 0.000000 60.00000 X( 5, 3) 0.000000 55.00000 X( 5, 4) 1.000000 21.00000 X( 5, 5) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 0.0000002 254.0000 -1.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.00000012 0.000000 0.00000013 3.000000 0.00000014 2.000000 0.00000015 1.000000 0.00000016 0.000000 0.00000017 3.000000 0.00000018 2.000000 0.00000019 6.000000 0.00000020 0.000000 0.00000021 3.000000 0.00000022 7.000000 0.00000023 6.000000 0.00000024 0.000000 0.00000025 0.000000 0.00000026 1.000000 0.00000027 2.000000 0.00000028 3.000000 0.000000 PACDE P-A-C-D-E-Pdist=0 70 90 95 8570 0 21 50 6090 21 0 48 5395 50 48 0 2185 60 53 21 0;Global optimal solution found.Objective value: 245.0000Extended solver steps: 0Total solver iterations: 84Variable Value Reduced Cost N 5.000000 0.000000 U( 1) 0.000000 0.000000 U( 2) 0.000000 0.000000 U( 3) 1.000000 0.000000 U( 4) 2.000000 0.000000 U( 5) 3.000000 0.000000 DIST( 1, 1) 0.000000 0.000000DIST( 1, 2) 70.00000 0.000000 DIST( 1, 3) 90.00000 0.000000 DIST( 1, 4) 95.00000 0.000000 DIST( 1, 5) 85.00000 0.000000 DIST( 2, 1) 70.00000 0.000000 DIST( 2, 2) 0.000000 0.000000 DIST( 2, 3) 21.00000 0.000000 DIST( 2, 4) 50.00000 0.000000 DIST( 2, 5) 60.00000 0.000000 DIST( 3, 1) 90.00000 0.000000 DIST( 3, 2) 21.00000 0.000000 DIST( 3, 3) 0.000000 0.000000 DIST( 3, 4) 48.00000 0.000000 DIST( 3, 5) 53.00000 0.000000 DIST( 4, 1) 95.00000 0.000000 DIST( 4, 2) 50.00000 0.000000 DIST( 4, 3) 48.00000 0.000000 DIST( 4, 4) 0.000000 0.000000 DIST( 4, 5) 21.00000 0.000000 DIST( 5, 1) 85.00000 0.000000 DIST( 5, 2) 60.00000 0.000000 DIST( 5, 3) 53.00000 0.000000 DIST( 5, 4) 21.00000 0.000000 DIST( 5, 5) 0.000000 0.000000 X( 1, 1) 0.000000 0.000000 X( 1, 2) 1.000000 70.00000 X( 1, 3) 0.000000 90.00000 X( 1, 4) 0.000000 95.00000 X( 1, 5) 0.000000 85.00000 X( 2, 1) 0.000000 70.00000 X( 2, 2) 0.000000 0.000000 X( 2, 3) 1.000000 21.00000 X( 2, 4) 0.000000 50.00000 X( 2, 5) 0.000000 60.00000 X( 3, 1) 0.000000 90.00000 X( 3, 2) 0.000000 21.00000 X( 3, 3) 0.000000 0.000000 X( 3, 4) 1.000000 48.00000 X( 3, 5) 0.000000 53.00000 X( 4, 1) 0.000000 95.00000 X( 4, 2) 0.000000 50.00000 X( 4, 3) 0.000000 48.00000 X( 4, 4) 0.000000 0.000000 X( 4, 5) 1.000000 21.00000X( 5, 1) 1.000000 85.00000 X( 5, 2) 0.000000 60.00000 X( 5, 3) 0.000000 53.00000 X( 5, 4) 0.000000 21.00000 X( 5, 5) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 0.0000002 245.0000 -1.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.00000012 0.000000 0.00000013 0.000000 0.00000014 6.000000 0.00000015 7.000000 0.00000016 3.000000 0.00000017 0.000000 0.00000018 6.000000 0.00000019 2.000000 0.00000020 3.000000 0.00000021 0.000000 0.00000022 1.000000 0.00000023 2.000000 0.00000024 3.000000 0.00000025 3.000000 0.00000026 2.000000 0.00000027 1.000000 0.00000028 0.000000 0.000000 PBCDE P-E-D-B-C-Pdist=0 115 90 95 85115 0 30 32 5590 30 0 48 5395 32 48 0 2185 55 53 21 0;Global optimal solution found.Objective value: 258.0000Extended solver steps: 0Total solver iterations: 12Variable Value Reduced Cost N 5.000000 0.000000 U( 1) 0.000000 0.000000 U( 2) 2.000000 0.000000 U( 3) 3.000000 0.000000 U( 4) 1.000000 0.000000 U( 5) 0.000000 0.000000 DIST( 1, 1) 0.000000 0.000000 DIST( 1, 2) 115.0000 0.000000 DIST( 1, 3) 90.00000 0.000000 DIST( 1, 4) 95.00000 0.000000 DIST( 1, 5) 85.00000 0.000000 DIST( 2, 1) 115.0000 0.000000 DIST( 2, 2) 0.000000 0.000000DIST( 2, 3) 30.00000 0.000000 DIST( 2, 4) 32.00000 0.000000 DIST( 2, 5) 55.00000 0.000000 DIST( 3, 1) 90.00000 0.000000 DIST( 3, 2) 30.00000 0.000000 DIST( 3, 3) 0.000000 0.000000 DIST( 3, 4) 48.00000 0.000000 DIST( 3, 5) 53.00000 0.000000 DIST( 4, 1) 95.00000 0.000000 DIST( 4, 2) 32.00000 0.000000 DIST( 4, 3) 48.00000 0.000000 DIST( 4, 4) 0.000000 0.000000 DIST( 4, 5) 21.00000 0.000000 DIST( 5, 1) 85.00000 0.000000 DIST( 5, 2) 55.00000 0.000000 DIST( 5, 3) 53.00000 0.000000 DIST( 5, 4) 21.00000 0.000000 DIST( 5, 5) 0.000000 0.000000 X( 1, 1) 0.000000 0.000000 X( 1, 2) 0.000000 115.0000 X( 1, 3) 0.000000 90.00000 X( 1, 4) 0.000000 95.00000 X( 1, 5) 1.000000 85.00000 X( 2, 1) 0.000000 115.0000 X( 2, 2) 0.000000 0.000000 X( 2, 3) 1.000000 30.00000 X( 2, 4) 0.000000 32.00000 X( 2, 5) 0.000000 55.00000 X( 3, 1) 1.000000 90.00000 X( 3, 2) 0.000000 30.00000 X( 3, 3) 0.000000 0.000000 X( 3, 4) 0.000000 48.00000 X( 3, 5) 0.000000 53.00000 X( 4, 1) 0.000000 95.00000 X( 4, 2) 1.000000 32.00000 X( 4, 3) 0.000000 48.00000 X( 4, 4) 0.000000 0.000000 X( 4, 5) 0.000000 21.00000 X( 5, 1) 0.000000 85.00000 X( 5, 2) 0.000000 55.00000 X( 5, 3) 0.000000 53.00000 X( 5, 4) 1.000000 21.00000 X( 5, 5) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 0.0000002 258.0000 -1.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.00000012 0.000000 0.00000013 0.000000 0.00000014 3.000000 0.00000015 2.000000 0.00000016 3.000000 0.00000017 2.000000 0.00000018 1.000000 0.00000019 0.000000 0.00000020 6.000000 0.00000021 3.000000 0.00000022 6.000000 0.00000023 7.000000 0.00000024 0.000000 0.00000025 1.000000 0.00000026 0.000000 0.00000027 2.000000 0.00000028 3.000000 0.000000model:sets:city / 1.. 5/: u;link( city, city):dist, ! 距离矩阵;x;endsetsn = @size( city);data: !距离矩阵,它并不需要是对称的;dist=0 70 115 90 9570 0 46 21 50115 46 0 30 3290 21 30 0 4895 50 32 48 0;enddata!目标函数;min = @sum( link: dist * x);@FOR( city( K):!进入城市K;@sum( city( I)| I #ne# K: x( I, K)) = 1;!离开城市K;@sum( city( J)| J #ne# K: x( K, J)) = 1;);!保证不出现子圈;@for(city(I)|I #gt# 1:@for( city( J)| J#gt#1 #and# I #ne# J:u(I)-u(J)+n*x(I,J)<=n-1););!限制u的范围以加速模型的求解,保证所加限制并不排除掉TSP问题的最优解; @for(city(I) | I #gt# 1: u(I)<=n-2 );!定义X为0\1变量;@for( link: @bin( x));EndGlobal optimal solution found.Objective value: 900.0000Objective bound: 900.0000 Infeasibilities: 0.000000Extended solver steps: 1Total solver iterations: 357Variable Value Reduced CostX( 1) 0.000000 0.000000X( 2) 0.000000 0.000000X( 3) 0.000000 1.000000X( 4) 10.00000 0.000000X( 5) 0.000000 1.000000X( 6) 240.0000 0.000000X( 7) 200.0000 0.000000X( 8) 0.000000 1.000000X( 9) 240.0000 0.000000X( 10) 210.0000 0.000000X( 11) 210.0000 0.000000R( 1, 1) 0.000000 0.000000R( 1, 2) 0.000000 0.000000R( 2, 1) 1.000000 0.000000R( 2, 2) 0.000000 0.000000 R( 3, 1) 0.000000 0.000000 R( 3, 2) 1.000000 0.000000 R( 4, 1) 0.000000 0.000000 R( 4, 2) 1.000000 0.000000 R( 5, 1) 1.000000 0.000000 R( 5, 2) 0.000000 0.000000 R( 6, 1) 1.000000 0.000000 R( 6, 2) 0.000000 0.000000 R( 7, 1) 0.000000 0.000000 R( 7, 2) 1.000000 0.000000 R( 8, 1) 1.000000 0.000000 R( 8, 2) 0.000000 0.000000 R( 9, 1) 0.000000 0.000000 R( 9, 2) 1.000000 0.000000 R( 10, 1) 1.000000 0.000000 R( 10, 2) 0.000000 0.000000 R( 11, 1) 0.000000 0.000000 R( 11, 2) 0.000000 0.000000Row Slack or Surplus Dual Price1 900.0000 1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.00000012 0.000000 0.00000013 0.000000 0.00000014 0.000000 0.00000015 0.000000 0.00000016 0.000000 0.00000017 0.000000 0.00000018 0.000000 0.00000019 0.000000 0.00000020 0.000000 0.00000021 0.000000 0.00000022 0.000000 0.00000023 0.000000 0.00000024 0.000000 0.00000025 0.000000 0.00000026 0.000000 0.00000027 0.000000 0.00000028 0.000000 0.00000029 0.000000 0.00000030 0.000000 0.00000031 0.000000 0.00000032 0.000000 0.00000033 0.000000 0.00000034 0.000000 0.00000035 0.000000 0.00000036 0.000000 0.00000037 0.000000 0.00000038 0.000000 0.00000039 0.000000 0.00000040 0.000000 0.00000041 0.000000 0.00000042 0.000000 0.00000043 0.000000 0.00000044 0.000000 0.00000045 0.000000 0.00000046 6.000000 0.00000047 6.000000 0.00000048 5.000000 0.00000049 6.000000 0.00000050 6.000000 0.00000051 5.000000 0.00000052 6.000000 0.00000053 5.000000 0.00000054 5.000000 0.00000055 6.000000 0.00000056 5.000000 0.00000057 6.000000 0.00000058 6.000000 0.00000059 5.000000 0.00000060 5.000000 0.00000061 6.000000 0.00000062 6.000000 0.00000063 5.000000 0.00000064 5.000000 0.00000065 6.000000 0.00000066 6.000000 0.00000067 6.000000 0.00000068 0.000000 1.00000069 0.000000 1.00000070 250.0000 0.00000071 470.0000 0.00000072 250.0000 0.00000073 0.000000 0.00000074 40.00000 0.00000075 70.00000 0.00000076 0.000000 1.00000077 0.000000 1.00000078 280.0000 0.00000079 190.0000 0.000000。
货郎担问题分支与限界法
货郎担问题分支与限界法货郎担问题是一个经典的优化问题,涉及到如何在给定负重限制下,选择携带的物品,使得总价值最大。
该问题有多种解决方法,其中分支与限界法是一种常用的方法。
以下是对分支与限界法的详细解释:一、问题的概述货郎担问题(Knapsack Problem)是一种组合优化问题,旨在确定给定一组物品,如何选择才能使得在满足负重限制的前提下获得最大的总价值。
这个问题在现实生活中有很多应用,如资源分配、时间安排、物流配送等。
二、分支与限界法分支与限界法是一种启发式搜索方法,用于求解复杂的组合优化问题。
货郎担问题可以通过构建状态树来表示,其中每个节点表示一种可能的物品组合,树的深度表示总重量,节点的价值表示该组合的总价值。
分支与限界法通过不断分支和剪枝来缩小状态树的搜索范围,从而提高求解效率。
1. 分支:在状态树的搜索过程中,每次将当前节点进行拆分,生成两个或多个子节点,每个子节点表示一种可能的物品组合。
分支的依据是选择哪种物品继续搜索,或者选择哪些物品组合起来作为一个整体进行搜索。
2. 限界:在分支过程中,对每个子节点设置一个界限值,用于判断是否需要继续搜索该子节点。
界限值的计算方法有多种,常见的有最大价值界限和最小重量界限。
最大价值界限是将当前节点的价值与子节点的价值进行比较,如果子节点的价值小于当前节点的价值,则剪枝该子节点。
最小重量界限是将当前节点的重量与子节点的重量进行比较,如果子节点的重量大于当前节点的重量,则剪枝该子节点。
3. 回溯:在搜索过程中,如果发现当前节点的总价值小于已找到的最优解,则回溯到上一个节点,继续搜索其他分支。
三、算法流程1. 初始化:设置根节点作为初始节点,将其加入到待搜索节点列表中。
2. 主循环:重复以下步骤直到待搜索节点列表为空:a. 从待搜索节点列表中取出一个节点;b. 如果该节点已经搜索过(即其总价值小于已找到的最优解),则跳过该节点;c. 否则,对该节点进行分支;d. 将分支生成的子节点加入到待搜索节点列表中;e. 如果该节点的总价值大于已找到的最优解,则更新最优解;f. 将该节点标记为已搜索;3. 输出最优解。
货郎担问题的几何分块算法及ChinaTSP问题的最终解决
步骤 2 是找出靠近分割线的点集。 由于算法的基本思想是假定认为最短路径在不同 块之间的连线就是相邻块中最靠近分割线的几个点之间的连线, 则最短路径与分割线相 交的线段的端点必定属于靠近分割线的点集。
629 538 11861 2378
1116 1013 1415 1018 411 510 2713 918
以上几种方法共同存在的一个不足就是利用这些方法无法对得出的最短路径进行优 化和改进。 我们下面提出一种方法, 该方法不仅能找出一条最短路径, 而且能对求出的 最短路径进行优化和改进。 我们在分析上述几个最短路径的基础上, 应用该方法找到了 长度为 15404 公里的最短路径, 比周培德文中得出的长度还短 88 公里, 并验证它是唯一 的最短路径, 即不可能再找到比它更短的路径, 从而最终解决了 Ch ina T SP 问题。
ABSTRACT In th is p ap er, a geom et ric reg ion2d ivided m ethod fo r so lving T SP p rob lem is p resen ted. U se th is m ethod, w e found the sho rtest p a th fo r Ch ina T SP P rob2 lem. T hen w e ana lyses som e im po rtan t st ra teg ies fo r th is m ethod.
以下我们详细介绍该方法。 实际求解货郎担问题可知, 绝大多数点都是和最靠近它的几个点中的某一个相连。几 何分块算法正是基于这种思想, 首先按照某种分块策略将所有点分块, 并假定认为最短 路径在不同块之间的连线就是相邻块中最靠近分割线的几个点之间的连线。而在块内, 几 何分块算法采用分支定界的完全性算法求解块内最短路径。将这些路径段依次连接起来, 形成多条完整的封闭路径, 用分支定界的完全性算法选出其中最短的一条作为所求。 该 算法利用欧几里德货郎担问题的几何性质, 将局部贪心算法和全局分支定界法结合在一 起, 从而弥补了各自的不足。 该算法还便于利用启发性信息改进分块策略, 从而求出更 优的路径, 而不象某些算法对结果不能再优化。 几何分块算法的关键在于分块策略, 其中最简单和直观的分块策略是辐射线法, 其 他分块策略将在以后的文章中加以介绍。 以下详细介绍辐射线分块算法。
(竞赛类)杠杆问题专题分析和讲解(六个专题讲解)
1.列车上有出售食品的手推车(如图所示)。
若货物在车内摆放均匀,当前轮遇到障碍物A 时,售货员向下按扶把,这时手推车可以视为杠杆,支点是______(写出字母);当后轮遇到障碍物A 时,售货员向上提扶把,这时支点是______,手推车可以视为______力杠杆。
思路点拨图中,售货员向下按扶把时,手推车B 轮离地面,C 轮仍在地面上,此时相当于整个推车绕C 点转动,把手推车视为杠杆,则此时杠杆的支点是C .当售货员向上提扶时,推车的C 轮离地面,B 轮仍在地面上,把推车视为杠杆,此时相当于整个推车绕 B 点转动,其动力作用在E 点,阻力则是车内所装货物和车厢本身的重力,可以认为此总重力作用在图中车厢的中部.由此可见此时动力臂大于阻力臂,由杠杆原理知此时小推车相当于一根省力杠杆.答案:C ,B ,省2.地面上有一条大木杆,抬起A 端需用力300N ,抬起B 端需用力200N 。
这条木杆的_________端较粗,整个木杆的重量(所受的重力)为_________N 。
思路点拨如图,设木杆AB 的自重为G ,重心在C 点,今在其A 端施以竖直向上的力F A 将其抬离水平地面,此时木杆相当于一根供B 点转动的杠杆.设图中的CC '和AA '均沿竖直方向,C '点和A '点均位于水平地面上,则由杠杆平衡条件有'='BC G BA F A ·· G BA BC F A ''= 由△BC ′C ∽△BA ′A ,故有BA BC BA BC ='' G BABC F A = ……………… ① 同上可以得到,若将此杆的A 端搁于地面而自B 端用力F B 将其抬起,则应有 G BA CA F B =……………… ② 比较①②两式可知,若FA >FB ,则BC >CA ,即杆的重心C 离A 端近一些,A 端应该粗一些.反之,若F B >F A ,则B 端应该粗一些.另外,以①②两式相加有G G BACA BC F F B A =+=+ 即此杆的重量等于分别抬起两端时所需用力之和.答案:A .5001.室内垃圾桶平时桶盖关闭不使垃圾散发异味,使用时用脚踩踏板,桶盖开启。
6货郎担问题
则旅行售货员问题的0-1规划问题数学模型为:
minZ = ∑ ∑ c ij x ij
i =1 j=1
n
n
i≠ j
n j = 1, 2 L n ∑ x ij = 1 i =1 n i = 1, 2, L n ∑ x ij = 1 j=1 x ij + x ji ≤ 1 i≠ j i≠k≠ j x ij + x jk + x kj ≤ 2 M x ij + x jk + x kl + L + x pi ≤ n − 2 i ≠ j ≠L≠ p i , j = 1,2, L n x ij = 0 或 1
v3 0.2 1 ∞ 0 0 0.2
v4 1.7 ∞ 0 ∞ 0.8 ∞
v5 ∞ ∞ 0 0.8 ∞ 0
v6 ∞ 1.6 0 ∞ 0.3 ∞
c1
(3)采用最近城市法(nearest neighbor heuristic), 在 c1 中取一个初始Hamilton回路 H 1,起步可以从任 意点开始,不妨从 v 1 出发,下一步到离 v 1最近的 v v 2 ,依次取 v3 , 6 , v 5 , v 4 , v1 , 回路 H 1 = { v 1 , v 2 , v 3 , v 6 , v 5 , v 4 }的距离为 c( H 1 )=1.6+2.6+2.5+2.8+3+4=16.5
1.6
B
4.2 F
图6-34
解(1)显然图6-34存在Hamilton回路,将图 表示成矩阵C,顺序为A,B,…F,两点间没 有边连接的时间为 ∞ 。
c1
(2) 具体过程如下:
骡子和驴子背货物题解析
骡子和驴子背货物题解析一、引言在生活中,我们常常可以看到骡子和驴子背着不同类型的货物,在田间地头、山区小道上穿行。
那么,骡子和驴子分别能够承载多少货物呢?这是一个常见的数学问题,本文将对该问题进行详细解析。
二、问题描述问题可以概括为:给定骡子每背一个货物需要3分钟的时间,而驴子每背一个货物需要5分钟的时间。
已知骡子和驴子一起背5个货物需要27分钟的时间,问骡子和驴子背一个货物所需的时间各是多少?三、解题思路首先,我们假设骡子背一个货物所需的时间为x分钟,驴子背一个货物所需的时间为y分钟。
根据已知条件,我们可以列出如下方程组:x+y=27(1)3x+5y=5(2)其中,方程(1)表示骡子和驴子一起背5个货物需要27分钟,方程(2)表示每背一个货物所需的时间与背的货物数量的关系。
接下来,我们可以通过解方程组来求解x和y的值。
四、方程求解通过对方程组进行求解,可以得到以下结果:x=12(3)y=15(4)根据方程(3)和方程(4),我们可以得出结论:骡子背一个货物需要12分钟,驴子背一个货物需要15分钟。
五、验证和解释现在我们来验证一下我们的结论是否正确。
根据已知条件,骡子背一个货物需要12分钟,驴子背一个货物需要15分钟。
那么,骡子和驴子一起背5个货物需要多少时间呢?我们可以将x和y的值代入方程(1),计算得到:12+15=27计算结果与已知条件相符,说明我们的结论是正确的。
解释一下为什么骡子背一个货物需要12分钟,驴子背一个货物需要15分钟。
根据方程(2),我们可以将其转化为:3x+5y=15(5)观察方程(5),我们可以发现一个规律:骡子每多背一个货物,所需的时间比驴子多3分钟。
因此,我们可以推断出骡子比驴子背货物的速度要快,这也是为什么骡子能够多背一些货物的原因。
六、总结通过对问题的分析和方程的求解,我们得出了骡子背一个货物需要12分钟,驴子背一个货物需要15分钟的结论。
同时,我们也解释了为什么骡子比驴子更能承载货物的原因。
货郎担问题 其他应用
x3 = s3
0≤x2≤s2
f2(s2)=max{ x2 +f3(s3)}= max{ x2 + s2 x2 }
用微分法可求得上式当x2=0.5s2时,有最大值:f2(s2)= 2s2 k=1 f1(s1)=max{ x1 +f2(s2)}= max{ x1 + 2s1 x 1 }
0≤x1≤s1 0≤x1≤s1
用微分法可求得上式当x1=s1/3=3时,有最大值:f1(s1)= 3 3 3 3 因此,原问题的最优解为: x1= x2= x3= 3,最优值为:
运 筹 学
动态规划应用举例
§7 货郎担问题
货郎担问题也称旅行员问题,是运筹学里一个著名问题。设有 n个城市,以1,2,…,n表示,dij表示从i城到j城的距离。一个推销 员从城市1出发到其它每个城市去一次且仅仅一次,然后回到城市1, 问他应如何选择行走路线,使总的路程最短。这个问题属于组合最 优化问题,目前尚无有效解法。如果用穷举法,计算次数为n!,当n 很大时,例如n=20,计算次数20!=2.432902×1018,实际上这是无 法计算的。但当n不太大时,利用动态规划方法求解却是很方便的。 规定推销员是从城市1出发,设推销员走到i城,s表示到达i城之前 中途所经过的城市集合。选取(i,s)作为描述过程的状态变量,定 义fk(i,s)为从1城出发经由k个中间城市的s集到i城的最短路线的距离, 则 fk(i,s)=min{fk-1(j,s/j)+ dji },j∈s (k=1,2, …,n-1;i=2,3, …,n) 边界条件为f0(i,φ)=d1i. 记最优决策函数为pk(i,s),它表示从1城出 发经k个中间城市的s集到i城的最短路线上紧挨着i城前面的城市。 这样,我们可以从k=0出发,依次求出fk(i,s),直至求出 fn-1(1,N1), 其中N1表示从1城出发回到1城的所有中间城市集合。
几何算法求解货郎担问题
几何算法求解货郎担问题
周培德
【期刊名称】《计算机研究与发展》
【年(卷),期】1995(032)010
【摘要】本文提出求解货郎担问题的一种几何算法。
它的时间复杂性为:O(n^3/m)次比较,O(n^2)次乘法,其中n,m分别是点集的点数和凸包顶点数。
【总页数】3页(P63-65)
【作者】周培德
【作者单位】无
【正文语种】中文
【中图分类】O157.5
【相关文献】
1.货郎担问题求解算法探讨 [J], 徐海波
2.遗传算法和Hopfield模型求解货郎担问题的比较和分析 [J], 刘宁钟;杨静宇
3.求解货郎担问题(TSP)的佳点集遗传算法 [J], 赵春英;张铃
4.求解货郎担问题的量子进化算法 [J], 赵俊生
5.求解货郎担问题的几何算法 [J], 周培德
因版权原因,仅展示原文概要,查看原文内容请购买。