模型定理

合集下载

模型论定理概述

模型论定理概述

模型论文章整理编辑:论文文库工作室(QQ86)论文写作发表辅导数学上,模型论是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。

粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。

比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如×, +, −, ., 0, 1。

若我们在该语言中问"∃ y (y × y = 1 + 1)"这样一个问题,显然该陈述对实数而言成立- 确实存在这样的一个实数y, 即所谓2的平方根;对于有理数,该陈述却并不成立。

一个类似的命题,"∃ y (y × y = 0 − 1)",在实数中不成立,却在复数中成立,因为i × i = 0 − 1。

模型论- 定义结构被形式的定义于某个语言L 的上下文中,它由常量符号的集合,关系符号的集合,和函数符号的集合组成。

在语言L上的结构,或L-结构,由如下东西组成:一个全集或底层集合A,它包含所有感兴趣的对象("论域"),给L 的每个常量符号一个在A 中元素,给L 的每个n 价函数符号一个从An 到A 的函数,和给L 的每个n 价关系符号一个在A 上的n-元关系(换句话说,An的一个子集)。

函数或关系的价有时也叫做元数(术语"一元"、"二元" 和"n-元"中的那个元)。

在语言L中的理论,或L-理论,被定义为L中的句子的集合。

如果句子的集合闭合于通常的推理规则之下,则被称为闭合理论。

例如,在某个特定L-结构下为真的所有句子的集合是一个闭合L-理论。

L-理论T的模型由在其中T的所有句子都为真的一个L-结构组出,它通常用T-模式的方式定义。

模型 托勒密定理(学生版)

模型 托勒密定理(学生版)

模型介绍1.托勒密定理:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.翻译:在四边形ABCD 中,若A 、B 、C 、D 四点共圆,则AC BD AB CD AD BC ⋅=⋅+⋅.证明:在线段BD 上取点E ,使得∠BAE=∠CAD ,易证△AEB ∽△ADC ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅,当∠BAE=∠CAD 时,可得:∠BAC=∠EAD ,易证△ABC ∽△AED ,∴AD DE AC CB=,即AC DE AD BC ⋅=⋅,∴AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴AC BD AB CD AD BC ⋅=⋅+⋅.2.(托勒密不等式):对于任意凸四边形ABCD ,有AC BD AB CD AD BC⋅≤⋅+⋅证明:如图1,在平面中取点E 使得∠BAE=∠CAD ,∠ABE=∠ACD ,易证△ABE ∽△ACD ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅①,连接DE ,如图2,∵AB AE AC AD =,∴AB AC AE AD=,又∠BAC=∠BAE+∠CAE=∠DAC+∠CAE=∠DAE ,∴△ABC ∽△AED ,∴AD DE AC BC =,即AC DE AD BC ⋅=⋅②,将①+②得:AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴()AC BD AC BE DE AB CD AD BC⋅≤⋅+=⋅+⋅即AC BD AB CD AD BC ⋅≤⋅+⋅,当且仅当A 、B 、C 、D 共圆时取到等号.3.托勒密定理在中考题中的应用(1)当△ABC是等边三角形时,⋅=⋅+⋅,如图1,当点D在弧AC上时,根据托勒密定理有:DB AC AD BC AB CD=+.又等边△ABC有AB=AC=BC,故有结论:DB DA DC证明:在BD上取点E使得DE=DA,易证△AEB∽△ADC,△AED∽△ABC,利用对应边成比例,可得:DB DA DC=+.如图2,当点D在弧BC上时,结论:DA=DB+DC.【小结】虽然看似不同,但根据等边的旋转对称性,图1和图2并无区别.(2)当△ABC是等腰直角三角形,⋅=⋅+⋅,如图3,当点D在弧BC上时,根据托勒密定理:AD BC AB CD AC BD=+.又::1:1:2AB AC BC=,代入可得结论:2AD BD CD如图4,当点D在弧AC上时,根据托勒密定理:AD BC AB CD AC BD⋅=⋅+⋅,又::1:1:2BD AD CD=+.AB AC BC=,代入可得结论:2(3)当△ABC是一般三角形时,若记BC:AC:AB=a:b:c,根据托勒密定理可得:a AD b BD c CD⋅=⋅+⋅例题精讲【例1】.如图,正五边形ABCDE内接于⊙O,AB=2,则对角线BD的长为.变式训练【变式1-1】.先阅读理解:托勒密(Ptolemy古希腊天文学家)定理指出:圆内接凸四边形两组对边乘积的和等于两条对角线的乘积.即:如果四边形ABCD内接于⊙O,则有AB•CD+AD•BC=AC•BD.再请完成:(1)如图1,四边形ABCD内接于⊙O,BC是⊙O的直径,如果AB=AC=,CD=1,求AD的长.(2)在(1)的条件下,如图2,设对边BA、CD的延长线的交点为P,求PA、PD的长.【变式1-2】.如图1,已知⊙O内接四边形ABCD,求证:AC•BD=AB•CD+AD•BC.证明:如图1,在BD上取一点P,连接CP,使∠PCB=∠DCA,即使∠1=∠2.∵在⊙O中,∠3与∠4所对的弧都是,∴∠3=∠4.∴△ACD∽△BCP.∴=.∴AC•BP=AD•BC.①又∵∠2=∠1,∴∠2+∠7=∠1+∠7.即∠ACB=∠DCP.∵在⊙O中,∠5与∠6所对的弧都是,∴∠5=∠6.∴△ACB∽△DCP.…(1)任务一:请你将“托勒密定理”的证明过程补充完整;(2)任务二:如图2,已知Rt△ABC内接于⊙O,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交⊙O于点D,求CD的长.【例2】.托勒密定理:圆的内接四边形两对对边乘积的和等于两条对角线的乘积.已知:如图1,四边形ABCD内接于⊙O.求证:AB⋅DC+AD⋅BC=AC⋅BD.证明:如图2,作∠BAE=∠CAD,交BD于点E,……∴△ABE∽△ACD,∴AB•DC=AC•BE,……∴△ABC∽△AED,∴AD•BC=AC•ED,∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.(1)请帮这位同学写出已知和求证,并完成证明过程;(2)如图3,已知正五边形ABCDE内接于⊙O,AB=1,求对角线BD的长.变式训练【变式2-1】.已知:如图1,四边形ABCD内接于⊙O.求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵=,∠ABE=∠ACD,∴△ABE∽△ACD,∴,∴AB•CD=AC•BE;∵=,∴∠ACB=∠ADE(依据1),∵∠BAE=∠CAD,∴∠BAC=∠EAD,∴△ABC∽△AED(依据2),∴,∴AD•BC=AC•ED;∴AB•CD+AD•BC=AC•(BE+ED),即AB•CD+BC•AD=AC•BD.(1)上述证明过程中的“依据1”是指;“依据2”是指.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们熟知的定理.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是的中点,求AC的长.【变式2-2】.圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.1.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,对角线交于点O,连接AO,如果AB=4,AO=4,那么AC的长等于()A.12B.16C.4D.82.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.3.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD 所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.4.如图,P是正方形ABCD内一点,CP=CD,AP⊥BP,则的值为.5.如图,正方形ABCD的边长是6,对角线的交点为O,点E在边CD上且CE=2,CF⊥BE,连接OF,则:(1)∠OFB°;(2)OF=.6.如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,过点D作DE⊥DF,交BA的延长线于点E,交AC的延长线于点F.若CF=,AC=4,AB=2.则AE=.7.设△ABC是正三角形,点P在△ABC外,且与点A在直线BC异侧,∠BPC=120°,求证:PA=PB+PC.8.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P为圆上一个动点.求2PC+PE的最小值.9.如图,点P为等边△ABC外接圆,劣弧为BC上的一点.(1)求∠BPC的度数;(2)求证:PA=PB+PC.10.如图,⊙O的直径AB的长为10,弦BD的长为6,点C为上的一点,过点B的切线EF,连接AD,CD,CB;(1)求证:∠CDB=∠CBF;(2)若点D为的中点,求CD的长.11.阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.12.在学习了《圆》和《相似》的知识后,小明自学了一个著名定理“托勒密定理:圆内接四边形对角线的乘积等于两组对边乘积之和.”(1)下面是小明对托勒密定理的证明和应用过程,请补充完整.已知:四边形ABCD内接于⊙O.求证:AC•BD=AB•CD+AD•BC.证明:作∠CDE=∠BDA,交AC于点E,∵⊙O中,∠1=∠2,∴△ABD∽△ECD().∴.∴AB•CD=BD•EC①,.又∵∠BDA+∠3=∠CDE+∠3,即∠ADE=∠BDC,∴△DAE∽△DBC().∴.∴AD•BC=BD•AE②.,∴AB•CD+AD•BC=AC•BD.(2)利用托勒密定理解决问题:是否存在一个圆内接四边形,它的两条对角线长为5和,一组对边长为1和3,另一组对边的和为4.若存在,求出未知的两边;若不存在,说明理由.13.阅读下列相关材料,并完成相应的任务.布拉美古塔定理婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边.某数学兴趣小组的同学写出了这个定理的已知和求证.已知:如图,在圆内接四边形ABCD中,对角线AC⊥BD,垂足为P,过点P作AB的垂线分别交AB,DC于点H,M.求证:M是CD的中点任务:(1)请你完成这个定理的证明过程.(2)该数学兴趣小组的同学在该定理的基础上写出了另外一个命题:若圆内接四边形的对角线互相垂直,则一边中点与对角线交点的连线垂直于对边请判断此命题是命题.(填“真”或“假”)(3)若PD=2,HP=,BP=3,求MH的长.14.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.15.问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC.问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.16.(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.17.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.18.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE =CD,从而得出结论:AC+BC =CD.简单应用:(1)在图①中,若AC =,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是或.21。

小学数学几何必考五大模型

小学数学几何必考五大模型

∵在正方形ABCD中,S△ABG=×AB × AB边上的高,
∴ S△ABG= S□ABCD(三角形面积等于与它等底等高的平行四边形面积的一半)
同理,S△ABG=

S
□EFGB
∴ 正方形ABCD与长方形EFGB面积相等。长方形的宽=8 ×8÷10=6.4(厘米)
【例2】长方形ABCD的面积为36cm2,E 、F、G为各边中点,H为AD边上
任意一点,问阴影部分面积是多少?
【解析】解法一:寻找可利用的条件,连接BH ,HC ,如下图:
解法二:特殊点法.找H的特殊点,把H点与D点重合,那么图形就可变成右图:
这样阴影部分的面积就是△DEF的面积,
根据鸟头定理,则有:
【巩固】
a
如右图
③夹在一组平行线之间的等积变形,如右图
反之,如果
,则可知直线
平行于
等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于
它们的高之比.
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
D
A
A
D
E
E
B
C
图 ⑴
如图在
上,E在AC上),则
B
图 (2)
C
中,D、E分别是AB、AC上的点如图 ⑴(或D在BA的延长线
三、蝴蝶定理
任意四边形中的比例关系(“蝴蝶定理”):
梯形中比例关系(“梯形蝴蝶定理”):

小学奥数之几何五大模型

小学奥数之几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

人教版六年级下册数学小升初奥数:几何五大模型模型(课件)

人教版六年级下册数学小升初奥数:几何五大模型模型(课件)

02 三角形:燕尾模型
A
O
B
D
A
F
E O
B D
S△ABD:S△ACD=BD:CD S△OBD:S△OC?B:D?:CD
C
S△ABO:S△CBO=AE:CE S△ACO:S△BCO=AF:BF S△ABO:S△ACO=BD:CD
C
02 三角形:燕尾模型
(1)
例、如图,已知 BD=DC,EC=2AE,三角形 是 30,求阴影部分面积?
01 长方形:一半模型(犬齿模型)
(1)
1 S阴影 2 S长方形
例 、(长郡系)如图,ABFE 和 CDEF 都是矩形,AB 的长是 4 厘米, BC 的长是 3 厘米,那么图中阴影部分的面积是多少平方厘米。
解题思路: 将大长方形分成若干个小长方形;
每个阴影面积都=对应长方形的一半; 全部阴影面积=长方形ABCD的一半; S阴影=3×4÷2=6cm2;
几何五大模型
二、鸟头(共角)定理模型
1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点
则有:S△ABC:S△ADE=(AB×AC):(AD×AE)
ABC
的面积
1 G①
③ ②
③ ⑥③
解题思路: 构建完整燕尾模型,利用份数思维;
AE:CE=1:2
BD:CD=1:1
2
AE:CE=1:2
设S△AEF为1份,则S△CEF为2份 S△ABF:S△ACF=1:1,S△ABF为3份 S△ABF:S△CBF=1:2,S△CBF为6份

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)在小学奥数的几何部分,蝴蝶定理是一个非常有用的工具,它可以帮助我们解决一些复杂的几何问题。

蝴蝶定理主要描述了在四边形中,当两条对角线互相垂直时,四边形被分成四个小三角形,而这四个小三角形的面积之间存在一定的关系。

蝴蝶定理的内容如下:设四边形ABCD中,AC和BD是互相垂直的对角线,交于点O。

设四个小三角形的面积分别为S1、S2、S3、S4。

那么,蝴蝶定理可以表述为:S1 + S2 = S3 + S4。

这个定理听起来可能有些抽象,但实际上它的应用非常广泛。

我们可以通过蝴蝶定理来解决一些看似复杂的问题。

下面,我将通过一些例子来展示蝴蝶定理的应用。

例1:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC =8cm,BD = 6cm。

如果三角形ABC的面积是24cm²,那么三角形ADC的面积是多少?解答:根据蝴蝶定理,我们有S1 + S2 = S3 + S4。

由于三角形ABC的面积是24cm²,所以S1 = 24cm²。

又因为AC = 8cm,BD = 6cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 8cm6cm = 24cm²。

因此,三角形ADC的面积也是24cm²。

例2:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC = 10cm,BD = 5cm。

如果三角形ABC的面积是20cm²,那么三角形ADC的面积是多少?解答:同样地,根据蝴蝶定理,我们有S1 + S2 = S3 + S4。

由于三角形ABC的面积是20cm²,所以S1 = 20cm²。

又因为AC = 10cm,BD = 5cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 10cm 5cm = 25cm²。

因此,三角形ADC的面积是25cm²。

模型38 梅涅劳斯定理、塞瓦定理(解析版)

模型38 梅涅劳斯定理、塞瓦定理(解析版)

☑梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三条线段之积.当直线交三角形ABC三边所在直线BC、AB、AC于D、E、F点时,则有AE×BD×CF=EB×CD×AF☑塞瓦定理:塞瓦定理是指在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则BD×CE×AF=DC×EA×FB.例题精讲考点一:梅涅劳斯定理【例1】.如图,等边△ABC的边长为2,F为AB中点,延长BC至D,使CD=BC,连接FD交AC于E,则四边形BCEF的面积为.解:∵DEF是△ABC的梅氏线,∴由梅涅劳斯定理得,••=1,即••=1,则=,=S△ABC,S△CEF=S△ABC,连FC,S△BCF于是S BCEF=S△BCF+S△CEF=S△ABC=××2×2sin60°=×=.故答案为.变式训练【变式1-1】.如图,D、E、F内分正△ABC的三边AB、BC、AC均为1:2两部分,AD、BE、CF相交成的△PQR的面积是△ABC的面积的()A.B.C.D.解:对△ADC用梅涅劳斯定理可以得:••=1,则=.=,S△BCQ=S△BCE=,S BPRF=S△ABD=,设S△BCF=S△BCF﹣S△BCQ﹣S BPRF=S△ABC.∴S△PQR故选:D.【变式1-2】.梅涅劳斯定理梅涅劳斯(Menelaus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC的三边AB,BC,CA或它们的延长线交于F、D、E三点,那么一定有••=1.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A作AG∥BC,交DF的延长线于点G,则有=.任务:(1)请你将上述材料中的剩余的证明过程补充完整;(2)如图(3),在△ABC中,AB=AC=13,BC=10,点D为BC的中点,点F在AB 上,且BF=2AF,CF与AD交于点E,则AE=6.解:(1)补充的证明过程如下:∵AG∥BD,∴△AGE∽△CDE.∴,∴;(2)根据梅涅劳斯定理得:.又∵,,∴DE=AE.在Rt△ABD中,AB=13,BD=5,∠ADB=90°,则由勾股定理知:AD===12.∴AE=6.故答案是:6.考点二:塞瓦定理【例2】.如图:P,Q,R分别是△ABC的BC,CA,AB边上的点.若AP,BQ,CR相交于一点M,求证:.证明:如图,由三角形面积的性质,有,,.以上三式相乘,得.变式训练【变式2-1】.请阅读下列材料,并完成相应任务如图,塞瓦定理是指在△ABC内任取一点O,延长AO,BO,CO分别交对边D,E,F 于,则××=1.任务:(1)当点D,E分别为边BC,AC的中点时,求证:点F为AB的中点;(2)若△ABC为等边三角形,AB=12,AE=4,点D是BC边的中点,求BF的长.解:(1)证明:∵D,E分别为边BC,AC的中点,∴BD=CD,EA=CE,∴,由塞瓦定理,得,∴,∴AF=BF,∴点F为AB的中点;(2)解:∵△ABC为等边三角形,AB=12,∴AB=AC=BC=12,∵AE=4,∴EC=12﹣4=8,∵点D是BC的中点,∴BD=CD=6,∵AB=12,∴AF=AB﹣BF=12﹣BF,由赛瓦定理,得,∴,∴BF=8.【变式2-2】.请阅读下列材料,并完成相应任务塞瓦定理定理内容:如图1,塞瓦定理是指在△ABC内任取一点O,延长AO,BO,CO分别交对边于D,E,F,则.数学意义:使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用.任务解决:(1)如图2,当点D,E分别为边BC,AC的中点时,求证:点F为AB的中点;(2)若△ABC为等边三角形(如图3),AB=12,AE=4,点D是BC边的中点,求BF 的长,并直接写出△BOF的面积.(1)证明:∵点D,E分别为边BC,AC的中点,∴BD=CD,CE=AE,由赛瓦定理可得:,∴,∴AF=BF,即点F为AB的中点;(2)∵△ABC为等边三角形,AB=12,∴BC=AC=12,∵点D是BC边的中点,∴BD=DC=6,∵AE=4,∴CE=8,由赛瓦定理可得:BF=8;△BOF的面积为.1.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=()A.B.2C.D.解:如图,过C点作CP∥AB,交DE于P,∵PC∥AE,∴△AEM∽△CPM,∴=,∵M是AC的中点,∴AM=CM,∴PC=AE,∵AE=AB,∴CP=AB,∴CP=BE,∵CP∥BE,∴△DCP∽△DBE,∴==,∴BD=3CD,∴BC=2CD,即=2.故选:B.2.如图,在△ABC中,D、E分别是BC、AC上的点,AD与BE相交于点G,若AG:GD =4:1,BD:DC=2:3,则AE:EC的值是()A.B.C.D.解:过D作DH∥AC交BE于H,∴△DHG∽△AEG,△BDH∽△CBE,∴,,∴AE=4DH,CE=DH,∴,故选:B.3.如图,在△ABC中,AD是BC边上的中线,F是AD边上一点.射线CF交AB于点E,且,则等于.解:如图:过点D作DG∥EC交AB于G,∵AD是BC边上的中线,∴GD是△BEC的中位线,∴BD=CD,BG=GE.∵=,∴=∵DG∥EC,∴==.故答案是:.4.如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为4.解:如图,取AD中点F EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,∴AD=3BD=3a,AB=4a,∵点E为CD中点,点F为AD中点,CD=6,∴DF=a,EF∥AC,DE=3,∴∠FED=∠ACD=45°,∵∠BED=45°,∴∠FED=∠BED,∠FEB=90°,∵DG⊥EF,DH⊥BE,∴四边形EHDG是矩形,DG=DH,∴四边形DGEH是正方形,∴DE=DG=3,DH∥EF,∴DG=DH=3,∵DH∥EF,∴∠BDH=∠DFG,∴△BDH∽△DFG,∴,∴=,∴BH=2,∴BD===,∴AB=4,故答案为:4.5.如图,在△ABC中,∠ACB=90°,AC=8,BC=16,AD是边BC的中线,过点C 作CE⊥AD于点E,连接BE并延长交AC于点F,则AD的长是16,EF的长是.解:过点G作DG∥AC,交BF于点G,∵D为BC的中点,BC=16,∴CD=BD=8,∵∠ACB=90°,AC=8,∴AD==16,∴sin∠CAD=,∴CE==,∴AE=,∴DE=AD﹣AE=4,∵DG∥AC,∴,设DG=x,则CF=2x,AF=,∵DG∥AC,∴∠DGE=∠AFE,∠EDG=∠EAF,∴△DEG∽△AEF,∴,即,解得:x=,∴CF=2x=∴BF=∵,∴,∵,∴EF==.故答案为:16,.6.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD、AE于H、G,则BH:HG:GM等于51:24:10.解:过M作MQ∥BC交AE于N,交AD于F,交AB于Q,∵BD:DE:EC=3:2:1,∴设EC=a,DE=2a,BD=3a,∵MQ∥BC,∴△AMN∞△ACE,∵CM:MA=1:2,∴==,∴MN=a,同理MF=2a,MQ=4a,∵MQ∥BC,∴△MNG∽△BEG,∴=,∴==,∴==同理===,==,∴=,==∴BH:HG:GM=51:24:10,故答案为:51:24:10.7.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=.解:取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=c,∴△EFB∽△EOM,∴,∵AB=a,AD=c,BE=b,∴ME=MB+BE=AB+BE=a+b,∴,∴BF=.故答案为:.8.在△ABC中,∠ACB=90°,AC=BC,AM为BC边上的中线,CD⊥AM于点D,CD 的延长线交于点,求的值.解:过点B作BF⊥BC,交EC的延长线于点F,∵∠ACB=90°,AC=BC,∴∠BCF+∠ACD=90°,又∵BF⊥BC,CD⊥AM,∴∠BCF+∠F=90°,∠CAD+∠ACD=90°,∴∠ACD=∠F,∠BCF=∠CAD,∴△ACM≌△CBF(AAS),∴BF=CM,又∵AM为BC边上的中线,∴BF=CM=BC,∵∠AEC=∠BEF,∴△ACE∽△BFE,∴=2.9.如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC,求BN:NQ:QM的值.解:连接MF,如图,∵M是AC的中点,EF=FC,∴MF为△CEA的中位线,∴AE=2MF,AE∥MF,∵NE∥MF,∴==1,==,∴BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,∵AN∥MF,∴===,∴NQ=a,QM=a,∴BN:NQ:QM=a:a:a=5:3:2.10.如图,△ABC中,∠ACB=90°,CD⊥AB于点D,E为BC上一点,AE交CD于点F,EH⊥AB于点H,若CF=2FD,EH=,求CE•BE的值.解:对于△CBD和截线AFE,由梅涅劳斯定理可知:,∵CF=2FD,∴,∴,易知△ADC∽△EHB,∴,∴,由射影定理可知AC2=AD•AB,∴BE•CE===,∴BE•CE=4.11.如图,△ABC中,AD⊥BC于点D,E是AB上一点,连接DE,2∠C+∠BDE=180°.(1)求证:∠BDE=2∠CAD;(2)若AC=BD,∠AED=∠ACB,求证BE=2CD;(3)若AE=kBE,BD=mCD,则的值为.(用含m,k的式子表示).(1)证明:∵2∠C+∠BDE=180°,∴∠C+∠BDE=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∴∠CAD=∠BDE,∴∠BDE=2∠CAD;(2)证明:如图,延长DE至F,使DF=BD,连接BF,在DB上截取DG=CD,连接AG,∵AD⊥BC,∴∠ADC=∠ADG=90°,在△ADC和△ADG中,,∴△ADC≌△ADG(SAS),∴AG=AC,∠GAD=∠CAD,∠AGC=∠ACB,∴∠CAG=2∠CAD,∵∠BDF=2∠CAD,∴∠BDF=∠CAG,∵AC=BD,∴AC=BD=AG=DF,∴△BDF≌△CAG(SAS),∴BF=CG,∠DFB=∠AGC=∠ACB,∵∠AED=∠ACB,∠AED=∠BEF,∴∠DFB=∠BEF,∴BF=BE,∴BE=CG,∵CG=2CD,∴BE=2CD;(3)解:如图,记AG与DE的交点为H,设CD=y,则BD=my,延长DE至F,使DF=BD=my,连接BF,在DB上截取DG=CD=y,连接AG,则CG=CD=2y,由(2)知,△ADC≌△ADG,∴AC=AG,∠CAD=∠GAD,∴∠CAG=2∠CAD,由(1)知,∠BDE=2∠CAD,∴∠BDE=∠CAG,∵DF=BD,AC=AG,∴,∵△DBF∽△ACG,∴∠DBF=∠AGC,∴AG∥BF,∴△DHG∽△DFB,∴,∴DH=DG=y,∵AG∥BF,∴△BEF∽△AEH,∴,∵AE=kBE,∴==,∴EH=kEF,∵DF=DH+EH+EF=y+kEF+EF=my,∴EF=,∴EH=,∴DE=EH+DH=+y=,∴==,故答案为:.12.如图1,Rt△ABC中,∠BAC=90°,AD是中线,BE⊥AD,垂足为E,点F在AD上,∠ACF=∠DBE.(1)求证:∠ABD=∠CFD;(2)探究线段AF,DE的数量关系,并证明你的结论;(3)如图2,延长BE交CF于点P,AB=AF,求的值.(1)证明:设∠DBE=∠CFD=α,∵BE⊥AD,∴∠BED=90°,∴∠ADB+α=90°,又∵∠BAC=90°,AD是中线,∴AD=BD=CD,∴∠BAD=∠ABD,∴∠ADB+2∠BAD=180°,∴2∠BAD=90°+α,又∵∠CFD=∠DAC+∠ACF=∠DAC+α=90°﹣∠BAD+α=2∠BAD﹣∠BAD=∠BAD,∵∠ABD=∠BAD,∴∠ABD=∠CFD;(2)解:AF=2DE.理由:过点C作CM⊥AD交AD的延长线于点M,∵AD是中线,∴BD=CD,∵∠CMD=∠BED=90°,∠CDM=∠BDE,∴△CDM≌△BDE(AAS),∴DM=DE,CM=BE,又∵∠BAD=∠CFM,∠AEB=∠CMF,∴△CMF≌△BEA(AAS),∴AE=MF,∴AE﹣EF=MF﹣EF,∴AF=EM,又∵EM=2DE,∴AF=2DE;(3)解:过点C作CM⊥AD交AD的延长线于点M,由(2)可知,AF=2DE,AD=CD,设DE=x,则AF=2x,∵AB=AF,∴AB=2x,∴AB=2x,设EF=y,∴AE=y+2x,AD=CD=y+3x,由(2)可知,BE=CM,∴AB2﹣AE2=CD2﹣DM2,∴=(y+3x)2﹣x2,解得y=3x,y=﹣8x(舍去),∴AE=5x,∵∠BDE=∠CFE,∠AEB=∠PEF,∴△BEA∽△PEF,∴.13.如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F 是DE与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).解:(1)∠DCA=∠BDE.证明:∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE.∴∠BDE=∠DEC﹣∠DBC=∠DCE﹣∠ACB=∠DCA.(2)过点E作EG∥AC,交AB于点G,如图1,则有∠DAC=∠DGE.在△DCA和△EDG中,∴△DCA≌△EDG(AAS).∴DA=EG,CA=DG.∴DG=AB.∴DA=BG.∵AF∥EG,DF=EF,∴DA=AG.∴AG=BG.∵EG∥AC,∴BE=EC.(3)过点E作EG∥AC,交AB的延长线于点G,如图2,∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE.∴∠BDE=∠DBC﹣∠DEC=∠ACB﹣∠DCE=∠DCA.∵AC∥EG,∴∠DAC=∠DGE.在△DCA和△EDG中,∴△DCA≌△EDG(AAS).∴DA=EG,CA=DG∴DG=AB=1.∵AF∥EG,∴△ADF∽△GDE.∴.∵DF=kFE,∴DE=EF﹣DF=(1﹣k)EF.∴.∴AD=.∴GE=AD=.过点A作AH⊥BC,垂足为H,如图2,∵AB=AC,AH⊥BC,∴BH=CH.∴BC=2BH.∵AB=1,∠ABC=α,∴BH=AB•cos∠ABH=cosα.∴BC=2cosα.∵AC∥EG,∴△ABC∽△GBE.∴.∴.∴BE=.∴BE的长为.14.阅读以下材料,并按要求完成相应的任务.塞瓦(GiovanniCeva,1648~1734)意大利水利工程师,数学家,塞瓦定理载于1678年发表的《直线论》一书,塞瓦定理是指如图1,在△ABC内任取一点O,延长AO,BO,CO分别交对边于D,F,E,则.下面是该定理的部分证明过程:如图2,过点A作BC的平行线分别交BE,CF的延长线于点M,N.则∠N=∠FCB,∠NAF=∠FBC.∴△NAF∽△CBF.∴①.同理可得△NOA∽△COD.∴②.任务一:(1)请分别写出与△MOA,△MEA相似的三角形;(2)写出由(1)得到的比例线段;任务二:结合①②和(2),完成该定理的证明;任务三:如图3,△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB,垂足为D,点E 为DC的中点,连接AE并延长,交BC于点F,连接BE并延长,交AC于点G.小明同学自学了上面定理之后解决了如图3所示的问题,并且他用所学知识已经求出了BF与FC的比是25:16,请你直接写出△ECG与△EAG面积的比.解:任务一:(1)△MOA∽△BOD;△MEA∽△BEC;(2);;任务二:证明:如图所示:由任务一可得:;;同理可得△OAN∽△ODC;△AFN∽△BFC;∴;;∴;∴.任务三:由任务一和任务二可得:在△ABC中,=;∵Rt△ABC中,AC=4,BC=3,∴AB=;∴cos∠BAC=;∴;∴AD=;∴BD=AB﹣AD=;∵=1;∴=1;解得=;过点E作EH⊥AC于H;∴===.15.问题提出如图(1),在△ABC中,AB=AC,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究的值.问题探究(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,=(n<2),延长BC至点E,使DE=DG,延长ED交AB于点F.直接写出的值(用含n的式子表示).解:(1)如图,取AB的中点G,连接DG,∵点D是AC的中点,∴DG是△ABC的中位线,∴DG∥BC,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∵点D是AC的中点,∴∠DBC=30°,∵BD=ED,∴∠E=∠DBC=30°,∴DF⊥AB,∵∠AGD=∠ADG=60°,∴△ADG是等边三角形,∴AF=AG,∵AG=AB,∴AF=AB,∴;(2)取BC的中点H,连接DH,∵点D为AC的中点,∴DH∥AB,DH=AB,∵AB=AC,∴DH=DC,∴∠DHC=∠DCH,∵BD=DE,∴∠DBH=∠DEC,∴∠BDH=∠EDC,∴△DBH≌△DEC(ASA),∴BH=EC,∴,∵DH∥AB,∴△EDH∽△EFB,∴,∴,∴;问题拓展取BC的中点H,连接DH,由(2)同理可证明△DGH≌△DEC(ASA),∴GH=CE,∴HE=CG,∵=,∴,∴,∴,∵DH∥BF,∴△EDH∽△EFB,∴,∵DH=AB,∴,∴.16.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).证明:(1)∵AB=AD,∴∠ABD=∠ADB,∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE,∴∠BAE=∠DAC,(2)设∠DAC=α=∠BAE,∠C=β,∴∠ABC=∠ADB=α+β,∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC,∴∠EAC=2β,∵AF平分∠EAC,∴∠FAC=∠EAF=β,∴∠FAC=∠C,∠ABE=∠BAF=α+β,∴AF=FC,AF=BF,∴AF=BC=BF,∵∠ABE=∠BAF,∠BGA=∠BAC=90°,∴△ABG∽△BCA,∴∵∠ABE=∠BAF,∠ABE=∠ADB,∴△ABF∽△DBA,∴,且AB=kBD,AF=BC=BF,∴k=,即,∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°,∴∠ABH=∠C,且∠BAC=∠BAC,∴△ABH∽△ACB,∴,∴AB2=AC×AH设BD=m,AB=km,∵,∴BC=2k2m,∴AC==km,∴AB2=AC×AH,(km)2=km×AH,∴AH=,∴HC=AC﹣AH=km﹣=,∴。

几何的五大模型

几何的五大模型
解析:
利用燕尾定理,连接FC,BFD面积/BFC面积=DE/EC=1/2,如果BFD面积为1份的话,BFC为2份;又DF=FG,所以BFG面积与BFD面积相等也是1份,故FGC面积是2-1=1份,那么BG=GC;再利用燕尾定理,DFC的面积与DFB相等也是1份,BDC的面积是4份=6,故一份面积是6/4=1.5,阴影部分是1+2/3=5/3份,面积是1.5×5/3=2关系是一样的。)
四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
解析:
因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50厘米2。
几何的五大模型
一、等积变换模型
1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型
显然,最大的三角形的面积为21公顷.
解析:
如图所示,设上底为a,则下底为2a,梯形的高为h,则EF= (a+2a)= ,所以,
。所以
阴影部分
= 即 ,梯形 ABCD的面积=
如下图所示,为了方便叙述,将某些点标上字母.

相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型(解析版)

相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型(解析版)

相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型梅内劳斯(Menelaus,公元98年左右),是希腊数学家兼天文学家,梅涅劳斯定理是平面几何中的一个重要定理。

梅涅劳斯(定理)模型:如图1,如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF FB ⋅BDDC⋅CEEA=1.这条直线叫△ABC的梅氏线,△ABC叫梅氏三角形.梅涅劳斯定理的逆定理:如图1,若F、D、E分别是△ABC的三边AB、BC、CA或其延长线的三点,如果AF FB⋅BD DC ⋅CEEA=1,则F、D、E三点共线.图1图2塞瓦(G·Gevo1647-1734)是意大利数学家兼水利工程师.他在1678年发表了一个著名的定理,后世以他的名字来命名,叫做塞瓦定理。

塞瓦(定理)模型:塞瓦定理是指在△ABC内任取一点G,延长AG、BG、CG分别交对边于D、E、F,如图2,则AFFB⋅BDDC⋅CEEA=1。

注意:①梅涅劳斯(定理)与塞瓦(定理)区别是塞瓦定理的特征是三线共点,而梅涅劳斯定理的特征是三点共线;②我们用梅涅劳斯(定理)与塞瓦(定理)解决的大部分问题,也添加辅助线后用平行线分线段成比例和相似来解决。

1(2023.浙江九年级期中)如图,在△ABC中,AD为中线,过点C任作一直线交AB于点F,交AD于点E,求证:AE:ED=2AF:FB.【解析】∵直线FEC是△ABD的梅氏线,∴AEED⋅DCBC⋅BFFA=1.而DCBC=12,∴AEED⋅12⋅BFFA=1,即AEED=2AFBF.【点睛】这道题也是梅氏定理的直接应用,但是对于梅氏定理的应用的难点,在于找梅氏线.2(2023.重庆九年级月考)如图,在△ABC中,∠ACB=90°,AC=BC.AM为BC边上的中线,CD⊥AM于点D,CD的延长线交AB于点E.求AEEB.【解析】∵HFC 是△ABD 的梅氏线,由题设,在Rt △AMC 中,CD ⊥AM ,AC =2CM ,由射影定理AD DM =AD ⋅AM DM ⋅AM =AC 2CM 2=4.对△ABM 和截线EDC ,由梅涅劳斯定理,AE EB ⋅BC CM ⋅MD DA =1,即AE EB ⋅21⋅14=1.∴AEEB =2.【点睛】这道题也是梅氏定理的直接应用,但是对于梅氏定理的应用的难点,在于找梅氏线.3(2023.湖北九年级期中)如图,点D 、E 分别在△ABC 的边AC 、AB 上,AE =EB ,AD DC=23,BD 与CE 交于点F ,S △ABC =40.求S AEFD .【解析】对△ECA 和截线BFD ,由梅氏定理得:EF FC ⋅CD DA ⋅AB BE=1,即EF FC ⋅32⋅21=1,∴EF FC =13.∴S △BFE =14S △BEC =18S △ABC .∴S AEFD =S △ABD -S △BEF =25-18 S △ABC =1140⋅40=11.【点睛】这道题主要考查梅氏定理和面积问题.4(2023.江苏九年级月考)已知AD 是△ABC 的高,点D 在线段BC 上,且BD =3,CD =1,作DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF 并延长,交BC 的延长线于点G ,求CG .【解析】如图,设CG =x ,EFG 是△ABC 的梅氏线.则由梅涅劳斯定理4+x x ⋅CF FA ⋅AEEB=1.显然的CF FA =DC 2AD 2,AE EB =AD 2BD 2,于是19⋅4+x x =1,得x =12.【点睛】这道题主要考查梅内劳斯定理和射影模型的综合.5(2023.广东九年级专项训练)如图,在△ABC 中,∠A 的外角平分线与边BC 的延长线交于点P ,∠B 的平分线与边CA 交于点Q ,∠C 的平分线与边AB 交于点R ,求证:P 、Q 、R 三点共线.【解析】AP是∠BAC的外角平分线,则BPPC=ABCA ①BQ是∠ABC的平分线,则CQQA=BCAB ②CR是∠ACB的平分线,则ARRB =CABC ③①×②×③得BPPC⋅CQQA⋅ARRB=ABCA⋅BCAB⋅CABC=1,因R在AB上,Q在CA上,P在BC的延长线上,则根据梅涅劳斯定理的逆定理得:P、Q、R三点共线.【点睛】这道题主要考查梅氏定理和角平分线定理的综合应用.6(2023上·广东深圳·九年级校联考期中)梅涅劳斯(Menelaus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图1,如果一条直线与△ABC的三边AB,BC,CA或它们的延长线交于F、D、E三点,那么一定有AFFB⋅BDDC⋅CEEA=1.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图2,过点A作AG∥BC,交DF的延长线于点G,则有AFFB=AGBD,CEEA=CDAG,∴△AGF∽△BDF,△AGE∽△CDE,∴AFFB ⋅BDDC⋅CEEA=AGBD⋅BDDC⋅CDAG=1.请用上述定理的证明方法解决以下问题:(1)如图3,△ABC 三边CB ,AB ,AC 的延长线分别交直线l 于X ,Y ,Z 三点,证明:BX XC ⋅CZ ZA ⋅AYYB=1.请用上述定理的证明方法或结论解决以下问题:(2)如图4,等边△ABC 的边长为3,点D 为BC 的中点,点F 在AB 上,且BF =2AF ,CF 与AD 交于点E ,试求AE 的长.(3)如图5,△ABC 的面积为4,F 为AB 中点,延长BC 至D ,使CD =BC ,连接FD 交AC 于E ,求四边形BCEF 的面积.【答案】(1)详见解析;(2)AE =343;(3)83【分析】(1)过点C 作CN ∥XZ 交AY 于点N ,根据平行线分线段成比例定理列出比例,化简计算即可.(2)根据定理,勾股定理,等边三角形的性质解答即可.(3)根据定理,计算比值,后解答即可.【详解】(1)证明:如图,过点C 作CN ∥XZ 交AY 于点N ,则BX XC =BY YN ,CZ ZA =YN AY.故:BX XC ⋅CZ ZA ⋅AY YB =BY YN ⋅YN AY ⋅AY YB =1.(2)解:如图,根据梅涅劳斯定理得:AF FB ⋅BD DC ⋅DEEA=1.又∵BF =2AF ,∴∴AF BF =12,BCCD =2,∴DE =AE .在等边△ABC 中,∵AB =3,点D 为BC 的中点,∴AD ⊥BC ,BD =CD =32.∴由勾股定理知:AD =323∴AE =343.(3)解:∵线段DEF 是△ABC 的梅氏线,∴由梅涅劳斯定理得,AF FB ⋅BD DC ⋅CE EA =1,即11×21×CE EA =1,则CE EA=12.如图,连接FC ,S △BCF =12S △ABC ,S △CEF =16S △ABC ,于是S 四边形BCFF =S △BCF +S △CEF =23S △ABC =23×4=83.【点睛】本题考查了平行线分线段成比例定理,勾股定理,等边三角形的性质,三角形面积的计算,熟练掌握定理是解题的关键.7(2023.山东九年级月考)如图:P ,Q ,R 分别是△ABC 的BC ,CA ,AB 边上的点.若AP ,BQ ,CR 相交于一点M ,求证:BP PC ⋅CQ QA ⋅ARRB=1.证明:如图,由三角形面积的性质,有AR RB =S △AMC S △BMC ,BP PC =S △AMB S △AMC ,CQ QA =S △BMC S △AMB .以上三式相乘,得BP PC ⋅CQ QA ⋅ARRB=1.8(2023.浙江九年级期中)如图,在锐角△ABC 中,AD 是BC 边上的高线,H 是线段AD 内任一点,BH 和CH 的延长线分别交AC 、AB 于E 、F ,求证:∠EDH =∠FDH 。

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2 -c(c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

模型分解定理

模型分解定理

模型分解定理模型分解定理,又称为模型分解原理或模型分解方法,是一种将复杂问题分解为较简单子问题的方法。

它是数学建模中常用的一种技巧,有助于提高问题求解的效率和精度。

模型分解定理的基本思想是将一个复杂的问题分解为多个相对简单的子问题,然后通过求解这些子问题来获得原始问题的解。

模型分解定理的应用领域非常广泛,包括运筹学、控制论、经济学、物理学等等。

在这些领域中,问题往往很复杂,涉及到多个因素、多个变量的相互关系,通过模型分解定理将问题分解为若干个相对简单的子问题,可以更好地理解问题的本质,并找到最优的解决方案。

模型分解定理的核心就是将一个复杂的问题拆分为若干个单一子问题。

这些子问题通常可以独立求解,然后再将它们的解组合起来得到原问题的解。

在实际应用中,可以根据问题的特点选择不同的分解方法。

一种常见的分解方法是将问题分解为层次结构。

这种方法通常适用于问题的因果关系比较明确的情况。

将问题划分为上下层次,上层次问题的解决依赖于下层次问题的解决。

通过这种方式,可以将复杂的问题逐步简化,使得问题的求解更加直观和清晰。

另一种常见的分解方法是将问题分解为多个子系统。

这种方法适用于问题的多个部分之间存在明确的耦合关系的情况。

通过将问题分解为多个子系统,在每个子系统中分别求解,然后将各个子系统的解组合起来得到原问题的解。

这种方法可以减少复杂度,提高求解效率。

模型分解定理的优势在于它可以将一个复杂的问题分解为多个独立求解的子问题,这样就可以利用已有的方法和技术来解决每个子问题。

这样不仅可以提高问题的求解效率,还可以降低问题的求解难度。

然而,模型分解定理也存在一些限制。

首先,问题的分解可能导致信息的丢失,使得问题的求解结果并不完全准确。

其次,问题的分解可能增加了问题的复杂度和难度,导致求解过程变得困难。

最后,模型分解定理需要合理划分子问题的边界,而这通常是一个主观的过程,可能会引入人为的误差。

总的来说,模型分解定理是一种有效的问题求解方法,能够将复杂问题分解为多个较为简单的子问题,从而提高问题的求解效率和精度。

模型27 托勒密定理(解析版)

模型27 托勒密定理(解析版)

模型介绍1.托勒密定理:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.翻译:在四边形ABCD 中,若A 、B 、C 、D 四点共圆,则AC BD AB CD AD BC ⋅=⋅+⋅.证明:在线段BD 上取点E ,使得∠BAE =∠CAD ,易证△AEB ∽△ADC ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅,当∠BAE =∠CAD 时,可得:∠BAC =∠EAD ,易证△ABC ∽△AED ,∴AD DE AC CB=,即AC DE AD BC ⋅=⋅,∴AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴AC BD AB CD AD BC ⋅=⋅+⋅.2.(托勒密不等式):对于任意凸四边形ABCD ,有AC BD AB CD AD BC⋅≤⋅+⋅证明:如图1,在平面中取点E 使得∠BAE =∠CAD ,∠ABE =∠ACD ,易证△ABE ∽△ACD ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅①,连接DE ,如图2,∵AB AE AC AD =,∴AB AC AE AD=,又∠BAC =∠BAE +∠CAE =∠DAC +∠CAE =∠DAE ,∴△ABC ∽△AED ,∴AD DE AC BC=,即AC DE AD BC ⋅=⋅②,将①+②得:AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴()AC BD AC BE DE AB CD AD BC⋅≤⋅+=⋅+⋅即AC BD AB CD AD BC ⋅≤⋅+⋅,当且仅当A 、B 、C 、D 共圆时取到等号.3.托勒密定理在中考题中的应用(1)当△ABC 是等边三角形时,如图1,当点D 在弧AC 上时,根据托勒密定理有:DB AC AD BC AB CD ⋅=⋅+⋅,又等边△ABC 有AB =AC =BC ,故有结论:DB DA DC =+.证明:在BD 上取点E 使得DE =DA ,易证△AEB ∽△ADC ,△AED ∽△ABC ,利用对应边成比例,可得:DB DA DC =+.如图2,当点D 在弧BC 上时,结论:DA =DB +DC .【小结】虽然看似不同,但根据等边的旋转对称性,图1和图2并无区别.(2)当△ABC 是等腰直角三角形,如图3,当点D 在弧BC 上时,根据托勒密定理:AD BC AB CD AC BD ⋅=⋅+⋅,又::1:1:2AB AC BC =,代入可得结论:2AD BD CD =+.如图4,当点D 在弧AC 上时,根据托勒密定理:AD BC AB CD AC BD ⋅=⋅+⋅,又::1:1:2AB AC BC =,代入可得结论:2BD AD CD =+.(3)当△ABC 是一般三角形时,若记BC :AC :AB =a :b :c ,根据托勒密定理可得:a AD b BD c CD⋅=⋅+⋅例题精讲【例1】.如图,正五边形ABCDE 内接于⊙O ,AB =2,则对角线BD 的长为1+.解:如图,连接AD、AC.∵五边形ABCDE是正五边形,∴△ABC≌△DCB≌△AED(SAS),∴设BD=AC=AD=x.在圆内接四边形ABCD中,由托勒密定理可得:AB•CD+AD•BC=AC•BD,即2×2+x•2=x2,解得:x1=1+,x2=1﹣(舍去).∴对角线BD的长为1+.故答案为:1+.变式训练【变式1-1】.先阅读理解:托勒密(Ptolemy古希腊天文学家)定理指出:圆内接凸四边形两组对边乘积的和等于两条对角线的乘积.即:如果四边形ABCD内接于⊙O,则有AB•CD+AD•BC=AC•BD.再请完成:(1)如图1,四边形ABCD内接于⊙O,BC是⊙O的直径,如果AB=AC=,CD=1,求AD的长.(2)在(1)的条件下,如图2,设对边BA、CD的延长线的交点为P,求PA、PD的长.解:(1)∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∵AB=AC=,∴△ABC是等腰直角三角形,∴BC=AB=,∴BD===3,∵圆内接凸四边形两组对边乘积的和等于两条对角线的乘积,即:如果四边形ABCD内接于⊙O,则有AB•CD+AD•BC=AC•BD,即×1+AD×=×3,解得:AD=;(2)∵∠PAD=∠PCB,∠P=∠P,∴△PAD∽△PCB,∴==,设PA=x,PD=y,则==,解得:x=,y=,∴PA=,PD=.【变式1-2】.如图1,已知⊙O内接四边形ABCD,求证:AC•BD=AB•CD+AD•BC.证明:如图1,在BD上取一点P,连接CP,使∠PCB=∠DCA,即使∠1=∠2.∵在⊙O中,∠3与∠4所对的弧都是,∴∠3=∠4.∴△ACD∽△BCP.∴=.∴AC•BP=AD•BC.①又∵∠2=∠1,∴∠2+∠7=∠1+∠7.即∠ACB=∠DCP.∵在⊙O中,∠5与∠6所对的弧都是,∴∠5=∠6.∴△ACB∽△DCP.…(1)任务一:请你将“托勒密定理”的证明过程补充完整;(2)任务二:如图2,已知Rt△ABC内接于⊙O,∠ACB=90°,AC=6,BC=8,CD 平分∠ACB交⊙O于点D,求CD的长.解:(1)补全证明:∴,∴AC•DP=AB•DC②,∴①+②得:AC•BP+AC•DP=AD•BC+AB•DC,∴AC•(BP+DP)=AD•BC+AB•DC,即AC•BD=AD•BC+AB•DC,(2)∵∠ACB=90°,AC=6,BC=8,∴∠ADB=90°,AB==10,∵CD平分∠ACB交⊙O于点D,∴∠BCD=∠ACD,∴BD=AD,∵∠ADB=90°,∴∠ABD=45°,∴BD=AD=AB•sin45°=5,∵四边形ABCD内接于⊙O,∴AB•CD=AC•BD+AD•BC,即10CD=6×+8×5,∴CD=7.【例2】.托勒密定理:圆的内接四边形两对对边乘积的和等于两条对角线的乘积.已知:如图1,四边形ABCD内接于⊙O.求证:AB⋅DC+AD⋅BC=AC⋅BD.证明:如图2,作∠BAE=∠CAD,交BD于点E,……∴△ABE∽△ACD,∴AB•DC=AC•BE,……∴△ABC∽△AED,∴AD•BC=AC•ED,∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.(1)请帮这位同学写出已知和求证,并完成证明过程;(2)如图3,已知正五边形ABCDE内接于⊙O,AB=1,求对角线BD的长.(1)解:已知:如图1,四边形ABCD内接于⊙O,求证:AB•DC+AD⋅BC=AC•BD,故答案为:四边形ABCD内接于⊙O,AB•DC+AD•BC=AC•BD;证明:如图2,作∠BAE=∠CAD,交BD于点E,∵,∴∠ABE=∠ACD,∴△ABE∽△ACD,∴=,∴AB⋅DC=AC⋅BE.∵,∴∠ACB=∠ADE.∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∴△ABC∽△AED,∴,∴AD⋅BC=AC⋅ED,∴AB⋅DC+AD⋅BC=AC⋅BE+AC⋅ED=AC(BE+ED)=AC⋅BD,即AB•DC+AD•BC=AC•BD;(2)解:在图3中,连接AD、AC.∵五边形ABCDE是正五边形,∴△ABC≌△DCB≌△AED,∴设BD=AC=AD=x.在圆内接四边形ABCD中,由托勒密定理可得:AB•CD+AD•BC=AC•BD,即1×1+x•1=x2,解得,(舍去),∴对角线BD的长为.变式训练【变式2-1】.已知:如图1,四边形ABCD内接于⊙O.求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵=,∠ABE=∠ACD,∴△ABE∽△ACD,∴,∴AB•CD=AC•BE;∵=,∴∠ACB=∠ADE(依据1),∵∠BAE=∠CAD,∴∠BAC=∠EAD,∴△ABC∽△AED(依据2),∴,∴AD•BC=AC•ED;∴AB•CD+AD•BC=AC•(BE+ED),即AB•CD+BC•AD=AC•BD.(1)上述证明过程中的“依据1”是指同弧所对的圆周角相等;“依据2”是指两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们熟知的勾股定理.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是的中点,求AC的长.解:(1)上述证明过程中的“依据1”是同弧所对的圆周角相等.“依据2”是两角分别相等的两个三角形相似.故答案为:同弧所对的圆周角相等;两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,则AB=CD,AD=BC,AC=BD,∵AB•CD+AD•BC=AC•BD,∴AB2+AD2=BD2,托勒密定理就是我们非常熟知的一个定理:勾股定理,故答案为:勾股.(3)连接BD,作CE⊥BD于E.∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵,∴CD=CB,∴∠CDB=30°,在Rt△CDE中,cos30°=,∴DE=CD,∴BD=2DE=CD,由托勒密定理:AC•BD=AD•BC+CD•AB,∴AC•CD=3CD+5CD,∴AC=,答:AC的长为.【变式2-2】.圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为AC•BD=AB•CD+BC•AD.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.解:(1)由托勒密定理可得:AC•BD=AB•CD+BC•AD 故答案为:AC•BD=AB•CD+BC•AD(2)如图,连接AC∵∠COD=120°,∴∠CBD=∠CAD=60°∵BD平分∠ABC∴∠ABD=∠CBD=60°∴∠ACD=60°,∴△ACD是等边三角形∴AC=AD=CD,∵四边形ABCD是圆内接四边形∴AC•BD=AB•CD+BC•AD∴BD=AB+BC1.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,对角线交于点O,连接AO,如果AB=4,AO=4,那么AC的长等于()A.12B.16C.4D.8解:在AC上截取CG=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90°,∴OB=OC,∠BAC=∠BOC=90°,∴B、A、O、C四点共圆,∴∠ABO=∠ACO,在△BAO和△CGO中,∴△BAO≌△CGO(SAS),∴OA=OG=4,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90°,∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形,由勾股定理得:AG==8,即AC=AG+CG=8+4=12.故选:A.2.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.解:解法一、∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵∠BAD=60°,AC平分∠BAD,∴∠CAD=∠CAB=30°,如图1,将△ACD绕点C逆时针旋转120°得△CBE,则∠E=∠CAD=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=×(5+3)=4,在Rt△AMC中,AC===;解法二、过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CBE,在△CBE和△CDF中∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=3,AD=5,∴AE=AF=x+3,∴5=x+3+x,解得:x=1,即AE=4,∴AC==,故答案为:.3.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为1.解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴=,∴BE==1.故答案为:1.4.如图,P是正方形ABCD内一点,CP=CD,AP⊥BP,则的值为.解:如图,过点D作AP垂线交AP延长线于E,∵四边形ABCD是正方形,CP=CD,∴BC=CP=CD,∴∠PBC=∠BPC,∠DPC=∠PDC,设∠PCD=x,则∠BPC=,∠DPC=,∴∠BPD=45°+90°=135°,∵AP⊥BP,∴∠APD=360°﹣135°﹣90°=135°,∴∠DPE=45°,设DE=PE=y,∴DP==y,∵∠DAE+∠BAP=∠BAP+∠ABP=90°,∴∠DAE=∠ABP,在△DAE与△ABP中,,∴△APB≌△DEA(AAS),∴AP=DE=y,∴==.故答案为:.5.如图,正方形ABCD的边长是6,对角线的交点为O,点E在边CD上且CE=2,CF⊥BE,连接OF,则:(1)∠OFB45°;(2)OF=.解:(1)在BE上截取BG=CF,∵在正方形ABCD,AC⊥BD,∠ABC=∠BCD=90°,AC=BD,BO=BD,CO=AC,AC、BD分别平分∠ABC、∠BCD,∴BO=CO,∠BOC=90°,∠OBC=∠OCD=45°,∵CF⊥BE,∴∠CFE=90°,∴∠FEC+∠ECF=90°,∵∠EBC+∠FEC=90°,∴∠EBC=∠ECF,∴∠OBC﹣∠EBC=∠OCD﹣∠ECF,∴∠OBG=∠FCO,∴△OBG≌△OCF(SAS),∴∠BOG=∠FOC,OG=OF,∴∠GOC+∠COF=90°,∴∠OFG=∠OGF=45°,故答案为:45°;(2)在Rt△BCE中,根据勾股定理,得BE=2,∴CF=BG==,在Rt△FCE中,根据勾股定理,得EF=,∴GF=BE﹣BG﹣EF=,在Rt△FCE中,根据勾股定理,得OF=,故答案为:.6.如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,过点D作DE⊥DF,交BA的延长线于点E,交AC的延长线于点F.若CF=,AC=4,AB=2.则AE=10.解:延长FD至G,使GD=FD,连接BG,如图所示:∵D为BC的中点,∴BD=CD,在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=CF=,∠G=∠F,∴BG∥CF,∴△BGH∽△AFH,∴====,∴=,AH=AB=,∵∠BAC=90°,AF=AC+CF=,∴HF==,∴DH=FH=,∵DE⊥DF,∴∠EDH=90°=∠BAC,∴∠E+∠EHD=∠F+∠EHD=90°,∴∠E=∠F,∴△DHE∽△AHF,∴=,即=,解得:HE=,∴AE=HE﹣AH=﹣=10;故答案为:10.7.设△ABC是正三角形,点P在△ABC外,且与点A在直线BC异侧,∠BPC=120°,求证:PA=PB+PC.解:如图,延长BP至E,使PE=PC,连接CE,∵∠BAC+∠BPC=180°,且∠BAC=60°,∴∠BPC=120°,∴∠CPE=60°,又PE=PC,∴△CPE为等边三角形,∴CP=PE=CE,∠PCE=60°,∵△ABC为等边三角形,∴AC=BC,∠BCA=60°,∴∠ACB=∠PCE,∴∠ACB+∠BCP=∠PCE+∠BCP,即:∠ACP=∠BCE,∵在△ACP和△BCE中,,∴△ACP≌△BCE(SAS),∴AP=BE,∵BE=BP+PE,∴PA=PB+PC.8.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P为圆上一个动点.求2PC+PE的最小值.解:延长OA到K,使AK==2.∵C是AO的中点,∴OC=OA=1,∴=.又∵∠COP=∠POK,∴△COP∽△POK,∴,即PK=2PC.∴2PC+PE=PE+PK≥EK.作EH⊥BC于点H.∵在直角△COD中,cos∠DOC=,∴∠DOC=60°,∴∠EOH=∠DOC=60°,∴HE=OE•sin60°=2×,∴EK=.即最小值是2.故答案是:2.9.如图,点P为等边△ABC外接圆,劣弧为BC上的一点.(1)求∠BPC的度数;(2)求证:PA=PB+PC.(1)解:∵四边形ABPC内接于圆,∴∠BAC+∠BPC=180.∵等边三角形ABC中,∠BAC=60°,∴∠BPC=120°;(2)证明:延长BP到D,使得DP=PC,连接CD.∵∠BPC=120,∴∠CPD=60.又∵PC=PD,∴△PCD是等边三角形,∴PC=CD,∠PCD=60°,∴∠ACM+∠MCP=PCD+∠MCP,即∠ACP=∠BCD.∵等边三角形ABC中,∴BC=AC.∵所对的圆周角是∠DBC与∠PAC,∴∠DBC=∠PAC.在△DBC和△PAC中,,∴△DBC≌△PAC(ASA),∴AP=BD.∵BD=BP+DP,∴AP=BP+DP,∵DP=PC,∴PA=PB+PC.10.如图,⊙O的直径AB的长为10,弦BD的长为6,点C为上的一点,过点B的切线EF,连接AD,CD,CB;(1)求证:∠CDB=∠CBF;(2)若点D为的中点,求CD的长.(1)证明:连接AC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∴∠1+∠2=90°,∵EF为⊙O的切线,∴AB⊥EF,∴∠ABF=90°,即∠2+∠CBF=90°,∴∠1=∠CBF,∵∠1=∠CDB,∴∠CDB=∠CBF;(2)解:作CM⊥AD于M,CN⊥DB于N,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴AD===8,∵点C为的中点,∴∠ADC=∠BDC,∴CA=CB,CM=CN,在Rt△ACM和Rt△BCN中,∴Rt△ACM≌Rt△BCN,∴AM=BN,即AD﹣AM=DN﹣BD,∴AM+DN=AD+BD=8+6=14,∵四边形CMDN为矩形,CM=CN,∴四边形CMDN为正方形,∴DM=DN=7,∴CD=DM=7.11.阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:勾股定理.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.解:(1)上述证明过程中的“依据1”是同弧所对的圆周角相等.“依据2”是两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,则AB=CD,AD=BC,AC=BD,∵AB•CD+AD•BC=AC•BD,∴AB2+AD2=BD2,托勒密定理就是我们非常熟知的一个定理:勾股定理,故答案为勾股定理.(3)连接BD,作CE⊥BD于E.∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵=,∴CD=CB,∴∠CDB=30°,在Rt△CDE中,cos30°=,∴DE=CD,∴BD=2DE=CD,由托勒密定理:AC•BD=AD•BC+CD•AB,∴AC•CD=3CD+5CD,∴AC=,答:AC的长为.12.在学习了《圆》和《相似》的知识后,小明自学了一个著名定理“托勒密定理:圆内接四边形对角线的乘积等于两组对边乘积之和.”(1)下面是小明对托勒密定理的证明和应用过程,请补充完整.已知:四边形ABCD内接于⊙O.求证:AC•BD=AB•CD+AD•BC.证明:作∠CDE=∠BDA,交AC于点E,∵⊙O中,∠1=∠2,∴△ABD∽△ECD(两角对应相等,两三角形相似).∴.∴AB•CD=BD•EC①,.又∵∠BDA+∠3=∠CDE+∠3,即∠ADE=∠BDC,∴△DAE∽△DBC(两边对应成比例且夹角相等,两三角形相似).∴.∴AD•BC=BD•AE②.∴AB•CD+AD•BC=BD(EC+AE),∴AB•CD+AD•BC=AC•BD.(2)利用托勒密定理解决问题:是否存在一个圆内接四边形,它的两条对角线长为5和,一组对边长为1和3,另一组对边的和为4.若存在,求出未知的两边;若不存在,说明理由.(1)证明:作∠CDE=∠BDA,交AC于点E,∵⊙O中,∠1=∠2,∴△ABD∽△ECD(两角对应相等,两三角形相似).∴.∴AB•CD=BD•EC①,∴.又∵∠BDA+∠3=∠CDE+∠3,即∠ADE=∠BDC,∴△DAE∽△DBC(两边对应成比例且夹角相等,两三角形相似).∴.∴AD•BC=BD•AE②.∴AB•CD+AD•BC=BD(EC+AE),∴AB•CD+AD•BC=AC•BD.故答案为:两角对应相等,两三角形相似,DAE,DBC,两边对应成比例且夹角相等,两三角形相似,AB•CD+AD•BC=BD(EC+AE);(2)不存在,理由如下:设未知的两边分别为:a,4﹣a,由托勒密定理可得:5×=1×3+a(4﹣a),∴(a﹣2)2=7﹣5<0,∴方程无解,∴不存在这样的一个圆内接四边形.13.阅读下列相关材料,并完成相应的任务.布拉美古塔定理婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边.某数学兴趣小组的同学写出了这个定理的已知和求证.已知:如图,在圆内接四边形ABCD中,对角线AC⊥BD,垂足为P,过点P作AB的垂线分别交AB,DC于点H,M.求证:M是CD的中点任务:(1)请你完成这个定理的证明过程.(2)该数学兴趣小组的同学在该定理的基础上写出了另外一个命题:若圆内接四边形的对角线互相垂直,则一边中点与对角线交点的连线垂直于对边请判断此命题是真命题.(填“真”或“假”)(3)若PD=2,HP=,BP=3,求MH的长.(1)证明:∵AC⊥BD,∴∠APB=∠CPD=90°,∴∠ABP+∠BAP=90°,∵PH⊥AB,∴∠BAP+∠APH=90°,∴∠ABP=∠APH,∴∠MPC=∠APH,∵=,∴∠ABP=∠ACD,∴∠PCM=∠MPC,∴PM=MC,同理可得,PM=DM,∴DM=CM,∴M是CD的中点;(2)若圆内接四边形的对角线互相垂直,则一边中点与对角线交点的连线垂直于对边,理由如下:已知:如图,在圆内接四边形ABCD中,对角线AC⊥BD,垂足为P,M是CD的中点,连接MP交AB于点H,求证:PH⊥AB;证明:∵M是CD的中点;∴DM=CM=PM,∴∠PCM=∠MPC,∵=,∴∠ABP=∠PCM,∵∠MPC=∠APH,∴∠MPC=∠APH,∴∠APH+∠HPB=∠ABP+∠HPB=90°,∴PH⊥AB;故答案为:真;(3)解:∵BP=3,HP=,∴BH=,∴sin∠HBP=,∵∠ABP=∠PCD,∴==,∴CD=2,∵M是CD的中点,∴PM=CD=,∴MH=2.14.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.15.问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC.问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.解:(1)利用尺规作图,过点A作BC的垂线,交BC于D,则点D即为所求;(2)由托勒密定理得,PA•BC=PB•AC+PC•AB,∵△ABC为正三角形,∴AB=BC=AC,∴PA•BC=PB•BC+PC•BC,∴PA=PB+PC;(3)以BC为边作正△BCD,使点D与点A在BC两侧,作△BCD的外接圆,连接AD交圆于P,连接PB,作DE⊥AC交AC的延长线于E,则点P即为所求,由(2)得,PD=PB+PC,∴P到A、B、C三点的距离之和=DA,且距离之和最小,∵CD=BC=30,∠DCE=∠BCE﹣∠BCD=30°,∴DE=CD=15,由勾股定理得,CE==15,则AD==30,答:P到A、B、C三点的距离之和最小值为30m.16.(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD =AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是BD=CD+2AD.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是BD=CD+AD.解:(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DM=AD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM=AD,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;【探究2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴BM=CD,∴BD=BM+DM=CD+2AD;故答案为:BD=CD+2AD;(3)拓展猜想:BD=BM+DM=CD+AD;理由:如图④,∵若BC是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠BAM=∠DAC,∴△ABM∽△ACD,∴=,∴BM=CD,∵∠ADB=∠ACB,∠BAC=∠MAD=90°,∴△ADM∽△ACB,∴==,∴DM=AD,∴BD=BM+DM=CD+AD.故答案为:BD=CD+AD17.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB =∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,连接AE,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.18.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=3.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD 的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是PQ=AC或PQ=AC.解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D顺时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④由(2)的证明过程可知:AC+=D1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+CD2=D1D2,∴CD2=m2+n2﹣=,∵m<n,∴CD=;(4)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a+a,∴PQ=AC;当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.。

沙漏模型的公式及定理推导

沙漏模型的公式及定理推导

沙漏模型的公式及定理推导沙漏模型,或称为沙漏问题,是数学上的一个经典问题,它涉及到时间的问题以及两个容器之间物质的运动。

本文将从基本公式开始,逐步推导出沙漏模型的定理。

首先,我们定义一个沙漏模型,它由两个等高、相连的圆锥形容器构成。

这两个圆锥形容器的上底和下底的圆面积分别为A1和A2,两底的半径分别为r1和r2,容器的高度为h。

现在,我们考虑在这两个容器之间运动的物质。

假设容器中有一固定量的物质,我们用V表示它的体积。

由于沙漏两底的扁平性,在任意时刻,容器中的物质会形成一个沙漏形状,即物质在两个容器之间形成的界面是一个水平的面积为A的圆环。

这个圆环的半径我们用r表示。

那么,根据圆锥容器的几何关系,我们可以得到以下公式:V=A1*h1+A2*h2其中h1和h2分别表示物质在两个容器中的高度。

根据沙漏的形状,我们可以通过几何关系得到r和h之间的关系:h=h1+h2r1/h1=r/h=r2/h2将r1/h1和r2/h2两个式子分别代入第一个式子得:V=A1*h1+A2*(h-h1)V=A1*h1+A2*(h-r1*h1/r2)进一步化简得到:V=(A2*r1/r2-A2)*h1+A2*h为了推导出沙漏模型的定理,我们需要引入一个前提,即V和A是已知量。

通过观察发现,在V和A不变的情况下,h1和h2之间存在一个最大最小关系。

也就是说,当我们改变h1时,h2会相应地发生变化,而他们的乘积h1*h2是一个常数。

这个常数我们用K来表示。

由此,我们可以得到以下公式:K=h1*h2接下来,我们来证明K的常数性质。

将h2的值代入到K的公式中得:K=h1*(h-h1)对K求导:dK / dh1 = 1 * (h - 2h1)要使得K为常数,即dK / dh1 = 0,我们得到h1的取值:h1=h/2这说明当沙漏呈现对称形状时,容器中的物质分布是处于均衡状态的。

因此,根据以上推导,我们得出沙漏模型的定理:在一个呈沙漏形状的容器中,当物质量V和沙漏截面面积A都是已知量时,物质在容器中的分布会处于一个均衡状态。

[整理版]模型论定理概述

[整理版]模型论定理概述

模型论文章整理编辑:论文文库工作室(QQ1548927986)论文写作发表辅导数学上,模型论是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。

粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。

比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如×, +, −, ., 0, 1。

若我们在该语言中问"∃ y (y × y = 1 + 1)"这样一个问题,显然该陈述对实数而言成立- 确实存在这样的一个实数y, 即所谓2的平方根;对于有理数,该陈述却并不成立。

一个类似的命题,"∃ y (y × y = 0 − 1)",在实数中不成立,却在复数中成立,因为i × i = 0 − 1。

模型论- 定义结构被形式的定义于某个语言L 的上下文中,它由常量符号的集合,关系符号的集合,和函数符号的集合组成。

在语言L上的结构,或L-结构,由如下东西组成:一个全集或底层集合A,它包含所有感兴趣的对象("论域"),给L 的每个常量符号一个在A 中元素,给L 的每个n 价函数符号一个从An 到 A 的函数,和给L 的每个n 价关系符号一个在A 上的n-元关系(换句话说,An的一个子集)。

函数或关系的价有时也叫做元数(术语"一元"、"二元" 和"n-元"中的那个元)。

在语言L中的理论,或L-理论,被定义为L中的句子的集合。

如果句子的集合闭合于通常的推理规则之下,则被称为闭合理论。

例如,在某个特定L-结构下为真的所有句子的集合是一个闭合L-理论。

cap 定理

cap 定理

cap 定理CAP定理是分布式系统的一个基本理论,也被称为布局模型定理,它是一种适用于实际环境的权衡性设计理论。

CAP定理是缩写,它的三个字母分别代表了Consistency(一致性)、Availability(可用性)、Partition Tolerance(分区容错性)这三个概念。

CAP定理的核心思想是在一个分布式系统中,只能同时满足其中的两个特性,无法达到全部三个。

一致性(Consistency)指的是在分布式系统的各节点上,数据是否同步和一致。

在一个具有一致性的系统中,当一个数据的写入操作成功后,在所有的节点上读到该数据的结果都是一致的。

可用性(Availability)指的是在分布式系统内,节点集合中是否至少有一个节点处于可用状态,能够响应客户端请求。

在一个具有可用性的系统中,节点不会出现服务不可用或响应时间过长的情况。

分区容错性(Partition Tolerance)指的是一个分布式系统在网络分区时的容错性。

分区指的是在分布式系统中,节点之间的网络连接由于各种原因发生断裂,造成一些节点与其他节点无法通信。

CAP定理表述了在分布式系统中达到一致性、可用性和分区容错性三者之间的权衡关系,即不能同时满足其中的三者,只能同时满足其中的两个。

如果强制同时实现三个特性,那么只能通过牺牲其中一个来实现另外两个。

例如,如果强制一致性和可用性,那么在网络分区时,有可能会出现一部分节点不可用的情况。

在现实的实际应用中,根据对具体应用场景的需求选择相应的设计方案。

例如,对于金融行业的核心系统,一致性是最重要的,不能容忍数据的错误和不一致,因此设计应该强调一致性,尽可能降低网络分区的风险。

对于互联网应用来说,高可用性是一个更为重要的考虑因素,因为在这种场景下,许多用户的使用体验和服务可用性十分重要。

因此,设计应该强调可用性,即使在网络分区时也需要保证一部分用户能够继续使用服务,而不是选择停机维护。

当然,也有一些应用场景无法完全遵循CAP定理的规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法1:
方法2:
题型:
立体图形面积与体积
长方体
面积
体积
正方体
面积பைடு நூலகம்
体积
圆柱体
面积
体积
圆锥体
面积
体积
球形
面积
体积
求表面积
三视图画侧视图
三视图标记法
立体→平面
平面→立体
1、打地基→俯视图
2、盖楼→正视图
3、调整→侧视图
4、挖洞
5、不挖穿顶点0 1、先求整体
棱上2个2、再挖
面上4个
挖穿
一刀两面
形变体不变
立体
水中浸物
1、未完全浸入
水高2、完全浸入
3、水溢出
以上三个公式,所有水中浸物均可解决
鸟头模型
结论:
结论:
蝴蝶模型
结论:
1、
2、
梯形中的蝴蝶模型
结论:
1、
2、
3、
4、
燕尾模型:
结论
1、
2、
直角三角形
结论:
结论:
从上图延伸
图1:结论:
图2:结论:
曲线图:
1、圆:
面积:
周长:
2、扇形:
结论:弧长:
周长:
面积:
3、圆环
面积:
第一类题型:
第二类题型:
求圆环面积(相切关系):
图形分类:
弓形弯角谷子形
相关文档
最新文档