1.5.1 2020中考数学复习:《二次根式及其运算》近8年全国中考题类大全(含答案)

合集下载

二次根式中考真题及详解

二次根式中考真题及详解

二次根式知识梳理知识点1.二次根式重点:掌握二次根式的概念 难点:二次根式有意义的条件 式子a (a ≥0)叫做二次根式. 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).解题思路:运用二次根式的概念,式子a (a ≥0)叫做二次根式.答案:1)、3)、4)、5)、7)例2若式子13x -有意义,则x 的取值范围是_______. 解题思路:运用二次根式的概念,式子a (a ≥0)注意被开方数的范围,同时注意分母不能为0 答案:3x >例3若y=5-x +x -5+2009,则x+y=解题思路:式子a (a ≥0),50,50x x -≥⎧⎨-≥⎩5x =,y=2009,则x+y=2014练习1使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、若11x x ---2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3答案:1. D 2. C知识点 2.最简二次根式 重点:掌握最简二次根式的条件 难点:正确分清是否为最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.例1.在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)解题思路:掌握最简二次根式的条件,答案:C 练习.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .2答案:C知识点3.同类二次根式 重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式. 例在下列各组根式中,是同类二次根式的是( )A .3和18B .3和13C .22.11a b ab D a a +-和和解题思路:∵18=32,∴3与18不是同类二次根式,A 错.13=33, ∴3与13是同类二次根,∴B 正确.∵22||,ab b a a b ==│a │b , ∴C 错,而显然,D 错,∴选B .练习已知最简二次根式322b a b b a --+和是同类二次根式,则a=______,b=_______. 答案:a=0 ,b=2知识点4.二次根式的性质 重点:掌握二次根式的性质难点:理解和熟练运用二次根式的性质①(a )2=a (a ≥0);0(0)a a ≥≥ ②2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;例1、若()22340a b c -+-+-=,则=+-c b a .解题思路:2|2|0,30,(4)0a b c -≥-≥-≥,非负数之和为0,则它们分别都为0,则2,3,4a b c ===,=+-c b a 3oba例2、化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4解题思路:由条件则30,3a a -≥≥,运用(a )2=a (a ≥0)则2(3)3a a -=- 答案:C例3.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a解题思路:运用2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;由数轴则0a b -> , 0a b +<,则原式=a b a b ---=-2b 选A练习1.已知a<0,那么│2a -2a │可化简为( )A .-aB .aC .-3aD .3a2.如图所示,实数a ,b 在数轴上的位置,化简222()a b a b ---.3.若y x -+-324=0,则2xy= 。

2020年中考数学第一轮复习 第六节 二次根式 知识点+真题(后含答案)

2020年中考数学第一轮复习 第六节 二次根式 知识点+真题(后含答案)

2020年中考数学第一轮复习 第一章 数与式 第六节 二次根式【基础知识回顾】 一、 二次根式式子a ( )叫做二次根式 注意:①二次根式a 必须注意a_ __o 这一条件,其结果也是一个非负数即:a _ __o ,②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】 二、 二次根式的几个重要性质:①(a )2= (a≥0)= == (a≥0 ,b≥0)= (a≥0, b >0) 【注意:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a≥0)将根号外的正数移到根号内再比较被开方数的大小】三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式,2、被开方数不含 的因数或因式。

四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法与合并同类项法则相同2、二次根式的乘除:= (a≥0 ,b≥0)(a≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算 。

【注意:①、二次根式除法运算过程一般情况下是用将分母中的根号化去(分母有理化)= = ;②、二次根式混合运算过程要特别注意两个乘法公式的运用;③、二次根式运算的结果一定要化成 】(a <o ) (a ≥o )【中考真题考点例析】考点一:二次根式有意义的条件考点二:二次根式的混合运算例2 15.(2019年山东临沂)计算:21×6-tan45°= .对应练习2-1.(20190-=___________.对应练习2-2.(2019年威海)计算 -3)0+-(-)-1的结果是A .1+B .1+2C .D .1+4考点三:与二次根式有关的求值问题考点四:二次根式化简例4.( 2019年济宁)下列计算正确的是( )A 3=-B =C 6=±D .0.6=-对应练习4-1.(2019聊城中考)下列各式不成立的是( )A.= B.=C. 52== D.=参考答案考点一:二次根式有意义的条件 例1. 答案:x ≧-1且x ≠0 对应练习1-1. 答案:D 考点二:二次根式的混合运算例1.对应练习2-2. 答案:D考点三:与二次根式有关的求值问题 例3.答案:12-a ;2 对应练习3-1. 答案:1 考点四:二次根式化简 例4. 答案:D 对应练习4-1. 答案:C【聚焦中考真题】 一、选择题 1.(上海)下列式子中,属于最简二次根式的是( )A BCD .13A .x≥-2且x≠1 B .x≠1C .x≥-2D .x>-2且x≠1 4.(贵港)下列四个式子中,x 的取值范围为x≥2的是( )A .2x -B .C D 5.(曲靖)下列等式成立的是( )A .a 2•a 5=a 10B =C .(-a 3)6=a 18 DA.B+ 1 C.3D.5A.- 1B.2 C.1 -D.2 +二、填空题10.(青岛)计算:2-1= .20.+3)0-|--2-1-cos60°=____________.21.(黔西南州)阅读材料:1-5 BCACC 6-8 CBC 二、填空题9. 答案:2≤x 10. 答案:25 11. 答案:012. 答案:31≤x 13. 答案:321≠≥x x 且14. 答案:553 15. 答案:-2 (答案不唯一) 16. 答案:-2 17. 答案:9≥m 三、解答题 18. 答案:323-20. 答案:于1”可得3)0=1;④根据“11a a-=”可得2-1=12;⑤熟记特殊角的三角函数值可得sin 60°=121-12-1221. 答案: 解:(1)∵2)3(n m +,∴2+3n 2 ∴a=m 2+3n 2,b=2mn . 故答案为m 2+3n 2,2mn . (2)设m=1,n=1,∴a=m 2+3n 2=4,b=2mn=2. 故答案为4、2、1、1. (3)由题意,得: a=m 2+3n 2,b=2mn∵4=2mn ,且m 、n 为正整数, ∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.。

二次根式知识点及习题

二次根式知识点及习题

二次根式知识点一: 二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围1。

二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2。

二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数.注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值.注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。

知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而. 知识点七:二次根式的性质和最简二次根式如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等;含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等(3)最终结果分母不含根号。

二次根式知识点梳理及经典练习(超详细)

二次根式知识点梳理及经典练习(超详细)

二次根式知识点梳理及经典练习知识点1:二次根式的概念1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.题型一:二次根式的判定【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). [练一练]:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、)0(≥a a2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______题型二:二次根式有意义【例2】若式子13x -有意义,则x 的取值范围是 .[练一练]:1、使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x -+-有意义的x 的取值范围是3、如果代数式mn m 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限题型三:二次根式定义的运用[练一练]:A.-1 B.1 C.2 D.3题型四:二次根式的整数部分与小数知识点2:二次根式的性质常用到.注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.题型一:二次根式的双重非负性【例4】若()2240a c -+-=,则=+-c b a .[练一练]:1、若0)1(32=++-n m ,则m n +的值为 。

2、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ) A .3 B .– 3 C .1 D .– 13、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______.4、若1a b -+互为相反数,则()2005_____________a b -=。

二次根式题型归类讲解

二次根式题型归类讲解

二次根式题型归类讲解
二次根式是初中数学的一个重要知识点,也是中考的重点内容之一。

以下是一些常见的二次根式题型归类讲解:
1. 二次根式的化简与求值:
(1)化简二次根式:将根号下的数或式子化为最简形式,即去掉根号下的平方因子。

(2)求值:根据已知条件,求出二次根式的值。

2. 二次根式的运算:
(1)加减运算:同类二次根式可以加减,即将根号下的数或式子相加减。

(2)乘除运算:二次根式相乘,将根号下的数或式子相乘;二次根式相除,将根号下的数或式子相除。

3. 二次根式的化简求值:
(1)化简求值:先化简二次根式,再代入求值。

(2)整体代入求值:将一个式子整体代入到另一个式子中,求出二次根式的值。

4. 二次根式的混合运算:
(1)混合运算顺序:先算乘除,后算加减,有括号的先算括号里的。

(2)去括号法则:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前是“-”,把括号和它前面的“-”去掉后,原括号里各项的符号都要改变。

5. 二次根式的应用:
(1)在几何中的应用:求边长、周长、面积等。

(2)在物理中的应用:求速度、力等。

中考数学二次根式及其运算总复习试题中考题全面PPT学习教案

中考数学二次根式及其运算总复习试题中考题全面PPT学习教案

的值为( C )
A.9
B.±3
C.3
D.5
(2)(2014·德州)若 y=
x-4+ 2
4-x-2,则(x+y)y=_14___;
(3)已知|6-3m|+(n-5)2=3m-6- (m-3)n2,则 m-n
=_-__2_.
第15页/共17页
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过, 其目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中 那小小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠 脚步去丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻 彻底底的渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、 执着于“我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来 说,我们奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什 么,隐隐约约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这 人生的终局,或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花, 落了又开了,开了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中, 走过了青春年少,走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一 切顺境和逆境都学会了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够 的胸襟! 一生有多少属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了 沿途美丽的风景,淡漠了对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历 经磨砺的生命才丰盈而深刻。见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里 的际遇沉浮,走不出个人心里的藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世 界,一树一菩提,就是一粒小小的沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么? 未曾生我谁是我?生我之时我是谁?长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。

当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。

6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。

【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。

中考数学二次根式知识点及练习题含答案

中考数学二次根式知识点及练习题含答案

中考数学二次根式知识点及练习题含答案一、选择题1.下列根式是最简二次根式的是( )A .4B .21x +C .12D .40.5 2.计算32782-⨯的结果是( ) A .3 B .3- C .23 D .533.下列二次根式中,是最简二次根式的是( )A .15B .8C .13D .264.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣1 5.()555=( ) A .55+B .55+C .525+D .1056.下列运算正确的是( )A 235=B 1823=C .3223=D 1222= 7.下列算式:(1257=2)5x 2x 3x =3)8+502=4257=;(4)33a 27a 63a += ) A .(1)和(3) B .(2)和(4) C .(3)和(4) D .(1)和(4)8.下列计算正确的是( )A 366=±B .422222=C .83266=D a b ab =(a≥0,b≥0)9.1272a -是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .2 10.使式子2124x x +-x 的取值范围是( ) A .x≥﹣2 B .x >﹣2 C .x >﹣2,且x ≠2 D .x≥﹣2,且x ≠211.在式子23(0),2,1(2),2(0),3,1,2x x y y x x x x y >+=-->++中,二次根式有( )A .2个B .3个C .4个D .5个12.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .63C .18D .192二、填空题13.已知2216422x x ---=,则22164x x -+-=________.14.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________.15.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 16.如果332y x x --,那么y x =_______________________.17.化简(32)(322)+-的结果为_________.18.下列各式:2521+n ③24b 0.1y 是最简二次根式的是:_____(填序号)19.28n n 为________.20.4x -x 的取值范围是_____ 三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++=11 a ab ab a++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.像2)=1=a(a≥0)、﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)<【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣24.已知1,2y =. 【答案】1【解析】【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可.【详解】1-8x≥0,x≤18 8x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.25.-10【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y x x y+ 【答案】(1) 72;(2)8.【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xy xy+-,然后利用整体代入的方法计算. 【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+=(x+y )2-3xy,=2132-⨯=72; (2)y x x y +=2212()22812x y xy xy -⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.28.观察下列各式.====…… 根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律;(3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5==+(2(n(3)直接根据二次根式的化简即可证明.【详解】解:(1==+(2(n(3=(n==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.29.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-++-=6+.(2)原式=3434【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.30.已知长方形的长a=b=.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】可以根据最简二次根式的定义进行判断.【详解】A ,原根式不是最简二次根式;BC 2=,原根式不是最简二次根式;D 、=42=⨯= 故选B .【点睛】本题考查最简二次根式的定义,熟练掌握最简二次根式的定义及二次根式的化简方法是解题关键.2.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A .【点睛】 本题考查二次根式的运算,熟练掌握运算法则是解题关键.3.D解析:D【分析】根据最简二次根式的特点解答即可.【详解】A ,故该选项不符合题意;B =C 、D 不能化简,即为最简二次根式,故选:D .【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.4.A解析:A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A .【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小5.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.D解析:D【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.【详解】解:A A选项错误;B=B选项错误;C、=C选项错误;=,所以D选项正确.D2故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.B解析:B【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】(1(2),正确;(3,错误;(4)==故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.8.D解析:D=,故A不正确;6=,故B不正确;根据二次根式的除法,可直接得到2根据同类二次根式的性质,可知C不正确;=(a≥0,b≥0)可知D正确.故选:D9.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】≠,解:由题意得:2x-40∴≠±,2xx+≥,又∵20∴x≥-2.x≠.∴x的取值范围是:x>-2且2故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.11.B解析:B【解析】解:当y=﹣2时,y+1=﹣2+1=﹣1,∴y=-2)无意义;当x>0无意义;x >0 共3个.故选B .12.A解析:A【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==故选A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题13.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为:32. 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.14.(1)2a -2b +1;(2)3;(3)130°或50°. 【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件

中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件

1
10,则a- 的值为

±
.
6. (2022·
南通海门模拟)如图,四边形ABCD和CEFG是两个相邻的正
方形,其中B,C,E三点在同一条直线上,点D在CG上,它们的面积分
7
别为27平方米和48平方米,则BE的长为
1
2
3
4
5
6
7
米.
8
7. 计算:
(1) 48÷ 3+
1
×
2
解:原式= ÷ +
典例7 (2023·
南通二模)如图,从一个大正方形中恰好可以裁去面积为
2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中涂色部分),
则大正方形的边长为
3
cm.
典例8 (2023·
海安模拟)先化简,再求值:
4+4


+2
÷ 2 ,其中m

= 2-2.
++ + (+)
C )
1
的结果是(
3
4. (2022·
青岛)计算( 27- 12)×
A.
3
3
C. 5
B. 1
B )
D. 3
5. 已知2,5,m是某三角形三边的长,则 ( − 3)2 + ( − 7)2 的
值为(
D )
A. 2m-10

B. 10-2m
C. 10
D. 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6. (2022·
呼伦贝尔)实数a在数轴上的对应点的位置如图所示,则化简

考点01 二次根式及运算-2020-2021学年八年级数学下学期高频考点专题突破(原卷版)

考点01 二次根式及运算-2020-2021学年八年级数学下学期高频考点专题突破(原卷版)

考点1.二次根式及运算知识框架⎧⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩二次根式的概念二次根式有意义的条件二次根式的性质二次根式的除法最简二次根式与同类二次根式二次根式的加减运算二次根式的混合运算最简二次根式与同类二次根式的识别利用二次根式性质化简符号利用二次根式的性质化简二次根式的混合运算利用二次根式性质求代数式的值复合二次根式的化简含二次根式的规律探究基础知识点重难点题型二次根式的应用⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩知识点3-1二次根式的概念1)二次根式:形如a (a ≥0)叫做二次根式注:①表示的是算术平方根;②二次根式表示的是一个式子,而平方根表示的是一种运算③“2”中的“2”可以省略,“3”表示三次根式,不可省略1.(2020ꞏ浙江八年级期中)下列各式一定是二次根式的是()A BCD 2.(2020ꞏ湖北丹江口ꞏ初二期末)下列式子一定是二次根式的是()ABCD 3.(2020ꞏ涡阳县王元中学)在下列代数式中,不是二次根式的是()A BCD .4x4.(2020ꞏ大石桥市石佛中学初二期中)下列各式不是二次根式的是()A B C D 5.(2020ꞏ朝阳市第一中学初二期中)下列各式中不是二次根式的是()A B C D 知识点3-2二次根式有意义的条件1)二次根式(a )有意义的条件:被开方数(式)为非负数(a ≥0)注:①a 仅是一个表示式,可为常数、单项式、多项式等整式② a 不一定无意义。

当a ≤0时,-a ≥0,有意义。

关键是看被开方数这个整体是否非负1.(2020ꞏ浙江杭州市ꞏ七年级期末)a 应该满足的条件是()A .0a ≥B .0a =C .0a ≤D .0a ≠2.(2020ꞏ浙江杭州市ꞏ八年级其他模拟)x 的取值范围是()A .2x ≥B .2x >C .0x >D .2x ≠3.(2020ꞏ浙江省杭州市萧山区高桥初级中学八年级月考)已知点P (x ,y )在函数21y x =的图象上,那么点P 应在平面直角坐标系中的()A .第一象限B .第二象限C .第三象限D .第四象限4.(2020ꞏ浙江杭州市ꞏ八年级其他模拟)=成立.则x 的取值范围为()A .3x ≤B .2x ≥C .23x <<D .23x ≤≤5.(2020ꞏ浙江杭州市ꞏ九年级期末)函数y =x 的取值范围是________.6.(2020ꞏ浙江杭州市ꞏ八年级其他模拟)代数式a 的取值范围是_______.知识点3-3二次根式的性质1)性质一:二次根式结果非负性,即a ≥0(a ≥0)注:“”表示的是算术平方根2)性质二:非负数的算术平方根的平方等于它本身,即;(a )2=a 。

中考数学总复习 第05讲 二次根式及其运算课件(考点精

中考数学总复习 第05讲 二次根式及其运算课件(考点精

考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.

中考数学复习《实数与二次根式及其运算》经典题型及测试题(含答案)

中考数学复习《实数与二次根式及其运算》经典题型及测试题(含答案)

中考数学复习《实数与二次根式及其运算》经典题型及测试题(含答案)命题点分类集训命题点1 实数的相关概念【命题规律】1.实数的相关概念是实数部分的常考知识点,考查内容有:①相反数、绝对值、倒数;②负数、有理数和无理数;③平方根、算术平方根、立方根;2.相反数、绝对值、倒数考查频次较高,一般以-10 到 10之间的数设题;3.题位常设置在选择题和填空题中第1个,选择题较多 1. 下列各数中,-3的倒数是( )A. -13B. 13 C. -3 D. 3A 【解析】∵-3×(-13)=1,∴-3的倒数为-13.2.-6的绝对值是( )A. -6B. 6C. 16D. -16B 【解析】∵-6小于0,∴-6的绝对值为-(-6)=6. 3.-12016的倒数的绝对值是( )A. -2016B. 12016C. 2016D. -12016C 【解析】-12016的倒数是-2016,-2016的绝对值是2016.4.四个数-3,0,1,2,其中负数是( ) A. -3 B. 0 C. 1 D. 2 A 【解析】正数前面添上负号就是负数,∴-3是负数.5.下列实数中的无理数是( )A. 0.7B. 12C. πD. -8C 【解析】0.7是有限小数,是有理数;12是分数;π是无理数;-8是负整数.6. 4的平方根是( )A. ±2B. -2C. 2D. ±12A 【解析】∵(±2)2=4,∴4的平方根是±2. 7. (-2)2的平方根是( )A. 2B. -2C. ±2D. 2 C 【解析】∵(-2)2=4,∴4的平方根是±2.8.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作( ) A. 7 ℃ B. -7 ℃ C. 2 ℃ D. -12 ℃B 【解析】零上记为正数,则零下记为负数,零上5℃记为+5℃,则零下7℃记为-7℃.9. 38=________. 2 【解析】38=323=2.10. |-0.3|的相反数等于________.-0.3 【解析】|-0.3|=0.3,而0.3的相反数是-0.3. 命题点2 科学记数法【命题规律】1.考查内容与形式:①大数科学记数法(数字一般在万位以上,或带单位万、亿),②小数科学记数法(绝对值大于0小于1的数);2.设题材料:大数科学记数法的设题一般以当下时事热点新闻、当地人文、财政等信息为主;小数科学记数法设题一般以细胞、花粉的直径等为主;3.选择和填空均有考查,以选择题居多,在做题时,可直接用a 的取值(1≤a <10)排除选项正误.【命题预测】科学记数法既可以准确方便地表示日常生活中遇到的一些极大或极小的数,同时也很好地体现了时下热点信息11.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( ) A. 0.955×105B. 9.55×105C. 9.55×104D. 9.5×104C 【解析】将一个大数表示成a ×10n 的形式,其中1≤a <10,故a =9.55,n 等于原数的整数位数减1,所以n =5-1=4,故数字95500用科学记数法表示为9.55×104.12.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为( ) A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 C 【解析】1亿=108,84.5亿=84.5×108=8.45×109,故本题选C.13.人体中红细胞的直径约为0.0000077 m ,将数0.0000077用科学记数法表示为( ) A. 77×10-5B. 0.77×10-7C. 7.7×10-6D. 7.7×10-7C 【解析】将一小数表示为a ×10-n 的形式,其中1≤a <10,n 等于原数左起第一位非零数字前所有零的个数(含小数点前的零),则0.0000077用科学记数法表示为:7.7×10-6 .14. 2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a ×10n 的形式,则n 的值是________.16 【解析】科学记数法的表示形式为a ×10n ,其中1≤a <10,∴3386×1013=3.386×1016,则n =16. 命题点3 实数的大小比较【命题规律】常考形式:1.①下列各数中最大(小)的是;②下列各数中,比a 大(小)的是;③比较a 和b 的大小;2.选择、填空均有考查,近年选择居多;3.以第①种形式为主.【命题预测】实数的大小比较仍会考查,是命题的方向,尤其以“下列各数中最大(小)的是”和“比a 大(小)的是”的形式命题的值得关注. 15.下列实数中小于0的数是( )A. 2016B. -2016C. 2016D. 12016B16.在实数-13,-2,0,3中,最小的实数是( )A. -2B. 0C. -13D. 3A 【解析】正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,所以-2<-13<0<3,故答案为A.17.下列四个数中,最大的数是( )A. -2B. 13C. 0D. 6D 【解析】四个数中选择最大的数可直接在正数中选,比较13<6,故最大的数为6.18.实数a ,b 在数轴上的对应点的位置如图所示.把-a ,-b ,0按照从小到大的顺序排列,正确的是( ) A .-a <0<-b B .0<-a <-b C .-b <0<-a D .0<-b <-aC 【解析】由数轴可知:a <0<b, ∴-a >0>-b ,即 -b <0<-a . 19.比较大小:-2________-3.(选填>,=或<)> 【解析】∵负数比较大小,绝对值大的反而小,∴-2>-3. 命题点4 二次根式及其运算【命题规律】1.考查内容:①二次根式有意义的条件;②二次根式的简单运算;③二次根式的估值;2.二次根式有意义的条件常与分式化简求值结合,在分式化简后为字母取值的计算中涉及.【命题预测】二次根式及其运算仍会考查,尤其是实数运算或分式化简求值中涉及到的,值得我们关注 20.若二次根式a -2有意义,则a 的取值范围是( ) A. a ≥2 B. a ≤2 C. a >2 D. a ≠2 A21.实数2的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间 B 【解析】∵1=1<2<4=2,∴1<2<2,故选B. 22.下列计算正确的是( ) A. 12=2 3 B.32=32C. -x 3=x -xD. x 2=x A 【解析】逐项分析如下:选项 逐项分析 正误 A 12=4×3=23 √ B 32=32=62≠32 错 C ∵-x 3≥0,∴x ≤0,-x 3=x 2·-x =-x-x ≠x-x错 Dx 2=|x |≠x错23. (3-7)(3+7)+2(2-2). 解:原式=9-7+22-2=2 2.命题点5 实数的运算【命题规律】1.考查内容:①有理数加减乘除的简单运算;②实数的混合运算;2.实数混合运算一般涉及:①零次幂,②负整数指数幂(含-1次幂);③ -1的奇偶次幂;④去绝对值号;⑤开平方;⑥二次根式运算;⑦特殊角的三角函数值;3.选择题和填空题中常以两项运算考查为主,解答题常考查三项或四项的混合运算.【命题预测】实数的运算是常考内容,尤其是混合运算,体现了实数部分知识的综合,是重要的命题点.24.计算:(-12)×2( )A. -1B. 1C. 4D. -4 A 【解析】(-12)×2=-(12×2)=-1.25.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )A. 45.02B.44.9C.44.98D.45.01B 【解析】加工零件的尺寸要求, 45+0.03-0.04意思是合格产品的直径最大不超过45+0.03,最小不低于45-0.04,从而确定合格产品的范围,进而得出结果.由题意得:合格尺寸的范围为44.96≤≤45.03,∴可判断出B 选项的尺寸不合格. 26.计算:|38-4|-(12)-2=________.-2 【解析】原式=|2-4|-4=2-4=-2. 27.计算:55-(2-5)0+(12)-2.解:原式=5-1+4=5+3.28.计算:(-1)3+|-12|-(-32)0×(-23).解:原式=-1+12-1×(-23)=-12+23=16.29.计算:|-3|-(2016+sin30°)0-(-12)-1.解:原式=3-1+2 =2+2 =4.30.计算:(12)-1+(sin60°-1)0-2cos30°+|3-1|.解:原式=2+1-2×32+3-1 =2+1-3+3-1 =2.31.计算:2-2-2cos60°+|-12|+(π-3.14)0.解:原式=14-2×12+23+1=14-1+23+1 =14+2 3.中考冲刺集训一、选择题1. 化简|-2|得( )A. 2B. -2C. +2D. 122.-2的相反数是( ) A. 2 B. -22C. - 2D. -2 3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是( )A. -2B. -3C. 3D. 5 4.下列四个选项中,计算结果最大的是( )A. (-6)0B. |-6|C. -6D. 165. 38的算术平方根是( )A. 2B. ±2C. 2D. ± 2 6. ±2是4的( )A. 平方根B. 相反数C. 绝对值D. 算术平方根7.据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1048. 下列实数中,有理数是( )A. 8B. 34 C. π2D. 0.10100100019. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克.将数0.000000076用科学记数法表示为( )A. 7.6×10-9B. 7.6×10-8C. 7.6×109D. 7.6×10810. 实数a ,b 在数轴上对应点的位置如图所示,化简|a |+(a -b )2的结果是( ) A. -2a +b B. 2a -b C . -b D.b 11. 下面实数比较大小正确的是( )A. 3>7B. 3> 2C. 0<-2D. 22<3 12. 下列计算正确的是( )A. x 2+3x 2=4x 4B. x 2y ·2x 3=2x 6y C. (6x 3y 2)÷(3x )=2x 2D. (-3x )2=9x 213. 下列运算正确的是( )A. (a -3)2=a 2-9B. a 2·a 4=a 8C. 9=±3D. 3-8=-214. 13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 77二、填空题15.实数-27的立方根是________.16.数轴上表示-2的点与原点的距离是________. 17.计算:|1-3|-12=________. 18.计算:3-8+(13)-2+(π-1)0=________.19.若两个连续整数x 、y 满足x <5+1<y ,则x +y 的值是________. 20.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:测试项目 创新能力 综合知识 语言表达 测试成绩(分)708092将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是________分.21.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.三、解答题22.计算:(12)-2+|3-2|+3tan30°.23.计算:(-3)2-(15)-1-8×2+(-2)0.24.计算:(-1)2016+2sin60°-|-3|+π0.25.计算:8-(-2016)0+|-3|-4cos45°.26.计算:2sin30°+3-1+(2-1)0- 4.27.计算:|3-2|+(2015-1)0+2sin45°-2cos30°+(12015)-1.答案及解析:1. A2. A3. A 【解析】最接近标准的工件是绝对值最小的数,-2的绝对值是2,-3和3的绝对值是3,5的绝对值是5,所以最接近的是-2.4. B 【解析】A.(-6)0=1,B.|-6|=6,D.16≈0.17, ∵6>1>0.17>-6,∴|-6|的计算结果最大.5. C6. A 【解析】∵(±2)2=4,∴±2是4的平方根.7. A 【解析】把一个大数用科学记数法表示为a ×10n 的形式,其中1≤a <10,故a =4.47,n 等于原数的整数位数减1,即n =7-1=6,∴4470000=4.47×106.8. D9. B 【解析】把一个小数用科学记数法表示成a ×10-n 的形式,1≤a <10,故a =7.6,n 为小数点向右移动的位数,n=8,所以0.000000076=7.6×10-8,故选B.10. A【解析】由数轴可知,a<0,b>0,所以a-b<0,所以||a+(a-b)2=-a+||a-b=-a -(a-b)=-a-a+b=-2a+b.11. B【解析】∵3<7,选项A错误;比较两个正数的算术平方根,被开方数越大,这个数的算术平方根就越大,∵3>2,∴3>2,选项B正确;负数小于0,所以0>-2,选项C错误;∵22=4 ,4>3,∴22>3,选项D错误.故选B.12. D13. D【解析】A.(a-3)2=a2-6a+9,故错误;B.a2·a4=a6,故错误;C.9=3,故错误;D.3-8=-2,故正确.14. C【解析】根据题意,得7×7×7×7×7×7=76,故选C.15. -3【解析】∵(-3)3=-27,∴-27的立方根为-3.16. 2【解析】数轴上的点到原点的距离即为该数的绝对值,|-2|=2.17. -3-1【解析】原式=3-1-23=-3-1.18. 8【解析】原式=-2+9+1=8.19. 7【解析】∵4<5<9,∴2<5<3,∴3<5+1<4,∴满足x<5+1<y的两个连续整数x、y 分别是3和4.∴x+y的值是7.20. 77.4【解析】5+3+2=10,70×510+80×310+92×210=35+24+18.4=77.4.21. 55【解析】将3代入程序框图,先计算其平方为9,比10小,按程序操作:加上2,等于11,再乘以5,得55.22. 解:原式=4+2-3+3×3 3=6-3+ 3=6.23. 解:原式=9-5-4+1 =1.24. 解:原式=1+2×32-3+1=1+3-3+1 =2.25. 解:原式=22-1+3-4×2 2=22-1+3-2 2 =2.26. 解:原式=2×12+13+1-2=1+13+1-2=13. 27. 解:原式=3-2+1+2×22-2×32+2015 =3-2+1+2-3+2015 =2016.。

2024年中考重点之二次根式的计算与应用

2024年中考重点之二次根式的计算与应用

2024年中考重点之二次根式的计算与应用二次根式是中学数学中的一个重要概念,在2024年中考中也是一个重点考点。

在本文中,我们将深入探讨二次根式的计算与应用,帮助同学们更好地掌握相关知识。

一、二次根式的定义与性质二次根式可以定义为具有形式√a的数,其中a是一个非负实数。

当a为正数时,二次根式的值也是一个正实数;当a为零时,二次根式的值为零;当a为负数时,二次根式的值为虚数。

二次根式有一些基本的性质需要了解:1. 二次根式可以进行四则运算,包括加减乘除。

在进行运算时,可以利用化简、合并同类项等方法简化运算步骤。

2. 二次根式可以与整数、分数进行运算。

在进行运算时,可以通过有理化的方法将二次根式化为有理数形式。

3. 二次根式可以进行比较大小。

当两个二次根式的被开方数相同时,可以通过比较底数的大小来判断二次根式的大小关系。

二、二次根式的计算方法1. 简化二次根式:当一个二次根式的被开方数中存在平方数因子时,可以利用简化的方法将二次根式化简为较简单的形式。

例如,√36可以简化为6。

2. 合并二次根式:当两个二次根式的被开方数相同时,可以将它们合并为一个二次根式。

例如,√2 + √8可以合并为√2 + 2√2,即3√2。

3. 化简含有二次根式的表达式:当一个表达式中含有多个二次根式时,可以通过合并同类项、分配律等方法化简为最简形式。

例如,(√2 + √3)²可以化简为2 + 2√6 + 3。

三、二次根式的应用1. 几何应用:二次根式在几何学中有着广泛的应用。

例如,计算正方形的对角线长度时就会涉及到二次根式的计算。

同学们在解决几何问题时,可以运用二次根式的性质进行计算和推导。

2. 物理应用:在物理学中,很多物理量的计算也需要用到二次根式。

例如,计算物体的速度、加速度等时常会涉及到二次根式的计算。

同学们可以运用二次根式的知识解答物理题目。

3. 经济应用:在经济学中,二次根式的应用也是比较常见的。

例如,计算利润的增长率、房屋面积的计算等都需要涉及二次根式的计算。

2024年中考数学一轮复习考点04 二次根式(精讲)(解析版)25

2024年中考数学一轮复习考点04 二次根式(精讲)(解析版)25

考点04.二次根式(精讲)【命题趋势】二次根式在各地中考中,每年考查2道题左右,分值为8分左右,对二次根式的考查主要集中在对其取值范围、化简、计算等方面,其中取值范围类考点多出选择题、填空题形式出现,而化简计算则多以解答题形式考察。

此外,二次根式还常和锐角三角函数、实数、其他几何图形等结合出题,难度不大,但是也多属于中考必考题。

【知识清单】1:二次根式的相关概念(☆☆)(1)二次根式的概念:形如)0(≥a a 的式子叫做二次根式。

其中符号“”叫做二次根号,二次根号下的数叫做被开方数。

注意:被开方数a 只能是非负数。

即要使二次根式a 有意义,则a ≥0。

(2)最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。

(3)同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。

2:二次根式的性质与化简(☆☆☆)(1)二次根式的性质:1)双重非负性:a ≥0(a ≥0);2))0()(2≥=a a a ;32(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(2)二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简。

(3)化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2。

3:二次根式的的运算(☆☆☆)(1)加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并。

口诀:一化、二找、三合并。

(2)乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.(3)除法法则:两个二次根式相除,把被开方数相除,根指数不变.(4)分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程。

2020年中考数学必考知识点复习二次根式

2020年中考数学必考知识点复习二次根式

2020年中考数学必考知识点复习演练:二次根式一、选择题1.要使二次根式有意义,字母x的取值必须满足()A. x≥0B.C.D.2.下列各式中最简二次根式为()A. B.C.D.3.已知是整数,a是正整数,a的最小值是()A. 0B. 3C. 6D. 244.函数y= 的自变量x的取值范围在数轴上可表示为()A. B. C.D.5.下列运算中正确的是()A. ﹣=B. 2 +3 =6C. ÷ =D. (+1)(﹣1)=36.下面哪个数的倒数是()A. B.-5 C.D. 57.下列二次根式中,能与合并的是()A. B.C.D.8.若等腰三角形的两边长分别为2 和3 ,则这个三角形的周长是( )A. 4 +3B. 2 +6C. 4 +3或2 +6 D. 4 +69.下列计算正确的是().A. B.C. D.10.下列运算正确的是()A. ﹣=B. =2C. ﹣=D. =2﹣11.下列各实数中最大的一个是()A. 5×B.C. D.+12.设等式在实数范围内成立,其中a、x、y是两两不同的实数,则的值是()A. 3 B .C. 2 D .二、填空题13.计算﹣3 =________.14.当x取________时,2﹣的值最大,最大值是________.15.计算:﹣(﹣)=________.16.是整数,则最小的正整数a的值是________。

17.当取最小值时,a的值是________.18.(+ )﹣(﹣)=________.19.已知,,则代数式x2﹣3xy+y2的值为________ .20.把分母中的根号去掉,得到的最简结果是________(结果保留根号).21.某农户用5 米长的围栏围出一块如图所示的长方形土地(墙面是长方形土地的长),已知该长方形土地的宽为米,则该长方形土地的周长为________.三、解答题22.计算:(1);(2).23.计算:(1)÷ ﹣× +(2)(3 +2 )(3 ﹣2 )﹣(﹣)2.24.化简求值:(-)÷,其中x=2+.25.若x,y都是实数,且y=++1,求+3y的值.26.小明在学习后,认为也成立,因此他认为一个化简过程:是正确的,你认为他的化简过程对吗?说说理由.27.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.参考答案一、选择题1.D2.D3.C4.D5. C6. B7. D8. C9. B 10.C 11.C 12. B二、填空题13. 14.5;2 15. 16.5 17.18.5 + 19.95 20.+1 21.7 米三、解答题22. (1)原式=2 +-2+2=3 ;(2)原式=2 +2+4-3=2 +3.23.(1)解:原式= ﹣+2 =4﹣+2=4+ ;(2)解:原式=18﹣12﹣(3﹣2 +2) =6﹣5+2=1+224.解:原式=×=.将x=2+代入,得原式==.25.解:由题意得:,解得:x=4,则y=1,+3y=2+3=5.26. 解:错误,原因是被开方数必须是非负数。

中考数学专题复习二次根式及其运算

中考数学专题复习二次根式及其运算

m<
2
5

2 m<5
5 ,即-1≤m<25
三 5, ∴m= 0 或 m =- 1.

【答案】 0 或- 1



目 录 第二十六页,共29页。
首页
上一页 下一页
末页

三、解答(ji(ě共dá)3题4 分)
点 知 识
23. (1)(5 分 )(2011 中考(zhōnɡ kǎ)o计)预算测(j题ì s8u+àn):13- 2
首页
上一页 下一页
末页



19 .(2011 中考(zhōnɡ kǎ)o当)预x测=题 2时,代数式 x 2- 3x+3 2的值是 ________ .



【解析(jixě2-xī3)x】+ 3 2= ( 2)2- 3 2+ 3 2= 2.

【答案(dá 2àn)】



20 .(2011 中考预测题 )计算: ( 3+ 2)( 3- 2)- |1- 2|=
目 录 第十六页,共29页。
首 页 上一页 下一页 末 页

点 知

精 讲
中 考 典








点 训 练
目 录 第十七页,共29页。
首页
上一页 下一页
末页
考 点 知 识
精 讲


典 例 精

举 一
【解析(jixěy =xī()】a- b)( a+ b)= | a|2- | b|2= a-b.

________.

全国中考数学真题分类汇编 8 二次根式-人教版初中九年级全册数学试题

全国中考数学真题分类汇编 8 二次根式-人教版初中九年级全册数学试题

二次根式考点一、二次根式 (初中数学基础,分值很大)1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab(4))0,0(≥≥=b a bab a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

一、 选择题1.(2017·某某某某·4分)与是同类二次根式的是( )A .B .C .D .﹣2的结果是( )A .B .2C .3D .63.( 2017某某3分)下列计算正确的是( ) A .﹣=B .(﹣3)2=6 C .3a 4﹣2a 2=a2D .(﹣a 3)2=a 54.(2017·某某市B 卷·4分)若二次根式有意义,则a 的取值X 围是( )A .a ≥2B .a ≤2C .a >2D .a ≠2 5.(2017·某某内江)在函数y =34x x --中,自变量x 的取值X 围是( ) A .x >3 B .x ≥3 C.x >4 D .x ≥3且x ≠4 6.(2017·某某某某)下列计算正确的是( )A . =2B . =C . =xD .=x7. (2017·某某某某·3分)下列算式 ①=±3;②=9;③26÷23=4;④=2017;⑤a +a =a 2.运算结果正确的概率是( )A .B .C .D . 8.(2017·某某某某·3分)要使式子有意义,则x 的取值X 围是( ) A .x >1 B .x >﹣1 C .x ≥1 D.x ≥﹣1 9.(2017·某某某某·3分)下列计算结果正确的是( ) A .2+=2B .=2 C .(﹣2a 2)3=﹣6a6D .(a +1)2=a 2+110.(2017·某某潍坊·3分)实数a ,b 在数轴上对应点的位置如图所示,化简|a |+的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 11. (2017·某某眉山·3分)下列等式一定成立的是( ) A .a 2×a 5=a10B .C .(﹣a 3)4=a12D .二、 填空题1.(2017·某某某某·3分)若式子1-x 在实数X 围内有意义,则x 的取值X 围是.2.(2017·某某某某·4分)在函数21+-=x xy 中,自变量x 的取值X 围是.3.(2017·某某某某·3分)计算18-221的结果是.4.( 2017某某某某3分)若二次根式有意义,则x 的取值X 围是.5. (2017·某某·3分)化简:﹣=. 6. (2017·某某某某·3分)计算:6﹣(+1)2=.7. (2017·某某某某·2分)使式子有意义的x 取值X 围是. 8. (2017·某某潍坊·3分)计算:(+)=.三、 解答题1.(2017·某某某某)计算; +20170﹣|﹣2|+1.2.(2017·某某某某)计算:+(π+1)0﹣sin 45°+|﹣2|3.(2017·某某某某)计算:(﹣1)0﹣×sin 60°+(﹣2)2.4.(2017·某某内江)(7分)计算:|-3|3·tan 38-(2017-π)0+(12)-1.5.(2017·某某某某)(1)计算;()﹣2﹣(﹣1)2017﹣+(π﹣1)06.(2017·某某某某·8分)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式))()((c p b p a p p s ---=(其中a ,b ,c 是三角形的三边长,2c b a p ++=,S 为三角形的面积),并给出了证明例如:在△ABC 中,a =3,b =4,c =5,那么它的面积可以这样计算: ∵a =3,b =4,c =5 ∴p ==6∴S ===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC 中,BC =5,AC =6,AB =9 (1)用海伦公式求△ABC 的面积; (2)求△ABC 的内切圆半径r .答案二次根式一、选择题1.(2017·某某某某·4分)与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】根据化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【解答】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C﹣2的结果是()A. B.2C.3 D.6【考点】二次根式的加减法.【分析】直接利用二次根式的加减运算法则求出答案.【解答】解:原式=(3﹣2)=.故选:A.3.(2017某某3分)下列计算正确的是()A.﹣= B.(﹣3)2=6 C.3a4﹣2a2=a2 D.(﹣a3)2=a5【考点】二次根式的加减法;有理数的乘方;合并同类项;幂的乘方与积的乘方.【分析】分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.【解答】解:A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,无法计算,故此选项错误;D、(﹣a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题关键.4.(2017·某某市B卷·4分)若二次根式有意义,则a的取值X围是()A.a≥2 B.a≤2 C.a>2 D.a≠2【考点】二次根式有意义的条件.【专题】计算题;实数.【分析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的X围即可.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的X围是a≥2,故选A【点评】此题考查了二次根式有意义的条件,二次根式性质为:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(2017·某某内江)在函数y=34xx--中,自变量x的取值X围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4 [答案]D[考点]二次根式与分式的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1二次根式及其运算一、选择题1. (2012 广西来宾市) 使式子x x -++21有意义的x 的取值范围是( ) A .x ≥-1 B .-1≤x ≤2 C .x ≤2 D .-1<x <22. (2013 四川省凉山州) 如果代数式1xx -有意义,那么x 的取值范围是( ) (A )x ≥0 (B )1x ≠ (C )0x > (D )x ≥0且1x ≠3. (2014 贵州省黔南州) 下列说法中,正确的是( ) A . 当x <1时,有意义B . 方程x 2+x ﹣2=0的根是x 1=﹣1,x 2=2C .的化简结果是D . a ,b ,c 均为实数,若a >b ,b >c ,则a >c4. (2015 山东省滨州市) 如果式子26x +有意义,那么x 的取值范围在数轴上表示出来,正确的是( ) A. B. C. D.5. (2015 湖北省宜昌市) 下列式子没有意义的是( ) A .B .C .D .26. (2017 江苏省连云港市) 关于8的叙述正确的是( )A.在数轴上不存在表示8的点B.826=+C.822=?D.与8最接近的整数是37. (2017 四川省泸州市) 已知三角形的三边长分别为a 、b 、c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是( ) A . B . C . D .8. (2017 山东省滨州市) 2017山东滨州)下列计算:(1)(2)2=2,(2)2(2)-=2,(3)(23-)2=12,(4)(23)(23)1+-=-,其中结果正确的个数为A .1B .2C .3D .49. (2017 山东省东营市) 下列运算正确的是( )A .(x ﹣y )2=x 2﹣y 2B .|3﹣2|=2﹣3C .8﹣3=5D .﹣(﹣a+1)=a+110. (2017 山东省济宁市) 21121x x -+-+在实数范围内有意义,则x 满足的条件是A .12x ≥B .12x ≤C .12x =D .12x ≠11. (2017 山东省枣庄市) 实数a ,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣2a+b B.2a﹣b C.﹣b D.b12. (2018 内蒙古赤峰市) (3分)代数式+中x 的取值范围在数轴上表示为()A. B .C. D.13. (2018 山东省聊城市) (3.00分)下列计算正确的是()A.3﹣2= B.•(÷)=C.(﹣)÷=2 D .﹣3=14. (2018 四川省绵阳市) (3分)等式=成立的x的取值范围在数轴上可表示为()A.B. C.D.15. (2017 山东省潍坊市) 若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>2316. (2019 山西省) 下列二次根式是最简二次根式的是()A.21 B.712 C.8 D.317. (2019 重庆市) (4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间18. (2019 山东省威海市) (3分)计算(﹣3)0+﹣(﹣)﹣1的结果是()A.1+B.1+2C.D.1+4二、填空题19. (2013 贵州省六盘水市) 无论x取任何实数,代数式都有意义,则m的取值范围为.20. (2014 贵州省黔南州) 实数a在数轴上的位置如图,化简+a= .21. (2016 江苏省南京市) 比较大小:________522.(填“>””<”或“=”号)4522. (2017 湖北省鄂州市) 11622y x x =-+--,则xy = .23. (2017 山东省青岛市) 计算.__________6)6124(=⨯+24. (2019 江苏省扬州市) (3分)计算:(﹣2)2018(+2)2019的结果是 .三、计算题25. (2017 贵州省六盘水市) 计算:()()2133p p ---+-.26. (2019 山东省东营市) (1)计算:()﹣1+(3.14﹣π)0+|2﹣|+2sin45°﹣;27. (2019 上海市) (10分)计算:2331|26823--28. (2019 四川省绵阳市)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;29. (2019 四川省南充市) (6分)计算:1 02112|32|)1(-⎪⎭⎫⎝⎛+--+-π30. (2019 辽宁省大连市) (9分)计算:21(32)1236参考答案一、选择题1. B2. D3. D4. C5. A6.考点:二次根式7.考点7B:二次根式的应用.7分析根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.解答解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.8.答案:D解析:(1)根据“2=”可知(2)2=2成立;(2)根据“2a a()a a(2)-=”可知2=2成立;(3)根据“(ab)2=a2b2”可知,计算(23-)2,可将-2和3分别平方后,再相乘.所以这个结论正确;(4)根据“(a+b)(a-b)=a2-b2”,(23)(23)+-=22-=2-3=-1.(2)(3)9.答案B解析考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号810. C11.考点73:二次根式的性质与化简;29:实数与数轴.分析直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.解答解:由图可知:a<0,a﹣b<0,则|a|+=﹣a ﹣(a﹣b )=﹣2a+b.故选:A.12.分析根据被开方数是非负数且分母不能为零,可得答案.解答解:由题意,得3﹣x≥0且x﹣1≠0,解得x≤3且x≠1,在数轴上表示如图,故选:A.13.分析根据二次根式的加减乘除运算法则逐一计算可得.解答解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;910C 、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D 、﹣3=﹣2=﹣,此选项错误;故选:B .14. 分析根据二次根式有意义的条件即可求出x 的范围. 解答解:由题意可知:解得:x ≥3 故选:B .15. 考点72:二次根式有意义的条件.分析根据二次根式有意义的条件即可求出x 的范围; 解答解:由题意可知:∴解得:x ≥2 故选(B )16. 解析A.2221=,本选项不合题意;B.7212721=,本选项不合题意;C.228=不合题意;D.3是最简二次根式,符合题意,故选D17. 分析先根据二次根式的乘法进行计算,再进行估算. 解答解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.点评本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.18.解答解:原式=1+=1+.故选:D.二、填空题19. m≥920. 121.答案:<考点:二次根式的估算。

解析:由于25353<0,52>0,所以,填空“<”。

222.答案-3解析试题分析:观察原式,由12x -得12x -≥0,由12x -得12x -≥0,求出x=12,再求y =-6,因此可求xy=-3考点:二次根式23. 答案13试题分析:根据二次根式的性质及分母有理化,可直接化简计算为:131********16246)6124(=+=+=⨯+⨯=⨯+ 故答案为:13.考点:无理数运算24. 分析先根据积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后利用平方差公式计算.解答解:原式=[(﹣2)(+2)]2018•(+2)2019 =(5﹣4)2018•(+2) =+2,故答案为+2. 点评本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、计算题 25. 考点实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析本题涉及二次根式化简、负指数幂、零指数幂.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:26. 分析(1)分别计算负指数幂、零次幂、绝对值、三角函数值、二次根式,然后算加减法;解答解:(1)原式=2019+1++2×﹣2 =2020+2﹣+﹣2 =2020;27. 分析首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 解答解:2331|26823--3123234=-3=-点评此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.28.答案解:(1)2+|(-)-1|-2tan30°-(π-2019)0=+2-2×-1=+2--1=1;29.解:原式=2--+(4分)1+(2)233=2--+(5分)31+223=31-(6分)30.分析直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.解答解:原式3=+-3443236=+-344323237=.点评此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.。

相关文档
最新文档