精选2019年中考数学最全真题分类汇编全集之专题13 图形的相似(第01期)(解析版)

合集下载

2019年中考数学试题汇编:相似形选择题部分(解析版)

2019年中考数学试题汇编:相似形选择题部分(解析版)

1. (2019年四川内江市)如图,将△ ABC 沿着过BC 的中点D 的直线折叠,使点 B 落在AC 边上的B i 处,称为第一次操作,折痕DE 到AC 的距离为h 仁还原纸片后,再将△ BDE沿着过BD 的中点D i 的直线折叠,使点 B 落在DE 边上的B 2处, 痕D i E i 到AC 的距离记为h 2;按上述方法不断操作下去……经过第 D n -i E n -i ,到AC 的距离记为h n .若h i = i ,则h n 的值为(h 4、h 5、……h n ,再对h n 进行计算变形即可.【解答】解:••• D 是BC 的中点,折痕 DE 到AC 的距离为 •••点B 到DE 的距离=h i = i ,•••D i 是BD 的中点,折痕 D i E i 到AC 的距离记为h 2, •••点 B 到 D i E i 的距离=h 2= i^h i = i+ ,22同理:h 3= h 2+—h i=i+ 1 + 丄,42 4h 4=h 3+ h i = i+-!-+—+—:: ::-:;.i+l +l +l + + 1 2 1 hn = i+_ —+ +__+••• + ------- = 2 — --------2 4 8211-1 2n_1故选:C .【点评】考查图形变化规律的问题,首先根据变化求出第一个、第二个、第三个……发 现规律得出一般性的结论.2. (20i9 年四川内江市)如图,在△ ABC 中,DE // BC , AD = 9, DB = 3, CE = 2,贝U AC 的 长为()A . 6B . 7C . 8D . 9【分析】利用平行线分线段成比例定理得到二=「,利用比例性质求出AE ,然后计算 AE+EC 即可.【解答】解:• DE // BC ,称为第二次操作,折 n 次操作后得到折痕A . i+— 2n_1B . 1 + 2nC . 2 - 尹1【分析】根据相似三角形的性质,对应高的比对于相似比,得出 D . 2 -2nh 2 = -L ,依次得出h 3、 ::hiAD = AE 即9 = AEDB 丽’3~••• AE= 6,•. AC= AE+ EC= 6+2 = 8.故选:C.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.3. (2019年广西玉林市)如图,AB // EF // DC , AD // BC, EF与AC交于点G,则是相似三角形共有()A . 3对B . 5对C. 6对 D . 8对【分析】图中三角形有:△ AEG ,△ ADC , CFG , △ CBA,因为AB // EF // DC , AD // BC,所以△ AEGADC s CFGCBA,有 6 种组合【解答】解:图中三角形有:△ AEG,^ ADC , CFG , △ CBA ,T AB// EF // DC , AD // BC• △AEG s^ ADC s CFGCBA共有 6 个组合分别为:AEGADC , △ AEG s CFG , △ AEGCBA, △ ADC s CFG , △ ADC CBA , CFG CBA故选:C.【点评】本题主要考查相似三角形的判定.4. (2019年内蒙古赤峰市)如图,D、E分别是△ ABC边AB , AC上的点,/ ADE = /ACB , 若AD = 2 , AB= 6 , AC= 4,贝U AE 的长是()A . 1B . 2 C. 3 D. 4【分析】证明△ ADE ACB,根据相似三角形的性质列出比例式,计算即可.【解答】解:•••/ ADE = / ACB ,Z A=Z A,• △ ADEACB ,.AD AE 0n2 AE-- = ,即__= ,AC AB 4 6解得,AE = 3,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5. (2019年海南省)如图,在Rt△ ABC中,/ C= 90°, AB= 5, BC = 4.点P是边AC上一动点,过点P作PQ // AB交BC于点Q, D为线段PQ的中点,当BD平分/ ABC时,PQ // AB ,• / ABD = Z BDQ ,又/ ABD = Z QBD , • / QBD = Z BDQ , -QB = QD , • QP =2QB , PQ / AB ,• △ CPQ s^ CAB ,CP^Q = PQ:=7T =7T 解得,CP ==,13AP = CA - CP = ,13故选:B .【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定 理是解题的关键.6. (2019年黑龙江省哈尔滨市)如图,在?ABCD 中,点E 在对角线AB 于点M , EN // AB ,交AD 于点N ,则下列式子一定正确的是(D【分析】根据平行四边形的性质以及相似三角形的性质. 【解答】解:•••在?ABCD 中,EM // AD.易证四边形AMEN 为平行四边形15 13AC ,根据角平分线的定义、平行线的性质得到/C .13【分析】根据勾股定理求出BDQ ,得到QB = QD ,根据相似三角形的性质列出比例式,计算即可. 【解答】解:•••/ C = 90°, AB = 5, BC = 4,D .二13QBD = Z2QBBD 上,EM // AD ,交)Alt NE A ------- = ----- .-'i rir. Alt ANB =B .「’ MBC BEC . - r.riD .「厂BE EM)•••易证△ BEM s\ BAD S \ END、' =亠=-,A 项错误BM BN BE=—,B 项错误AD=丄_=二_, C 项错误ME BE=二_=上_, D 项正确ME ME故选:D .【点评】此题主要考查相似三角形的性质及平行四边形的性质,本题关键是要懂得找相 似三角形,利用相似三角形的性质求解.7. (2019年黑龙江省鸡西市)如图,在平行四边形ABCD 中,/ BAC = 90°, AB = AC ,过点A 作边BC 的垂线AF 交DC 的延长线于点 E ,点F 是垂足,连接 BE 、DF , DF 交AC 于点O .则下列结论: ①四边形ABEC 是正方形;②CO : BE = 1: 3;③DE =「BC ; ④S 四边形OCEF = Ss OD ,正确的个数是()A . 1B . 2C . 3D . 4【分析】①先证明厶ABF ◎△ ECF ,得AB = EC ,再得四边形ABEC 为平行四边形,进而 由/BAC = 90。

中考数学专题13 图形的相似(第01期)-2019年中考真题数学试题分项汇编(解析版)

中考数学专题13 图形的相似(第01期)-2019年中考真题数学试题分项汇编(解析版)

专题13 图形的相似1.(2019•常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4【答案】B【解析】∵△ABC~△A′B'C′,相似比为1∶2,∴△ABC与△A'B′C'的周长的比为1∶2.故选B.2.(2019•兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BCB'C'=A.2 B.43C.3 D.169【答案】B【解析】∵△ABC∽△A'B'C',∴8463BC ABB C A B''''=--.故选B.3.(2019•安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为A.3.6 B.4 C.4.8 D.5【答案】B【解析】如图,作DH∥EG交AB于点H,则△AEG∽△ADH,∴AE EGAD DH=,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴AE EFAD CD=,∴EG EFDH CD=,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12-x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴DH BDAC BC=,即12612x x-=,解得,x=4,∴CD=4,故选B.4.(2019•杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【答案】C【解析】∵DN∥BM,∴△ADN∽△ABM,∴DN AN BM AM=,∵NE∥MC,∴△ANE∽△AMC,∴NE ANMC AM=,∴DN NEBM MC=.故选C.5.(2019•连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似A.①处B.②处C.③处D.④处【答案】B【解析】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、,“车”、“炮”之间的距离为1,12==,∴马应该落在②的位置,故选B.6.(2019•重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是A.2 B.3 C.4 D.5 【答案】C【解析】∵△ABO∽△CDO,∴BO ABDO DC=,∵BO=6,DO=3,CD=2,∴632AB=,解得AB=4.故选C.7.(2019•赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是A.1 B.2 C.3 D.4【答案】C【解析】∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴AD AEAC AB=,即246AE=,解得AE=3,故选C.8.(2019•凉山州)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=A.1∶2 B.1∶3 C.1∶4 D.2∶3【答案】B【解析】如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD∶DC=1∶2,∴AD=DG=GC,∴AG∶GC=2∶1,AO∶OE=2∶1,∴S△AOB:S△BOE=2,设S △BOE =S ,S △AOB =2S ,又BO =OD ,∴S △AOD =2S ,S △ABD =4S ,∵AD ∶DC =1∶2,∴S △BDC =2S △ABD =8S ,S四边形CDOE=7S ,∴S △AEC =9S ,S △ABE =3S ,∴3193ABE AEC S BE S EC S S ===△△,故选B . 9.(2019•常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是A .20B .22C .24D .26【答案】D【解析】如图,根据题意得△AFH ∽△ADE ,∴2239()()416AFH ADE S FH S DE ===△△,设S △AFH =9x ,则S △ADE =16x ,∴16x -9x =7,解得x =1,∴S △ADE =16, ∴四边形DBCE 的面积=42-16=26.故选D .10.(2019•玉林)如图,AB ∥EF ∥DC ,AD ∥BC ,EF 与AC 交于点G ,则是相似三角形共有A .3对B .5对C .6对D .8对【答案】C【解析】图中三角形有:△AEG ,△ADC ,CFG ,△CBA , ∵AB ∥EF ∥DC ,AD ∥BC ,∴△AEG ∽△ADC ∽CFG ∽△CBA ,共有6个组合分别为:∴△AEG ∽△ADC ,△AEG ∽CFG ,△AEG ∽△CBA ,△ADC ∽CFG ,△ADC ∽△CBA ,CFG ∽△CBA ,故选C .11.(2019•淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为A .2aB .52a C .3aD .72a【答案】C【解析】∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA ,∴2()ACD BCA S AC S AB =△△,即14BCA a S =△, 解得,△BCA 的面积为4a ,∴△ABD 的面积为:4a -a =3a ,故选C .12.(2019•邵阳)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是A .△ABC ∽△A ′B ′C ′B .点C 、点O 、点C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′ 【答案】C【解析】∵以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′,点C 、点O 、点C ′三点在同一直线上,AB ∥A ′B ′, AO ∶OA ′=1∶2,故选项C 错误,符合题意.故选C .13.(2019•淮安)如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =__________.【答案】4【解析】∵l 1∥l 2∥l 3,∴AB DEBC EF=,又AB =3,DE =2,BC =6,∴EF =4,故答案为:4.14.(2019•河池)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=__________.【答案】2 5【解析】∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴22235 OA ABOC CD===+.故答案为:25.15.(2019•宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=__________.【答案】16 5【解析】在Rt△ABC中,AB,由射影定理得,AC2=AD·AB,∴AD=2ACAB=165,故答案为:165.16.(2019•本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.【答案】(2,1)或(-2,-1)【解析】以点O为位似中心,相似比为12,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×12,2×12)或(-4×12,-2×12),即(2,1)或(-2,-1),故答案为:(2,1)或(-2,-1).17.(2019•烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,-1),B1(1,-5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为__________.【答案】(-5,-1)【解析】如图,P点坐标为(-5,-1).故答案为:(-5,-1).18.(2019•南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长__________.【解析】∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A =∠A ,∴△ACD ∽△ABC ,∴AC ADAB AC=,∴AC 2=AD ×AB =2×5=10,∴AC19.(2019•吉林)在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为__________m . 【答案】54【解析】设这栋楼的高度为h m ,∵在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时测得一栋楼的影长为60 m , ∴1.8390h=,解得h =54(m ).故答案为:54. 20.(2019•福建)已知△ABC 和点A ',如图.(1)以点A '为一个顶点作△A 'B 'C ',使△A 'B 'C '∽△ABC ,且△A 'B 'C '的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的△A 'B 'C '三边A 'B '、B 'C '、C 'A '的中点,求证:△DEF ∽△D 'E 'F '.【解析】(1)作线段A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,得△A 'B 'C '即可所求.∵A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC , ∴△ABC ∽△A ′B ′C ′,∴2()4A B C'ABC ''S A B''S AB==△△.(2)如图,∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴111222DE BC DF AC EF AB ===,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.【解析】(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴AD BD BD CD=,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC,∴∠ADB=∠MBD,且∠ABD=90°,∴BM=MD,∠MAB=∠MBA,∴BM=MD=AM=4,∵BD2=AD·CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=MB2+BC2=28,∴MC=∵BM ∥CD ,∴△MNB ∽△CND ,∴23BM MN CD CN ==,且MC =,∴MN =5. 22.(2019•巴中)△ABC 在边长为1的正方形网格中如图所示.①以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C ,使其位似比为1∶2.且△A 1B 1C 位于点C 的异侧,并表示出A 1的坐标.②作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C . ③在②的条件下求出点B 经过的路径长.【解析】①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3). ②如图,△A 2B 2C 为所作.③OB =点B 经过的路径长=90ππ1802⋅=.23.(2019•荆门)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得AC =2 m ,BD =2.1 m ,如果小明眼睛距地面髙度BF ,DG 为1.6 m ,试确定楼的高度OE .【解析】如图,设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF 并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴AC MA MO FG MF MH==,即:AC OE OE OEBD MH MO OH OE BF ===++,∴21.62.1OEOE=+,∴OE=32,答:楼的高度OE为32米.24.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.【解析】(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC,又∠APB =135°,∴∠PAB +∠PBA =45°, ∴∠PBC =∠PAB , 又∵∠APB =∠BPC =135°, ∴△PAB ∽△PBC .(2)∵△PAB ∽△PBC ,∴PA PB ABPB PC BC ==,在Rt △ABC 中,AB =AC ,∴ABBC=∴PB PA ==,,∴PA =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,∴PF =h 1,PD =h 2,PE =h 3, ∵∠CPB +∠APB =135°+135°=270°, ∴∠APC =90°, ∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90°, ∴∠EAP =∠PCD , ∴Rt △AEP ∽Rt △CDP , ∴2PE APDP PC==,即322h h =,∴h 3=2h 2,∵△PAB ∽△PBC ,∴12h AB h BC==∴12h =,∴2212222322h h h h h h ==⋅=.即h 12=h 2·h 3.25.(2019•长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题) ②三个角分别相等的两个凸四边形相似;(__________命题) ③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,1111AB BCA B B C =11CDC D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD相似,求21S S 的值.【解析】(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似.是真命题.故答案为:假,假,真. (2)如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且1111BC CDB C C D =, ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD , ∵111111AB BC CD A B B C C D ==,∴1111BD ABB D A B =, ∵∠ABC =∠A 1B 1C 1, ∴∠ABD =∠A 1B 1D 1, ∴△ABD ∽△A 1B 1D 1, ∴1111AD ABA D AB =,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11111111AB BC CD ADA B B C C D A D ===,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)∵四边形ABCD 与四边形EFCD 相似. ∴DE EFAE AB=, ∵EF =OE +OF ,∴DE OE OFAE AB+=, ∵EF ∥AB ∥CD , ∴DE OE DE OC OF AD AB AD AB AB =-=,,∴DE DE OE OF AD AD AB AB +=+,∴2DE DEAD AE =, ∵AD =DE +AE , ∴21DE AE AE=+,∴2AE =DE +AE , ∴AE =DE ,∴12S S =1.祝你考试成功!祝你考试成功!。

2019年中考数学真题汇编----图形的相似与位似(含解析)

2019年中考数学真题汇编----图形的相似与位似(含解析)

2019年中考数学真题汇编----图形的相似与位似一.选择题1. (2019•浙江杭州•3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则( )A.=B.=C.=D.=【分析】先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.【解答】解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.【点评】本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似三角形的性质表示线段之间的关系.2. (2019•广西贺州•3分)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于( )A.5B.6C.7D.8【分析】由平行线得出△ADE∽△ABC,得出对应边成比例=,即可得出结果.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BC=6,故选:B.【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出对应边成比例是解题的关键.3. (2019•甘肃省庆阳市•3分)如图,将图形用放大镜放大,应该属于( )A.平移变换B.相似变换C.旋转变换D.对称变换【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【解答】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点评】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.二.填空题1. (2019•江苏无锡•2分)如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为 25 .【分析】如图,由题意点O所能到达的区域是△EFG,连接AE,延长AE交BC于H,作HM⊥AB于M,EK⊥AC于K,作FJ⊥AC于J.利用相似三角形的性质以及三角形的面积公式求出EF,再证明△HAC≌△HAM(AAS),推出AM=AC=5m,CH=HM,BM=8m,设CH=HM=x,在Rt△BHM中,则有x2+(8m)2=(12m图x)2,推出x=m,由EK∥CH,推出=,推出=,可得AK=,求出AC即可解决问题.【解答】解:如图,由题意点O所能到达的区域是△EFG,连接AE,延长AE交BC于H,作HM⊥AB于M,EK⊥AC于K,作FJ⊥AC于J.∵EG∥AB,EF∥AC,FG∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,∴EF:FG:EG=AC:BC:AB=5:12:13,设EF=5k,FG=12k,∵×5k×12k=,∴k=或图(舍弃),∴EF=,∵四边形EKJF是矩形,∴KJ=EF=,设AC=5m,BC=12m,AB=13m,∵∠ACH=∠AMH=90°,∠HAC=∠HAM,AH=AH,∴△HAC≌△HAM(AAS),∴AM=AC=5m,CH=HM,BM=8m,设CH=HM=x,在Rt△BHM中,则有x2+(8m)2=(12m图x)2,∴x=m,∵EK∥CH,∴=,∴=,∴AK=,∴AC=AK+KJ+CJ=++1=,∴BC=××12=10,AB=××13=,∴△ABC的周长=AC+BC+AB=+10+=25,故答案为25.【点评】本题考查动点问题,轨迹,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.2. (2019•江苏无锡•2分)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为 8 .【分析】过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.由AB=AC=5,BC=4,得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD =x,则DG=8图x,易证△EDH≌△DCG,EH=DG=8图x,所以S△BDE===,当x=4时,△BDE面积的最大值为8.【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴BM=CM=2,易证△AMB∽△CGB,∴,即∴GB=8,设BD=x,则DG=8图x,易证△EDH≌△DCG(AAS),∴EH=DG=8图x,∴S△BDE===,当x=4时,△BDE面积的最大值为8.故答案为8.【点评】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.3. (2019•江苏扬州•3分)如图,在△ABC 中,AB =5,AC =4,若进行一下操作,在边BC 上从左到右一次取点D 1、D 2、D 3、D 4…;过点D 1作AB 、AC 的平行线分别交于AC 、AB 与点E 1、F 1;过点D 2作AB 、AC 的平行线分别交于AC 、AB 于点E 2、F 2;过点D 3作AB 、AC 的平行线分别交于AC 、AB 于点E 3、F 3…,则4(D 1E 1+D 2E 2+…+D 2019E 2019)+5(D 1F 1+D 2F 2+…+D 2019F 2019)= 40380 .【考点】:相似三角形,比例性质【解析】:∵D 1E 1∥AB D 1F 1∥AC ∴CB CD AB E D 111=BCBD AC F D 11=∵AB =5 AC =4∴CB CD E D 1115=BCBD F D 114=∴14511111==+=+BCBCBC BD CB CD F D E D ∴4D 1E +5D 1F =20有2019组,即2019×20=40380【答案】:403804. (2019•江西•3分)在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0), (4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,DA =1, CP ⊥DP 于点P ,则点P 的坐标为P (2,0), P (,0), P (,0) .x图2图1解析:设P (m ,0)如图1,∠CPD=90°,△OCP∽△PAD∴即:∴m=2 ∴P(2,0)如图2,∠CPD=90°,△OCP∽△APD ∴即:∴m=∴P(,0)P(,0)综上分析可知:P(2,0),P(,0),P(,0)5. (2019•浙江杭州•4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 2(5+3) .【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴x2=4a2,∴x=2a或图2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)【点评】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.6.(2019•四川自贡•4分)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE= .【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D =∠CBE ,∴CD =BC =6,∴△AEB ∽△CED ,∴,∴CE =AC =×8=3,BE =,DE =BE =×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.7.(2019•天津•3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE ,折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE =5,则GE 的长为.【答案】1349【解析】因为四边形ABCD 是正方形,易得△AFB ≌△DEA ,∴AF =DE =5,则BF =13.又易知△AFH ∽△BFA ,所以,即AH =,∴AH =2AH =,∴由勾股定理BF AF BA AH136013120得AE =13,∴GE =AE -AG =13498.(2019•河南•3分)如图,在矩形ABCD 中,AB =1,BC =a ,点E 在边BC 上,且BE =a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a 的值为 或 .【分析】分两种情况:①点B′落在AD边上,根据矩形与折叠的性质易得AB=BE,即可求出a的值;②点B′落在CD边上,证明△ADB′∽△B′CE,根据相似三角形对应边成比例即可求出a的值.【解答】解:分两种情况:①当点B′落在AD边上时,如图1.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,∴∠BAE=∠B′AE=∠BAD=45°,∴AB=BE,∴a=1,∴a=;②当点B′落在CD边上时,如图2.∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,∴DB′==,EC=BC图BE=a图a=a.在△ADB′与△B′CE中,,∴△ADB′∽△B′CE,∴=,即=,解得a1=,a2=0(舍去).综上,所求a的值为或.故答案为或.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.9.10.三.解答题1. (2019•江苏宿迁•12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.【分析】(1)如图①利用三角形的中位线定理,推出DE∥AC,可得=,在图②中,利用两边成比例夹角相等证明三角形细相似即可.(2)利用相似三角形的性质证明即可.(3)点G的运动路程,是图③图1中的的长的两倍,求出圆心角,半径,利用弧长公式计算即可.【解答】解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴=,∴=,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③图1中.设AB的中点为K,连接DK,以AC为边向右作等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC=∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠DOG=2∠DAB=60°,∴的长==,观察图象可知,点G的运动路程是的长的两倍=.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,弧长公式,等边三角形的判定和性质,圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.2. (2019•江西•9分)数学活动课上,张老师引导同学进行如下研究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A 固定在桌面上,图2是示意图活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时铅笔AB的中点C与点O重合。

(遵义专版)2019年中考数学总复习第1节图形的相似与位似(精练)试题

(遵义专版)2019年中考数学总复习第1节图形的相似与位似(精练)试题

第五章图形的相似与解直角三角形第一节图形的相似与位似1.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( B )A.12B.2 C.3 D.4(第1题图)(第2题图)2.(2019泰安中考)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( B )A.18 B.1095C.965D.2533.(2019遵义十九中一模)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( D )A.∠ABP=∠C B.∠APB=∠ABCC.APAB=ABACD.ABBP=ACCB(第3题图)(第4题图)4.(济南中考)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,DB于M,N两点.若AM=2,则线段ON的长为( C )A.22B.32C.1 D.625.(2019滨州中考)在平面直角坐标系中,点C,D的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为__(4,6)或(-4,-6)__.6.(2019随州中考)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =__125或53__时,以A ,D ,E 为顶点的三角形与△ABC 相似. 7.(汇川升学一模)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上.若△ABC 的边BC 长为40 cm ,高AH 为30 cm ,则正方形DEFG 的边长为__1207__cm.(第7题图)(第8题图)8.(2019包头中考)如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =kx 的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为__-16__.9.(2019六盘水中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F ,若CD =5,BC =8,AE =2,则AF =__169__. 10.(泰安中考)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长. 解:(1)∵AB=AC , ∴∠B =∠C. ∵∠APD =∠B, ∴∠APD =∠B=∠C. ∵∠APC =∠BAP+∠B, ∠APC =∠APD+∠DPC, ∴∠BAP =∠DPC, ∴△ABP ∽△PCD ,∴BP CD =AB CP, ∴AB ·CD =CP·BP. ∵AB =AC ,∴AC ·CD =CP·BP;(2)∵PD∥AB,∴∠APD =∠BAP. ∵∠APD =∠C ,∴∠BAP =∠C. ∵∠B =∠B,∴△BAP ∽△BCA , ∴BA BC =BP BA. ∵AB =10,BC =12, ∴1012=BP 10,∴BP =253.11.(随州中考)如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( B ) A .1∶3 B .1∶4 C .1∶5 D .1∶2512.(盘锦中考)如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD =3,DC =4,DE =52,∠EDF =90°,则DF 长是( C )A.158 B.113 C.103 D.165(第12题图)(第13题图)13.(2019杭州中考)如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于__78__.14.(2019长春中考)如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G. (1)求证:BD∥EF;(2)若DG GC =23,BE =4,求EC 的长.解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∵DF =BE ,∴四边形BEFD 是平行四边形, ∴BD ∥EF ;(2)∵四边形BEFD 是平行四边形, ∴DF =BE =4. ∵DF ∥EC , ∴△DFG ∽△CEG , ∴DG CG =DF CE, ∴CE=DF·CG DG =4×32=6.15.(2019杭州中考)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE∽△ABC; (2)若AD =3,AB =5,求AFAG的值. 解:(1)∵AG⊥BC,AF ⊥DE , ∴∠AFE =∠AGC=90°.∵∠EAF =∠GAC,∴∠AED =∠ACB, ∵∠EAD =∠BAC,∴△ADE ∽△ABC ; (2)由(1)可知:△ADE∽△ABC, ∴AD AB =AE AC =35. ∵∠AFE =∠AGC=90°,∠EAF =∠GAC, ∴△EAF ∽△CAG , ∴AF AG =AE AC , ∴AF AG =35. 16 .(2019枣庄中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求, 由图形可知,∠A 2C 2B 2=∠ACB, 过点A 作AD⊥BC 交BC 的延长线于点D ,由A(2,2),C(4,-4),B(4,0),易得D(4,2), ∴AD =2,CD =6,AC =22+62=210, ∴sin ∠ACB =AD AC =2210=1010,即sin ∠A 2C 2B 2=1010.17.(2019连云港中考)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH∥AB,交BC 的延长线于点H. (1)求BD·cos ∠HBD 的值; (2)若∠CBD=∠A,求AB 的长. 解:(1)∵DH∥AB,∴∠BHD =∠ABC=90°,∠A =∠HDC, ∴△ABC ∽△DHC , ∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4, 在Rt △BHD 中,cos ∠HBD =BH BD, ∴BD ·cos ∠HBD =BH =4;(2)∵∠CBD=∠A,∠ABC =∠BHD, ∴△ABC ∽△BHD , ∴BC HD =AB BH. ∵△ABC ∽△DHC , ∴AB DH =ACCD=3, ∴AB =3DH , ∴3DH =3DH4,解得DH =2, ∴AB =3DH =3×2=6.18.(2019眉山中考)如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,AC =42,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD,线段BE 与CD 相交于点F.(1)求证:PC CD =CECB;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)设PE =x ,△PBD 的面积为S ,求S 与x 之间的函数关系式. 解:(1)∵△BCE 和△CDP 均为等腰直角三角形, ∴∠ECB =∠PCD=45°, ∠CEB =∠CPD=90°, ∴△BCE ∽△DCP , ∴PC DC =EC CB; (2)AC∥BD.理由如下:∵∠PCE +∠ECD=∠BCD+∠ECD=45°, ∴∠PCE =∠BCD. 又∵PC DC =EC CB ,∴△PCE ∽△DCB , ∴∠CBD =∠CEP=90°, ∴∠ACB =∠CBD, ∴AC ∥BD ;(3)作PM ⊥BD ,交BD 的延长线于点M. ∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4. ∵△PCE ∽△DCB ,∴EC CB =PE BD ,即442=x BD, ∴BD =2x.∵∠PBM =∠CBD-∠CBP=45°, BP =BE +PE =4+x , ∴PM =4+x 2,∴S △PBD =12BD ·PM=12×2x×4+x 2, =12x 2+2x.2019-2020学年数学中考模拟试卷一、选择题1.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°2.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是()A.m>9 B.m≥9C.m<﹣9 D.m≤﹣93.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.5.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是( ) A.与2017年相比,2018年年末全国农村贫困人口减少了1386万人 B.2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降C.2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D.2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .47.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .﹣1B .2C .﹣7D .08.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B =135°,则劣弧AC 的长是( )A.4πB.2πC.πD.23π9.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .210.如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD =2∠ACB .若DG =5,EC =1,则DE 的长为( )A .2B .4C .D .11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ).A.15°B.20°C.25°D.30°12.下列运算正确的是( )A.222()x y x y +=+ B.632x x x ÷= 3=D.32361126xy x y ⎛⎫-=- ⎪⎝⎭二、填空题13.分解因式(a -b)(a -9b)+4ab 的结果是____.14.如图,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA .若BD =4,DC =5,则AB 的长为_____.15.方程3x x -=1xx +的解是_____. 16.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.已知a ,b 是一元二次方程x 2+x ﹣4=0的两个不相等的实数根,则a 2﹣b =_____. 18.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是_____. 三、解答题19.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球,记两次取得乒乓球上的数字依次为a 、b . (1)求a 、b 之积为偶数的概率;(2)若c =5,求长为a 、b 、c 的三条线段能围成三角形的概率.20.在正方形ABCD 中,点M 是射线BC 上一点,点N 是CD 延长线上一点,且BM =DN ,直线BD 与MN 交于点E .(1)如图1.当点M 在BC 上时,为证明“BD﹣2DE BM”这一结论,小敏添加了辅助线:过点M 作CD 的平行线交BD 于点P .请根据这一思路,帮助小敏完成接下去的证明过程.(2)如图2,当点M 在BC 的延长线上时,则BD ,DE ,BM 之间满足的数量关系是 . (3)在(2)的条件下,连接BN 交AD 于点F ,连接MF 交BD 于点G ,如图3,若1,3AF AD = CM =2,则线段DG = .21.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,tan ∠DBC=43,且BC=6,AD=4.求cosA 的值.22.计算:(π0﹣3|+(12)﹣123.已知二次函数y =﹣x 2+2mx ﹣m 2﹣1(m 为常数).(1)证明:不论m 为何值,该函数的图象与x 轴没有公共点;(2)当自变量x 的值满足﹣3≤x≤﹣1时,与其对应的函数值y 的最大值为﹣5,求m 的值.24.(1)计算:10124303)cos -︒⎛⎫-++-- ⎪⎝⎭(2)先化简,再求值:2222121111a a aa a a a+-+⋅---+,其中a=﹣12.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题13.(a-3b)214.615.x=﹣3 216.5 17.518.3 10三、解答题19.(1)P(数字之积为偶数)=56;(2)P(三线段能围成三角形)=13.【解析】【分析】(1)通过列表法可得a、b所有可能的结果,计算出a、b之积为偶数的次数,然后用a、b之积为偶数的次数除以总次数即可计算a、b之积为偶数的概率;(2)首先列出a、b、c所有可能的结果,根据三角形的性质找到能组成三角形的结果,最后计算能围成三角形的概率.【详解】(1)根据题意列表如下:由以上表格可知:有12种可能结果,分别为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其积分别为:2,3,4,2,6,8,3,6,12,4,8,12;积为偶数的有2,4,2,6,8,6,12,4,8,12,共10个,则P(数字之积为偶数)=1012=56;(2)所有的可能结果有12种,a,b及c的值分别为(1,2,5),(1,3,5),(1,4,5),(2,1,5),(2,3,5),(2,4,5),(3,1,5),(3,2,5),(3,4,5),(4,1,5),(4,2,5),(4,3,5),能构成三角形的有(2,4,5),(3,4,5),(4,2,5),(4,3,5),共4种,则P(三线段能围成三角形)=412=13.【点睛】本题考查了用列举法计算概率的知识,正确理解题意是解题的关键.20.(1)见解析;(2)BD+2DE BM;(3.【解析】【分析】(1)过点M作MP∥CD,交BD于点P,推出PM=DN,证明△EPM≌△EDN,推出EP=ED,根据正方形的性质和勾股定理求出即可;(2)过点M作MP∥CD交BD的延长线于点P,推出BM=PM=DN,根据AAS证明△EPM≌△EDN,推出EP =ED,根据正方形的性质和勾股定理求出即可;(3)证明△ABF∽△DNF,得出比例式,得到AB:ND=1:2,设AB=x,则DN=2x,根据BM =DN ,列出方程求出AB 的长度,根据DF ∥BM ,得到413,43DF DG BM BG ===即可求解. 【详解】解:(1)如图1,过点M 作MP ∥CD ,交BD 于点P ,∵四边形ABCD 是正方形,∴∠C =90°,∠CBD =∠CDB =45°, ∵PM ∥CD ,∴∠NDE =∠MPE ,∠BPM =∠CDB =45°, ∴△BPM 是等腰直角三角形, ∴PM =BM,PB =,∵BM =DN , ∴PM =DN ,在△EPM 和△EDN 中,,MPE NDE PEM DEN PM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPM ≌△EDN (AAS ), ∴EP =ED ,∴PB =BD ﹣PD =BD ﹣2DE ,根据勾股定理得:BP =,即2BD DE -=;(2)如图2,过点M 作MP ∥CD 交BD 的延长线于点P ,∴∠PMB=∠BCD=90°,∵∠CBD=45°,∴△BMP是等腰直角三角形,∴BM=PM=DN,与(1)证法类似:△EPM≌△EDN(AAS),∴EP=ED,∴PB=BD+PD=BD+2DE,根据勾股定理得:BP BM,即BD+2DE=BP BM,故答案为:BD+2DE BM;(3)如图3,∵AB∥CD,∴AB∥DN,∴△ABF∽△DNF,∴AF:FD=AB:ND,∵AF:FD=1:2,∴AB:ND=1:2,设AB =x ,则DN =2x , ∵BM =DN , ∴x+2=2x ,x =2, ∴AB =AD =2,DF =43,∴BD = ∵DF ∥BM ,∴413,43DF DG BM BG ===∴142DG =⨯=故答案为:2【点睛】本题综合考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题的能力.用的数学思想是类比推理的思想.21.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =.【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22【解析】【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】原式=1﹣(3+2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.(1)见解析;(2)m的值为﹣5或1.【解析】【分析】(1)根据判别式的值得到△=﹣4<0,然后根据判别式的意义得到结论;(2)利用配方法得到y=﹣(x﹣m)2﹣1,则抛物线的对称轴为直线x=m,讨论:当m<﹣3时,根据二次函数性质得到x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5;当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,利用二次函数的性质得到x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,然后分别解关于m的方程即可得到满足条件的m的值.【详解】(1)证明:△=4m2﹣4×(﹣1)×(﹣m2﹣1)=﹣4<0,所以﹣x2+2mx﹣m2﹣1=0没有实数解,所以不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=﹣x2+2mx﹣m2﹣1=﹣(x﹣m)2﹣1,抛物线的对称轴为直线x=m,当m<﹣3时,﹣3≤x≤﹣1,y随x的增大而减下,则x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5,解得m1=﹣5,m2=﹣1(舍去);当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,﹣3≤x≤﹣1,y随x的增大而增大,则x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,解得m1=1,m2=﹣3(舍去);综上所述,m的值为﹣5或1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.24.(1)4;(2)1a,-2. 【解析】 【分析】(1)根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算; (2)将原式的分子、分母因式分解,约分后计算减法,再代值计算即可. 【详解】(1) )0+(13)﹣1+4cos30°﹣﹣==4; (2)2222121111a a a a a a a+-+-+-- =22111(1)(1(1)1a a a a a a a +--+--+())=21(1)(1)a aa a a a +-++=1(1)a a a ++=1a, 当a =﹣12 时,原式=11-2=﹣2.【点睛】本题考查了实数的混合运算,分式的化简求值.解答(1)题的关键是根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算;解答(2)题的关键是把分式化到最简,然后代值计算.25.(1)94;(2)94,92,94;八;(3)23【解析】 【分析】(1)根据中位数、众数和平均数的定义求解; (2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.如图,在等腰梯形ABCD 中,AD ∥BC ,AB≠AD,对角线AC 、BD 相交于点O .以下结论不正确的是( )A.梯形ABCD 是轴对称图形B.∠DAC =∠DCAC.△AOB ≌△DOCD.△AOD ∽△COB2.下列说法正确的是( )A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明甲的射击成绩比乙稳定3.12019的倒数是( ) A.12019 B.﹣12019C.2019D.﹣20194.在四边形ABCD 中,//,AB CD AB AD =,添加下列条件不能推得四边形ABCD 为菱形的是( ) A .AB CD =B .//AD BCC .BC CD =D .AB BC =5.下列各式变形中,正确的是( )A .2=x B .2(1)(1)1x x x ---=-C .x xx y x y=--++D .22131=x+-24x x ⎛⎫++ ⎪⎝⎭6.如图,在数轴上,点A 表示的数是2,△OAB 是Rt △,∠OAB =90°,AB =1,现以点O 为圆心,线段OB 长为半径画弧,交数轴负半轴于点C ,则点C 表示的实数是( )A B C.﹣3 D.﹣7.如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.8.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=6,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为()A.1 B.2 C.D.39.在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A B.C D10.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x 2+52 =(x+1)2B.x 2+52 =(x ﹣1)2C.x 2+(x+1)2 =102D.x 2+(x ﹣1)2=52 11.下列计算正确的是( )A .3a ﹣a =3B .(a 2)3=a 6C .3a+2a =2a 2D .a 2﹣a 2=a 412.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为( )A .1.32×109B .1.32×108C .1.32×107D .1.32×106二、填空题13.已知:如图,△ABC 中,过AB 的中点F 作DE ⊥BC ,垂足为E ,交CA 的延长线于点D .若EF =3,BE =4,∠C =45°,则DF :FE 的值为_____.14.如图,OC 是O 的半径,弦AB OC ⊥于点D ,点E 在O 上,EB 恰好经过圆心O ,连接EC .若B E ∠=∠,32OD =,则劣弧AB 的长为__________.15.分解因式:228ax a -=_______.16.对非负实数x“四舍五入”到个位的值记为< x >,即已知n 为正整数,如果n -12≤x<n +12,那么< x >=n .例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…则满足方程< x >=1x 1.62+的非负实数x 的值为____. 17.在不透明的袋子中有2个白球,3个红球,除颜色外完全相同,任意摸出一个球,摸到红球的概率18.截至2019年4月份,全国参加汉语考试的人数约为3500万,将3500万用科学记数法表示为_____.三、解答题19.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.(1)求证:ED是⊙O的切线;(2)若AD=,AB=6,求FD的长.20.如图,在数轴上点A、B、C分别表示-1、-2x+3、x+1,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当AB=2BC时,x的值为_____.21.化简分式:2222334424x x xx x x x⎛⎫---÷⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.22.2018年4月,无锡外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另加外卖送单补贴(送一次外卖称为一单),具体方案如下:(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.23.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,∠OAB=90°且OA=AB,OB=8,(1)求点A的坐标;(2)点P是从O点出发,沿X轴正半轴方向以每秒1单位长度的速度运动至点B的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,交四边形ABCD的边AO或AB于点Q,交OC或BC于点R.设运动时间为t(s),已知t=3时,直线l恰好经过点 C.求①点P出发时同时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求当0<t<3时S与t的函数关系式;并直接写出S的最大值.②是否存在某一时刻t,使得△ORE为直角三角形?若存在,请求出相应t的值;若不存在,请说明理由.24.在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.25.如图,以点B为圆心,适当长为半径画弧,交BA于点D,交BC于点E;分别以点D,E为圆心,大于12DE 的长为半径画弧,两弧在∠ABC 的内部相交于点F ;画射线BF ,过点F 作FG ⊥AB 于点G ,作FH ⊥BC 于点H求证:BG =BH .【参考答案】***一、选择题二、填空题13.7:314.2π15.2(2)(2)a x x +-16.817.3518.5×107三、解答题19.(1)证明见解析;(2)7. 【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BFDF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图,∵OA =OD ,∴∠2=∠3,∵AD 平分∠EAB ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∵ED ⊥CA ,∴OD ⊥ED ,∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)连接BD ,如图,∵AB 是直径,∴∠ADB =90°.∴BD =2,∵EF 是⊙O 的切线,∴OD ⊥EF ,∴∠4+∠5=90°,∵∠3+∠5=90°,∴∠4=∠3=∠2,∵∠F =∠F ,∴△FBD ∽△FDA , ∴BF BD DF AD ==∴BF =4DF , 在Rt △ODF 中,∵(3+BF )2=32+DF 2,∴(3+4DF )2=32+DF 2,∴DF =7.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键.20.(1) 223x<<;(2)1【解析】【分析】(1)根据A、B、C三点在数轴上的位置列不等式组即可得出x的取值范围;(2)分别求出AB、BC的距离,根据AB=2BC列方程即可得出x的值.【详解】(1)由题意得:231123xx x-+>-⎧⎨+>-+⎩①②解不等式①得:x<2;解不等式②得:x>23.∴不等式组的解集为:23<x<2.(2)∵AB=2BC,∴-2x+3-(-1)=2[x+1-(-2x+3)]-2x+4=2x+2+4x-68x=8解得x=1.故答案为:1【点睛】本题考查数轴的性质、解一元一次不等式组及解一元一次方程,不等式解集遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.x+2,3.【解析】【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【详解】2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ =22(2)33(224x x x x x x ⎡⎤---÷⎢⎥---⎣⎦) =233()224x x x x x --÷--- =(-2)(2)323x x x x x -⋅--+ =x+2,∵x 2﹣4≠0,x ﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x =1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.22.(1)若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)见解析;(3)750≤m≤900.【解析】【分析】:(1)根据题意,直接按照第一个标准,由底薪每单补贴,求解即可(2)按照x >m,0<x≤500和0<x≤500三种情况,分别求解即可;(3)根据(2)中的关系式,分别代入求解,注意要符合工资要求【详解】(1)由题意可得,1000+500×6+(600﹣500)×8=1000+3000+800=4800(元),答:若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)由题意可得,当0<x≤500时,y =1000+6x ,当500<x≤m 时,y =1000+500×6+(x﹣500)×8=8x ,当x >m 时,y =1000+500×6+(m﹣500)×8+(x﹣m)×10=10x ﹣2m ,由上可得,y =10006(05008(500102(x x x x m x m x m +⎧⎪⎨⎪-⎩<≤)<≤)>) ;(3)若800<m≤900,y =8×800=6400,符合题意,若700≤m≤800,6400≤﹣2m+10×800≤6500,解得,750≤m≤800,综上所述:750≤m≤900.【点睛】此题考查不等式组的应用,解题关键在于列出方程23.(1)A (4,4);(2)①2728.S (t 2)33=-+,S 有最大值为283;②t 的值为4或3614. 【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)①首先求出直线OA 、OB 、OC 、BC 的解析式.①求出P 、Q 的坐标即可解决问题;即可表示出QR 和PE 的长,即可得到三角形面积解析式利用配方法求出最值即可;②分三种情况讨论,即∠REO =90°或∠ORE =90°或∠ROE =90°分别求解即可.【详解】解:(1)由题意△OAB 是等腰直角三角形,∵OB =8,即B (8,0)∴A (4,4),(2)∵A (4,4),B (8,0),∴直线OA 的解析式为y =x ,直线AB 的解析式y =﹣x+6,∵t =3时,直线l 恰好过点C ,即OP =3,OC =5,∴PR =4,C (3,﹣4),∴直线OC 的解析式为y =-43x ,直线BC 的解析式为y =43255x -, ①当0<t <3时,Q (t ,t ),R (t ,-43t ), ∴QR=t-(-43t)=73t .PE =8﹣2t . ∴S =2117728(82)(2)22333PE QR t t t =-=--+. ∴t =2时,S 有最大值为283. ②要使△ORE 为直角三角形,则有三种情况:Ⅰ.若∠REO=90°,如图1,则点P与E点重合,∴8﹣2t=0,解得t=4,Ⅱ.若∠ORE=90°,如图2.△ORP∽△REP,∴OP RPRP PE=,即RP2=OP•PE,∴24(82) 3tt t⎛⎫=-⎪⎝⎭,解之得:t=36 17,Ⅲ.当t>4时,△ORE不可能为直角三角形.故使得△ORE为直角三角形时,t的值为:4或36 17,【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.24.(1)30;(2)y=﹣30x+60;(3)甲、乙第一次相遇是在出发后0.6小时;(4)25≤x≤56或76≤x≤2.【解析】【分析】(1)观察图形即可求得A 、B 两地间的距离;(2)乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由待定系数法可求乙与B 地的距离y (km )与乙行驶时间x (h )之间的函数关系式;(3)由相遇问题的数量关系直接求出结论;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由待定系数法求出解析式建立不等式组求出其解即可.【详解】解:(1)由题意,得A 、B 两地间的距离为30km .故答案为:30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得 30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由题意,得 22223002k b k b =+⎧⎨=+⎩, 解得:223060k b =-⎧⎨=⎩, ∴y =-30x+60.(3)由函数图象,得(30+20)x =30,解得x =0.6.故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,由题意,得30150.75b k b =⎧⎨=+⎩, 解得:k 20b 30=-⎧⎨=⎩, y 甲1=﹣20x+30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩, ∴y 甲2=﹣20x+40,当20303010301510x x x -+-≤⎧⎨-⎩…时, ∴25≤x≤56; 306015102x x -+-⎧⎨⎩……, 解得:76≤x≤2. ∴25≤x≤56或76≤x≤2.【点睛】本题考查了行程问题的数量关系路程÷时间=速度的运用,运用待定系数法求一次函数的解析式的运用,不等式组的解法的运用,解答时求出一次函数的解析式是关键.25.详见解析【解析】【分析】由作法可知BF 是∠ABC 的角平分线,再证明△GBF ≌△HBF 即可得到结论.【详解】证明:由作法可知BF 是∠ABC 的角平分线,∴∠ABF =∠CBF ,∵FG ⊥AB ,FH ⊥BC .∴∠FGB =∠FHB ,在△GBF 和△HBF 中,FGB FHB GBF HBF BF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△GBF ≌△HBF (AAS ),∴BG =BH .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.。

(易错题精选)初中数学图形的相似全集汇编含答案

(易错题精选)初中数学图形的相似全集汇编含答案

(易错题精选)初中数学图形的相似全集汇编含答案一、选择题1.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .【答案】B【解析】【分析】 根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG=2,则线段AE 的长度为( )A .6B .8C .10D .12【答案】D【解析】 分析:根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG=2可求出AF 、AG 的长度,由CG ∥AB 、AB=2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.详解:∵四边形ABCD 为正方形,∴AB=CD ,AB ∥CD ,∴∠ABF=∠GDF ,∠BAF=∠DGF ,∴△ABF ∽△GDF , ∴AF AB GF GD==2, ∴AF=2GF=4,∴AG=6. ∵CG ∥AB ,AB=2CG ,∴CG 为△EAB 的中位线,∴AE=2AG=12. 故选D .点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.3.如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO V ∽CBO V ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC ,∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE V ∽ABC V ,DEO V ∽CBO V ,DE AE BC AC ∴=,DE OD BC OC = . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴AG AE AF AC= ,故不正确; 故选C .【点睛】 本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.4.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点, 12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.5.如图,□ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =21:7;④FB 2=OF •DF .其中正确的是( )A .①②④B .①③④C .②③④D .①③ 【答案】B【解析】【分析】 ①正确.只要证明EC=EA=BC ,推出∠ACB=90°,再利用三角形中位线定理即可判断. ②错误.想办法证明BF=2OF ,推出S △BOC =3S △OCF 即可判断.③正确.设BC=BE=EC=a ,求出AC ,BD 即可判断.④正确.求出BF ,OF ,DF (用a 表示),通过计算证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴CD ∥AB ,OD=OB ,OA=OC ,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC 平分∠DCB ,∴∠ECB=12∠DCB=60°, ∴∠EBC=∠BCE=∠CEB=60°,∴△ECB 是等边三角形,∴EB=BC ,∵AB=2BC ,∴EA=EB=EC ,∴∠ACB=90°,∵OA=OC ,EA=EB ,∴OE ∥BC ,∴∠AOE=∠ACB=90°,∴EO ⊥AC ,故①正确,∵OE ∥BC ,∴△OEF ∽△BCF ,∴12OE OF BC FB == , ∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误, 设BC=BE=EC=a ,则AB=2a ,3,223(72)a a +, ∴7a ,∴AC :3a 7217,故③正确,∵OF=137, ∴7, ∴BF 2=79a 2,7a•7779⎫=⎪⎪⎝⎭ a 2, ∴BF 2=OF•DF ,故④正确,故选:B .【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.6.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC = B .BF EF BC AB = C .AE EC FC DE =D .EF BF AB BC = 【答案】C【解析】【分析】 根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF ∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC ,∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC ,∴AE DEEC FC=,C正确;又∵EF∥AB,∴∠CEF=∠A,∠CFE=∠B,∴△CEF∽△CAB,∴EF CE FC BF AB AC BC BC==≠,∴答案D错舍去;故选C.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.7.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:4【答案】C【解析】【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.8.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA , ∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OB OA=∴tan ∠BAO=5OB OA=. 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.9.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.10.如图,边长为4的等边ABC V 中,D 、E 分别为AB ,AC 的中点,则ADE V 的面积是( )A 3B .32C .334D .23【答案】A【解析】【分析】 由已知可得DE 是△ABC 的中位线,由此可得△ADE 和△ABC 相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC 的面积.【详解】Q 等边ABC V 的边长为4,2ABC 3S 4434∴=⨯=V , Q 点D ,E 分别是ABC V 的边AB ,AC 的中点,DE ∴是ABC V的中位线, DE //BC ∴,1DE BC 2=,1AD AB 2=,1AE AC 2=, 即AD AE DE 1AB AC BC 2===, ADE ∴V ∽ABC V,相似比为12, 故ADE S V :ABC S 1=V :4,即ADE ABC 11S S 43344==⨯=V V , 故选A .【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质、三角形中位线定理,解题的关键是熟练掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.11.如图,Rt ABC V 中,90,60ABC C ∠=∠=o o ,边AB 在x 轴上,以O 为位似中心,作111A B C △与ABC V 位似,若()3,6C 的对应点()11,2C ,则1B 的坐标为( )A .()1,0B .3,02⎛⎫ ⎪⎝⎭C .()2,0D .()2,1【答案】A【解析】【分析】 如图,根据位似图形的性质可得B 1C 1//BC ,点B 在x 轴上,由∠ABC=90°,可得B 1C 1⊥x 轴,根据C 1坐标即可得B 1坐标.【详解】如图,∵111A B C △与ABC V 位似,位似中心为点O ,边AB 在x 轴上,∴B1C1//BC,点B在x轴上,∵∠ABC=90°,∴B1C1⊥x轴,∵C1坐标为(1,2),∴B1坐标为(1,0)故选:A.【点睛】本题考查位似图形的性质,位似图形的对应边互相平行,对应点的连线相交于一点,这一点叫做位似中心.12.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF()A.23B.22C3D3【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则2 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.13.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=3 2【答案】D 【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.14.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=483x -+.故选C .15.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .33 【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12,∴2()OB OA =121=12 , ∴2OB OA , 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解16.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠BB .∠BDE +∠C =180° C .AD •BC =AC •DED .AD •AB =AE •AC【答案】C【解析】【分析】 A 、根据有两组角对应相等的两个三角形相似,进行判断即可;B :根据题意可得到∠ADE=∠C ,根据有两组角对应相等的两个三角形相似,进行判断即可;C 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A 、由∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ;B 、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ;C 、由AD•BC=AC•DE ,得不能判断△ADE ∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D、由AD•AB=AE•AC得,∠A=∠A,故能确定△ADE∽△ACB,故选:C.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角);有两组角对应相等的两个三角形相似.17.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.AD AEBD EC=B.AF DFAE BE=C.AE AFEC FE=D.DE AFBC FE=【答案】D【解析】【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴AD AEBD EC=,故A正确;∵DF//BE,∴△ADF∽△ABF, ∴AF DFAE BE=,故B正确;∵DF//BE,∴AD AFBD FE=,∵AD AEBD EC=,∴AE AFEC FE=,故C正确;∵DE//BC,∴△ADE∽△ABC,∴DE ADBC AB=,∵DF//BE,∴AF ADAE AB=,∴DE AFBC AE=,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.18.若△ABC的每条边长增加各自的50%得△A'B'C',若△ABC的面积为4,则△A'B'C'的面积是()A.9 B.6 C.5 D.2【答案】A【解析】【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,根据相似三角形的性质即可得到结论.【详解】解:∵△ABC 的每条边长增加各自的50%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′, ∴214()150%9ABC A B C S S '''==+V V , ∵△ABC 的面积为4,则△A'B'C'的面积是9.故选:A .【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定是解题的关键.19.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30 【答案】A【解析】【分析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V∴43S ACD S CBA =V V ∵ACD V 的面积为15∴44152033S CBA S ACD ==⨯=VV 故答案为:A .【点睛】 本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.20.如图,O 是平行四边形ABCD 的对角线交点,E 为AB 中点,DE 交AC 于点F ,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∵E为AB中点,∴BE=12 AB,∴EM=12 AN,∵平行四边形ABCD的面积为8,∴2×12×AN×BD=8,∴AN×BD=8∴S△OED=12×OD×EM=12×12BD×12AN=18AN×BD=1.故选:C.【点睛】本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.。

2019年全国各地中考数学试题分类汇编(第一期) 专题26 图形的相似与位似(含解析)

2019年全国各地中考数学试题分类汇编(第一期) 专题26 图形的相似与位似(含解析)

图形的相似与位似一.选择题1. (2019•浙江绍兴•4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.【点评】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法;熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.2. (2019•江苏苏州•3分)如图,在ABC 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC 的面积为()A.B .4 C. D .8D ABC【分析】考察相似三角形的判定和性质、等腰直角三角形的高,中等题型【解答】AB AD DE AD ∴⊥⊥,90BAD ADE ∴∠=∠=//AB DE ∴ 易证CDECBA 12DC DE BC BA ∴== 即12DC BD DC =+ 由题得BD =∴解得DC =ABC11422ABC S BC ∴=⨯⨯= 故选B3 (2019•湖南邵阳•3分)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是( )A.△ABC∽△A′B′C′B.点C.点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C.点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.4.(2019,山东枣庄,3分)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2 B.3 C.4 D.【分析】由S△ABC=16.S△A′EF=9且AD为BC边的中线知S△A′DE=S△A′EF=,S△ABD =S△ABC=8,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:∵S△ABC=16.S△A′EF=9,且AD为BC边的中线,∴S △A ′DE =S △A ′EF =,S △ABD =S △ABC =8,∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则()2=,即()2=,解得A ′D =3或A ′D =﹣(舍),故选:B .【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.5.( 2019甘肃省兰州市) (4分)已知△ABC ∽△A ′B ′C ′, AB =8,A ’B ’=6, 则''C B BC = ( )A. 2 .B.34 . C. 3 . D. 916. 【答案】B .【考点】相似三角形的性质.【考察能力】运算求解能力.【难度】容易【解析】∵△ABC ∽△A ′B ′C ′,∴''B A AB =''CB BC 又∵AB =8,A ’B ’=6,∴''C B BC =34. 故选B.6.(2019甘肃省陇南市)(3分)如图,将图形用放大镜放大,应该属于( )A .平移变换B .相似变换C .旋转变换D .对称变换【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【解答】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点评】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.7.(2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【分析】先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.【解答】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.【点评】此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.8.(2019,山东淄博,4分)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a【分析】证明△ACD∽△BCA,根据相似三角形的性质求出△BCA的面积为4a,计算即可.【解答】解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.9 (2019•江苏连云港•3分)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似()A.①处B.②处C.③处D.④处【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可.【解答】解:帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2.2、4;“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2,∵==,∴马应该落在②的位置,故选:B.【点评】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.10. 2019•甘肃武威•3分)如图,将图形用放大镜放大,应该属于()A.平移变换B.相似变换C.旋转变换D.对称变换【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【解答】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点评】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.11 (2019•广西贵港•3分)如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为()A.2B.3C.2D.5【分析】设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出=,从而可求出CD的长度.【解答】解:设AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴DE=4,=,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴=,设AE=2y,AC=3y,∴=,∴AD=y,∴=,∴CD=2,故选:C.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.12. (2019•湖北十堰•3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D.E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.13. (2019•湖北天门•3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接B D.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线,根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB,故②正确;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD,故③正确;根据相似三角形的性质得到,于是得到ED•BC=BO•BE,故④正确.【解答】解:连结DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠CO D.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠CO B.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.【点评】本题主要考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法,注意数形结合思想的应用是解答此题的关键.二.填空题1.(2019▪广西池河▪3分)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则=.【分析】直接利用位似图形的性质进而分析得出答案.【解答】解:∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴===.故答案为:.【点评】此题主要考查了位似变换,正确得出对应边的比值是解题关键.2. (2019•湖南长沙•3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2M A.其中正确的结论的序号是①③④.(只填序号)【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(n﹣m),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.3. (2019•湖南岳阳•4分)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A.B两点分别作PE的垂线A C.BD,垂足分别为C.D,连接AM,则下列结论正确的是①②④.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.【分析】连接OM,可证OM∥AC,得出∠CAM=∠AMO,由OA=OM可得∠OAM=∠AMO,故①正确;证明△ACM∽△AMB,则可得出②正确;求出∠MOP=60°,OB=2,则用弧长公式可求出的长为,故③错误;由BD∥AC可得PB=,则PB=OB=OA,得出∠OPM=30°,则PM=2,可得出CM=DM=DP=,故④正确.【解答】解:连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,∴BD∥AC,∴,∴PB=,∴,BD=,∴PB=OB=OA,∴在Rt△OMP中,OM==2,∴∠OPM=30°,∴PM=2,∴CM=DM=DP=,故④正确.故答案为:①②④.【点评】本题考查圆知识的综合应用,涉及切线的性质,圆周角定理,相似三角形的判定和性质、弧长公式、含30度直角三角形的性质等知识,解题的关键是灵活运用这些知识解决问题.4.(2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC =1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【分析】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=2,∴AC=6,BC=12,∴剩余部分的面积=×12×6﹣4×4=100(cm2),故选:A.【点评】本题考查的是相似三角形的应用、正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.5.(2019▪黑龙江哈尔滨▪3分)如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是()A.=B.=C.=D.=【分析】根据平行四边形的性质以及相似三角形的性质.【解答】解:∵在▱ABCD中,EM∥AD∴易证四边形AMEN为平行四边形∴易证△BEM∽△BAD∽△END∴==,A项错误=,B项错误==,C项错误==,D项正确故选:D.【点评】此题主要考查相似三角形的性质及平行四边形的性质,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.6.(2019•浙江宁波•4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 6.5或3.【分析】根据勾股定理得到AB==6,AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB 相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5;当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠P AG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴=,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.【点评】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,熟练正确切线的性质是解题的关键.7.(2019•浙江衢州•4分)如图,在平面直角坐标系中,O为坐标原点,ABCD的边AB 在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F。

部编数学九年级下册专题13一线三等角模型证相似(解析版)含答案

部编数学九年级下册专题13一线三等角模型证相似(解析版)含答案

专题13 一线三等角模型证相似1.如图,在边长为9cm的等边ABCD中,D为BC上一点,且3BD cm=,E在AC上,60ADEÐ=°,则AE的长为( )cm.A.B.C.7D.6【解答】解:ABCDQ是等边三角形,9AB BC AC cm\===,60B CÐ=Ð=°,180120BAD ADB B\Ð+Ð=°-Ð=°,60ADEÐ=°Q,180120ADB EDC ADE\Ð+Ð=°-Ð=°,BAD EDC\Ð=Ð,ABD DCE\D D∽,\AB BD DC CE=,\9393CE=-,2CE\=,7()AE AC CE cm\===,故选:C.2.如图,边长为8cm的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若2BF cm=,则小正方形的面积等于2 .【解答】解:Q正方形ABCD的边长为8cm,2BF cm=,6CF cm\=Q 四边形ABCD 和EFGH 均为正方形90B C EFG \Ð=Ð=Ð=°90BEF BFE \Ð+Ð=°,90CFD BFE Ð+Ð=°BEF CFD\Ð=ÐBEF CFD\D D ∽\BE CF BF CD =\628BE =32BE \=\小正方形的面积等于:222EF BE BF =+944=+225()4cm =故答案为:2254cm .三.解答题(共15小题)3.已知等边ABC D ,E ,F 分别在边AB 、AC 上,将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.(1)求证:BED CDF D D ∽;(2)若2CD BD =时,求ED DF.【解答】解:(1)证明:Q 等边ABCD 60A B C \Ð=Ð=Ð=°Q 将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.60EDF A \Ð=Ð=°180********BED BDE B Ð+Ð=°-Ð=°-°=°Q 180********BDE CDF EDF Ð+Ð=°-Ð=°-°=°BED CDF\Ð=Ð又B CÐ=ÐQ BED CDF \D D ∽;(2)2CD BD=Q \设1BD =,则2CD =,Q 翻折,\设ED AE x ==,DF AF y==3AB BC AC \===,3BE x =-,3CF y=-BED CDFD D Q ∽\ED BD BE DF CF DC ==\1332x x y y -==-由13x y y=-得:31x y x =+①由32x x y -=得:23x y x=-②由①②解得:75x =,74y =\45x y =\45ED DF =.4.如图有一块三角尺,Rt ABC D ,90C Ð=°,30A Ð=°,6BC =,用一张面积最小的正方形纸片将这个三角尺完全覆盖.求出这个正方形的面积.【解答】解:90C Ð=°Q ,30A Ð=°,6BC =,212AB BC \==,AC \=,Q 四边形AFED 是正方形,90F E \Ð=Ð=°,AF FE =,90FAC FCA \Ð+Ð=°,90C Ð=°Q ,90FCA BCE \Ð+Ð=°,FAC BCE \Ð=Ð,AFC CEB \D D ∽,\AFACCE CB =,\AFCE =,设AF x =,则CE x =,FC \=,222AF AC Q ,222)x x \+=,2268237x \=+,答:这个正方形的面积为:226837.5.已知:如图,ABC D 是等边三角形,点D 、E 分别在边BC 、AC 上,60ADE Ð=°.(1)求证:ABD DCE D D ∽;(2)如果3AB =,23EC =,求DC 的长.【解答】(1)证明:ABC D Q 是等边三角形,60B C \Ð=Ð=°,AB AC =,B BAD ADE CDE Ð+Ð=Ð+ÐQ ,60B ADE Ð=Ð=°,BAD CDE \Ð=ÐABD DCE \D D ∽;(2)解:由(1)证得ABD DCE D D ∽,\BD CE AB DC=,设CD x =,则3BD x =-,\2333x x-=,1x \=或2x =,1DC \=或2DC =.6.如图,在矩形ABCD 中,3AB =,5AD =,P 是边BC 上的任意一点(P 与B 、C 不重合),作PE AP ^,交CD 于点E .(1)判断ABP D 与PCE D 是否相似,并说明理由.(2)连接BD ,若//PE BD ,试求出此时BP 的长.【解答】解:(1)ABP D 与PCE D 相似,理由如下:Q 四边形ABCD 是矩形,90B C \Ð=Ð=°,90BAP BPA \Ð+Ð=°,PE AP ^Q ,90CPE BPA \Ð+Ð=°,BAP CPE \Ð=Ð,ABP PCE \D D ∽;(2)连接BD,如图所示:由(1)知ABP PCE D D ∽,\AB BP PC CE =,\AB PC BP CE=,//PE BD Q ,\CP CE CB CD =,\PC CB CE CD =,\AB CB BP CD=,Q 在矩形ABCD 中,3AB =,5AD =,3CD AB \==,5CB AD ==,95AB CD BP CB ×\==.7.如图1,在ABC D 中,AB AC ==,cos B =,点D 在BC 边上从C 向B 运动.以D 为顶点作ADE B Ð=Ð,射线DE 交AB 边于点E ,过点A 作AF AD ^交射线DE 于点F ,连接CF .(1)求证:ACD DBE D D ∽.(2)当AD CD =时(如图2),求AD 和EF 的长.(3)设点D 在BC 边上从C 向B 运动的过程中,直接写出点F 运动的路径长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,又ADE B Ð=ÐQ ,ADE B C \Ð=Ð=Ð,180B BDE BED Ð+Ð+Ð=°Q ,180ADC ADE BDE Ð+Ð+Ð=°,BED ADC \Ð=Ð,ACD DBE \D D ∽;(2)解:如图,过点D 作DH AC ^交AC 于点H ,AD CD =Q,AB AC ==,12CH AH AC \===,cos B =Q ,B C Ð=Ð,cos CH B CD\=,6cos CH CD B \===,6AD =,AF AD ^Q ,90FAD \Ð=°,ADE B Ð=ÐQ,6cos ADE DF \Ð==,DF \=,由(1)得ACD DBE D D ∽,\DE BD AD AC =,\6DE DE \=,过点A 作AM BC ^于点M ,cos BM B AB\=,\4BM \=,28BC BM \==,862BD BC CD \=-=-=,DE \==,EF DF DE \=-==,6AD \=,EF =(3)解:F Q 点随着D 点的运动而运动,D 在线段BC 上,F \点的轨迹也是一条线段,如图,当D 与C 点重合时,F 点在1F 的位置,190CAF Ð=°,当D 点与B 点重合时,F 点在2F 的位置,290BAF Ð=°,12F F 为F 点的运动路径,12F AF CAB \Ð=Ð,AC =Q,cos B =,ABC C Ð=Ð,1cos AC C CF \===,112CF \=,在1Rt ACF D中,1AF ==,ADF B Ð=ÐQ,2cos cos ABF B \Ð==22cos ABABF BF Ð==,=,212BF \=,2AF ==,21AF AF \=,△12AF F 是等腰三角形,12F AF CAB Ð=ÐQ ,△12AF F 与CAB D 都是等腰三角形,\△12AF F ACB D ∽,\121F F AF BC AC =,由(2)得8BC =,\128F F,12F F \=\点F运动的路径长为.8.在ABC D 中,点E 、F 在边BC 上,点D 在边AC 上,连接ED 、DF ,AB m AC =,120A EDF Ð=Ð=°(1)如图1,点E 、B 重合,1m =时①若BD 平分ABC Ð,求证:2CD CF CB =×;②若213CFBF =,则ADCD =(2)如图2,点E 、B 不重合.若BE CF =,ABDFm AC DE ==,37BEEF =,求m 的值.【解答】解:(1)①Q 1ABm AC ==,AB AC \=,BD Q 平分ABC Ð,ABD DBF \Ð=Ð,BDC A ABD BDF CDF Ð=Ð+Ð=Ð+ÐQ ,且120A BDF Ð=Ð=°,ABD CDF DBF \Ð=Ð=Ð,且C C Ð=Ð,CDF CBD \D D ∽,\CD CF BC CD=,2CD BC CF \=×;②如图1,过A 作AG BC ^于G ,过F 作FH BC ^,交AC 于H ,30C Ð=°Q ,2CH FH \=,设2FH a =,4CH a =,则CF =,Q 213CF BF =,BC \=,CG =Q ,152AG a \=,15AC a =,11AH a \=,120BAD BDF DHF Ð=Ð=Ð=°Q ,18012060ADB FDH ADB ABD \Ð+Ð=Ð+Ð=°-°=°,ABD FDH \Ð=Ð,ABD HDF \D D ∽,\AB AD HD FH =,即152a AD DH a=,设AD x =,则11DH a x =-,230(11)a x a x \=-,2211300x ax a -+=,(5)(6)0x a x a --=,5x a =或6a ,\51102AD a CD a ==或6293AD a CD a ==,故答案为:12或23;(2)如图2,过E 作//EH AB ,交AC 于H ,过D 作DM EH ^于M ,过F 作//FG ED ,交AC 于G ,BE CF =Q ,37BE EF =,\37CF EF =,//FG ED Q ,\37CF CG EF DG ==,\设3CG a =,7DG a =,Q AB DF m AC DE==,120A EDF Ð=Ð=°,ABC DFE \D D ∽,DEC C \Ð=Ð,10DE DC a \==,//FG DE Q ,GFC DEF C \Ð=Ð=Ð,3FG CG a \==,同理由(1)得:EHD DFG D D ∽,\ED DH DG FG =,即1073a DH a a=,307a DH =,Rt DHM D 中,60DHM Ð=°,30HDM \Ð=°,11527a HM DH \==,DM =,657EM a \===,651550777EH a a a \=-=,5017302107a AB EH m AC CH a a \====+.9.已知:在EFG D 中,90EFG Ð=°,EF FG =,且点E ,F 分别在矩形ABCD 的边AB ,AD 上.(1)如图1,填空:当点G 在CD 上,且1DG =,2AE =,则EG =(2)如图2,若F 是AD 的中点,FG 与CD 相交于点N ,连接EN ,求证:AEF FEN Ð=Ð;(3)如图3,若AE AD =,EG ,FG 分别交CD 于点M ,N ,求证:2MG MN MD =×.【解答】(1)解:90EFG Ð=°Q ,90AFE DFG \Ð+Ð=°,90AEF AFE Ð+Ð=°Q ,AEF DFG \Ð=Ð,又90A D Ð=Ð=°Q ,EF FG =,()AEF DFG AAS \D @D ,2AE FD \==,FG \==EG \==,;(2)证明:延长EA、NF 交于点M ,Q点F为AD的中点,\=,AF DFQ,AM CD//Ð=Ð,\Ð=Ð,MAD DM DNF\D@D,MAF NDF AAS()\=,MF FN^Q,EF MG\=,ME GE\Ð=Ð;MEF FEN(3)证明:如图,过点G作GP AD^交AD的延长线于P,\Ð=°,P90D@D,AEF PFG AAS同(1)同理得,()=,\=,PF AEAF PGQ,=AE AD\=,PF AD\=,AF PD\=,PG PDQ,Ð=°P9045PDG \Ð=°,45MDG \Ð=°,在Rt EFG D 中,EF FG =,45FGE \Ð=°,FGE GDM \Ð=Ð,GMN DMG Ð=ÐQ ,MGN MDG \D D ∽,\MG MN DM MG=,2MG MN MD \=×.10.在ABC D 中,BA BC =,(0180)ABC a a Ð=°<<°,点P 为直线BC 上一动点(不与点B 、C 重合),连接AP ,将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,直线PM 与直线CN 相交于点Q .(1)当点P 在线段BC 上,当60a =°时,如图1,直接判断BP CQ 的大小;(2)当点P 在线段BC 上,当BC k AC=时,如图2,试判断线段BP CQ 的大小,并说明理由;(3)当点P 在直线BC 上,当90a =°,AC =17AP =时,请利用备用图探究PCQ D 面积的大小(直接写出结果即可).【解答】解:(1)如图1,连接AQ ,BA BC =Q ,60ABC a Ð==°,ABC \D 是等边三角形,60BAC ACB ABC \Ð=Ð=Ð=°,Q 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,60APQ ACQ \Ð=Ð=°,\点A ,点P ,点C ,点Q 四点共圆,60AQP ACB \Ð=Ð=°,APQ \D 是等边三角形,AP AQ \=,60PAQ Ð=°,BAC PAQ \Ð=Ð,BAP CAQ \Ð=Ð,()BAP CAQ SAS \D @D ,BP CQ \=,\1BP CQ=;(2)BP k CQ =,理由如下:如图2,连接AQ ,BA BC =Q ,ABC a Ð=,1802ACB BAC a °-\Ð=Ð=,QQ 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,APQ ACQ a \Ð=Ð=,\点A ,点P ,点C ,点Q 四点共圆,1802AQP ACB a °-\Ð=Ð=,1802PAQ BAC a °-\Ð==Ð,BAP CAQ \Ð=Ð,又ABC ACQ a Ð=Ð=Q ,ABP ACQ \D D ∽,\AB BC BP k AC AC CQ===;(3)17AC AP =<=Q ,\点P 不在线段BC 上,当点P 在点C 的右侧时,如图3,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,7CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,11105715222CPQ S CP QH D \=´´=´´=;当点P 在点B 的左侧时,如图4,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,23CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,113452315222CPQ S CP QH D \=´´=´´=;综上所述:PCQ D 面积为1052或3452.11.如图,在ABC D 中,已知5AB AC ==,6BC =,且ABC DEF D @D ,将DEF D 与ABC D 重合在一起,ABC D 不动,DEF D 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点.(1)求证:ABE ECM D D ∽;(2)当DE BC ^时,①求CM 的长;②直接写出重叠部分的面积;(3)在DEF D 运动过程中,当重叠部分构成等腰三角形时,求BE 的长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,ABC DEF D @D Q ,AEF B \Ð=Ð,AEF CEM AEC B BAE Ð+Ð=Ð=Ð+ÐQ ,CEM BAE \Ð=Ð,ABE ECM \D D ∽;(2)①当DE BC ^时,AB AC =Q ,BAE EAM \Ð=Ð,ABC DEF D @D Q ,B DEF \Ð=Ð,ABE AEM \D D ∽,\AB AE AE AM=,90AME AEB Ð=Ð=°,5AB AC ==Q ,DE BC ^,6BC =,132BE EC BC \===,在Rt ABE D 中,4AE ===,\544AM=,165AM \=,169555CM AC AM \=-=-=;②在Rt AEM D 中,125EM ===,11161296225525AEM S AM EM D \=×=´´=,\重叠部分的面积为9625;(3)①当AE EM =时,ABE ECM D @D ,5CE AB ==Q ,651BE BC EC \=-=-=,②当AM EM =时,则MAE MEA Ð=Ð,MAE BAE MEC MEA \Ð+Ð=Ð+Ð,即CAB CEA Ð=Ð,C C Ð=ÐQ ,CAE CBA \D D ∽,\CE AC AC CB=,\2256AC CE CB ==,\2511666BE BC EC =-=-=;③当AE AM =时,点E 与点B 重合,即0BE =,此时重叠部分图形不能构成三角形;1BE \=或116.12.如图,直线y =+0)y x =>的交点为A ,与x 轴的交点为B .(1)求ABO Ð的度数;(2)求AB 的长;(3)已知点C 为双曲线0)y x =>上的一点,当60AOC Ð=°时,求点C 的坐标.【解答】解:(1)设直线y =+y 轴交于点D ,如图所示:当0x =时,y =.即点D .当0y =时,1x =-,即点(1,0)B -.\1OD BO ==.\tan DO ABO BOÐ==.60ABO \Ð=°.(2)过点A 作AE x ^轴,垂足为E ,如图所示.设点A 坐标为:(m .且0m >.OE m \=,AE =//DO AE Q .BDO BAE \D D ∽.\BO DOBE AE=.即:11m =+1m \=或2m =-(舍).\A .\4AB ==.即:4AB =.(3)过C 作60CFO Ð=°,点F 在x 轴上,再过点C 作CH OF ^于H 点,如图所示.设(C a,0a >.\OH \4CF a ==.\2HF a =.\2OF a a=+.AOF AOC COF Ð=Ð+ÐQ ,且AOF Ð是ABO D 一内角的外角.BAO COF \Ð=Ð.ABO OFC \D D ∽.\AB BOOF CF =即:4124a a a=+.\a=.Q.a>\a\C.^交BC 13.【感知】如图①,在正方形ABCD中,E为AB边上一点,连结DE,过点E作EF DE∽.(不需要证明)于点F.易证:AED BFED D^交BC于点【探究】如图②,在矩形ABCD中,E为AB边上一点,连结DE,过点E作EF DEF.D D∽.(1)求证:AED BFE(2)若10AD=,E为AB的中点,求BF的长.AB=,6AB=.E为AB边上一点(点E不与【应用】如图③,在ABCACB=,4D中,90Ð=°,AC BC点A、B重合),连结CE,过点E作45D为等腰三角形时,BECEFÐ=°交BC于点F.当CEF的长为 【解答】【探究】(1)证明:Q四边形ABCD是矩形,\Ð=Ð=°,90A B\Ð+Ð=°,ADE AED90^Q,DE EF\Ð=°,DEF90\Ð+Ð=°,BEF AED90\Ð=Ð,ADE BEFQ,又A BÐ=Ð\D D∽;AED BFEQ为AB的中点,(2)解:E\==,AE BE5∽,由(1)知AED BFED D\AD AEBE BF =,即655BF=,256BF \=;【应用】解:如果CE CF =,则45CEF CFE Ð=Ð=°,90ECF Ð=°,则点E 与点A 重合,点F 与点B 重合,不符合题意,②如果CE EF =,则1804567.52ECF EFC °-°Ð=Ð==°,EFC ÐQ 为BEF D 的外角,EFC B BEF \Ð=Ð+Ð,90ACB Ð=°Q ,AC BC =,45A B \Ð=Ð=°,67.54522.5BEF EFC B \Ð=Ð-Ð=°-°=°,909067.522.5ACE ECF Ð=°-Ð=°-°=°,ACF BEF \Ð=Ð,又A B Ð=ÐQ ,CE EF =,()AEC BFE AAS \D @D ,BE AC \=,90ACB Ð=°Q ,AC BC =,4AB =,AC \==,BE \=;如果CF EF =,则45CEF ECF Ð=Ð=°,90CFE \Ð=°,在BEC D 中,45B BCE Ð=Ð=°,90BEC \Ð=°,CE AB \^,又AC BC =Q ,\点E 为AB 的中点,122BE AB \==,综上,BE 的长为2,故答案为:2.14.如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接FC ,观察并猜测tan FCN Ð的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB m =,(BC n m =,n 为常数),E 是射线BC 上一动点(不含端点)B ,以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan FCN Ð的值.【解答】解:(1)tan 1FCN Ð=,理由是:如图1,作FH MN ^于H ,90AEF ABE Ð=Ð=°Q ,90BAE AEB \Ð+Ð=°,90FEH AEB Ð+Ð=°,FEH BAE \Ð=Ð,在EHF D 和ABE D 中EHF ABE FEH BAE EF AE Ð=ÐìïÐ=Ðíï=î,()EHF ABE AAS \D @D ,FH BE \=,EH AB BC ==,CH BE FH \==,90FHC Ð=°Q ,tan 1FHFCH CH\Ð==;(2)如图(2)作FH MN ^于H .由已知可得90EAG BAD AEF Ð=Ð=Ð=°,结合(1)易得FEH BAE DAG Ð=Ð=Ð,又G Q 在射线CD 上,90GDA EHF EBA Ð=Ð=Ð=°,在EFH D 和AGD D 中FHE GDA FEH DAG EF AG Ð=ÐìïÐ=Ðíï=î,()EFH AGD AAS \D @D ,BAE FEH Ð=ÐQ ,ABE FHE Ð=Ð,EFH AEB \D D ∽,EH AD BC n \===,CH BE \=,\EH FH FHAB BE CH==,\在Rt FEH D 中,tan FH EH nFCN CH AB mÐ===,\当点E 沿射线CN 运动时,tan n FCN mÐ=.15.如图1,在矩形ABCD 中,8AB =,10BC =,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,N 是CD 边上一动点,在运动过程中,始终保持AM MN ^,设BM x =,CN y =.(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围 010x …… ;(2)先完善表格,然后在平面直角坐标系中(如图2)利用描点法画出此抛物线,直接写出m = ;x¼2345678¼y¼22183m32182¼(3)结合图象,指出M 、N 在运动过程中,当CN 达到最大值时,BM 的值是 ;并写出在整个运动过程中,点N 运动的总路程 .【解答】解:(1)Q 四边形ABCD 是矩形,908B C AB CD \Ð=Ð=°==,90BAM AMB \Ð+Ð=°,AM MN ^Q ,90AMN \Ð=°,90AMB CMN \Ð+Ð=°,BAM CMN \Ð=Ð,ABM MCN \D D ∽,\AB MCBM CN=,\810x x y-=,21584y x x \=-+,10BC =Q ,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,010x \……,故答案为:010x ……;(2)当5x =时,代入21584y x x =-+中得:2152555848y =-´+´=,故答案为:258,画出的抛物线如图所示:(3)21584y x x =-+Q ,2215125(5)8488y x x x \=-+=--+,108a =-<Q ,\当5x =时,y 最大258=,\当CN 达到最大值时,BM 的值是5;Q2525284´=,\在整个运动过程中,点N 运动的总路程为254,故答案为:5,254.16.【基础巩固】(1)如图1,在ABC D 中,90ACB Ð=°,直线l 过点C ,分别过A 、B 两点作AE l ^,BD l ^,垂足分别为E 、D .求证:BDC CEA D D ∽.【尝试应用】(2)如图2,在ABC D 中,90ACB Ð=°,D 是BC 上一点,过D 作AD 的垂线交AB 于点E .若BE DE =,4tan 5BAD Ð=,20AC =,求BD 的长.【拓展提高】(3)如图3,在平行四边形ABCD 中,在BC 上取点E ,使得90AED Ð=°,若AE AB =,43BE EC =,CD =ABCD 的面积.【解答】(1)证明:90ACB Ð=°Q ,90BCD ACE \Ð+Ð=°,AE CE ^Q ,90AEC \Ð=°,90ACE CAE \+Ð=°.BCD CAE \Ð=Ð.BD DE ^Q ,90BDC \Ð=°,BDC AEC \Ð=Ð.BDC CEA \D D ∽.(2)解:过点E 作EF BC ^于点F .由(1)得EDF DACD D∽.\DE DF DA AC=.AD DE^Q,4tan5BADÐ=,20AC=,\4520DF =,16 DF\=.BE DE=Q,BF DF\=.232BD DF\==.(3)解:过点A作AM BC^于点M,过点D作DN BC^的延长线于点N.90AMB DNC\Ð=Ð=°.Q四边形ABCD是平行四边形,//AB CD\,AB CD=.B DCN\Ð=Ð.()ABM DCN AAS\D@D.BM CN\=,AM DN=.AB AE=Q,AM BC^,BM ME\=,Q43 BEEC=,设AM b=,4BE a=,3EC a=.2BM ME CN a\===,5EN a=.90AEDÐ=°Q,由(1)得AEM EDN D D ∽.\AM ENME DN =,\25b aa b=,\b =,Q CD =22(2)14a b \+=,1a \=,b =.\平行四边形ABCD 的面积172BC DN a b =´´=´=.17.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED Ð=Ð=Ð=°,由12180BAD Ð+Ð+Ð=°,2180D AED Ð+Ð+Ð=°,可得1D Ð=Ð;又因为90ACB AED Ð=Ð=°,可得ABC DAE D D ∽,进而得到BC AC =我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,如图,在ABC D 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B Ð=Ð.①求证:ABP PCD D D ∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下,如图2,当APD D 为等腰三角形时,请直接写出BP 的长.【解答】(1)解:ABC DAE D D Q ∽,\BC ACAE DE =,\BC AEAC DE=,故答案为:AEDE;(2)①证明:AB AC=Q,B C\Ð=Ð,APC B BAPÐ=Ð+ÐQ,APC APD CPDÐ=Ð+Ð,APD BÐ=Ð,BAP CPD\Ð=Ð,B CÐ=ÐQ,ABP PCD\D D∽;②解:12BC=Q,点P为BC中点,6BP PC\==,ABP PCDD DQ∽,\AB BPPC CD=,即1066CD=,解得: 3.6CD=;(3)解:当PA PD=时,ABP PCDD@D,10PC AB\==,12102BP BC PC\=-=-=;当AP AD=时,ADP APDÐ=Ð,ADP B CÐ=Ð=ÐQ,ADP C\Ð=Ð,不合题意,AP AD\¹;当DA DP=时,DAP APD BÐ=Ð=Ð,C CÐ=ÐQ,BCA ACP\D D∽,\BC ACAC CP=,即121010CP=,解得:253CP=,25111233BP BC CP\=-=-=,综上所述:当APDD为等腰三角形时,BP的长为2或113.。

中考数学《图形的相似》真题汇编含解析

中考数学《图形的相似》真题汇编含解析

图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。

2019年中考数学真题分类专项训练--图形的相似

2019年中考数学真题分类专项训练--图形的相似

2019年中考数学真题分类专项训练--图形的相似一、选择题1.(2019邵阳)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是A .△ABC ∽△A ′B ′C ′B .点C 、点O 、点C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′ 【答案】C2.(2019温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b )(a ﹣b )=a 2﹣b 2,现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为A.2B.3C D【答案】C3.(2019淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为A.2a B.5 2 aC.3a D.7 2 a【答案】C4.(2019杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C 重合),连接AM交DE于点N,则A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【答案】C5.(2019玉林)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有A.3对B.5对C.6对D.8对【答案】C6.(2019常德)如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是A.20 B.22 C.24 D.26【答案】D7.(2019凉山)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=A.1∶2 B.1∶3 C.1∶4 D.2∶3【答案】B8.(2019赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE 的长是A.1 B.2 C.3 D.4【答案】C9.(2019重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是A.2 B.3 C.4 D.5【答案】C10.(2019连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似A.①处B.②处C.③处D.④处【答案】B11.(2019安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为A.3.6 B.4 C.4.8 D.5【答案】B12.(2019兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BCB'C'=A.2 B.43C.3 D.169【答案】B13.(2019常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4【答案】B二、填空题14.(2019吉林)在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为__________m.【答案】5415.(2019台州)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且23mn,则m+n的最大值为__________.【答案】25 316.(2019南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长__________.17.(2019)烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,-1),B1(1,-5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为__________.【答案】(-5,-1)18.(2019)本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.【答案】(2,1)或(-2,-1)19.(2019宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=__________.【答案】16 520.(2019河池)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=__________.【答案】2 521.(2019淮安)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=__________.【答案】4三、解答题22.(2019福建)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.∵A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,∴△ABC ∽△A ′B ′C ′,∴2()4A B C'ABC ''S A B''S AB==△△.(2)如图,∵D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点, ∴111222DE BC DF AC EF AB ===,,, ∴△DEF ∽△ABC同理:△D 'E 'F '∽△A 'B 'C ', 由(1)可知:△ABC ∽△A ′B ′C ′, ∴△DEF ∽△D 'E 'F '.23.(2019绍兴)如图,矩形ABCD 中,AB =a ,BC =b ,点M ,N 分别在边AB ,CD 上,点E ,F 分别在边BC ,AD 上,MN ,EF 交于点P ,记k =MN :EF .(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值.(2)若a :b 的值为12,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE =60°,MP =EF =3PE 时,求a :b 的值.解:(1)如图1中,作FH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°,∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤,a≤EF≤,∴当MN的长取最大时,EF取最短,此时k当MN的长取最短时,EF的值取最大,此时k.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴MN EFPM PE==3,∴PN PFPM PE==2, ∴△PNF ∽△PME ,∴NF PNME PM==2,ME ∥NF , 设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,①如图2中,当点N 与点D 重合时,点M 恰好与点B 重合.过点F 作FH ⊥BD 于点H .∵∠MPE =∠FPH =60°,∴PH =2m ,FH m ,DH =10m ,∴a AB FHb AD HD ===.②如图3中,当点N 与点C 重合,过点E 作EH ⊥MN 于点H .则PH =m ,HE =,∴HC =PH +PC =13m ,∴tan ∠HCE MB HE BC HC ===∵ME ∥FC ,∴∠MEB =∠FCB =∠CFD , ∵∠B =∠D ,∴△MEB ∽△CFD ,∴CD FC MB ME ==2,∴213a CD MBb BC BC ===,综上所述,a :b24.(2019凉山)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB 于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.解:(1)证明:∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴AD BD BD CD,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC,∴∠ADB=∠MBD,且∠ABD=90°,∴BM=MD,∠MAB=∠MBA,∴BM=MD=AM=4,∵BD2=AD·CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=MB2+BC2=28,∴MC=,∵BM∥CD,∴△MNB∽△CND,∴23BM MN CD CN ==,且MC =,∴MN . 25.(2019舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC 中,AD ⊥BC 于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,若BC =a ,AD =h ,求正方形PQMN 的边长(用a ,h 表示). (2)操作:如何画出这个正方形PQMN 呢?如图2,小波画出了图1的△ABC ,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P ',画正方形P 'Q 'M 'N ',使点Q ',M '在BC 边上,点N '在△ABC 内,然后连结BN ',并延长交AC 于点N ,画NM ⊥BC 于点M ,NP ⊥NM 交AB 于点P ,PQ ⊥BC 于点Q ,得到四边形PQMN . (3)推理:证明图2中的四边形PQMN 是正方形.(4)拓展:小波把图2中的线段BN 称为“波利亚线”,在该线上截取NE =NM ,连结EQ ,EM (如图3),当∠QEM =90°时,求“波利亚线”BN 的长(用a ,h 表示). 请帮助小波解决“温故”、“推理”、“拓展”中的问题.解:(1)证明:如图1,由正方形PQMN 得PN ∥BC ,∴△APN ∽△ABC ,∴NP AE BC AD =,即PN h PNa h-=, 解得PN aha h=+.(3)证明:由画法得,∠QMN=∠PNM=∠POM=90°,∴四边形PQMN为矩形,∵N'M'⊥BC,NM⊥BC,∴NM'∥NM,∴△BN'M'∽△BNM,∴N'M'BN'NM BN=,同理可得=N'P'BN'NP BN,∴N'M'P'N' NM PN=.∵N′M′=P′N′,∴NM=PN,∴四边形PQMN为正方形.(4)如图2,过点N作NR⊥ME于点R.∵NE=NM,∴∠NEM=∠NME,∴ER=RM=12 EM,又∵∠EQM+∠EMQ=∠EMQ+∠EMN=90°,∴∠EQM=∠EMN.又∠QEM=∠NRM=90°,NM=QM,∴△EQM≌△RMN(AAS),∴EQ=RM,∴EQ=12 EM,∵∠QEM=90°,∴∠BEQ+∠NEM=90°,∴∠BEQ=∠EMB,又∵∠EBM=∠QBE,∴△BEQ∽△BME,∴1=2 BQ BE EQBE BM EM==.设BQ=x,则BE=2x,BM=4x,∴QM=BM–BQ=3x=MN=NE,∴BN=BE+NE=5x,∴BN=53NM=533aha h+.26.(2019巴中)△ABC在边长为1的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1∶2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.解:①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3). ②如图,△A 2B 2C 为所作.③OB =点B 经过的路径长=90ππ1802⋅=.27.(2019衢州)如图,在Rt △AB C 中,∠C =90°,AC =6,∠BAC =60°,AD 平分∠BAC 交BC 于点D ,过点D 作DE ∥AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EFDF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得∠CPG =60°? 解:(1)∵AD 平分∠BAC ,∠BAC =60°, ∴∠DAC 12=∠BAC =30°,在Rt △ADC 中,DC =AC •tan30°=6=(2)由题意易知:BC ,BD ∵DE ∥AC ,∴∠EDA =∠DAC ,∠DFM =∠AGM , ∵AM =DM ,∴△DFM ≌△AGM (ASA ),∴DF =AG , 由DE ∥AC ,得△BFE ∽△BGA , ∴EF BE BDAG AB BC==,∴23EF EF BD DF AG BC ====. (3)∵∠CPG =60°,过C ,P ,G 作外接圆,圆心为Q , ∴△CQG 是顶角为120°的等腰三角形.①当⊙Q 与DE 相切时,如图1,过点Q 作QH ⊥AC 于H ,并延长HQ 与DE 交于点P .连结QC ,QG .设⊙Q 的半径QP =r .则QH 12=r ,r 12+r解得r 3=,∴CG 3==4,AG =2, 易知△DFM ∽△AGM ,可得43DM DF AM AG ==,∴DM 47=,∴DM 7=. ②当⊙Q 经过点E 时,如图2,过点C 作CK ⊥AB ,垂足为K ,设⊙Q 的半径QC =QE =r .则QK r .在Rt △EQK 中,12+(r )2=r 2,解得r =,∴CG 143==,易知△DFM ∽△AGM ,可得DM 5=.③当⊙Q 经过点D 时,如图3中,此时点M 与点G 重合,且恰好在点A 处,可得DM∴综上所述,当DM 7=或5DM ≤P 只有一个. 28.(2019荆门)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E (O,A,B,C,D在同一条直线上),测得AC=2 m,BD=2.1 m,如果小明眼睛距地面髙度BF,DG为1.6 m,试确定楼的高度OE.解:如图,设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE 于点H,∵GF∥AC,∴△MAC∽△MFG,∴AC MA MO FG MF MH==,即:AC OE OE OEBD MH MO OH OE BF ===++,∴21.62.1OEOE=+,∴OE=32,答:楼的高度OE为32米.29.(2019安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.证明:(1)∵∠ACB =90°,AB =BC , ∴∠ABC =45°=∠PBA +∠PBC ,又∠APB =135°,∴∠PAB +∠PBA =45°, ∴∠PBC =∠PAB ,又∵∠APB =∠BPC =135°, ∴△PAB ∽△PBC .(2)∵△PAB ∽△PBC ,∴PA PB ABPB PC BC ==,在Rt △ABC 中,AB =AC ,∴ABBC=∴PB PA ==,,∴PA =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,∴PF =h 1,PD =h 2,PE =h 3,∵∠CPB +∠APB =135°+135°=270°, ∴∠APC =90°,∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90°, ∴∠EAP =∠PCD , ∴Rt △AEP ∽Rt △CDP ,∴2PE APDP PC==,即322h h =,∴h 3=2h 2,∵△PAB ∽△PBC,∴12h AB h BC==,∴12h =,∴2212222322h h h h h h ==⋅=.即h 12=h 2·h 3.30.(2019长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题) ②三个角分别相等的两个凸四边形相似;(__________命题) ③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,1111AB BC A B B C ==11CDC D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.解:(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似.是真命题.故答案为:假,假,真.(2)证明:如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且1111BC CD B C C D =, ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD , ∵111111AB BC CD A B B C C D ==,∴1111BD AB B D A B =, ∵∠ABC =∠A 1B 1C 1,∴∠ABD =∠A 1B 1D 1,∴△ABD ∽△A 1B 1D 1, ∴1111AD AB A D A B =,∠A =∠A 1,∠ADB =∠A 1D 1B 1,∴11111111AB BC CD AD A B B C C D A D ===,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)证明:∵四边形ABCD 与四边形EFCD 相似. ∴DE EF AE AB=, ∵EF =OE +OF ,∴DE OE OF AE AB +=, ∵EF ∥AB ∥CD , ∴DE OE DE OC OF AD AB AD AB AB =-=,,∴DE DE OE OF AD AD AB AB +=+,∴2DE DE AD AE =, ∵AD =DE +AE , ∴21DE AE AE=+, ∴2AE =DE +AE ,∴AE =DE ,∴12S S =1.。

2019年中考数学真题汇编 图形的相似

2019年中考数学真题汇编 图形的相似

中考数学真题汇编:图形的相似一、选择题1.已知,下列变形错误的是()A. B.C.D.【答案】B2.已知与相似,且相似比为,则与的面积比()A. B.C.D.【答案】D3.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C4.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3) C. (3,4) D. (1,5)【答案】C5.如图,△ACB 和△ECD 都是等腰直角三角形,CA=CB ,CE=CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE=,AD=,则两个三角形重叠部分的面积为( )A. B. C. D.【答案】D6.在平面直角坐标系中,点是线段上一点,以原点 为位似中心把放大到原来的两倍,则点 的对应点的坐标为( )A.B. 或C.D.或【答案】B 7.如图,点 在线段 上,在的同侧作等腰和等腰, 与、分别交于点 、.对于下列结论:①;②;③.其中正确的是( )∵∠BEA=∠CDA ∠PME=∠AMD∴P 、E 、D 、A 四点共圆 ∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90° ∴△CAP ∽△CMA ∴AC 2=CP•CM ∵AC=AB∴2CB 2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A8.如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A. 2B. 3C.D.【答案】A9.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( )A. B.C.D.【答案】C10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1, S2,()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D11.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD =60°,则△OCE的面积是()。

(最新整理)2019备战中考数学(北师大版)专题练习-图形的相似(含答案)

(最新整理)2019备战中考数学(北师大版)专题练习-图形的相似(含答案)

2019备战中考数学(北师大版)专题练习-图形的相似(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019备战中考数学(北师大版)专题练习-图形的相似(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019备战中考数学(北师大版)专题练习-图形的相似(含答案)的全部内容。

2019备战中考数学(北师大版)专题练习-图形的相似(含答案)一、单选题1。

如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A , DE∥BC交GA于点E,则下列结论错误的是( )A. B。

C。

D。

2。

如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,如果, AC=6,那么AE 的长为( )A。

3 B。

4 C。

9 D。

123。

一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( )A。

6秒 B。

5秒C。

4秒D. 3秒4.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是( )A. 1 B。

4C. 3 D。

25.如果两个相似三角形的周长比为1:4,那么这两个三角形的相似比为( )A. 1:2 B。

1:4 C。

1:8D. 1:166。

如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE=BF,EF=BD,且AD:DB=3:5,那么CF:CB等于( )A。

3:5 B. 3:8 C. 5:8 D。

2:57。

如图,在△ABC中,点D、E分别在边AB、AC上,且DE不行于BC,则下列条件中不能判断△ABC∽△ADE的是()A。

全国中考数学真题分类汇编:图形的相似大全

全国中考数学真题分类汇编:图形的相似大全

2019全国中考数学真题分类汇编:图形的相似
大全
中考数学每日一练:图形的相似(1)
中考数学每日一练:图形的相似(2)
中考数学每日一练:图形的相似(3)
中考数学每日一练:图形的相似(4)
中考数学每日一练:图形的相似(5)
中考数学每日一练:图形的相似(6)
中考数学每日一练:图形的相似(7)
中考数学每日一练:图形的相似(8)
中考数学每日一练:图形的相似(9)
中考数学每日一练:图形的相似(10)
中考数学每日一练:图形的相似(11)
中考数学每日一练:图形的相似(12)
中考数学每日一练:图形的相似(13)
中考数学每日一练:图形的相似(14)
中考数学每日一练:图形的相似(15)
中考数学每日一练:图形的相似(16)
中考数学每日一练:图形的相似(17)
中考数学每日一练:图形的相似(18)
中考数学每日一练:图形的相似(19)
中考数学每日一练:图形的相似(20)
中考数学每日一练:图形的相似(21)中考数学每日一练:图形的相似(22)中考数学每日一练:图形的相似(23)中考数学每日一练:图形的相似(24)中考数学每日一练:图形的相似(25)中考数学每日一练:图形的相似(26)中考数学每日一练:图形的相似(27)
中考数学每日一练:图形的相似(28)中考数学每日一练:图形的相似(29)中考数学每日一练:图形的相似(30)。

2019年中考数学专题复习卷 图形的相似(含解析)

2019年中考数学专题复习卷 图形的相似(含解析)

图形的相似一、选择题1.已知,下列变形错误的是()A. B.C.D.【答案】B【解析】由得,3a=2b,A. 由得,所以变形正确,故不符合题意;B. 由得3a=2b,所以变形错误,故符合题意;C. 由可得,所以变形正确,故不符合题意;D.3a=2b变形正确,故不符合题意.故答案为:B.【分析】根据已知比例式可得出3a=2b,再根据比例的基本性质对各选项逐一判断即可。

2.如图,已知直线a∥b∥c,直线m分别交直线a、b、c于点A,B,C,直线n分别交直线a、b、c于点D,E,F,若, ,则的值应该()A. 等于B. 大于C. 小于D. 不能确定【答案】B【解析】:如图,过点A作AN∥DF,交BE于点M,交CF于点N∵a∥b∥c∴AD=ME=NF=4(平行线中的平行线段相等)∵AC=AB+BC=2+4=6∴设MB=x,CN=3x∴BE=x+4,CF=3x+4∵∵x>0∴故答案为:B【分析】过点A作AN∥DF,交BE于点M,交CF于点N,根据已知及平行线中的平行线段相等,可得出AD=ME=NF=4,再根据平行线分线段成比例得出BM和CN的关系,设MB=x,CN=3x,分别表示出BE、CF,再求出它们的比,利用求差法比较大小,即可求解。

3.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3) C. (3,4) D. (1,5)【答案】C【解析】:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故答案为:C.【分析】根据位似图形的性质,位似图形上一个点的坐标等于原图形上对应点的横纵坐标分别乘以位似比,或位似比的相反数。

4.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】 :如图,过点D作DF⊥AC于点F,过点B作BM⊥AC于点M∴DF∥BM,设DF=h1, BM=h2∴∵DE∥BC∴∴∵若∴设=k<0.5(0<k<0.5)∴AE=AC∙k,CE=AC-AE=AC(1-k),h1=h2k∵S1= AE∙h1= AC∙k∙h1, S2= CE∙h2= AC(1-k)h2∴3S1= k2ACh2, 2S2=(1-K)∙ACh2∵0<k<0.5∴k2<(1-K)∴3S1<2S2故答案为:D【分析】过点D作DF⊥AC于点F,过点B作BM⊥AC于点M,可得出DF∥BM,设DF=h1, BM=h2,再根据DE∥BC,可证得,若,设=k<0.5(0<k<0.5),再分别求出3S1和2S2,根据k的取值范围,即可得出答案。

2019年中考数学试题汇编—— 相似、位似及其应用2019 (2)

2019年中考数学试题汇编——  相似、位似及其应用2019 (2)

一、选择题1. (2019广西省贵港市,题号11,分值3分)如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2AD BD =,6BC =,则线段CD 的长为( )A .B .C .D .5【答案】C .【思路分析】设2AD x =,BD x =,所以3AB x =,易证ADE ABC ∆∆∽,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆∽,利用相似三角形的性质即可求出得出AD AE DE AC AD CD==,从而可求出CD 的长度.【解题过程】解:设2AD x =,BD x =,3AB x ∴=,//DE BC Q ,ADE ABC ∴∆∆∽, ∴DE AD AE BC AB AC ==, ∴263DE x x=, 4DE ∴=,23AE AC =, ACD B ∠=∠Q ,ADE B ∠=∠,ADE ACD ∴∠=∠,A A ∠=∠Q ,ADE ACD ∴∆∆∽, ∴AD AE DE AC AD CD==, 设2AE y =,3AC y =, ∴23AD y y AD=,AD ∴, ∴4CD=,CD ∴=C .【知识点】相似三角形的判定与性质2. (2019贵州省毕节市,题号15,分值3分)如图,在一块斜边长30cm 的直角三角形木板(Rt △ACB )上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .100cm 2B .150cm 2C .170cm 2D .200cm 2【答案】A .【思路分析】设AF =x ,根据正方形的性质用x 表示出EF 、CF ,证明△AEF ∽△ABC ,根据相似三角形的性质求出BC ,根据勾股定理列式求出x ,根据三角形的面积公式、正方形的面积公式计算即可.【解题过程】解:设AF =x ,则AC =3x ,∵四边形CDEF 为正方形,∴EF =CF =2x ,EF ∥BC ,∴△AEF ∽△ABC , ∴EF BC =AF AC =13, ∴BC =6x ,在Rt △ABC 中,AB 2=AC 2+BC 2,即302=(3x )2+(6x )2,解得,x =∴AC =BC =∴剩余部分的面积=12×100(cm 2),故选:A . 【知识点】正方形的性质;相似三角形的应用.3. (2019贵州黔西南州,10,4分)如图,在一斜边长30cm 的直角三角形木板(即Rt △ACB )中截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .200cm 2B .170cm 2C .150cm 2D .100cm 2 【答案】D【解析】解:设AF =x ,则AC =3x ,∵四边形CDEF 为正方形,∴EF =CF =2x ,EF ∥BC ,∵EF ∥BC ,∴△AEF ∽△ABC ,∴EF BC =AF AC =13, ∴BC =6x ,在Rt △ABC 中,AB =√(3x)2+(6x)2=3√5x , ∴3√5x =30,解得x =2√5,∴AC =6√5,BC =12√5,∴剩余部分的面积=12×6√5×12√5−(4√5)2=100(cm 2).故选:D .【知识点】正方形的性质;相似三角形的应用4. .(2019海南,12题,3分)如图,在Rt △ABC 中,∠C =90°,AB =5,BC =4,点P 是边AC 上一动点,过点P 作PQ ∥AB 交BC 于点Q,D 为线段PQ 的中点,当BD 平分∠ABC 时,AP 的长度为( )A.813B.1513C.2513D.3213第12题图【答案】B【思路分析】根据平行和平分线得到等腰三角形,作DE ⊥BC,得到相似三角形,结合中点和相似比,得到线段关系,列出方程,进而求得AP 长度.【解题过程】在Rt △ABC 中,∠C =90°,AB =5,BC =4,∴AC =3,过点D 作DE ⊥BC 于点E,易证△ABC ∽△DQE,∵BD 平分∠ABC,PQ ∥AB,∴BQ =QD,设QD =BQ =4x,则AP =3x,DP =4x,∴PQ =8x,CP =245x,∴AC =395x =3,∴x =513,AP =3x =1513,故选B.第12题答图【知识点】等腰三角形,相似三角形,一元一次方程5. (2019黑龙江哈尔滨,10,3分)如图,在平行四边形ABCD 中,点E 在对角线BD 上,EM ∥AD,交AB 于点M,EN ∥AB,交AD 于点N,则下列式子一定正确的是( )。

2019年全国中考数学真题分类 相似的判定、性质与应用(印刷版)

2019年全国中考数学真题分类 相似的判定、性质与应用(印刷版)

第十一章图形的相似课标要求1. 了解图形的相似、位似.2. 掌握并会运用相似三角形的判定方法和性质.3. 理解比例的概念,会对比例式进行变形.4. 会用相似的性质解决实际问题.1. 相似的判定、性质与应用一、选择题1. (2019·杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC 边上一点(不与点B,C重合),连接AM交DE于点N,则下列式子一定正确的是()第1题A. ADAN=ANAE B.BDMN=MNCEC. DNBM=NEMC D.DNMC=NEBM2. (2019·哈尔滨)如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是()第2题A. AMBM=NEDE B.AMAB=ANADC. BCME=BEBD D.BDBE=BCEM3. (2019·青海)如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=1.2,则DF的长为()第3题A. 3.6B. 4.8C. 5D. 5.24. (2019·内江)如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()第4题A. 6B. 7C. 8D. 95. (2019·贺州)如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=2,AB=3,DE=4,则BC的长为()第5题A. 5B. 6C. 7D. 86. (2019·淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()第6题A. 2aB. 5 2aC. 3aD. 7 2a7. (2019·重庆)如图,△ABO∽△CDO.若BO=6,DO=3,CD=2,则AB的长为()第7题A. 2B. 3C. 4D. 58. (2019·玉林)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则图中相似三角形共有()第8题A. 3对B. 5对C. 6对D. 8对9. (2019·沈阳)已知△ABC∽△A′B′C′,AD和A′D′是它们的对应中线.若AD=10,A′D′=6,则△ABC与△A′B′C′的周长之比是()A. 3∶5B. 9∶25C. 5∶3D. 25∶910. (2019·常州)若△ABC∽△A′B′C′,且相似比为1∶2,则△ABC与△A′B′C′的周长的比为()A. 2∶1B. 1∶2C. 4∶1D. 1∶411. (2019·连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,要使“马”“车”“炮”所在位置的格点构成的三角形与“帅”“相”“兵”所在位置的格点构成的三角形相似,“马”应落在()第11题A. ①处B. ②处C. ③处D. ④处12. (2019·雅安)如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是()第12题A BC D13. (2019·赤峰)如图,D,E分别是△ABC边AB,AC上的点,∠ADE=∠ACB.若AD =2,AB=6,AC=4,则AE的长为()第13题A. 1B. 2C. 3D. 414. (2019·海南)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长为()第14题A. 813 B.1513C. 2513 D.321315. (2019·常德)如图,在等腰三角形ABC中,AB=AC,图中所有的三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是()第15题A. 20B. 22C. 24D. 2616. (2019·贵港)如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD =∠B.若AD=2BD,BC=6,则线段CD的长为()第16题A. 2 3B. 3 2C. 2 6D. 517. (2019·毕节)如图,在一块斜边长为30 cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上.若AF∶AC=1∶3,则这块木板截取正方形CDEF后,剩余部分的面积为()第17题A. 100 cm2B. 150 cm2C. 170 cm2D. 200 cm218. (2019·兰州)已知△ABC∽△A′B′C′,AB=8,A′B′=6,则BCB′C′的值为()A. 2B. 4 3C. 3D. 16 919. (2019·巴中)如图,在▱ABCD中,F为BC的中点,延长AD至点E,使DE∶AD=1∶3,连接EF交DC于点G,则S△DEG∶S△CFG为()第19题A. 2∶3B. 3∶2C. 9∶4D. 4∶920. (2019·安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC 上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()第20题A. 3.6B. 4C. 4.8D. 5 21. (2019·凉山州)如图,在△ABC 中,点D 在AC 边上,AD ∶DC =1∶2,O 是BD 的中点,连接AO 并延长交BC 于点E ,则BE ∶EC 为( )第21题A. 1∶2B. 1∶3C. 1∶4D. 2∶3 22. (2019·温州)如图,在矩形ABCD 中,E 为AB 的中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b)(a -b)=a 2-b 2,现以点F 为圆心,FE 长为半径作圆弧交线段DH 于点P ,连接EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则S 1S 2的值为( )第22题A. 22B. 23C.24D.2623. (2019·眉山)如图,在菱形ABCD 中,AB =4,∠ABC =60°,∠EAF =60°,点E 在CB 的延长线上,点F 在DC 的延长线上,连接EF.有下列结论:① BE =CF ;② ∠EAB =∠CEF ;③ △ABE ∽△EFC ;④ 若∠BAE =15°,则点F 到BC 的距离为23-2.其中,正确的个数是( )第23题A. 1B. 2C. 3D. 4 24. (2019·遂宁)如图,四边形ABCD 是边长为1的正方形,△BPC 是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,有下列结论:① ∠BPD =135°;②△BDP∽△HDB;③ DQ∶BQ=1∶2;④ S△BDP=3-14.其中,正确的有()第24题A. ①②③B. ②③④C. ①③④D. ①②④25. (2019·广东)如图,正方形ABCD的边长为4,延长CB至点E,使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于点M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K,有下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③ FN=2NK;④ S△AFN∶S△ADM=1∶4.其中,正确的有()第25题A. 1个B. 2个C. 3个D. 4个二、填空题26. (2019·淮安)如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A,B,C和点D,E,F.若AB=3,DE=2,BC=6,则EF=________.第26题27. (2019·南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC=________.第27题28. (2019·西藏)如图,在Rt△ABC中,∠ACB=90°,D是边AB上的一点,CD⊥AB于点D,AD=2,BD=6,则边AC的长为________.第28题29. (2019·通辽)已知三个边长分别为2 cm,3 cm,5 cm的正方形按如图所示的方式排列,则图中阴影部分的面积为________.第29题30. (2019·呼和浩特)已知正方形ABCD 的面积是2,E 为正方形一边BC 的延长线上的一点.若CE =2,连接AE ,与正方形另外一边CD 交于点F ,连接BF 并延长,与线段DE 交于点G ,则BG 的长为________.31. (2019·襄阳)如图,两块大小不同的三角尺放在同一平面内,直角顶点重合于点C ,点D 在AB 上,∠BAC =∠DEC =30°,AC 与DE 交于点F ,连接AE.若BD =1,AD =5,则CF EF =________.第31题32. (2019·宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A ,C ,E 在同一直线上,AD 与BE ,BC 分别交于点F ,M ,BE 与CD 交于点N ,连接MN.有下列结论:① AM =BN ;② △ABF ≌△DNF ;③ ∠FMC +∠FNC =180°;④ 1MN =1AC +1CE.其中,正确的是________(填序号).第32题33. (2019·遵义)如图,⊙O 的半径为1,AB ,AC 是⊙O 的两条弦,且AB =AC ,延长BO 交AC 于点D ,连接OA ,OC.若AD 2=AB·DC ,则OD =________.第33题三、 解答题34. (2019·张家界)如图,在▱ABCD 中,连接对角线AC ,延长AB 至点E ,使BE =AB ,连接DE ,分别交BC ,AC 于点F ,G.(1) 求证:BF =CF ;(2) 若BC =6,DG =4,求FG 的长.第34题35. (2019·黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.求证:(1) △DBE是等腰三角形;(2) △COE∽△CAB.第35题36. (2019·荆门)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(点O,A,B,C,D在同一条直线上),测得AC=2 m,BD=2.1 m.如果小明眼睛距地面的高度BF,DG为1.6 m,试确定楼的高度OE.第36题37. (2019·雅安)如图,▱ABCD的对角线AC,BD相交于点O,EF经过点O,分别交AB,CD于点E,F,FE的延长线交CB的延长线于点M.(1) 求证:OE=OF;(2) 若AD=4,AB=6,BM=1,求BE的长.第37题38. (2019·凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于点M,连接CM交DB于点N.(1) 求证:BD2=AD·CD;(2) 若CD=6,AD=8,求MN的长.第38题39. (2019·上海)如图,AB ,AC 是⊙O 的两条弦,且AB =AC ,D 是AO 延长线上一点,连接BD 并延长交⊙O 于点E ,连接CD 并延长交⊙O 于点F.(1) 求证:BD =CD ; (2) 如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.第39题40. (2019·梧州)如图,在矩形ABCD 中,AB =4,BC =3,AF 平分∠DAC ,分别交DC ,BC 的延长线于点E ,F.连接DF ,过点A 作AH ∥DF ,分别交BD ,BF 于点G ,H ,连接EG.(1) 求DE 的长;(2) 求证:∠1=∠DFC.第40题41. (2019·泸州)如图,AB 为⊙O 的直径,点P 在AB 的延长线上,点C 在⊙O 上,且PC 2=PB·PA.(1) 求证:PC 是⊙O 的切线;(2) 已知PC =20,PB =10,D 是AB ︵的中点,DE ⊥AC ,垂足为E ,DE 交AB 于点F ,求EF 的长.第41题1. 相似的判定、性质与应用一、 1. C 2. D 3. B 4. C 5. B 6. C 7. C 8. C 9. C10. B 11. B 12. B 13. C 14. B 15. D 16. C 17. A 18. B 19.D 20. B 21. B 22. C 23. B 24. D 25. C二、 26. 4 27. 10 28. 4 29. 3.75 cm 2 30. 2103 31. 213 32. ①③④ 33. 5-12三、 34. (1) ∵ 四边形ABCD 是平行四边形,∴ AD ∥BC ,AD =BC.∴△EBF ∽△EAD.∴ BF AD =EB EA .∵ BE =AB ,∴ EB EA =12.∴ BF =12AD =12BC.∴ BF =CF (2) ∵ AD ∥BC ,∴ △FGC ∽△DGA.∴FG DG =FC DA ,即FG 4=12,解得FG =2 35. (1) 如图,连接OD.∵ DE 是⊙O 的切线,∴ OD ⊥DE ,即∠ODE =90°.∴ ∠ADO +∠BDE =90°.∵ ∠ACB =90°,∴ ∠CAB +∠CBA =90°.∵ OA =OD ,∴ ∠CAB =∠ADO.∴ ∠BDE =∠CBA.∴ EB =ED.∴ △DBE 是等腰三角形 (2) ∵ ∠ACB =90°,AC 是⊙O 的直径,∴ CB 是⊙O 的切线.∵ DE 是⊙O 的切线,∴ ED =EC.∵ EB =ED ,∴ EC =EB.∵ OA =OC ,∴ OE ∥AB.∴ △COE ∽△CAB第35题36. 如图,设点E 关于OD 的对称点为M.由光的反射定律,知延长GC ,FA 相交于点M ,连接GF 并延长交OE 于点H.易得FG =BD =2.1 m ,OH =BF =1.6 m ,OM =OE ,GF ∥AC ,∴ △MAC ∽△MFG ,△MAO ∽△MFH.∴ AC FG =MA MF =MO MH .设OE =x m ,则22.1=x x +1.6,解得x =32.经检验,x =32是原分式方程的解.∴ OE =32 m .答:楼的高度OE 为32 m第36题37. (1) ∵ 四边形ABCD 是平行四边形,∴ OA =OC ,AB ∥CD ,BC =AD.∴ ∠OAE=∠OCF.在△AOE 和△COF 中,⎩⎪⎨⎪⎧∠OAE =∠OCF ,OA =OC ,∠AOE =∠COF ,∴ △AOE ≌△COF.∴ OE =OF (2) 如图,取AB 的中点N ,连接ON ,∴ AN =BN =12AB =3.∵ OA =OC ,∴ ON ∥BC ,ON =12BC=12AD =2.∴ △ONE ∽△MBE.∴ ON MB =NE BE ,即21=3-BE BE,解得BE =1 第37题38. (1) ∵ DB 平分∠ADC ,∴ ∠ADB =∠BDC.又∵ ∠ABD =∠BCD =90°,∴ △ABD ∽△BCD.∴ AD BD =BD CD.∴ BD 2=AD·CD (2) ∵ BM ∥CD ,∴ ∠MBC =90°,∠MBD =∠BDC.∵ ∠ADB =∠BDC ,∴ ∠ADB =∠MBD.∴ BM =MD.∵ ∠ABD =90°,∴ ∠MAB+∠ADB =∠MBA +∠MBD =90°.∴ ∠MAB =∠MBA.∴ BM =MD =AM =12AD =4.∵ BD 2=AD·CD ,且CD =6,AD =8,∴ BD 2=48.∴ BC 2=BD 2-CD 2=12.∴ MC 2=MB 2+BC 2=28.∴ MC =27(负值舍去).∵ BM ∥CD ,∴ △MNB ∽△CND.∴BM DC =MN CN ,即46=MN 27-MN.∴ MN =457 39. (1) 如图,连接BC.∵ AB =AC ,∴ AB ︵=AC ︵.又∵ AD 经过圆心O ,∴ AD 垂直平分BC.∴ BD =CD (2) 如图,连接OB.∵ AB 2=AO·AD ,∴ AO AB =AB AD .∵ ∠BAO =∠DAB ,∴ △ABO ∽△ADB.∴ ∠OBA =∠BDA.∵ OA =OB ,∴ ∠OBA =∠OAB.∴ ∠OAB =∠BDA.∴ AB =BD.∵ AB =AC ,BD =CD ,∴ AB =AC =BD =CD.∴ 四边形ABDC 是菱形第39题40. (1) ∵ 四边形ABCD 是矩形,∴ AD =BC =3,CD =AB =4,AD ∥BC.∴ ∠DAF =∠AFC.∵ AF 平分∠DAC ,∴ ∠DAF =∠CAF.∴ ∠CAF =∠AFC.∴ AC =CF.∵ AB =4,BC =3,∴ AC =AB 2+BC 2=5.∴ CF =5.∵ AD ∥CF ,∴ △ADE ∽△FCE.∴ AD FC =DE CE ,即35=DE 4-DE .∴ DE =32(2) ∵ AD ∥FH ,AH ∥DF ,∴ 四边形ADFH 是平行四边形.∴ FH =AD =3.∴ CH =2,BH =5.∵ AD ∥BH ,∴ △ADG ∽△HBG.∴ DG BG =AD HB ,即DG 5-DG =35.∴ DG =158.∵ DE =32,∴ DE DC =324=38,DG DB =1585=38.∴ DE DC =DG DB.∵ ∠EDG =∠CDB ,∴ △EDG ∽△CDB.∴ ∠DEG =∠DCB.∴ EG ∥BC.∴ ∠1=∠AHC.又∵ AH ∥DF ,∴ ∠AHC =∠DFC.∴ ∠1=∠DFC41. (1) 如图,连接OC.∵ PC 2=PB·PA ,∴ PC PA =PB PC.∵ ∠P =∠P ,∴ △PBC ∽△PCA.∴ ∠PCB =∠PAC.∵ AB 为⊙O 的直径,∴ ∠ACB =90°.∴ ∠PAC +∠ABC =90°.∵ OC =OB ,∴ ∠OBC =∠OCB.∴ ∠PCB +∠OCB =90°,即OC ⊥PC.∵ OC 是⊙O 的半径,∴ PC 是⊙O的切线 (2) 如图,连接OD.∵ PC =20,PB =10,PC 2=PB·PA ,∴ PA =PC 2PB =20210=40.∴ AB =PA -PB =30.∵ △PBC ∽△PCA ,∴ BC CA =PC PA =12.设BC =x ,则AC =2x.在Rt △ABC 中,x 2+(2x)2=302,解得x =65(负值舍去).∴ BC =6 5.∵ D 是AB ︵的中点,AB 为⊙O 的直径,∴ ∠AOD =90°.∵ DE ⊥AC ,∴ ∠AEF =∠ACB =90°.∴ DE ∥BC.∴ ∠DFO =∠ABC.又∵ ∠DOF =∠ACB =90°,∴ △DOF ∽△ACB.∴ OF CB =OD CA ,即OF OD =BC AC =12.∴ OF =12OD =14AB =152.∴ AF =152.∵ EF ∥BC ,∴ △AEF ∽△ACB.∴ EF CB =AF AB =14.∴ EF =14BC =352第41题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题13 图形的相似1.(2019•常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4【答案】B【解析】∵△ABC~△A′B'C′,相似比为1∶2,∴△ABC与△A'B′C'的周长的比为1∶2.故选B.2.(2019•兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BCB'C'=A.2 B.43C.3 D.169【答案】B【解析】∵△ABC∽△A'B'C',∴8463BC ABB C A B''''=--.故选B.3.(2019•安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为A.3.6 B.4 C.4.8 D.5【答案】B【解析】如图,作DH∥EG交AB于点H,则△AEG∽△ADH,∴AE EGAD DH=,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴AE EFAD CD=,∴EG EFDH CD=,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12-x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴DH BDAC BC=,即12612x x-=,解得,x=4,∴CD=4,故选B.4.(2019•杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【答案】C【解析】∵DN∥BM,∴△ADN∽△ABM,∴DN AN BM AM=,∵NE∥MC,∴△ANE∽△AMC,∴NE ANMC AM=,∴DN NEBM MC=.故选C.5.(2019•连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似A.①处B.②处C.③处D.④处【答案】B【解析】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、,“车”、“炮”之间的距离为1,12==,∴马应该落在②的位置,故选B.6.(2019•重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是A.2 B.3 C.4 D.5 【答案】C【解析】∵△ABO∽△CDO,∴BO ABDO DC=,∵BO=6,DO=3,CD=2,∴632AB=,解得AB=4.故选C.7.(2019•赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是A.1 B.2 C.3 D.4【答案】C【解析】∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴AD AEAC AB=,即246AE=,解得AE=3,故选C.8.(2019•凉山州)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=A.1∶2 B.1∶3 C.1∶4 D.2∶3【答案】B【解析】如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD∶DC=1∶2,∴AD=DG=GC,∴AG∶GC=2∶1,AO∶OE=2∶1,∴S△AOB:S△BOE=2,设S △BOE =S ,S △AOB =2S ,又BO =OD ,∴S △AOD =2S ,S △ABD =4S ,∵AD ∶DC =1∶2,∴S △BDC =2S △ABD =8S ,S四边形CDOE =7S ,∴S △AEC =9S ,S △ABE =3S ,∴3193ABE AEC S BE S EC S S ===△△,故选B . 9.(2019•常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是A .20B .22C .24D .26【答案】D【解析】如图,根据题意得△AFH ∽△ADE ,∴2239()()416AFH ADE S FH S DE ===△△,设S △AFH =9x ,则S △ADE =16x ,∴16x -9x =7,解得x =1,∴S △ADE =16, ∴四边形DBCE 的面积=42-16=26.故选D .10.(2019•玉林)如图,AB ∥EF ∥DC ,AD ∥BC ,EF 与AC 交于点G ,则是相似三角形共有A .3对B .5对C .6对D .8对【答案】C【解析】图中三角形有:△AEG ,△ADC ,CFG ,△CBA , ∵AB ∥EF ∥DC ,AD ∥BC ,∴△AEG ∽△ADC ∽CFG ∽△CBA ,共有6个组合分别为:∴△AEG ∽△ADC ,△AEG ∽CFG ,△AEG ∽△CBA ,△ADC ∽CFG ,△ADC ∽△CBA ,CFG ∽△CBA ,故选C .11.(2019•淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为A .2aB .52a C .3aD .72a【答案】C【解析】∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA ,∴2()ACD BCA S AC S AB =△△,即14BCA a S =△, 解得,△BCA 的面积为4a ,∴△ABD 的面积为:4a -a =3a ,故选C .12.(2019•邵阳)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是A .△ABC ∽△A ′B ′C ′B .点C 、点O 、点C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′ 【答案】C【解析】∵以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′,点C 、点O 、点C ′三点在同一直线上,AB ∥A ′B ′, AO ∶OA ′=1∶2,故选项C 错误,符合题意.故选C .13.(2019•淮安)如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =__________.【答案】4【解析】∵l 1∥l 2∥l 3,∴AB DEBC EF=,又AB =3,DE =2,BC =6,∴EF =4,故答案为:4.14.(2019•河池)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=__________.【答案】2 5【解析】∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴22235 OA ABOC CD===+.故答案为:25.15.(2019•宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=__________.【答案】16 5【解析】在Rt△ABC中,AB,由射影定理得,AC2=AD·AB,∴AD=2ACAB=165,故答案为:165.16.(2019•本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.【答案】(2,1)或(-2,-1)【解析】以点O为位似中心,相似比为12,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×12,2×12)或(-4×12,-2×12),即(2,1)或(-2,-1),故答案为:(2,1)或(-2,-1).17.(2019•烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,-1),B1(1,-5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为__________.【答案】(-5,-1)【解析】如图,P点坐标为(-5,-1).故答案为:(-5,-1).18.(2019•南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长__________.【解析】∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD AB AC=,∴AC 2=AD ×AB =2×5=10,∴AC19.(2019•吉林)在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为__________m . 【答案】54【解析】设这栋楼的高度为h m ,∵在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时测得一栋楼的影长为60 m , ∴1.8390h=,解得h =54(m ).故答案为:54. 20.(2019•福建)已知△ABC 和点A ',如图.(1)以点A '为一个顶点作△A 'B 'C ',使△A 'B 'C '∽△ABC ,且△A 'B 'C '的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的△A 'B 'C '三边A 'B '、B 'C '、C 'A '的中点,求证:△DEF ∽△D 'E 'F '.【解析】(1)作线段A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,得△A 'B 'C '即可所求.∵A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC , ∴△ABC ∽△A ′B ′C ′,∴2()4A B C'ABC ''S A B''S AB==△△.(2)如图,∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴111222DE BC DF AC EF AB ===,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.【解析】(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴AD BD BD CD=,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC,∴∠ADB=∠MBD,且∠ABD=90°,∴BM=MD,∠MAB=∠MBA,∴BM=MD=AM=4,∵BD2=AD·CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=MB2+BC2=28,∴MC=,∵BM ∥CD ,∴△MNB ∽△CND ,∴23BM MN CD CN ==,且MC =∴MN . 22.(2019•巴中)△ABC 在边长为1的正方形网格中如图所示.①以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C ,使其位似比为1∶2.且△A 1B 1C 位于点C 的异侧,并表示出A 1的坐标.②作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C . ③在②的条件下求出点B 经过的路径长.【解析】①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3). ②如图,△A 2B 2C 为所作.③OB =点B 经过的路径长=90ππ1802⋅=.23.(2019•荆门)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得AC =2 m ,BD =2.1 m ,如果小明眼睛距地面髙度BF ,DG 为1.6 m ,试确定楼的高度OE .【解析】如图,设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF 并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴AC MA MO FG MF MH==,即:AC OE OE OEBD MH MO OH OE BF ===++,∴21.62.1OEOE=+,∴OE=32,答:楼的高度OE为32米.24.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.【解析】(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC,又∠APB =135°,∴∠PAB +∠PBA =45°,∴∠PBC =∠PAB ,又∵∠APB =∠BPC =135°,∴△PAB ∽△PBC .(2)∵△PAB ∽△PBC ,∴PA PB AB PB PC BC==,在Rt △ABC 中,AB =AC ,∴AB BC =,∴PB PA ==,,∴PA =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,∴PF =h 1,PD =h 2,PE =h 3,∵∠CPB +∠APB =135°+135°=270°,∴∠APC =90°,∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90°,∴∠EAP =∠PCD ,∴Rt △AEP ∽Rt △CDP , ∴2PE AP DP PC==,即322h h =,∴h 3=2h 2,∵△PAB ∽△PBC ,∴12h AB h BC==,∴12h =,∴2212222322h h h h h h ==⋅=.即h 12=h 2·h 3.25.(2019•长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题)②三个角分别相等的两个凸四边形相似;(__________命题)③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,1111AB BC A B B C =11CD C D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.【解析】(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似.是真命题.故答案为:假,假,真.(2)如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且1111BC CD B C C D =, ∴△BCD ∽△B 1C 1D 1, ∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD , ∵111111AB BC CD A B B C C D ==,∴1111BD AB B D A B =, ∵∠ABC =∠A 1B 1C 1,∴∠ABD =∠A 1B 1D 1,∴△ABD ∽△A 1B 1D 1, ∴1111AD AB A D A B =,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11111111AB BC CD AD A B B C C D A D ===,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)∵四边形ABCD 与四边形EFCD 相似. ∴DE EF AE AB=, ∵EF =OE +OF ,∴DE OE OF AE AB +=, ∵EF ∥AB ∥CD , ∴DE OE DE OC OF AD AB AD AB AB =-=,,∴DE DE OE OF AD AD AB AB +=+,∴2DE DE AD AE=, ∵AD =DE +AE , ∴21DE AE AE =+, ∴2AE =DE +AE ,∴AE =DE ,∴12S S =1.。

相关文档
最新文档