3.4直线和圆的位置关系案例分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.4. 直线与圆的位置关系(1)设计人:学校老师)了解并掌握直线与圆有相交,相切

直线与圆相切:直线与圆有唯一公共点,这条直线叫圆的

①直线与圆 d r ,②直线与圆 d r ③直线与圆 d r 。

⇔⇔

1、“直线与圆的位置关系”这一内容是九年级数学第24章第2节的教学内容,它既是点与直线的位置关系的延伸与拓展,又是圆与圆的位置关系的铺垫,同时也是高中学习解析几何和立体几何的必备知识,所以这节课具有举足轻重的地位。在直线与圆的位置关系中渗透了运动变化的观点和数形结合的思想方法。直线动而圆不动,圆动而直线不动,这是运动,圆动且半径变大(小)是变化。距离d与半径r的数量关系是数,而图形位置关系是形。常用到勾股定理、三角函数、相似、方程与函数的知识等。初中阶段可解决下列问题:

(1)由直线与圆的位置关系,求圆的半径或圆的半径的取值范围。

(2)由r与d的大小关系,判断直线与圆的位置关系。

(3)直线与圆的交点个数问题。(由图形观察)

(4)直线运动与圆形区域运动问题。如航海、台风、地震、声音传播等问题。

2、符号“<=>”读作“等价于”,它表示两个方面:

(1)<=>”即从左端可以推出右端(反映直线与圆的某种位置关系的性质。);

(2)<=>即从右端可以推出左端(反映直线与圆的某种位置关系的判定。)

3、切线的判定:

定义法:和圆只有一个公共点的直线是圆的切线;

距离法:到圆心距离等于半径的直线是圆的切线;

定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(课标中已经删除)

相关文档
最新文档