广东省广州市八年级数学下册 20 数据的分析 20.1.1 平均数(第3课时)导学案(无答案)(新版)新人教版

合集下载

八年级数学下册20数据的分析教案(新版)

八年级数学下册20数据的分析教案(新版)

第二十章 数据分析20.1 数据集中趋势平均数第1课时 平均数(1)1.使学生理解并掌握数据权与加权平均数概念. 2.使学生掌握加权平均数计算方法. 重点会求加权平均数. 难点对“权〞理解. 一、复习导入某校八年级共有4个班,在一次数学考试中参考人数与成绩如下:否合理?为什么?x =14平均数概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,那么有x =x 1+x 2+x 3+…+x nn ,其中x 叫做这n 个数平均数,读作“x 拔〞.二、讲授新课 问题:一家公司打算招聘一名英文翻译,对甲、乙两名应试者进展了听、说、读、写英语水平测试,他们各项成绩(百分制)如表所示.(1)如果这家公司想招一名综合能力较强翻译,计算两名应试者平均成绩(百分制).从他们成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强翻译,听、说、读、写成绩按照2∶1∶3∶4比确定计算两名应试者平均成绩(百分制).从他们成绩看,应该录取谁?对于问题(1),根据平均数公式,甲平均成绩为:85+78+85+73,4乙平均成绩为73+80+82+83=79.5.4因为甲平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4比确定,这说明各项成绩“重要程度〞有所不同,读、写成绩比听、说成绩更加“重要〞.因此,甲平均成绩为85×2+78×1+85×3+73×4,2+1+3+4乙平均成绩为73×2+80×1+82×3+83×4=80.4.2+1+3+4因为乙平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数公式计算平均成绩,其中每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型数据赋予与其重要程度相应比重,其中2,1,3,4分别称为听、说、读、写四项成绩权,相应平均数分别称为甲与乙听、说、读、写四项成绩加权平均数.一般地,假设n个数x1,x2,…,x n权分别是w1,w2,…,w n,那么x1w1+x2w2+…+x n w nw1+w2+…+w n叫做这n个数加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡质量,对其中100只灯泡使用寿命进展了测量,结果如下表:(单位:小时)解:这些灯泡平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时)四、稳固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,那么这个样本平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,那么这个人平均每次中靶________环.【答案】ax +bya +b五、课堂小结师:这节课你学到了什么新知识? 生1:数据权与加权平均数概念. 生2:掌握加权平均数计算方法.平均数是统计中一个重要概念,新教材注重学生在经历统计活动过程中体会平均数本质内涵,理解平均数意义,开展学生统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计背景中理解平均数含义,在比拟、观察中把握平均数特征,进而运用平均数解决实际问题,了解它价值.第2课时 平均数(2) 1.加深对加权平均数理解.2.会根据频数分布表求加权平均数,解决一些实际问题. 3.会用计算器求加权平均数值. 重点根据频数分布表求加权平均数. 难点根据频数分布表求加权平均数. 一、复习导入采用教材原有引入问题,设计几个问题如下:(1)请同学们阅读教材中探究问题,依据统计表可以读出哪些信息?(2)这里组中值指什么,它是怎样确定? (3)第二组数据频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据平均值与组中值有什么关系?设计意图(1)主要是想引出根据频数分布表求加权平均数近似值计算方法;(2)加深了对“权〞意义理解:当利用组中值近似取代一组数据中平均值时,频数恰好反映这组数据轻重程度,即权;二、例题精讲【例2】某跳水队为了解运发动年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运发动平均年龄(结果取整数).解:这个跳水队运发动平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁).【例3】某灯泡厂为测量一批灯泡使用寿命,从中随机抽查了50只灯泡.它们使用寿命如下表所示,这批灯泡平均使用寿命是多少?本平均使用寿命来估计这批灯泡平均使用寿命.解:根据表格,可以得出各小组组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672,即样本平均数为1672.因此,可以估计这批灯泡平均使用寿命大约是1672 h . 三、稳固练习某校为了了解学生做课外作业所用时间情况,对学生做课外作业所用时间进展调查,下表是该校八年级某班50名学生某一天做数学课外作业所用时间情况统计表.求:(1)(2)该班学生平均每天做数学作业所用时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x=5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟)四、课堂小结1.加权平均数应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数值.在统计中算术平均数常用于表示对象一般水平,它是描述数据集中程度一个统计量,它可以反映一组数据一般情况,也可以用它进展不同组数据比拟,以看出组与组之间差异,可见平均数是统计中一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活联系.二、创造有效数学学习方式,理解平均数意义,学会平均数算法.中位数与众数第1课时中位数与众数(1)认识中位数与众数,并会求出一组数据众数与中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经与同学们研究了平均数这个数据代表.它在分析数据过程中担当了重要角色,今天我们来共同研究与认识数据代表中新成员——中位数与众数,看看它们在分析数据过程中又起到怎样作用.二、讲授新课下表是某公司员工月收入资料.(2)假设用(1)算得平均数反映公司全体员工月收入水平,你认为适宜吗?师:同学们知道如何计算这个公司员工月收入平均数吗?生:根据加权平均数,可以求出这个公司员工月收入平均数为:错误!=6276.师:很好!那么用第(1)问中算得平均数来反映该公司全体员工月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工收入在6276元以上,而另外22名员工收入都在6276元以下.因此,用月收入平均数反映所有员工月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入水平呢?这就要用到本节课要学习中位数,利用中位数可以更好地反映这组数据集中趋势.将一组数据按照由小到大(或由大到小)顺序排列,如果数据个数是奇数,那么称位于中间位置数为这组数据中位数;如果数据个数是偶数,那么称中间两个数据平均数为这组数据中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到中位数为3400,这说明除去月收入为3400元员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚刚我们学习中位数,下面我们再来学习一个反映数据集中趋势另一众数,一组数据中出现次数最多数据称为这组数据众数.当一组数据有较多重复数据时,众数往往能更好地反映该组数据集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋销售量如表所示.你能根据表中数据为这家鞋店提供进货建议吗?关心卖出鞋尺码组成一组数据众数.一段时间内卖出300双女鞋尺码组成一个样本数据,通过分析样本数据可以找出样本数据众数,进而估计这家鞋店销售哪种尺码鞋最多.解:由表可以看出,在鞋尺码组成数据中,,即23.5 cm鞋销售量最大,因此可以建议鞋店多进23.5 cm鞋.三、稳固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8中位数是________,众数是________.【答案】9 92.一组各不一样数据23,27,20,18,x,12,它中位数是21,那么x值是________.【答案】223.数据92,96,98,100,x众数是96,那么其中位数与平均数分别是( )A.97,96 B.C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现次数依次为3,5,3,1,并且没有其他数据,那么这组数据众数与中位数分别是( ) A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数与众数.2.理解了中位数与众数意义与作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数与众数意义之后,让学生利用中位数与众数知识解决实际问题,沟通了知识与实际生活联系,让学生体会到中位数与众数知识实用性.第2课时中位数与众数(2)1.进一步认识到平均数、众数、中位数都是数据代表.2.了解平均数、中位数、众数在描述数据时差异.重点了解平均数、中位数、众数之间差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数与众数都可以作为一组数据代表,是描述一组数据集中趋势量.它们各有自己特点,能够从不同角度提供信息,在实际应用中,需要分析具体问题情况,选择适当量反映数据集中趋势.另外要注意:(1)平均数计算要用到所有数据,它能够充分利用所有数据信息,但它受极端值影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心一个量,众数不受极端值影响,这是它一个优势,中位数计算也不受极端值影响;(3)平均数大小与一组数据中每个数据均有关系,任何一个数据变动都会相应地引起平均数变动;(4)中位数仅与数据排列位置有关,某些数据移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得平均数、众数、中位数应带上单位.二、例题讲解【例1】在一次环保知识竞赛中,某班50名学生成绩如下表所示:【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客年龄如下:(单位:岁)甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征是________;(2)乙群游客平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、稳固练习某公司33名职工月工资(以元为单位)如下:(2)假设副董事长工资从5000元提升到20000元,董事长工资从5500元提升到30000元,那么新平均数、中位数、众数又是多少?(准确到元)(3)你认为应该使用平均数与中位数中哪一个来描述该公司职工工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工工资水平,因为公司中少数人工资额与大多数人工资额差异较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工工资水平.四、课堂小结1.了解平均数、中位数、众数之间差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数与众数定义开场,接着列出这三种统计量各自特点与适用条件,为防止太过抽象,在后面设计例题中都有这些统计量应用,培养学生应用数学意识.数据波动程度1.了解方差定义与计算公式.2.理解方差概念产生与形成过程.3.会用方差比拟两组数据波动大小.重点方差产生必要性与应用方差公式解决实际问题.难点理解方差概念并会运用方差公式解决实际问题.一、情境导入1.请同学们看下面问题:(幻灯片出示)农科院方案为某地选择适宜甜玉米种子.选择种子时,甜玉米产量与产量稳定性是农科院所关心问题.为了解甲、乙两种甜玉米种子相关情况,农科院各用10块自然条件一样试验田进展试验,得到各试验田每公顷产量(单位:)如下表所示.上面两组数据平均数分别是x甲≈7.54,x乙≈7.52,说明在试验田中,甲、乙两种甜玉米平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量分布情况,我们把这两组数据画成下面图1与图2.师:比拟上面两幅图可以看出,甲种甜玉米在各试验田产量波动较大,乙种甜玉米在各试验田产量较集中地分布在平均量附近,从图中看出结果能否用一个量来刻画呢?这就是我们本节课所要学习内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们平均水平外,还常常需要了解它们波动大小(即偏离平均数大小).2.方差概念教师讲解:为了描述一组数据波动大小,可以采用不止一种方法,例如,可以先求得各个数据与这组数据平均数差绝对值,再取其平均数,用这个平均数来衡量这组数据波动大小,通常,采用是下面做法:设在一组数据中,各数据与它们平均数差平方与平均数是s2,那么我们用s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]来衡量这组数据波动大小,并把它叫做这组数据方差.一组数据方差越大,说明这组数据波动越大;数据方差越小,说明这组数据波动越小,教师要剖析公式中每一个元素意义,以便学生理解与掌握.在学生理解了方差概念之后,再回到了引例中,通过计算甲、乙两种甜玉米方差,根据理论说明哪种甜玉米产量更好.教师示范:两组数据方差分别是s甲2=〔7.65-7.54〕2+〔7.50-7.54〕2+…+〔7.41-7.54〕210≈0.01,s乙2=〔7.55-7.52〕2+〔7.56-7.52〕2+…+〔7.49-7.52〕210≈0.002.显然s甲2>s乙2,即甲种甜玉米波动较大,这与我们从图1与图2看到结果一致.由此可知,在试验田中,乙种甜玉米产量比拟稳定.正如用样本平均数估计总体平均数一样,也可以用样本方差来估计总体方差.因此可以推测,在这个地区种植乙种甜玉米产量比甲种稳定.综合考虑甲、乙两个品种平均产量与产量稳定性,可以推测这个地区比拟适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚兴趣,而且培养了学生应用数学意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)两组数据:分别计算这两组数据方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算.解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0--0.3)=10+18×0=10x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-+)=10+18×0=10s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09)=18s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01)=18从s 甲2<s 乙2知道,乙组数据比甲组数据波动大. 三、稳固练习 1.一组数据为2,0,-1,3,-4,那么这组数据方差为________. 【答案】62.甲、乙两名学生在一样条件下各射靶10次,命中环数如下: 甲:7,8,6,8,6,5,9,10,7,4 乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数平均数一样,但s 甲2________s 乙2,所以确定________去参加比赛.【答案】> 乙 四、课堂小结1.知识小结:通过这节课学习,我们知道了对于一组数据,有时只知道它平均数还不够,还需要知道它波动大小,而描述一组数据波动大小量不止一种,最常用是方差.2.方法小结:求一组数据方差方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据分析,发现以前学过统计知识不能解决新问题,引出矛盾,这里设计了小组讨论环节,让学生在交流中得到启发,进而使学生思维发生碰撞,产生创新火花,真正表达“不同人,在数学上得到不同开展〞.。

初二数学20.1.1 平均数(3)课件

初二数学20.1.1 平均数(3)课件

解:据上表得各小组的组中值,于是
800 5+1200 10+1600 12+ 2000 17+ 2400 6 x= 50 =1672
用一用
例 某灯泡厂为了测量一批灯泡的使用寿命,从中 随机抽查了50只灯泡,它们的使用寿命如下表所示.这 批灯泡的平均使用寿命是多少?
使用寿命 x/h 灯泡只数 600≤x <1 000 5 1 000≤x <1 400 10 1 400≤x <1 800 12 1 800≤x <2 200 17 2 200≤x <2 600 6
解:即样本平均数为1 672. 因此,可以估计这批灯泡的平均使用寿命大约是 1 672 h.
样本估计总体
练一练
问题2 某校为了解八年级男生的身高,从八年级 各班随机抽查了共40 名男同学,测量身高情况(单位: cm)如下图.试估计该 人数 20 校八年级全部男生的平 20 均身高.
15 10 6 5 0 4 10
用一用
例 某灯泡厂为了测量一批灯泡的使用寿命,从中 随机抽查了50只灯泡,它们的使用寿命如下表所示.这 批灯泡的平均使用寿命是多少?
使用寿命 x/h 灯泡只数 600≤x <1 000 5 1 000≤x <1 400 10 1 400≤x <1 800 12 1 800≤x <2 200 17 2 200≤x <2 600 6
0.25 4+ 0.35 12+ 0. 45 16+ 0. 55 8 x= =0.42 4+12+16+8
所以,平均每个梨的质量约为0.42 kg.
做一做
(3)能估计出该果园中梨的总产量吗?
154 100 0.42=6468

新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT

新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT
灯泡只数
600≤x <1 000
5
1 000≤x <1 400
10
1 400≤x <1 800
12
1 800≤x <2 200
17
2 200≤x <2 600
6
解:即样本平均数为1 672. 因此,可以估计这批灯泡的平均使用寿命大约是 1 672 h.
样本估计总体
练一练
问题2 某校为了解八年级男生的身高,从八年级
各班随机抽查了共40 名男同学,测量身高情况(单位:
cm)如下图.试估计该 人数
校八年级全部男生的平 20
20
均身高.
15
10
10
6
5
4
0 145 155 165 175 185 身高/cm
课堂小结
(1)在抽样调查得到样本数据后,你如何处理样本 数据并估计总体数据的集中趋势? 样本平均数估计总体平均数.
解:他们的平均身高为: 156+158+160+162+170 =161.2 5
所以,他们的平均身高为161.2 cm.
做一做
问题2 某班级为了解同学年龄情况,作了一次年 龄调查,结果如下:13岁8人,14岁16人,15岁24人, 16岁2人.求这个班级学生的平均年龄(结果取整数).
解:这个班级学生的平均年龄为:
课堂小结
(1)当一组数据中有多个数据重复出现时,如何简便 地反映这组数据的集中趋势? 利用加权平均数.
(2)据频数分布求加权平均数时,你如何确定数据与 相应的权?试举例说明.
数据
频数

组中值
课后作业
作业: 必做题:教科书第121页复习巩固第1题; 选做题:教科书第122页综合应用第6题.

人教版八年级数学下册《20章 数据的分析 20.1 数据的集中趋势 20.1.1平均数》教案_17

人教版八年级数学下册《20章 数据的分析  20.1 数据的集中趋势  20.1.1平均数》教案_17

《§20.1.1平均数(1)--人教2011版八年级数学(下)》教学设计课题:§20.1.1平均数(第一课时)----用频数统计表计算平均数 教学目标:知识目标:1.理解平均数的含义,通过引导学生自主学习归纳到平均数的计算方式;2.类比算术平均数和加权平均数,体会到二者之间的联系和区别;能选用合理的计算方式计算一组数据的平均数。

能力目标:根据数据的平均数解释实际问题.情感目标:通过运用数学工具解决实际问题的亲身经历,感悟数学知识的生活性和趣味性,激发学生学习数学的自觉性.教学重点:平均数的求法。

教学难点与关键:理解平均数的定义. 教学过程:一、明确目标、心中有数1.理解平均数的含义,通过合作学习归纳出平均数的计算公式;2.类比算术平均数和加权平均数,体会到二者之间的联系和区别;能灵活选用合理的计算方式计算一组数据的平均数.(教师通过课件展示学习目标。

学生通过阅读,明确本课学习目标.) 二、创设情境、导入新课(一)小学中,同学们已经学习过平均数,请你解决以下问题: 求下列数据的平均数。

⑴3,0,-1,4,-2; ⑵x 1, x 2, x 3,…, x n 。

学生自主操作,教师从旁指导.(二)你能归纳到一组数据平均数的求法吗? 三、合作探究、形成新知(一)教师结合学生回答情况,归纳平均数的定义:所有数据的和与数据个数的商。

并由此得到算术法求平均数的理念:()n x x x n x +∙∙∙++=211(二)介绍相关概念:1.平均数的符号表示及读法;2.算术平均数的含义。

(三)教师组织练习:若4,6,8,x 的平均数是8,且4,6,8,x ,y 的平均数是9,求x ,y 的值。

并作讲解。

(四)教师指导学生完成“引例”:(1) 说说表中数据的意义. (2) 计算该运动员的平均成绩.并归纳到:一组数据中,数据x 1出现了f 1次、数据x 2出现了f 2次、…、数据x k 出现了f k 次。

八年级数学下册 第二十章 数据的分析 20.1 数据的集中趋势 20.1.1 平均数教学课件 (新版

八年级数学下册 第二十章 数据的分析 20.1 数据的集中趋势 20.1.1 平均数教学课件 (新版
选手B的最后得分是:
xB 95 50% 85 40% 9510% 91 50% 40% 10%
答:由上可知选手__B__获得第一名,选手__A__ 获得第二名.
(1)加权平均数在数据分析中的作用是什么? 当一组数据中各个数据重要程度不同时,加权平
均数能更好地反映这组数据的平均水平. (2)权的作用是什么?
权反映数据的重要程度,数据权的改变一般会影 响这组数据的平均水平.
第二十章 数据的分析
20.1.1 平均数
第2课时
1、如何求一组数据的平均数? 解:x x1 x 2 x3 x 4 ... x n n
2、七位裁判给某体操运动员打的分数分别为:7.8, 8.1,9.5,7.4,8.4,6.4,8.3.如果去掉一个最高分, 去掉一个最低分,那么,这位运动员平均得分是 多少?
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度 不一样!
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
解:
x甲 =
85
2+78
1+85
2+1+3+4
3+73
4
=79.5 ,
x乙 =
73
2+80
1+82 2+1+3+4
3+83
4
=80.4 .
因为乙的成绩比甲高,所以应该录取乙.
面试
笔试

86
90

92
83
(1)如果公司认为面试和笔试成绩同等重要,从他们的 成绩看,谁将被录取?
解:根据题意,求甲、乙各项成绩的平均数,得:
x甲

八年级数学下册第二十章数据的分析教案

八年级数学下册第二十章数据的分析教案

2、 学生解题思考、讨论分析,并演板 例 5、一家鞋店在一段时间内销售了某种女鞋 30 双,尺码与销售量如下表:
尺码 /cn 22 22.5 23 23.5 24 24.5 25
销售量 / 双 1 2 5 11 7 3 1
你能根据表中的数据为这家鞋店提供进货建议吗?
学生解题思考、讨论分析,并演板 四、归纳小结:
解: x =《 11*3+31*5+51*20+71*22+91*18+111*15 》 /<3+5+20+22+18+15>=73 人 答: .......................
互动调控



课时
三、交流展示: 例 3、课本 p115 面例 3 学生分组讨论,小组发言,学生演板
四、归纳小结: 1、平均数 2、加权平均数的 公式 3、权的意义 4、 组中值、 蘋数的 意义 五、当堂训练:
决一些实际问题
情感态度与价值观: 用频数分布表求加权平均数,培养学生解决实际问题水平
教学重点 : 根据频数分布表求加权平均数
教学难点: 根据频数分布表求加权平均数
教学方法: 创设情景 --- 观察思考 ---- 分析讨论 --- 归纳总结 ---- 得出结论
教学过程: 一课堂导入: 问题 1:上节课我们学习了平均数、 加权平均数的 公式、 权的意义,你能说
.
3、数据 92、 96、 98、 100、 X 的众数是 96,则其中位数和平均数分别是(

A.97 、 96 B.96、 96.4
C.96 、97
D.98 、 97
4、某公司销售部有营销人员 15 人,销售部为了制定某种商品的销售金额,统计

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计
(1)求以下数列的平均数:3,6,9,12,15。
(2)已知某班级学生的平均身高为1.6米,若增加一名身高为1.8米的学生,求新的平均身高。
(3)已知一组数据的平均数为20,求这组数据总和的2倍。
2.提高拓展题
为了提高学生的数据分析能力和解决实际问题的能力,布置以下提高拓展题:
(4)某商店进行促销活动,活动期间,顾客平均每人消费金额为100元。若一名顾客消费了150元,求此时顾客的平均消费金额。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平均数的定义及其求解方法,平均数在实际问题中的应用。
2.难点:理解平均数的含义,掌握平均数与其他统计量的关系,以及如何根据数据特点选择合适的平均数作为数据代表值。
(二)教学设想
1.创设情境,导入新课
结合生活实际,设计一个与学生生活密切相关的问题,如班级同学身高、体重等数据的分析,引导学生通过求解平均数来描述数据集中趋势,激发学生学习的兴趣。
让学生分组讨论,尝试用自己的语言描述平均数的含义,并举例说明。在此过程中,教师巡回指导,了解学生的思考情况。
3.教师引导
在学生讨论的基础上,教师进行引导总结,给出平均数的定义,并强调平均数在描述数据集中趋势方面的重要作用。
(二)讲授新知
1.平均数的定义与性质
教师详细讲解平均数的定义,即总数除以个数,强调平均数反映了数据集的总体特征。同时,介绍平均数的性质,如受极端值影响较大等。
本章节教学设计以人教版八年级数学下册第二十章数据的分析20.1.1平均数为依据,结合学科特点和课程内容,注重培养学生的知识技能、过程与方法以及情感态度与价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使他们在原有基础上得到提高。同时,注重理论与实践相结合,让学生在实际问题中感受数学的魅力,提高他们运用数学知识解决实际问题的能力。

20.1.1 平均数(第3课时)

20.1.1 平均数(第3课时)
第二十章
数据的分析
20.1 数据的集中趋势
20.1.1 平均数 第3课时
统计调查
全面调查 抽样调查
抽样调查:它是从总体中抽取样本进行调 查,根据样本来估计总体的一种调查.
某水库为了了解某种鱼的生长情况,从水库 中捕捞了20条这种鱼,称得它们的质量如下(单 位:kg):
1.04 1.11 1.07 1.10 1.32 1.25 1.15 1.21 1.18 1.14 1.09 1.25 1.29 1.16 1.24 1.12 1.16 计算样本平均数,并根据计算结果估计水库 里这种鱼的平均质量. 解:这组数据的平均数为: (1.15+1.04+…+1.16)÷20=1.172(千克). 能估计水库中鱼的平均重量,估计水库中鱼的平 均重量为1.172千克. 1.15 1.19 1.21
(1)样本估计总体的思想. (2)平均数的计算方法与意义. (3)不同信息呈现方式的分析策略与处理 方案.
1.必做题: 教材第123页习题20.1第8题. 2.选做题: 数学老师布置了10道选择题作为课堂练习, 下图是全班解题情况的统计.根据图表,求平均 每个学生做对了几道题?
3.备选题: (1)某瓜农采用大棚栽培技术种植了一亩 地的良种西瓜,这亩地产西瓜约600个,在西瓜 上市前该瓜农随机摘下了10个成熟的西瓜,称 重如下:
王涛同学统计了他家10月份的长途电话清单, 按通话时间画出直方图(如下图).
(1)这张图与前面问题中的直方图有何不同? (2)从这张图中你能得到哪些信息? (3)王涛同学家10月份平均每个长途电话的通话 时间是多少? (4)你认为能通过(3)的结论估计王涛家一年中 平均每个长途电话的通话时间吗?
两张图的不同:各组数据是明确的一个值还 是一个范围,若是一个范围,则应用组中值作为 代表.

八年级下册第二十章数据的分析20.1数据的集中趋势

八年级下册第二十章数据的分析20.1数据的集中趋势

人数(人)
2
8
6
4
则这次比赛的平均成绩约为_8_1__分.
-25-
用样本平均数估计总体平均数
同步考点手册 P35
2.从鱼塘捕获同时放养的草鱼 240 条,从中任选 8 条,称得每条鱼的质
量分别为 1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计
这 240 条鱼的总质量大约为( B )
(2)如果规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5 +平均每场失误×(-1.5),且综合得分越高表现越好,那么请你利用这种评 价方法,来比较该运动员在分别与“甲”和“乙”的各四场比赛中,对阵 哪一个队表现更好?
解:2+2+4 2+5=141,2+44+2=2,10+10+4 14+10=11,17+154+12+7 =541,该运动员在对阵“甲队”的四场比赛中的综合得分 P1=25.25+ 11×1.5+141×(-1.5)=37.625;该运动员在对阵“乙队”的四场比赛中的综 合得分 P2=23.25+541×1.5+2×(-1.5)=39.375;∵P1<P2,∴该运动员在 对阵“乙队”的比赛中表现更好.
14.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试
中包括形体和口才,笔试中包括专业水平和创造能力考察,他们的成绩(百
分制)如下表:
候选人
面试 形体 口才
笔试 专业水平 创新能力

86 90
96
92

92 88
95
93
-17-
(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创
a+b+c A. 3
B.m+3n+r
ma+nb+rc

最新版八年级数学下册课件:20.1.1平均数

最新版八年级数学下册课件:20.1.1平均数

3
3
课堂检测
20.1 数据的集中趋势/
能力提升题
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,此时 第一名是谁?
解: xA 723 85 6 67 1 =79.3 3 61
853 74 6 701
xB
=76.9
3 61
所以,此时第一名是选手A.
课堂检测
20.1 数据的集中趋势/
课堂检测
20.1 数据的集中趋势/
拓广探索题
(2)如果公司认为,作为公关人员面试的成绩应该比笔试更 重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均 成绩,看看谁将被录取.
解:
80 6 96 4
x甲
86.4
10
94 6 81 4
x乙
88.8
10
x乙 x甲 所以乙将被录取.
课堂小结
课堂检测
20.1 数据的集中趋势/
基础巩固题
5.下表是校女子排球队队员的年龄分布:
年龄 13 14 15 16
频数 1
4
5
2
求校女子排球队队员的平均年龄.
解: x 13114 4 155 16 2 14.7( 岁) 1 4 5 2
答:校女子排球队队员的平均年龄为14.7岁.
课堂检测
20.1 数据的集中趋势/
答:小桐这学期的体育成绩是88.5分.
课堂检测
20.1 数据的集中趋势/
能力提升题
某次歌唱比赛,两名选手的成绩如下:
测试
测试成绩
选手 创新 唱功 综合知识
A 72 85
67
B 85 74
70
(1)若按三项平均值取第一名,则___选__手__B___是第一名.

人教版八年级数学下册_20.1.1平均数

人教版八年级数学下册_20.1.1平均数

A.3.5 元
B.6 元
C.6.5 元
人数就“权”.
10 1
D.7 元
感悟新知
解题秘方:根据“定义(2)的公式”进行计算.
_ 解:x =
5 2+6 3+7 2+101
=6.5(元).
8
知2-讲
感悟新知
知2-练
2-1. 为了解乡镇企业的水资源的利用情况,市水利管理部 门抽查了部分乡镇企业在一个月中的用水情况, 其中 用水15 吨的有3 家,用水20 吨的有5 家,用水30 吨的 有7 家, 那么平均每家企业一个月用水( A ) A.23.7 吨 B.21.6 吨 C.20 吨 D.5.416 吨
能性及付出的代价;
(2)抽取的样本要具有一般性和代表性,这样有利于推测全
貌、估计总体,作出决策,解决有关问题.
感悟新知
特别提醒 用样本估计总体的两种类型: 1. 用样本平均数估计总体平均数; 2. 用样本的总量估计总体的总量.
知3-讲
感悟新知
例 5 某校为了了解八年级学生某 次体育测试的成绩,现对该 年级学生这次体育测试成绩 进行抽样调查,结果统计如 下表及扇形统计图(如图20.13),其中扇形统计图中C 组 所在的扇形圆心角为36°.
解:由频数分布直方图可以看出: P=60,则Q=200-50-60-70=20.
知2-讲
感悟新知
知2-讲
(2)请把如图20.1-1 所示的频数分布直方图补充完整;
解:如图20.1-2 所示.
感悟新知
知2-讲
(3)这200 名女生的平均身高大约为__1_5_3_c_m__.
解:求出每组的组中值分别为140,150,160,170, 用每组的组中值近似地作为该组内女生的平均身高. 140 50+150 60+160 70+170 20 =153(cm),因此
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.1 平均数
课型: 新授课上课时间:课时: 1
【学习目标】
1.能根据频数分布直方图计算平均数。

2.能正确有效应用平均数知识解决问题,提高分析、解决问题的能力。

3.学习并体会用样本平均数估计总体平均数的思想方法。

【重点难点】
重点:能根据频数分布直方图计算平均数。

难点:能根据不同特点的频数分布直方图采取相应的处理方法。

【导学指导】
我们知道,当所要考察的对象很多,或考察本身带有破坏性时,统计中常用通过样本估计总体的方法来获得对总体的认识。

例如,实际生活中经常用样本的平均数来估计总体的平均数。

学习教材相关内容,思考、讨论、合作交流后完成下列问题:
1.教材“例题”中,表格里没有组中值,怎么办?
2.某灯泡厂要测量一批灯泡的使用寿命,使用全面调查的方法考察这批灯泡的平均使
用寿命合适吗?由这100个灯泡的使用寿命估计这批灯泡的平均使用寿命可以吗?
这批灯泡的平均使用寿命是多少?
【课堂练习】
1.教材练习题。

2.小妹统计了她家10月份的长途电话费清单,并按通话时间画出直方图。

(1)这张直方图与第1题中的直方图有何不同?
(2) 从这张图你能得到哪些信息?
(3) 小妹家10月份平均每个长途电话的通话时间是多少?
(4) 你认为能通过(3)的结论估计小妹家一年中平均每个长途电话的通话时间吗?
01515102025时间/分频数(通话次数)
5
10
15
20
25
30
【要点归纳】
今天你有什么收获,与同伴交流一下。

【拓展训练】
1. 某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个,在
西瓜上市前该瓜农随机摘下10个成熟的西瓜,称重如下:
西瓜质量/千克
5.5 5.4 5.0 4.9 4.6 4.3 西瓜数量/个 1 2 3 2 1 1
计算这10个西瓜的平均质量,并根据计算结果估计这亩地的西瓜产量约是多少?
2. 某班同学进行数学测验,将所得的成绩(得分取整数)进行整理后分成5组,并绘成频数分布直方图,请结合直方图提供的信息,回答下列问题:
(1) 该班共有多少名学生?(2)80.5-90.5这一分数段的频数、频率分别是多少?
(1) 这次考试的平均成绩是多少?
分数人数15
12
9
6
3
4。

相关文档
最新文档