6 第十三章 量子力学(习题解答)及模拟试卷参考答案20141231

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

大学物理第13章 量子物理习题解答(1)

大学物理第13章 量子物理习题解答(1)

习题13-1设太阳是黑体,试求地球表面受阳光垂直照射时每平方米的面积上每秒钟得到的辐射能。

如果认为太阳的辐射是常数,再求太阳在一年内由于辐射而损失的质量。

已知太阳的直径为1.4×109 m ,太阳与地球的距离为1.5×1011 m ,太阳表面的温度为6100K 。

【解】设太阳表面单位面积单位时间发出的热辐射总能量为0E ,地球表面单位面积、单位时间得到的辐射能为1E 。

()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失的质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2 用辐射高温计测得炉壁小孔的辐出度为22.8 W/cm 2,试求炉内温度。

【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体的温度16000T = K ,问1350λ= nm 和2700λ= nm 的单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 的单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。

量子力学复习题附答案

量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。

2. 描述态叠加原理的内容。

答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。

系统的态函数可以表示为这些可能状态的叠加。

3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。

4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。

5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。

6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。

7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。

8. 描述量子力学中的隧道效应。

答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。

这是量子力学中粒子波性质的体现。

9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。

10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。

量子力学习题(1235章)东南大学

量子力学习题(1235章)东南大学

量子力学习题集及解答(1 2 3 5章)目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==/3318Thv v e dvv chdv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★) (★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππy e dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

量子力学练习题答案

量子力学练习题答案
量子力学练习题参考答案
一、 简答题 1. 简述光电效应中经典物理学无法解释的实验现象。 答:光电效应中经典物理学无法解释的实验现象有: (1)对入射光存在截止频率ν0 ,小于该频率的入射光没有光电子逸出;(2) 逸出的光电子的能量只与入射光的频率ν 有关,入射光的强度无关;(3) 截止频率只与材料有关而与光强无关;(4)入射光的强度只影响逸出的光 电子的数量;(5)无论多弱的光,只要其频率大于截止频率,一照射到金 属表面,就有光电子逸出。 2. 简述 Planck 的光量子假设。 答:Planck 的光量子假设为,对于一定的频率为ν 的辐射,物体吸收或发 射的能量只能以 hν 为单位来进行。 3. 写出 Einstein 光电方程,并阐述 Einstein 对光电效应的量子解释。 答:Einstein 光电方程为 hν = 1 mv2 + W 。
⎤ ⎥ ⎦
16. 简述粒子动量与位置的不确定关系。
答:若要想精确地知道粒子的动量值,就无法得知粒子的具体位置;要想
精确地知道粒子的位置,就无法得知粒子的具体动量值,位置分布的均方
差和动量分布的均方差受到下面关系的制约
Δx ⋅ Δp ≥ = 2
17. 简述量子力学的态叠加原理。
答:量子力学的态叠加原理是指如果ψ1 、ψ 2 、ψ 3 ……均是体系的可能状态,
Wmk =| am (t) |2
∫ ∫ 其中
am
(t)
=
1 i=
t 0
eiωmkτ
H

mk


H

mk
=
ϕm* Hl ′(t)ϕkdτ ,ωmk = (Em − Ek ) / =
二、 证明题 1. 证明黑体辐射的辐射本领 E(ν ,T ) 与 E(λ,T ) 之间的关系。 证明:黑体的辐射本领是指辐射体单位面积在单位时间辐射出来的、单位 频率间隔内的能量,用 E(ν ,T ) 表示。由于ν = c / λ ,所以黑体的辐射本领也 可以表示成 E(λ,T ) 。由定义得单位面积、单位时间内辐射的能量为

量子力学复习题答案与题解

量子力学复习题答案与题解

量子力学复习题导致量子论产生的物理现象主要有哪些?p2量子的概念是如何引进的?p5为什么说爱因斯坦是量子论的主要创始人之一?p6写出德布罗意公式并说明其中各量的含义和该公式的意义。

P12什么是波函数的几率解释?p18态的迭加原理。

P22动量算符的定义。

P27写出单粒子薛定谔方程。

P27写出多粒子薛定谔方程。

P28写出单粒子哈密顿算符及其本征值方程。

P33什么条件下可以得到定态薛定谔方程?p32什么是束缚态?p37什么情况下量子系统具有分立能级?p37什么是基态?p37写出线性谐振子的定态薛定谔方程。

P39写出线性谐振子的能级表达式。

P40写出波函数应满足的三个基本条件。

P51写出算符的本征值方程并说明其中各量的含义。

P54量子力学中的力学量算符如何由经典力学中相应的力学量得出?p55写出厄米算符的定义,并解释为什么量子力学中的力学量要用厄米算符来表示。

P56写出轨道角动量算符的各分量表达式。

P60什么是角量子数、磁量子数?写出相应的本征值表达式及其数值关系。

P63解:),()1(),(ˆ22ϕθϕθlm lm Y l l Y L += ),(),(ˆϕθϕθlmlm z Y m Y L = 其中l 表征角动量的大小,称为角量子数,m 称为磁量子数。

对应于一个l 的值,m 可以取(2l +1)个值,从-l 到+l 。

写出波尔半径的值和氢原子的电离能,可见光能否导致氢原子电离?00.52A a =( 3分) 113.6e V E =( 3分)可见光的能量不超过3.26eV , 这个值小于氢原子的电离能,所以不能引起氢原子电离。

( 4分)写出类氢原子体系的定态薛定谔方程。

P65 写出氢原子能级的表达式及其简并度。

P68 s, p, d, f 态粒子是什么含义?p63关于力学量与算符的关系的基本假定。

P83 写出力学量平均值的积分表达式。

P84 两个算符可对易的充要条件是什么?p89 写出X 方向坐标与动量的不确定关系。

量子力学模拟试题及答案

量子力学模拟试题及答案

量子力学模拟试题及答案一、选择题1. 根据量子力学,以下哪个选项描述了波函数的物理意义?A. 粒子的位置B. 粒子的动量C. 粒子在空间中某点出现的概率密度D. 粒子的质量答案:C2. 海森堡不确定性原理表明,粒子的什么两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 质量与速度D. 动量与能量答案:A二、填空题1. 量子力学中的波函数通常用符号________表示。

答案:Ψ2. 薛定谔方程是量子力学的基本方程,它描述了波函数随时间的________。

答案:演化三、简答题1. 简述量子力学中的叠加原理。

答案:量子力学中的叠加原理表明,如果一个量子系统可以处于多个可能状态中的任何一个,那么它实际上可以处于这些状态的任意线性组合,即叠加态。

这意味着,除非进行测量,否则系统的行为不能被归结为单一确定的状态。

四、计算题1. 假设一个粒子在一维无限深势阱中,其势阱宽度为L。

求该粒子的基态能量。

答案:基态能量可以通过以下公式计算:E0 = (h^2 / (8mL^2)),其中h是普朗克常数,m是粒子质量,L是势阱宽度。

五、论述题1. 论述量子纠缠现象及其在量子信息科学中的应用。

答案:量子纠缠是量子力学中的一种非经典现象,其中两个或多个量子系统处于一种特殊的关联状态,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。

在量子信息科学中,量子纠缠是实现量子通信、量子计算和量子密钥分发等技术的关键资源。

例如,在量子密钥分发中,纠缠粒子可以用来生成和共享密钥,确保通信的安全性。

六、实验题1. 设计一个实验来验证海森堡不确定性原理。

答案:一个简单的实验设计是使用双缝干涉实验。

通过测量通过双缝的粒子的位置和动量,可以观察到当一个物理量被更精确地测量时,另一个物理量的不确定性会增加,从而验证海森堡不确定性原理。

实验中,可以使用光电探测器来测量粒子通过特定缝隙的位置,然后通过测量粒子在屏幕上的分布来估算其动量的不确定性。

量子力学试题含答案

量子力学试题含答案

量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。

这种相互转化的现象称为________。

答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。

答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。

答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。

答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。

这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。

实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。

当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。

同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。

b) 请解释量子力学中的不确定性原理及其意义。

答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。

不确定性原理的意义在于限制了我们对微观世界的认知。

它告诉我们,粒子的位置和动量无法同时被精确地确定。

这是由于测量过程中的不可避免的干扰和相互关联性导致的。

量子力学习题答案9页word

量子力学习题答案9页word

2.1 如图所示右设粒子的能量为,下面就和两种情况来讨论(一)的情形此时,粒子的波函数所满足的定态薛定谔方程为其中其解分别为(1)粒子从左向右运动右边只有透射波无反射波,所以为零由波函数的连续性得得解得由概率流密度公式入射反射系数透射系数(2)粒子从右向左运动左边只有透射波无反射波,所以为零同理可得两个方程解反射系数透射系数(二)的情形令,不变此时,粒子的波函数所满足的定态薛定谔方程为其解分别为由在右边波函数的有界性得为零(1)粒子从左向右运动得得解得入射反射系数透射系数(2) 粒子从右向左运动左边只有透射波无反射波,所以为零 同理可得方程由于全部透射过去,所以反射系数 透射系数2.2如图所示在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为总透射系数2.3以势阱底为零势能参考点,如图所示 (1)左 中 0 a x时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得∴∴ 相应的因为正负号不影响其幅度特性可直接写成由波函数归一化条件得所以波函数(2) ∞∞左 中 右0 x显然时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得当,为任意整数,则当,为任意整数,则综合得∴当时,,波函数归一化后当时,,波函数归一化后2.4如图所示左中0 a 显然其中其解为由在右边波函数的有界性得为零∴再由连续性条件,即由得则得得除以得再由公式 ,注意到令,其中,不同n对应不同曲线, 图中只画出了在的取值范围之内的部分65n=0只能取限定的离散的几个值,则E 也取限定的离散的几个值,对每个E ,确定归一化条件得2.5则该一维谐振子的波函数的定态薛定谔方程为令则上式可化成令则只有当有解2.6由 和已知条件可得第三章3.1能量本征值方程为即分离变量法,令则有令则同理令则式中能级简并度为3.2角动量算符在极坐标系下则由能量本征值方程令其解为由周期性得归一化条件则3.4由能量本征值方程令当令 此时 满足的方程为时时只考虑时令其解分别为由波函数有界性得由波函数连续性得再由公式,注意到令,其中 , 不同n 对应不同曲线,图中只画出了在的取值范围之内的部分65只能取限定的离散的几个值,则E也取限定的离散的几个值,对每个E,确定归一化条件得 1 可求得3.5同理方差算符则由测不准关系代入,验证该式是成立的第四章4.1在动量表象中,则代入得令得则归一化后的4.5本征方程的矩阵形式上式存在非零解的条件是即解得当再由得当,同样第六章6.3解:在z S ˆ 表象,nS ˆ的矩阵元为 其相应的久期方程为 即所以nS ˆ的本征值为2±。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。

波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。

这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。

量子力学课后习题答案

量子力学课后习题答案

量子力学课后习题答案量子力学是物理学中一门重要的学科,它描述了微观粒子的行为和性质。

在学习量子力学的过程中,习题是不可或缺的一部分,通过解答习题可以巩固对该学科的理解和应用。

本文将为大家提供一些量子力学课后习题的答案,希望能对大家的学习有所帮助。

1. 请解释什么是量子力学中的“叠加态”?在量子力学中,叠加态是指一个量子系统处于多个可能状态的线性组合。

这意味着在特定的测量之前,量子系统可以同时处于多个不同的状态。

例如,一个电子可以处于自旋向上和自旋向下的叠加态。

只有在进行测量时,才会决定电子的自旋是向上还是向下。

2. 什么是量子力学中的“测量”?在量子力学中,测量是指对量子系统进行观察并获取其性质或状态的过程。

量子力学的基本原理之一是测量会导致量子系统的状态塌缩到一个确定的状态。

例如,在测量一个电子的自旋时,我们只能观察到它的自旋向上或自旋向下,而不是同时观察到两个状态。

3. 请解释什么是量子力学中的“不确定性原理”?不确定性原理是量子力学的一个基本原理,由海森堡提出。

它指出,在某些物理量(如位置和动量、能量和时间等)之间存在一种固有的不确定性关系,无法同时准确测量这些物理量的值。

换句话说,我们无法同时精确地知道一个粒子的位置和动量,或者一个系统的能量和时间。

4. 请解释什么是量子力学中的“波粒二象性”?波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。

根据波动性,微观粒子可以像波一样传播,并且存在干涉和衍射现象。

根据粒子性,微观粒子具有离散的能量和动量,并且在测量时表现出局部性。

5. 请解释什么是量子力学中的“量子纠缠”?量子纠缠是指两个或多个量子系统之间存在一种特殊的关联关系,使得它们的状态无法独立描述。

当两个量子系统纠缠在一起时,它们的状态会相互依赖,无论它们之间的距离有多远。

这种纠缠关系在量子通信和量子计算中具有重要的应用。

以上是对一些量子力学课后习题的简要答案。

通过解答这些习题,我们可以更好地理解和应用量子力学的概念和原理。

量子力学习题及答案

量子力学习题及答案

量子力学习题及答案1. 简答题a) 什么是量子力学?量子力学是一门研究微观领域中原子和基本粒子行为的物理学理论。

它描述了微观粒子的特性和相互作用,以及它们在粒子与波的二重性中所呈现出的行为。

b) 什么是波函数?波函数是描述量子体系的数学函数。

它包含了关于粒子的位置、动量、能量等信息。

波函数通常用符号ψ表示,并且可用于计算概率分布。

c) 什么是量子态?量子态是描述量子系统的状态。

它包含了有关系统性质的完整信息,并且根据量子力学规则演化。

量子系统可以处于多个量子态的叠加态。

d) 什么是量子叠加态?量子叠加态是指量子系统处于多个不同态的线性叠加。

例如,一个量子比特可以处于0态和1态的叠加态。

2. 选择题a) 下列哪个物理量在量子力学中具有不确定性?1.速度2.质量3.位置4.电荷答案:3. 位置b) 关于波函数的哪个说法是正确的?1.波函数只能描述单个粒子的行为2.波函数可以表示粒子的位置和动量的确定值3.波函数的模的平方表示粒子的位置概率分布4.波函数只适用于经典力学体系答案:3. 波函数的模的平方表示粒子的位置概率分布c) 下列哪个原理是量子力学的基本假设?1.宏观世界的实在性2.新托尼克力学3.不确定性原理4.不可分割性原理答案:4. 不可分割性原理3. 计算题a) 计算氢原子的基态能级氢原子的基态能级可以通过解氢原子的薛定谔方程得到。

基态能级对应的主量子数为n=1。

基态能级的能量公式为: E = -13.6 eV / n^2代入n=1,可以计算得到氢原子的基态能级为:-13.6 eVb) 简述量子力学中的双缝干涉实验双缝干涉实验是一种经典的量子力学实验,用于研究光和物质粒子的波粒二象性。

实验装置包括一道光源、两个狭缝和一个光屏。

当光的波长足够小,两个狭缝足够细时,光通过狭缝后会形成一系列的波纹,这些波纹会在光屏上出现干涉条纹。

实验结果显示,光在光屏上呈现出干涉现象,表现为明暗相间的条纹。

这种实验结果说明了光具有波动性,同时也具有粒子性。

大学物理量子力学习题答案解析

大学物理量子力学习题答案解析

一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。

写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。

解:()⎰Ω=adrr r d P 022,,ϕθψ。

2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。

解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。

解:有两个条件:0],[,0==∂∂H Q t Q。

4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。

),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。

5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。

解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。

6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。

解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。

量子力学习题答案

量子力学习题答案

2.1 如图所示左右0 x设粒子的能量为,下面就和两种情况来讨论(一)的情形此时,粒子的波函数所满足的定态薛定谔方程为其中其解分别为(1)粒子从左向右运动右边只有透射波无反射波,所以为零由波函数的连续性得得解得由概率流密度公式入射反射系数透射系数(2)粒子从右向左运动左边只有透射波无反射波,所以为零同理可得两个方程解反射系数透射系数(二)的情形令,不变此时,粒子的波函数所满足的定态薛定谔方程为其解分别为由在右边波函数的有界性得为零 (1)粒子从左向右运动得得解得入射反射系数透射系数(2) 粒子从右向左运动左边只有透射波无反射波,所以为零 同理可得方程由于全部透射过去,所以反射系数 透射系数2.2如图所示Ex在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为总透射系数2.3以势阱底为零势能参考点,如图所示(1)∞∞左中右0 a x显然时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得∴∴相应的因为正负号不影响其幅度特性可直接写成由波函数归一化条件得所以波函数(2)∞∞左中右0 x显然时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得当,为任意整数,则当,为任意整数,则综合得∴当时,,波函数归一化后当时,,波函数归一化后2.4如图所示∞左右0 a显然在中间和右边粒子的波函数所满足的定态薛定谔方程为其中其解为由在右边波函数的有界性得为零∴再由连续性条件,即由得则得得除以得再由公式 ,注意到令,其中,不同n对应不同曲线,图中只画出了在的取值范围之内的部分6 n=65 n=5n=4n=3n=2n=10 n=0只能取限定的离散的几个值,则E也取限定的离散的几个值,对每个E,确定归一化条件得2.5则该一维谐振子的波函数的定态薛定谔方程为令则上式可化成令则只有当有解2.6由和已知条件可得第三章3.1能量本征值方程为即分离变量法,令则有令则同理令则式中能级简并度为3.2角动量算符在极坐标系下则由能量本征值方程令其解为由周期性得归一化条件则3.4由能量本征值方程令当令此时满足的方程为时时只考虑时令其解分别为由波函数有界性得由波函数连续性得再由公式 ,注意到令,其中,不同n对应不同曲线,图中只画出了在的取值范围之内的部分6 n=65 n=5n=4n=3n=2n=10 n=0只能取限定的离散的几个值,则E也取限定的离散的几个值,对每个E,确定归一化条件得 1 可求得3.5同理方差算符则由测不准关系代入,验证该式是成立的第四章4.1在动量表象中,则代入得令得则归一化后的4.5本征方程的矩阵形式上式存在非零解的条件是即解得当再由得当,同样第六章6.3解:在zSˆ表象,nSˆ的矩阵元为γβαcos112cos2cos112ˆ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛=ηηηiiSn⎪⎪⎭⎫⎝⎛-+-=γβαβαγcoscoscoscoscoscos2iiSnη其相应的久期方程为cos2)cos(cos2)cos(cos2cos2=--+--λγβαβαλγηηηηii即0)cos(cos4cos4222222=+--βαγληη422=-ηλ)1coscoscos(222=++γβα利用⇒2η±=λ所以nSˆ的本征值为2η±。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。

A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。

A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。

A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。

A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。

A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。

答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。

答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。

答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。

德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。

这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。

2. 什么是量子隧穿效应?请给出一个实际应用的例子。

量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。

这一效应是量子力学中特有的,与经典物理学预测的结果不同。

一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学习题答案

量子力学习题答案

量子力学习题答案量子力学习题答案量子力学是一门研究微观世界的基础物理学科,它解释了微观粒子的行为和性质。

在学习量子力学的过程中,我们经常会遇到各种各样的习题。

这些习题不仅考察我们对量子力学理论的理解,还能帮助我们加深对量子力学的认识。

在本文中,我将为你提供一些常见的量子力学习题的答案,希望能对你的学习有所帮助。

1. 什么是波粒二象性?请举一个例子加以说明。

答案:波粒二象性是指微观粒子既具有粒子的离散性质,又具有波动的连续性质。

一个典型的例子是电子的双缝干涉实验。

在这个实验中,电子通过两个狭缝后,会产生干涉图样,表现出波动性质。

然而,当我们尝试观察电子通过哪个狭缝时,电子却表现出了粒子性质,只通过其中一个狭缝。

这个实验说明了电子既可以表现出粒子性质,也可以表现出波动性质。

2. 什么是量子纠缠?请简要解释。

答案:量子纠缠是指两个或多个粒子之间存在一种特殊的关联,使得它们的状态无论远离多远,都会互相影响。

这种关联是在粒子之间建立的,而不是通过传统的物质交换或信息传递实现的。

量子纠缠是量子力学的核心概念之一,它在量子通信和量子计算等领域有着重要的应用。

3. 什么是量子隧穿效应?请举一个例子加以说明。

答案:量子隧穿效应是指微观粒子在经典力学中不可能穿越的势垒,在量子力学中却有一定概率穿越的现象。

一个典型的例子是α衰变。

在α衰变中,一个α粒子从原子核中逃逸,穿越了原子核周围的势垒。

根据经典力学,α粒子没有足够的能量克服势垒,因此无法逃逸。

然而,在量子力学中,α粒子可以通过量子隧穿效应,以一定的概率穿越势垒,实现衰变。

4. 什么是量子态的叠加和坍缩?请简要解释。

答案:量子态的叠加是指一个量子系统可以处于多个状态的叠加态,这些状态以一定的概率同时存在。

量子态的坍缩是指当我们对量子系统进行观测时,系统会选择其中一个状态,并坍缩到该状态上。

这个选择是随机的,并且由概率决定。

量子态的叠加和坍缩是量子力学中的核心概念,它们解释了量子系统的测量结果和概率性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k max
ab


6 10 6 10 600 10 9
(3 分)
在光屏上可观察到的主极大谱线级次为 k 0 ,1,2 ,3,5,6 ,7 ,9 。共有 15 条主极大谱 线。 7. 解:根据光电效应方程 h E km A 可得到光电子的最大初动能为 E km
1/2 。
分析:由维恩位移定律: m1
b , T1
m 2

b , T2
m1 T2 1450 2 725 m 2 T 1
3. 一般认为光子有以下性质( 2,4
(1) 不论在真空中或介质中的光速都是 c;(2) 它的静止质量为零;(3) 它的动量为 hν/c2; (4) 它的动能就是它的总能量; (5) 它有动量和能量,但没有质量。以上结论正确的是 (
2
E eU 0 ,
U0
E 2 . 7 10 19 J 1 . 7 V e 1 . 6 10 19 C

4.如果入射光的波长从 400nm 变到 300nm,则从表面发射的光电子的遏止电压__增大___ (增大、减小)。 分析:由 U a K U 0 K
c

E nC v T2 T1 6.23 10 3 J
A p Q p E 4.17 10 3 J
在 b c 等体过程中,气体对外界做功 Av 0 J ,系统向外界放出热量,内能减少,有
Qv E nC v T1 T2 6.23 10 3 J
考察 AB 连线间的 C 点,如图所示,以 A 为原点,AC=x,BC=30-x,两波引起的振动分别 为
AB x y AC A cos t A A cos t u u
6
BC 30 x y BC A cos t B A cos t u u
v0 0 1 2
v0 2 1 2 v 0 2 2 方均根速率为 v v f v dv v dv 0 0 v 3 0 3. 解:简谐振动方程 x A cost 0 ,根据已知条件有

(4 分)
0.5 cos 0 0 cos 0
A
) (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)
(A) (2)(4); (3)。
分析:光子没有静止质量,也没有静止能量。光子在真空中: 动能, 动质量, 动量为:
1
4. 则此单色光的波长必须满足 ( (A)
C
) (C)

hc ; eU0
(B)

hc ; eU0
1.3647×1017
3. 汞放出光电子的最大初速度 v0 = 7.73 10 m/s ,截止电压 Ua=
5
1.7V

2
h 1 mv 2
1 mv 2 W 2
2
c h W h h 0 h 0 8 3 10 6 . 63 10 34 1 . 09 10 15 2 . 7 10 19 J 10 分析: 2000 10 2 2 . 7 10 19 v 5 . 93 10 11 30 0 . 91 10 v 7 . 73 10 5 m / s
0.11215 Å , 频率的改变 =

,电子获得的能
0 c 1 cos
2h sin 2 m0 c 2
o 2h 2 6.63 10 34 2 2 60 sin 0 sin 0.1 10 10 0.11215 10 10 m 30 8 m0 c 2 0.91 10 3 10 2
5 t cm。 3 6
(5 分)
4. 白光垂直照射到空气中一厚度为 380nm 的肥皂水膜上,试问水膜表面在可见光范围内满 足反射光干涉加强的光波波长为多少?(肥皂水的折射率为 1.33) 解:反射光干涉加强时 2ne
k 2 4ne 2k 1 k2 k 3
2 2 h A 解: (1) 由光电方程 h A mv m , 光电子的最大动能: mv m
1 2
1 2
将 h
hc

6.25 eV 和 A 4.2 eV 代入得到: E km
1 2 mv m 2.05 eV 2
E km , U a 2.05 V e c c (3) 铝的截止波长: A h 0 , A h , 0 h , 0 295.95 nm 0 A
0
c
0

0 0.11215 0.11010 8 18 c 3 10 0.11215 10 10 0.1 10 10 3.25 10 Hz 0 c 21.55 10 16
a b sin k a b 2 600 10
0.20
(2)缺级时 k
9
6 10 6
mห้องสมุดไป่ตู้
(4 分)
ab k ,根据题意 k 4 , k 1 a ab a min 1.5m 4
(3 分)
(3)在光栅方程中令 sin 1 ,则
hc

A 3.23 10 19 J 2.0eV
(4 分)
遏止电势差 U a
E km 2.0V e
(3 分)
逸出功与红限关系为
A h 0
hc
0
hc 296nm A
(3 分)
可得铝的红限波长为 0
7

eU0 ; hc
(D)

eU0 。 hc
h
1 mv 2
2
W
分析: h W eU 0 ,
1 mv 2 eU 0 , 2 eU 0 eU 1 c , h T h
0

二. 填空题
eU 0 hc
1. 则炉内的温度为
1.416×103K

分析:斯忒藩—玻尔兹曼定律:
U 0 , 知波长减小时,遏止电压是增大的。
三. 计算题
1.
解:由
b mT
b
T1
b
m1
2.897 10 3 5.26 10 3 10 5500 10
T2
2.
m 2
2.897 10 3 3 8 . 277 10 K 6 0.35 10
4
22.8W / cm 2 T 4.02 1012 K 8 2 4 5.67 10 W m T 3 T 1.416 10 K
2. 则太阳在一年内辐射的能量为 失的质量为
M T
M (T ) T 4
1.228×1034
kg。
J,太阳在一年内由于辐射而损
在 a c 等温过程中,有
V1 T2 ,得 T2 60 K V2 T1
(3 分)
(1) 量为
单原子分子 C P
5 3 R , C v R , a b 等压膨胀过程中,系统从外界吸收热 2 2
QP nC p T2 T1 10.4 10 3 J
内能的增量为 对外界做功为
2
m0 c 2 u2 1 2 c
散射使电子获得的能量: E E m0 c , E (
2
1 1 u c2
2
1 )m0 c 2
E
E0

1 u 1 2 c
2
1 ,将反冲电子的速度 u 0.6 c 代入得到:
E
E0
0.25
4
《大学物理
一. 单项选择题 题号 答案 1 B 2 D 3 D 4 B
Ek E0 E h 0 h h 6.63 10 34 3.25 1018 21.55 10 16 13.45 103 eV 19 1.6 10
J
三.计算题 1. 1. 解:散射后电子的质量 m
m0 u2 1 2 c
,能量 E mc
dN v K N Ndv 0
v0
v 0 (3 分) v v0
5
(2)按归一化条件,有

v0
0

f v dv
v0
0
K dv 1 ,得归一化常数 K N N v0
v 1 dv 0 v0 2
1
(3 分)
(3)算术平均速率为 v

0
vf v dv v
第十三章
早期量子论和量子力学基础
练 习 一
一. 选择题 1. (
1B 2 C 3A 4 C
) (B) 吸收了辐射在它上面的全部能量; (D) 只吸收不辐射能量。
B
(A) 吸收了辐射在它上面的全部可见光; (C) 不辐射能量;
2. 则1/2 为( (A)
2;
C
) (B)
1/ 2 ;
(C)
2 ;
(D)
在 c a 等温压缩过程中,系统向外界放出热量,内能不变 E 0 J ,有
QT AT nRT1 In Qv QT QP
V1 3.37 10 3 J V2
=7.7%
(5 分)
(2) 循环的效率 1
(2 分)
2. 解: (1)设速率分布函数为 f v ,应有 f v
由(1)得 0 由(2)得
(1) (2)

3
,因为 v 0 A sin 0 0 ,所以 0
相关文档
最新文档