1.1.3集合的基本运算(一)0

合集下载

1.1.3 集合的基本运算(1)并集与交集-讲义版

1.1.3 集合的基本运算(1)并集与交集-讲义版
高中数学必修系列: 《集合与函数的概念》
1.1.3
集合的基本运算
第 1 课时 并集和交集
已知一个班有 30 人,其中 5 人有兄弟,5 人有姐妹,你能判断这个班有多少是独生子女吗?如果不能 判断,你能说出需哪些条件才能对这一问题做出判断吗? 事实上,如果注意到“有兄弟的人也可能有姐妹”,我们就知道,上面给出的条件不足以判断这个班独 生子女的人数,为了解决这个问题,我们还必须知道“有兄弟且有姐妹的同学的人数”.应用本小节集 合运算的知识,我们就能清晰地描述并解决上述问题了. 1、并集和交集的定义 定义 自然语言 符号语言
变式训练 3: 已知集合 M={x|2x-4=0},N={x|x2-3x+m=0}. (1)当 m=2 时,求 M∩N,M∪N;(2)当 M∩N=M 时,求实数 m 的值.
第 4 页 共 7 页
高中数学必修系列: 《集合与函数的概念》 专题 4:利用交集、并集运算求参数
精讲例题 4: 已知集合 A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的 a 值. (1)9∈A∩B; (2){9}=A∩B.
(3)已知 A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则 A∩B=________. 变式训练 2: (1)若综合 M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则 M∩N=( A.{1,4} A.{2} B.{-1,-4} B.{x|1<x<3} C.{0} ) D.{x|3<x<5} C.{x|2<x<3} D. (2)已知集合 A={x|1<x<3},B={x|2<x<5},则 A∩B=(
第 7 页 共 7 页
第 2 页 共 7 页
高中数学必修系列: 《集合与函数的概念》 专题 1:并集的概念及运算

必修一课件:1.1.3(第1课时)并集、交集及综合应用

必修一课件:1.1.3(第1课时)并集、交集及综合应用
则A∪B={x|x≤5}. 答案:{x|x≤5}
类型 二 集合交集的运算
【典型例题】
1.(2013·安阳高一检测)若A={0,1,2,3},B={0,3,6,9},则
A∩B=( )
A.{1,2}
B.{0,1}
C.{0,3}
D.{3}
2.(2013·潍坊高一检测)已知M={x|y=x2-1},N={y|y=
【解题探究】1.两个集合求并集的实质是什么? 2.题2中在已知M∪N及集合M的条件下,如何确定集合N? 3.当并集中的元素个数与构成并集的两个集合的元素个数和 相等时,如何确定其中的参数?
探究提示: 1.两个集合求并集的实质是把两个集合中的所有元素合在一 起,组成一个新的集合. 2.根据集合M∪N及集合M的关系,可以确定集合N一定含有 的元素,集合的个数则由可能含有的元素确定. 3.此类问题,一般是去掉已知元素,把参数与并集中的元素 对应相等,构成方程(组)求解.
提示:(1)错误.虽然两集合无公共元素,但两个集合的交集存 在且为空集,故不正确.(2)错误.当两个集合有公共元素时, 在并集中只能算作一个,故不正确.(3)错误.若A∩B=C∩B,A 与C也可能不相等,故不正确. 答案:(1)×(2)×(3)×
【知识点拨】 1.对并集概念的理解(关键词“或”) (1)并集概念中的“或”字与生活中的“或”字含义不同.生活 中的“或”字是非此即彼,必居其一,而并集中的“或”字 可以是兼有的,但不是必须兼有的.x∈A,或 x∈B包含三种 情况: ①x∈A,但x∉B; ②x∈B,但x∉A; ③x∈A且x∈B.
【解析】1.选B.结合数轴分析可知,A∪B={x|-1≤x≤5}. 2.选D.∵M={1,2},M∪N={1,2,3,4}, ∴N={3,4}或{1,3,4}或{2,3,4}或{1,2,3,4},即集合N有4 个. 3.选D.∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16}, ∴a=4,a2=16或a=16,a2=4,解得a=4.

1.1.3集合的基本运算-补集

1.1.3集合的基本运算-补集
【自主尝试】 1.设全集 U x |1 x 10, 且x N ,集合 A 3,5, 6,8 , B 4,5, 7,8 , 求 A B , A B , CU ( A B ) .
2.设全集 U x | 2 x 5 , 集合A x | 1 x 2 , B x |1 x 3 , 求 A B , A B , CU ( A B ) .
1.1.3 集合的基本运算 补集 (1)全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称 这个集合为全集(Universe) ,通常记作 U。 (2)补集:对于全集 U 的一个子集 A,由全集 U 中所有不属于集合 A 的所有元素组成的 集合称为集合 A 相对于全集 U 的补集(complementary set),简称为集合 A 的补集, 记作:∁UA 即:∁UA={x|x∈U,且 x∉ A}. (3)补集的 Venn 图表示
说明:补集的概念必须要有全集的限制 1、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关 键是“且”与“或” ,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘 题设条件,结合 Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。 2、集合基本运算的一些结论:
得 C A ( B C ) 6, 5, 4, 3, 2, 1, 0 . ∴ A C A ( B C ) 6, 5, 4, 3, 2, 1, 0 .
1
【例 3】已知集合 A {x | 2 x 4} , B {x | x m} ,且 A B A ,求实数 m 的取值范围. 解:由 A B A ,可得 A B . B A 在数轴上表示集合 A 与集合 B,如右图所示: -2 4 m x 由图形可知, m 4 . 点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系, 特别要注意是否含端点的问题. 【例 4】 已知全集 U {x | x 10, 且x N * } ,A {2, 4,5,8} ,B {1,3,5,8} , 求 CU ( A B) ,CU ( A B) , (CU A) (CU B) , (CU A) (CU B) ,并比较它们的关系. 解:由 A B {1, 2,3, 4,5,8} ,则 CU ( A B) {6, 7,9} . 由 A B {5,8} ,则 CU ( A B) {1, 2,3, 4, 6, 7,9} 由 CU A {1,3, 6, 7,9} , CU B {2, 4, 6, 7,9} , 则 (CU A) (CU B) {6, 7,9} ,

1.1.3集合的基本运算

1.1.3集合的基本运算

【例题】某地对农户抽样调查,结果如下:电冰箱拥有率为 49%,电视机拥有率为 85%,洗
衣机拥有率为 44%,只拥有上述三种电器中的两种的占 63%,三种电器齐全的占 25%,那么
一种电器也没有的相对贫困户所占比例为
.
【答案】10%
1.1.3 习题课(XXmin)
【交、并、补集】
【例】设集合 A {(x, y) | y 2x 1, x N*}, B {(x, y) | y ax2 ax a, x N *} ,问是 否存在非零整数 a ,使 A B ,若存在,请求出 a 的值;若不存在,请说明理由.
① A A A; A A; ②交换率: A B B A ;结合律: ( A B) C A (B C) ; ③ A A B;B A B; ④A B AB A;A BB AB;
(下面,我们有关并集性质的几个应用)
【例】已知集合 A {1,3, m}, B {1, m}, A B A ,则 m 【练习】 A {1,3, x} , B {1, x2} ,若 A B={1,3, x},则 x
1.1.3 集合的基本运算(XXmin)
预习目标:
(1)理解交集、并集、补集的基本概念并掌握其运算; (2)会用 Venn 图来解决交、并、补问题; (3)掌握交、并、补集的一些简单性质。
教学过程:
(我们知道,实数有加、减、乘、除四则运算,那么集合时候也可以有类似的运算呢?首先 类比一下实数的加法,大家观察下列各个集合,能否找出集合 C 与集合 A 、B 之间的关系。) 一、并集
【交、并综合题】
【例】【2005 江苏文理 7】若集合 A, B, C 有 A B B C ,则一定有( )

1.1.3集合的基本运算(1)---(5)

1.1.3集合的基本运算(1)---(5)

§1.1.3集合的基本运算(1)学习目标(1)理解交集与并集的概念;(2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的交集、并集的求法;学习过程一、课前准备我们知道实数集中的元素是实数,实数之间具有加、减、乘、除等四则运算及其运算律,那么作为整体的集合之间是否也可以定义类似的加、减、乘、除等运算及其运算律呢? 二、新课导学(1 )方程x 2+2x-3=0的解集是A ={-3.1},方程x 2+2x-3=0的解集是B ={-4,1}请问方程│x 2+2x-3│+│x 2+2x-3│=0的解集是什么?与集合A 、B 有什么关系?方程(x 2+2x-3)(x 2+2x-3)=0的解集是什么?与集合A 、B 有什么关系? 分析:│x 2+2x-3│+│x 2+2x-3│=0的解集是{1}(x 2+2x-3)(x 2+2x-3)=0的解集是{-3,1,-4}用图示法表示为( 2 )、如果集合A= {a, b, c, d } B={a, b, e, f} (1)由集合A, B 的公共元素组成的集合;(2)把集合A, B 合并在一起所成的集合.公共部分 A ∩B 合并在一起 A∪B-3-31-41-4结论:如上图,集合A和B的公共部分叫做集合A和集合B的交,集合A和B合并在一起得到的集合叫做集合A和集合B的并.新知1、交集定义:一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B的交集。

记作:A∩B(读作“A交B”)即A∩B={x∣x∈A,且x∈B }注:符号语言为:A∩B={x∣x∈A,且x∈B }图示语言为:试一试1:已知A={1,3,4,7},B={2,4,7,9}则A∩B=_______新知2.并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}).注:符号语言为:A∪B={x|x∈A,或x∈B})图示语言为:试一试2 (1 ).已知A={1,3,4,7},B={2,4,7,9}则A∪B=_______({1,2,3,4,7,9})( 2 ).设A={x|x>3},B={x|x<8},A∩B=_____ ({x|3<x<8}) A∪B=_____ ({R})(3)设A={x|-3<x<4},B={x|0<x<7},A∩B=_____({ x|0<x<4}) A∪B=_____({ x|-3<x<7})典型例题例1、设A={(x,y)|y=-4x+6}, B={(x,y)|y=5x-3},求A∩B解:A∩B=A={(x,y)|y=-4x+6}∩B={(x,y)|y=5x-3}y=-4x+6= (x,y )︱ y=5x-3 ={(1,2)}注:本题中,(x,y )可以看作直线上的点的坐标,也可以看作二元一次方程的一个解。

1.1.3集合的基本运算(第一课时)

1.1.3集合的基本运算(第一课时)

1.1.3集合的基本运算(第一课时)并集【学习目标】1、理解并集的概念;2、掌握有关集合的术语和符号;运用性质解决一些简单问题3、能用图示法表示两个集合的并集【重点】并集的概念【难点】并集的概念和集合的运算【知识准备】交集的概念【新课探知】任务一:已知:集合{}{}6,5,4,3,4,3,2,1==B A 请把属于集合A 或者属于集合B 的所有元素找出来写成一个集合解决下列问题:1、这个新集合中的元素与集合A 、集合B 中元素有何关系?2、从元素与集合的关系试叙述并集的概念.3、用符号怎么表示?归纳出交集的概念:一般地,由属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与B 的并集。

记作:A B读作:“A 并B ” 即: {|}A B x x A x B =∈∈或例1设集合{|1},{|2}A x x B x x =<=< ,求A B练习一 求集合A 与B 的并集(1){6,8,10,12},{3,6,9,12}A B ==(2){|12},{|03}A x x B x x =-≤≤=≤≤任务二:由并集的定义,观察下列式子是否成立或完成等式(1) A B B A = (2) A A A =(3) A ∅=______ (4)如果A B ⊆,那么A B =_____ 例2已知集合{|},{|}Z {|}A x x B x x x x ===是奇数是偶数,是整数求: A B Z A Z B练习二:(1)设{|>3}{|>0}A x x B x x ==,求A B ,并在数轴上表示运算的过程(2)设{|}{|}A x x B x x ==是等腰三角形,是直角三角形,求A B .【自我检测】1、设A ={1,2},B ={3,4,5,6},求A B 2、设集合{1},{1,2},{1,2,3}M N P ===,则()P N M =_________【拓展延伸】1、求下列各图中集合A 与B 的并集(用彩笔图出)说明:1、当集合都不是空集时,它们的并集是怎样的?2、当两个集合没有公共元素时,两个集合的并集是什么?2、写出满足条件{1,2}{0,1,2,3}B =的所有集合.A。

数学课件:1.1.3集合的基本运算(第1课时并集、交集)

数学课件:1.1.3集合的基本运算(第1课时并集、交集)
【思路点拨】 由题目可获取以下主要信息: ①集合B非空; ②集合A不确定,且A∩B=Ø. 解答本题可分A=Ø和A≠Ø两种情况,结合数轴求解. 【解析】 由A∩B=Ø, (1)若A=Ø,则有a≤-1 (2)若A≠Ø,如图 则有 ∴-1<a≤1 综上所述,a的取值范围是{a|a≤1}.
第十页,编辑于星期日:十一点 三十七分。
第十一页,编辑于星期日:十一点 三十七分。
已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A∪B =A,求实数m的取值范围.
【思路点拨】 由题目可获取以下主要信息: ①集合A确定,集合B中元素不确定; ②A∪B=A.解答本题时,可由A∪B=A知B⊆A.从而分B=Ø和 B≠Ø分类讨论. ③本题中B={x|2m-1<x<2m+1},由于2m+1>2m-1,故B≠Ø.
1.(1)若本例(1)中,问题改为求A∪B. (2)本例(2)中,问题改为求M∩N. 【解析】 (1)由例1中的数轴表示知A∪B=R,故选D. (2)由例1中的数轴表示知M∩N={x|-3<x<5},故选C. 【答案】 (1)D;(2)C
第九页,编辑于星期日:十一点 三十七分。
设集合A={x|-1<x<a},B={x|1<x<3}且A∩B=Ø,求a的取值范 围.
①当a-1=2,即a=3时,B={1,2}; ②当a-1=1,即a=2时,B={1}. 于是a=2或a=3都满足题意. 所以a的取值范围是{a|a=2,或a=3}.
第十八页,编辑于星期日:十一点 三十七分。
1.对并集概念的理解 “x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B, 但x∉A”;“x∈A,且x∈B”.Venn图如图.另外,在求两个集合的 并集时,它们的公共元素只出现一次.

1.1.3集合的基本运算(一)

1.1.3集合的基本运算(一)

1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
2.交 集 示例2:考察下列各集合 A={4,3,5};B={2,4,6};C={4}.
集合C的元素既属于A,又属于B, 则称C为A与B的交集.
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,记作 A∩B=C={x|x∈A且x∈B},
用Venn图表示为:
AB
新课
示例1:观察下列各组集合
A={1,3,5} B={2,4,6}
A∪B=C
C={1,2,3,4,5,6}
集合C是由集合A或属于集合B的 元素组成的,则称C是A与B的并集.
例1设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
求A∪B.
例1设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑 模型
2
内脑- 思考内化
思维导图& 超级记忆法& 费曼学习法

1.1.3 集合的基本运算(第1课时)

1.1.3 集合的基本运算(第1课时)

A、30 B、31
C、32
D、64
林老师网络编辑整理
4
二、新课讲解
观察:集合C的元素与集合A,B的元素之间有何关系? (1)A={1,3,5},B={2,4,6}, C={1,2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}
(3)A={1,3,5},B={2,3,4,5,6}, C={1,2,3,4,5,6}
BA
AB
A
B
2、交集:A∩B={ x | x ∈A,且 x∈B}
BA
AB
林老师网络编辑整理
A
B
17
六、作业
1、(上交)P12 习题1.1 A组 第6 、7题; P12 B组 第3题
2、思考题: P44 A组 第5题
林老师网络编辑整理
18
解:A、B用数轴表示
。 。。。
-2 -1 0 1 2 3 4 5
A ∩ B= {x︱-1<x<2 t;x<2 }
林老师网络编辑整理
x
11
二、新课讲解 2、交集
1A 2 B 3
一般地,由所有属于A且属于B的元素组成的集合,
称为集合A与B的交集,记作A∩B(读作“A交B”).
注意端点
x
A∪B = {x︱-1<x<2 }∪{x︱1<x<3 }
= {x︱-1<x<3 }
林老师网络编辑整理
9
二、新课讲解 2、交集
1A 2 B 3
一般地,由所有属于A且属于B的元素组成的集合,
称为集合A与B的交集,记作A∩B(读作“A交B”).
即A∩B={ x | x ∈A,且 x∈B}

示范教案(1.1.3 集合的基本运算第1课时)

示范教案(1.1.3  集合的基本运算第1课时)

示范教案(1.1.3 集合的基本运算第1课时)整体设计教学分析课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.三维目标1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.2.通过观察和类比,借助V enn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.重点难点教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排2课时教学过程第1课时导入新课思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.思路3.(1)①如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?图1-1-3-1②观察集合A与B与集合C={1,2,3,4}之间的关系.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.推进新课新知探究提出问题①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.④试用V enn图表示A∪B=C.⑤请给出集合的并集定义.⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A与B与集合C之间有什么关系?(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};(ⅱ)A={x|x是国兴中学2007年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.⑦类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用V enn图来显示.讨论结果:①集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.②所有属于集合A或属于集合B的元素所组成了集合C.③C={x|x∈A,或x∈B}.④如图1131所示.⑤一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用V enn图表示,如图1131所示.⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为:A∩B={x|x∈A,且x∈B}.用V enn图表示,如图1132所示.图1-1-3-2应用示例思路11.设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.图1-1-3-3活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于V enn图写出.观察这两个集合中的元素,或用V enn图来表示,如图1133所示.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用V enn图或直接观察得到结果.本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.变式训练1.集合M={1,2,3},N={-1,5,6,7},则M∪N=________.M∩N=________.答案:{-1,1,2,3,5,6,7} ∅2.集合P={1,2,3,m},M={m2,3},P∪M={1,2,3,m},则m=_________.分析:由题意得m2=1或2或m,解得m=-1,1,2,2-,0.因m=1不合题意,故舍去.答案:-1,2,2-,03.2007河南实验中学月考,理1满足A∪B={0,2}的集合A与B的组数为( )A.2B.5C.7D.9分析:∵A∪B={0,2},∴A⊆{0,2}.则A=∅或A={0}或A={2}或A={0,2}.当A=∅时,B={0,2};当A={0}时,则集合B={2}或{0,2};当A={2}时,则集合B={0}或{0,2};当A={0,2}时,则集合B=∅或{0}或{2}或{0,2},则满足条件的集合A与B的组数为1+2+2+4=9.答案:D4.2006辽宁高考,理2设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.8分析:转化为求集合A子集的个数.很明显3∉A,又A∪B={1,2,3},必有3∈B,即集合B中至少有一个元素3,其他元素来自集合A中,则集合B的个数等于A={1,2}的子集个数,又集合A中含有22=4个元素,则集合A有22=4个子集,所以满足条件的集合B共有4个.答案:C2.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A、B分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.解:将A={x|-1<x<2}及B={x|1<x<3}在数轴上表示出来.如图1134所示的阴影部分即为所求.图1-1-3-4由图得A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3},A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.点评:本类题主要考查集合的并集和交集.用描述法表示的集合,运算时常利用数轴来计算结果.变式训练1.设A={x|2x-4<2},B={x|2x-4>0},求A∪B,A∩B.答案:A∪B=R,A∩B={x|2<x<3}.2.设A={x|2x-4=2},B={x|2x-4=0},求A∪B,A∩B.答案:A∪B={3,2},A∩B=∅.3.2007惠州高三第一次调研考试,文1设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.[0,2]B.[1,2]C.[0,4]D.[1,4]分析:在同一条数轴上表示出集合A、B,如图1135所示.由图得A∩B=[0,2].图1-1-3-5答案:A课本P11例6、例7.思路21.A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?活动:学生先思考集合中元素特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图1136所示,所以A∩B={x|0<x<5}, B∪C={x|x>0},A∩B∩C=∅.图1-1-3-6点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或V enn图)写出结果.变式训练1.设A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.解:对任意m∈A,则有m=2n=2·2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A⊆B.而10∈B但10∉A,即A B,那么A∩B=A,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B的个数.解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.解:因A∩B={9},则9∈A,a-1=9或a2=9,a=10或a=±3,当a=10时,a-5=5,1-a=-9;当a=3时,a-1=2不合题意.当a=-3时,a-1=-4不合题意.故a=10,此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.4.2006北京高考,文1设集合A={x|2x+1<3},B={x|-3<x<2},则A∩B等于( )A.{x|-3<x<1}B.{x|1<x<2}C.{x|x>-3}D.{x|x<1}分析:集合A={x|2x+1<3}={x|x<1},观察或由数轴得A∩B={x|-3<x<1}.答案:A2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.活动:明确集合A 、B 中的元素,教师和学生共同探讨满足A∩B=B 的集合A 、B 的关系.集合A 是方程x 2+4x=0的解组成的集合,可以发现,B ⊆A,通过分类讨论集合B 是否为空集来求a 的值.利用集合的表示法来认识集合A 、B 均是方程的解集,通过画V enn 图发现集合A 、B 的关系,从数轴上分析求得a 的值.解:由题意得A={-4,0}.∵A∩B=B,∴B ⊆A.∴B=∅或B≠∅.当B=∅时,即关于x 的方程x 2+2(a+1)x+a 2-1=0无实数解,则Δ=4(a+1)2-4(a 2-1)<0,解得a<-1.当B≠∅时,若集合B 仅含有一个元素,则Δ=4(a+1)2-4(a 2-1)=0,解得a=-1,此时,B={x|x 2=0}={0}⊆A,即a=-1符合题意.若集合B 含有两个元素,则这两个元素是-4,0,即关于x 的方程x 2+2(a+1)x+a 2-1=0的解是-4,0.则有⎩⎨⎧=⨯+=+ 1.-a 04-1),-2(a 04-2 解得a=1,则a=1符合题意.综上所得,a=1或a≤-1.变式训练1.已知非空集合A={x|2a+1≤x≤3a -5},B={x|3≤x≤22},则能使A ⊆(A∩B)成立的所有a 值的集合是什么?解:由题意知A ⊆(A∩B),即A ⊆B,A 非空,利用数轴得⎪⎩⎪⎨⎧≤-≥+-≤+.2253,312,5312a a a a 解得6≤a≤9,即所有a 值的集合是{a|6≤a≤9}.2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A ∪B=A,试求实数m 的取值范围. 分析:由A ∪B=A 得B ⊆A,则有B=∅或B≠∅,因此对集合B 分类讨论.解:∵A ∪B=A,∴B ⊆A.又∵A={x|-2≤x≤5}≠∅,∴B=∅,或B≠∅.当B=∅时,有m+1>2m-1,∴m<2.当B≠∅时,观察图1-1-3-7:图1-1-3-7由数轴可得⎪⎩⎪⎨⎧≤-+≤--≤+.512,12,121m m m m 解得-2≤m≤3.综上所述,实数m 的取值范围是m<2或-2≤m≤3,即m≤3.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.知能训练课本P 11练习1、2、3.【补充练习】1.设a={3,5,6,8},B={4,5,7,8},(1)求A∩B,A∪B.(2)用适当的符号(⊇、⊆)填空:A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B. 解:(1)因A、B的公共元素为5、8,故两集合的公共部分为5、8,则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.又A、B两集合的元素3、4、5、6、7、8,故A∪B={3,4,5,6,7,8}.(2)由文氏图可知A∩B⊆A,B⊇A∩B,A∪B⊇A,A∪B⊇B,A∩B⊆A∪B.2.设A={x|x<5},B={x|x≥0},求A∩B.解:因x<5及x≥0的公共部分为0≤x<5,故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.3.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B.解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立.故A、B两集合没有公共部分. 所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=∅.4.设A={x|x>-2},B={x|x≥3},求A∪B.解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.分析:M、N中元素是数.A、B中元素是平面内点集,关键是找其元素.解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2), (2,1)}.7.2006江苏高考,7若A、B、C为三个集合,A∪B=B∩C,则一定有( )A.A⊆CB.C⊆AC.A≠CD.A=∅分析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,∴A∪B⊆B,A∪B⊆C.∴A⊆B⊆C.∴A⊆C.思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,而此时A=C,排除C.答案:A拓展提升观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;(2)当A=∅时,A∩B,A∪B这两个运算结果与集合A,B的关系;(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.由(1)(2)(3)你发现了什么结论?活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用V enn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足A⊆B,用V enn图表示,如图1138所示,就可以发现A∩B,A∪B与集合A,B的关系.图1-1-3-8解:A∩B=A⇔A⊆B⇔A∪B=B.可用类似方法,可以得到集合的运算性质,归纳如下:A∪B=B∪A,A⊆(A∪B),B⊆(A∪B);A∪A=A,A∪∅=A,A⊆B⇔A∪B=B;A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩∅=∅;A⊆B⇔A∩B=A.课堂小结本节主要学习了:1.集合的交集和并集.2.通常借助于数轴或V enn图来求交集和并集.作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.书面作业:课本P12习题1.1A组6、7、8.设计感想由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或V enn图写出集合运算的结果,这是突破本节教学难点的有效方法.(设计者:尚大志)。

1.1.3_集合的基本运算_教案(内含五份教案,人教A版)

1.1.3_集合的基本运算_教案(内含五份教案,人教A版)

2011-2012学年上学期高一数学备课组教案主备课教师:备课组老师:教案二1.1.3 集合的基本运算(第一课时)一,教学目标1, 知识与技能:(1) 理解并集和交集的含义,会求两个简单集合的交集与并集(2) 能够使用Venn 图表达两个集合的运算,体会直观图像对抽象概念理解的作用 2, 过程与方法(1) 进一步体会类比的作用(2) 进一步树立数形结合的思想 3, 情感态度与价值观集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美.二,教学重点与难点教学重点:并集与交集的含义教学难点:理解并集与交集的概念,符号之间的区别与联系三,教学过程1, 创设情境(1) 通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。

(2) 用Venn 图表示(阴影部分)2, 探究新知(1)通过Venn 图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 和集合B 的并集。

记作:A ∪B ,读作:A 并B ,其含义用符号表示为:{|,}A B x x A x B =∈∈ 或.(2)解剖分析: 1> “所有”:不能认为A ∪B 是由A 的所有元素和B 的所有元素组成的集合,即简单平凑,要满足集合的互异性,相同的元素即A 和B 的公共元素只能算作并集中的一个元素 2> “或”:“B x A x ∈∈或”这一条件,包括下列三种情况: B x A x ∉∈但;A B ∉∈x x 但;B x A x ∈∈且3> 用Venn 图表示A ∪B :(3) 完成教材P8的例4和例5(例4是较为简单的不用动笔,同学直接口答即可;例5必须动笔计算的,并且还要通过数轴辅助解决,充分体现了数形结合的思想。

)(4) 思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?(具体画出A 与B 相交的Venn 图)(5) 交集的含义:一般地,由属于集合A 和集合B 的所有元素组成的集合,称为A 与B 的交集,记作:A ∩B ,读作:A 交B ,其含义用符号表示为{|,}.A B x x A x B =∈∈ 且(6) 解剖分析: 1>“且”2>用Venn 图表示A ∩B :B A A 与B 相交(有公共元素) A 与B 分离(无公共元素)B A A 与B 相交(有公共元素) A 与B 分离(无公共元素)(7) 完成教材P9的例6(口述)(8) B A },52|{B }41|{A ⋂≤<=≤<-=求,x x x x (运用数轴,答案为4}x 2|{x B A ≤<=⋂)3, 巩固练习(1) 教材P9的例7 (2) 教材P11 #1 #24, 小结作业:(1) 小结:1> 并集和交集的含义及其符号表示 2> 并集与交集的区别(符号等) (2) 作业:1> 必做题:教材P12 #6 #7 2> 选做题:已知}2{B A },1,52{B A },|{},2|{A 22-=⋂-=⋃++=--=,且r qx x x B px x x ,的值。

1.3 集合的基本运算(第一课时) 课件(共15张PPT)

1.3 集合的基本运算(第一课时)  课件(共15张PPT)

课堂小结
并集的概念: 一般地,由所有属于集合A或属于集合B的元素所组成的 集合,称为集合A与B的并集.记作:A∪B(读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A; (3)若A⊆(A∪B),B⊆(A∪B); (4)若A⊆B,则A∪B=B,反之也成立
交集的概念:一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集.记作:A∩B(读作:“A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
交集的性质:(1)A∩A=A; (2)A∩ = ; (3)(A∩B)⊆B,(A∩B)⊆A; (4)若A⊆B,则A∩B=A,反之也成立.
解:A∩B就是立德中学高一年级中那些既参加百米赛跑又参加跳高 比赛的同学组成的集合.所以,
A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的 同学}.
例题精讲
【例4】设平面内直线l1上的点的集合为L1, 直示线l1,l2上l2的点位的置集关合系为.L2,试用集合的运算表
解:(1)直线l1与直线l2相交于一点P可表示为:L1∩L2={P};
上述两个问题中,集合A、B和C之间都具有这样一种关系:集合C是 由所有属于A或属于集合B的元素组成的.
并集
一般地,由所有属于集合A或属于集合B的元素所
组成的集合,称为集合A与B的并集。
记作:A∪B(读作:“A并B”)
即:
A∪B ={ x | x ∈ A ,或 x ∈ B}
这说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有 元素组成的集合(由集合的互异性,重复元素只看成一个元素,不能重复写出).
思考
下列关系式成立吗? (1)A∪A=A;(2)A∪ =A

高中数学第1章集合与常用逻辑用语1.1集合1.1.3集合的基本运算第1课时交集和并集学案含解析第一册

高中数学第1章集合与常用逻辑用语1.1集合1.1.3集合的基本运算第1课时交集和并集学案含解析第一册

1.1。

3 集合的基本运算第1课时交集和并集学习目标核心素养1.理解两个集合交集与并集的含义,会求两个简单集合的交集和并集.(重点、难点) 2.能使用维恩图、数轴表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)1.通过理解集合交集、并集的概念,提升数学抽象的素养.2.借助维恩图培养直观想象的素养.某班有学生20人,他们的学号分别是1,2,3,…,20,有a,b两本新书,已知学号是偶数的读过新书a,学号是3的倍数的读过新书b。

问题(1)同时读了a,b两本书的有哪些同学?(2)问至少读过一本书的有哪些同学?1.交集自然语言一般地,给定两个集合A,B,由既属于A又属于B的所有元素(即A和B的公共元素)组成的集合,称为A与B的交集,记作A∩B,读作“A交B”符号语言A∩B={x|x∈A,且x∈B}图形语言错误!错误!(3)A B,则A∩B=A错误!错误![拓展](1)对于“A∩B={x|x∈A,且x∈B}”,包含以下两层意思:①A∩B中的任一元素都是A与B的公共元素;②A与B 的公共元素都属于A∩B。

这就是文字定义中“所有"二字的含义,如A={1,2,3},B={2,3,4},则A∩B={2,3},而不是{2}或{3}.(2)任意两个集合并不是总有公共元素,当集合A与B没有公共元素时,不能说A与B没有交集,而是A∩B=。

(3)当A=B时,A∩B=A和A∩B=B同时成立.2.并集自然语言一般地,给定两个集合A,B,由这两个集合的所有元素组成的集合,称为A与B的并集,记作A∪B,读作“A并B”符号语言A∪B={x|x∈A,或x∈B}图形语言用维恩图表示有以下几种情况(阴影部分即为A与B 的并集):①A B,A∪B=B错误!错误!错误!错误!思考:(1)“x∈A或x∈B"包含哪几种情况?(2)集合A∪B的元素个数是否等于集合A与集合B的元素个数和?[提示](1)“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x B;x∈B,但x A;x∈A,且x∈B。

1.1.3集合的基本运算(第一课时)

1.1.3集合的基本运算(第一课时)
发现:
2020年10月1日星期四
合作探究
2、交集的含义:
2020年10月1日星期四
合作探究
例3:新华中学开运动会,设 A = {x | x是新华中学高一年级参加百米赛跑的同学}, B = {x | x是新华中学高一年级参加跳高比赛的同学}, 求A∩B.
分析:A∩B就是新华中学高一年级中那些既参加百米赛跑又 参加跳高比赛的同学组成的集合.
学习目标:
2020年10月1日星期四
检查自主学习
1、并集
一般地,由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的
并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn
图表示为:
A
B
2、交集:
一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交
解: .
2020年10月1日星期四
合作探究
例4: 设平面内直线l1上点的集合为L1,直线l2上点
的解:平面内直线 l1,l2可能有三种位置关系,即相交于一点,平行或重合. (1)直线 l1,l2相交于一点 P 可表示为 L1∩L2 = {点 P}; (2)直线 l1,l2平行可表示为
解:
可用数轴表示为:
–1 0 1 2 3
x
2020年10月1日星期四
合作探究
思考:考擦下面的问题,集合A、B与C之间有什么关系?
(1)A = {2,4,6,8,10},B = {3,5,8,12}, C = {8}.
(2)A = {x | x是新华中学2020年9月在校的女同学}, B = {x | x是新华中学2020年9月在校的高一年级同学}, C= {x | x是新华中学2020年9月在校的高一年级女同学}

人教新课标版数学高一必修1学案集合的基本运算(一)

人教新课标版数学高一必修1学案集合的基本运算(一)

1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于() A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2} (2)若将(1)中A改为A={x|x>a},求A∪B,A∩B.(1)答案 A解析画出数轴,故A∪B={x|x>-2}.(2)解如图所示,当a<-2时,A∪B=A,A∩B={x|-2<x<2};当-2≤a<2时,A∪B={x|x>-2},A∩B={x|a<x<2};当a≥2时,A∪B={x|-2<x<2或x>a},A∩B=∅.已知集合的交集、并集求参数【例2】已知A={x|2a≤x≤a+3},B={x|x<-1或x>5}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B=R,求a的取值范围.解(1)由A∩B=∅,①若A=∅,有2a>a+3,∴a>3.②若A≠∅,如图:∴⎩⎪⎨⎪⎧2a≥-1a+3≤52a≤a+3,解得-12≤a≤2.综上所述,a的取值范围是{a|-12≤a≤2或a>3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑. 变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧ 1a≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2} C .{x |x <1} D .{x |x ≤2} 答案 A2.下列四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆B ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 ②③④正确.3.设A ={x |1≤x ≤3},B ={x |x <0或x ≥2},则A ∪B 等于( ) A .{x |x <0或x ≥1} B .{x |x <0或x ≥3} C .{x |x <0或x ≥2} D .{x |2≤x ≤3} 答案 A解析 结合数轴知A ∪B ={x |x <0或x ≥1}.4.已知A ={x |x ≤-1或x ≥3},B ={x |a <x <4},若A ∪B =R ,则实数a 的取值范围是( ) A .3≤a <4 B .-1<a <4 C .a ≤-1 D .a <-1 答案 C解析 结合数轴知答案C 正确.5.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。

高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修1

高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修1

(B){x|x<3}
(C){x|0<x<3} (D){x|x<0或x>3}
C)
5.(集合间的关系及运算)若A⊆B则A∩B= 答案:A B
,A∪B=
.
课堂探究·素养提升
题型一 集合的并集、交集的简单运算 【例1】 (1)(202X·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B 等于( ) (A){1,3} (B){3,5} (C){5,7} (D){1,7}
又A={1,2,3},所以A∪B={0,1,2,3}.
故选C.
【备用例1】 满足M∪N={a,b}的集合M,N共有( ) (A)7组 (B)8组 (C)9组 (D)10组
解析:满足M∪N={a,b}的集合M,N有:
M= ,N={a,b};
M={a},N={b}; M={a},N={a,b}; M={b},N={a}; M={b},N={a,b};
(1)因为 A∩B=B,所以 B⊆ A,B= ,{0},{2},{0,2}. 当 B= 时,Δ=4a2-4(a2-a)=4a<0,所以 a<0;

B={0}或{2}时,则
4a 0,
a
2
a
0

a=0,或
4a 0
4
4a
a
2
a
0
无解,所以
a=0;
B={0,2},则
a2 a 4 4a
变式探究2:若本例题中将A∪B=A,改为A∩B=A,其他条件不变,求实数a的值.
解:因为 A={1,2},A∩B=A,所以 A⊆ B. 又 B={x|x2-ax+a-1=0}. 所以 B 中含元素 1,2,即 1,2 是方程 x2-ax+a-1=0 的两根,

1.1.3 集合的基本运算1

1.1.3  集合的基本运算1

常见结论
思考1:集合A、B与集合 A B的关系如何? A B 与 B A的关系如何? A A B B A B A B B A 思考2:集合 A A, 分别等于什么? A
A A A, A A
思考3:若 A B ,则 A B 等于什么?反之成 立吗? A B A B B 思考4:若 A B ,则说明什么?
思考8:若 A B ,则 A B 等于什么?反之成 立吗? A B A B A
思考9:若 A B ,则说明什么? 集合A与B没有公共元素或 A 或B
知识小结
1.求集合的并、交、补是集合间的基本运算, 运算结果仍然还是集合. 2.区分交集与并集的关键是“且”与“或”, 在处理有关交集与并集的问题时,常常从这两个字 眼出发去揭示、挖掘题设条件. 3.注意结合Venn图或数轴进而用集合语言表 达,增强数形结合的思想方法.
x Q x 2x
2
3 0 2

(2)在实数范围内有三个解2, 3 , 3 ,即:
x R x 2x
2
3 0 2, 3 , 3


全集概念
一般地,如果一个集合含有我们所研究问题中所 涉及的所有元素,那么就称这个集合全集(Universe set).通常记作U.
所以,A B ={x|x是新华中学高一年级既参加百 米赛跑又参加跳高比赛的同学}.
交集例题
例4 设平面内直线 l1上点的集合为 L1 ,直线 l 2 上点的集合 l 为 L2 ,试用集合的运算表示 l1、 2 的位置关系. 解: 平面内直线 l1 、l 2 可能有三种位置关系,即相交于 一点,平行或重合.
B={x|x是新华中学2004年9月入学的高一年级同学},

教师编面试模拟授课1.1.3 集合的基本运算

教师编面试模拟授课1.1.3  集合的基本运算

1.1.3 集合的基本运算尊敬的评委老师上午好,我是2号考生,我模拟讲课的内容是集合的基本运算。

上课上节课我们学习了集合的基本关系,我们知道集合之间可以是子集,真子集,集合相等。

今天我们继续学习集合的基本运算。

(板书:1.1.3 集合的基本运算)大家知道实数有运算,比如加法运算。

那集合是否也可以进行加法运算呢?同学们请看大屏幕,考察下列集合,你能说出集合C 与集合A ,B 之间的关系吗?第一小题,集合{}{}{}1,3,5,2,4,6,1,2,3,4,5,6A B C ===。

奥,我们同学说集合A 的所有元素都在集合C 中,集合B 的所有元素也都在集合C 中,我也可以这样来说,集合C 是由集合A 或者集合B 的所有元素组成的。

大家看第二小题,嗯,我们也可以说,集合C :x 是实数是由集合A:x 是有理数或者集合B:x 是无理数的所有元素组成的。

一般的,我们就把具有这样关系的几个集合叫做集合的并集。

(板书:1、并集:)大家看并集的定义:由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作A B ⋃。

大家能用数学式子来表示并集吗?奥,{}|,或A B x x A x B ⋃=∈∈,只要属于集合A 、集合B 其中的一个即可。

大家能用Venn 图来表示并集吗?奥,我们同学说,可以这样(集合A 与集合B 不相交),也可以这样(集合A 与集合B 相交)。

(板书:{}|,或A B x x A x B ⋃=∈∈ 画Venn 图 )下面我们看例4,集合{}{}4,5,6,8,3,5,7,8A B ==,求A B ⋃。

好,你来说,嗯,很好,这里我们一定要注意结合元素的互异性。

例5,已知集合A 是-1到2,集合B 是1到3,那么A B ⋃可以是?这一块可以吗?可以,元素属于A ,这两块,奥,也可以,所以A B ⋃是,奥,-1到3。

(板书:例5:画数轴)大家思考,A A ⋃?奥,大家说,还等于A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、并集
定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,记 作A∪B,即A∪B={x|x∈A或x∈B}.
用:观察下列各组集合 A={1,3,5} B={1,2,4,6} C={1,2,3,4,5,6}
A∪B= {1,3,5}∪{1,2,4,6}
④含有三个数的集合可表示为 a, b ,1 ,也
可表示为{a2,a+b,0},那么:
a
a2012+b2012=____。
数学小测答案
1、判断正误: √ ① “正三角形的全体”能构成一个集合.( )
② 0 0,. 1
× ()
(× )
③ 空集是任何集合的真子集.
④ 若A x | y x 2 x 1 ,
-2 m+1
2m-1 5
x
并集的性质:
① A∪B={ x | x∈A或x∈B } ② A∪A=
③ A∪=
A ; A

④A∪B= B∪A .
2、交集 示例2:考察下列各集合 A={ 3,4,5 } B={ 4,5,6 } C={ 4,5 }. 集合C的元素既属于A,又属于B。 则称C为A与B的交集。即由公共元素所 组成的集合称为集合的交集。
2、交集
定义:由两个集合A、B的公共元素组成 的集合,叫这两个集合的交集,记作 A∩B={ x | x∈A且x∈B },读作A交B.
用Venn图表示为:
A
B
例4⑴ A={2,4,6,8,10}, B={3,5,8,12}, C={6,8}, 求①A∩B ; ②A∩(B∩C)。 解: ① A∩B={ 8 }. ②A∩(B∩C)=A∩{ 8 }={ 8 } ⑵ (05广东)若集合,M={ x | |x|≤2 }, N={ x | x2-3x=0 } ,则 M∩N ( B)
= {1, 2, 3, 4, 5 ,6}=C
例1、设集合A={4,5,6,8}, 集合B={3,5,7,8,9},求A∪B。 解:A∪B={ 4,5,6,8 }∪{ 3,5,7,8,9 } ={3,4,5,6,7,8,9}. 例2、设集合A={x |-1<x<2}, 集合B={x | 1<x<3},求A∪B。
x -1 1 2 3 解:A∪B={x |-1<x<2}∪{x | 1<x<3} ={x|-1<x<3}。
例3、已知集合A={x |-2≤x≤5}, 集合B={x | m+1≤x≤2m-1}, 若A∪B=A,求m的取值范围. 解:
m 1 2 3 m 3 2 m 1 5 m {m | 3 m 3}
2
B y | y x 2 x 1 , 则B
2




A.
( √)
2、填空:
①点集M={(x,y) | xy≤0}是指_________。
直角坐标系中不在第一、三象限的点集;
②集合{x∈N | 3<x<7 }用列举法表示应为
{4 , 5 , 6} ______________。
③集合{ x∈N | x=-y2+6,y∈N}的所有真 子集的个数是
交集的性质: ①A∩B={ x | x∈A且x∈B } ②A∩A= A .
③A∩= .
④A∩B= B∩A .
课堂小结
1、交集,并集定义
2、性质 ① A∪B={x|x∈A或x∈B},
A∩B={x|x∈A且x∈B};
② A∩A=A,A∪A=A,
A∩=,A∪=A;
③ A∩B=B∩A,A∪B=B∪A;
2 2




①若A B=B,求a的值; ②若A B=B,求a的值.
b ,也 ④含有三个数的集合可表示为 a, ,1 a 可表示为{a2,a+b,0},那么:
{6}, {5,2} 7 ,写出其中两个________。
a2012+b2012= 1 。
新课
示例1:观察下列各组集合 A={ 1,3,5 } B={ 2,4,6 } C={ 1,2,3,4,5,6 } 集合C是由集合A或属于集合B的 元素组成的,则称C是A与B的并集.
交集与并集
数学小测: 请注意速度:本页保留 1、判断正误:
① “正三角形的全体”能构成一个集合.(
② 0∈{(0,1)}
③ 空集是任何集合的真子集. ④若A={ x | y=x2-2x+1 },
(
(
)
)
B={ y | y=x2-2x+1 },则BA

(
)
2、填空: 注意:本页保留 ①点集M={(x,y) | xy≤0}是指_________。 ②集合{x∈N | 3<x<7 }用列举法表示应为 ______________。 ③集合{ x∈N | x=-y2+6,y∈N}的所有真 子集的个数是___,写出其中两个________。
A.{3}
B.{0}
C.{0,2}
D.{0,3}
例5、设集合A={ y | y=x2,x∈R }, B={ (x, y) | y=x+2,x∈R }, D ) A.{(-1, 1),(2, 4)} C {(2, 4)} 则A∩B =( B. {(-1, 1)} D.
变式、设集合A={ (x, y) | y=x2,x∈R }, B={ (x, y) | y=x+2,x∈R },
④ A∪B=B A B;
⑤ A∩B=A A B.
B A
课堂练习
教材P.11练习第1、2、3题
课后作业
教材P.12习题1.1A组第6、7、8题
作业: P13:1; 选做题: 2(2); 3; 4
设集合A= x | x 4 x 0 ,
2
集合B= x | x 2(a 1) x a 1 0 .
{ (-1, 1),(2, 4) } 则A∩B =_____________________.
例6、设B={x|x2+2(a+1)x +a2-1=0}, A={x|x2+4x=0},若A∩B =B,求 aa 的值. 若A∪B =B,求 的值.
解:A ={ 0 ,-4 } ∵A∩B =B, ∴ B A ∴B=φ或B={ 0 } 或B={ -4 } 或B ={ 0,-4 } (1)B=φ时,△=[2(a+1)]2-4(a2-1)<0得 a<-1 (2)B={ 0 }时,△=0且 a2-1=0 得 a=-1 (3)B={ -4 }时, △=0且 (-4)2+2 (a+1)(-4)+a2- 1=0 得 a∈φ. (4)B ={ 0,-4 }时,2(a+1)=4且a2-1=0得a=1. ∴ a∈{ a | a≤-1 或 a=1 }
相关文档
最新文档