最新北师大版高中数学必修3必修4课后习题答案资料

合集下载

高中数学必修4习题和复习参考题对应答案

高中数学必修4习题和复习参考题对应答案

高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。

北师大版高中数学必修三四综合测试卷(含答案)

北师大版高中数学必修三四综合测试卷(含答案)

图1乙甲7518736247954368534321高一数学试题一、选择题(本题共12小题,每题5分,共60分。

每题只有一个正确答案) 1.已知点P (ααcos ,tan )在第三象限,则角α在 A .第一象限B .第二象限C .第三象限D .第四象限2.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A .45,75,15B .45,45,45C .30,90,15D .45,60,303.已知a 与b 均为单位向量,它们的夹角为60︒,那么|3|a b -等于 ABCD .44. 图1是某赛季甲、乙两名篮球运动员每场比赛得分的 茎叶图,则甲、乙两人这几场比赛得分的中位数之和是 A .62 B .63 C .64 D .65 5.在ABC ∆中,有如下四个命题:①BC AC AB =-;②AB BC CA ++=0 ;③若0)()(=-⋅+,则ABC ∆为等腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形.其中正确的命题序号是A .① ②B .① ③ ④C .② ③D .② ④6. 将函数sin (0)y x ωω=>的图象沿x 轴方向左平移6π个单位,平移后的图象如右图所示.则平移后的图象所对应函数的解析式是A .sin()6y x π=+B .sin()6y x π=-C .sin(2)3y x π=+D .sin(2)3y x π=-7.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”; ③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”; ④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”, 其中属于互斥事件的有( ) A .1对 B .2对 C .3对 D .4对 8.200所示,则时速在[60,70)的汽车大约有( ) A .30辆 B . 40辆C . 60辆 D .80辆9. 函数)cos[2()]y x x ππ-+是 A 周期为4π的奇函数 B 周期为4π的偶函数组距频率C 周期为2π的奇函数 D 周期为2π的偶函数 10.如果下边程序执行后输出的结果是990,那么在程序中 WHILE 后面的“条件”应为A. i>10B. i<8C. i<=9D. i<911.下列各式中,值为12的是 A .sin15cos15B . 22cos sin 1212ππ- C .6cos 2121π+ D .2tan 22.51tan 22.5- 12.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率为 A .π B .π C .π D .π二、填空题(每题4分,共16分)13.已知扇形半径为8, 弧长为12, 则中心角为 弧度, 扇形面积是 14. 已知x 与y 之间的一组数据为则y 与x 的回归直线方程a bx y +=必过定点_____15.已知样本9,10,11,,x y 的平均数是10xy = 16.已知tan2α=2,则αtan 的值为_________;6sin cos 3sin 2cos αααα+-的值为____________三、解答题17.已知(1,2)a =,)2,3(-=,当k 为何值时,(1) ka b + 与3a b - 垂直?(2) ka b + 与3a b -平行?平行时它们是同向还是反向?18.一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.(Ⅰ)从中同时摸出两个球,求两球颜色恰好相同的概率;(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.19.某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.20.已知,cos )a x m x =+ ,(cos ,cos )b x m x =-+ , 且b a x f∙=)((1) 求函数()f x 的解析式;(2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.第19题图21.已知向量 a =(cos α,sin α),b =(cos β,sin β),|b a-.(Ⅰ)求cos (α-β)的值;(Ⅱ)若0<α<2π,-2π<β<0,且sin β=-513,求sin α的值.22.(本小题满分14分) 函数f (x)=|sin2x |+|cos2x |(Ⅰ)求f (127π-)的值;(Ⅱ)当x ∈[0,4π]时,求f (x)的取值范围;(Ⅲ)我们知道,函数的性质通常指函数的定义域、值域、周期性、奇偶性、单调性等,请你探究函数f (x)的性质(本小题只需直接写出结论)高一数学试题第二学期质量检测答案一、BDACC CBDCD DB 二、13.23,48 14.(1.5,4) 15.96 16.—34,76三、17.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+3(1,2)3(3,2)(10,4)a b -=--=-(1)()ka b +⊥ (3)a b -,得()ka b + (3)10(3)4(22)2380,19a b k k k k -=--+=-==(2)()//ka b + (3)a b - ,得14(3)10(22),3k k k --=+=-此时1041(,)(10,4)333ka b +=-=-- ,所以方向相反。

高中数学必修三课后习题答案

高中数学必修三课后习题答案

高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。

最新2019人教B版高中数学选择性必修第三册课后习题答案

最新2019人教B版高中数学选择性必修第三册课后习题答案

4.解析 记该等差数列为{ a n } ꎬ则其通项
公式为 a n = 4n-1.
令 100 = 4n - 1ꎬ 得 n =

101
∉ N + ꎬ 故 100


1.解析 (1) a 10 = ( -1) 11 ×
(2) a 10 = 1+cos
cos
π
= 1.

10+1
11
=- .
2×10-1
19
8π+π
9π
= 1+cos
= 1+


(
)


2.解析 (1) a n = n ꎬa 10 =
.
1 024
2(2)Biblioteka a n = ( -1) n+1(2n-1) ꎬa 10 = -19.


33
(2) a 1 = 2ꎬa 2 = ꎬa 3 = ꎬa 4 = ꎬa 5 =


12
42 14
= .
15 5
前 3 项和 S 3 = a 1 +a 2 +a 3 =
S 5 = a 1 +a 2 +a 3 +a 4 +a 5 =
43
ꎬ前 5 项和

763
.
60
2.解析 不一定.也可能是常数列 a n = 0.
(2) a n = -3 n( 答案不唯一) .
5.1.2 数列中的递推
练习 A
1.解析 (1) a n+1 -a n = nꎬa 1 = 4ꎻa 7 = 25.
(2) a n+1 -a n = 2ꎬa 1 = 7ꎻa 7 = 19.
(3) a n+1 = 3a n ꎬa 1 = 2ꎻa 7 = 1 458.

数学必修三习题答案

数学必修三习题答案

数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

北师版数学必修三、四(4)

北师版数学必修三、四(4)

绝密★启用前2013-2014学年度第二学期高一期末测试卷北师版数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题一、选择题本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,3,4,5的五张卡片中任取两张,假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和为偶数的概率为( )(A(B (C (D 2.在正四面体的6条棱中随机抽取2条,则其2条棱互相垂直的概率为 ( )A BC D 3.已知非零向量AB 与AC 满足(·BC =0,,则△ABC 为( )A .等腰非等边三角形B .等边三角形C .三边均不相等的三角形D .直角三角形4.函数()sin 2cos2f x x x =-的最小正周期是( ).B.πC.2πD.4π5.tan700+tan500tan700tan500的等于 A 、、6 ( )A .0B .2C .4 D7.cos300︒= ( ) 8.现有编号为1—5的5名学生到电脑上查阅学习资料,而机房只有编号为1—4的4台电脑可供使用,因此,有两位学生必须共用同一台电脑,而其他三位学生每人使用一台,则恰有2位学生的编号与其使用的电脑编号相同的概率为( )A 9A C 10.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其他10且样本容量为160,则中间一组数的频数为( ) A. 32 B. 0.2 C. 40 D. 0.25第II卷(非选择题)请点击修改第II卷的文字说明填空题本大题共5小题,每小题5分,共25分,=12.已知tan2α=,则.13.在ABC∆中,若,则Ccos的值为14.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增至14名,但只任取其中7名裁判的评分作为有效分,若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是。

高中数学必修三北师大版 1.4.1-4.2 平均数、中位数、众数、极差、方差 标准差 学案(Word版含答案)

高中数学必修三北师大版 1.4.1-4.2 平均数、中位数、众数、极差、方差 标准差 学案(Word版含答案)

数据的数字特征4.1 & 4.2 平均数、中位数、众数、极差、方差 标准差预习课本P25~31,思考并完成以下问题 (1)什么是平均数、中位数、众数?(2)什么是极差、方差、标准差?(3)方差、标准差的计算公式是什么?[新知初探]1.平均数、中位数、众数 (1)平均数如果有n 个数x 1,x 2,…,x n ,那么x =x 1+x 2+…+x nn , 叫作这n 个数的平均数. (2)中位数把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)众数一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.[点睛] 如果有几个数据出现的次数相同,并且比其他数据出现的次数都多,那么这几个数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数.2.极差、方差、标准差 (1)极差一组数据中最大值与最小值的差称为这组数据的极差. (2)方差标准差的平方s 2叫作方差.s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].其中,x n是样本数据,n是样本容量,x是样本平均数.(3)标准差标准差是样本数据到平均数的一种平均距离,一般用s表示.s=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].[点睛](1)标准差、方差描述了一组数据围绕着平均数波动的大小,标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.(2)标准差、方差为0时,表明样本数据全相等,数据没有波动幅度和离散性.(3)标准差的大小不会超过极差.[小试身手]1.判断正误.(正确的打“√”,错误的打“×”)(1)平均数反映了一组数据的平均水平,任何一个样本数据的改变都会引起平均数的变化.()(2)一组数据中,有一半的数据不大于中位数,而另一半则不小于中位数,中位数反映了一组数据的中心的情况.中位数不受极端值的影响.()(3)一组数据的众数的大小只与这组数据中的部分数据有关.()(4)数据极差越小,样本数据分布越集中、稳定.()(5)数据方差越小,样本数据分布越集中、稳定.()答案:(1)√(2)√(3)√(4)√(5)√2.在某次考试中,10名同学的得分如下:84,77,84,83,68,78,70,85,79,95.则这一组数据的众数和中位数分别为()A.84,68B.84,78C.84,81 D.78,81解析:选C将所给数据按从小到大排列得68,70,77,78,79,83,84,84,85,95,显然众数为84,而本组数据共10个,中间两位是79,83,它们的平均数为81,即中位数为81.3.某学生几次数学测试成绩的茎叶图如图所示,则该学生这几次数学测试的平均成绩为________.解析:根据茎叶图提供的信息知,这几次测试成绩为53,60,63,71,74,75,80.所以所求的平均成绩为17×(53+60+63+71+74+75+80)=68.答案:684.如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.解析:依题意知,运动员在5次比赛中的分数依次为8,9,10,13,15,其平均数为8+9+10+13+155=11.由方差公式得s2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=15(9+4+1+4+16)=6.8.答案:6.8中位数、众数、平均数的计算及应用[典例]职务董事长副董事长董事总经理经理管理员职员人数11215320工资 5 500 5 000 3 500 3 000 2 500 2 000 1 500(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[解](1)平均数是x=1 500+133(4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×20)≈1 500+591=2 091(元),中位数是1 500元,众数是1 500元.(2)平均数是x′=1 500+133(28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×20)≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.刻画一组数据集中趋势的统计量有平均数、中位数和众数等,它们作为一组数据的代表各有优缺点,也各有各的用处,从不同的角度出发,不同的人会选取不同的统计量来表达同一组数据的信息,不同的统计量会侧重突出某一方面的信息.[活学活用]1.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各1人,则该小组成绩的平均分、众数、中位数分别是( )A .85分、85分、85分B .87分、85分、86分C .87分、85分、85分D .87分、85分、90分解析:选C 由题意知,该学习小组共有10人, 因此众数和中位数都是85,平均数为100+95+2×90+4×85+80+7510=87.2.16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断他能否进入决赛.则其他15位同学成绩的下列数据中,能使他得出结论的是( )A .平均数B .极差C .中位数D .方差解析:选C 判断是不是能进入决赛,只要判断是不是前8名,所以只要知道其他15位同学的成绩中是不是有8个高于他,也就是把其他15位同学的成绩排列后看第8个的成绩即可,小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能进入决赛,这个第8名的成绩就是这15位同学成绩的中位数.方差、标准差的计算与应用[典例]两人在相同条件下各射击10次,命中的环数如下:甲:7,8,6,9,6,5,9,9,7,4.乙:9,5,7,8,7,6,8,6,7,7.(1)分别计算甲、乙两人射击命中环数的极差、众数和中位数;(2)分别计算甲、乙两人射击命中环数的平均数、方差、标准差;(3)比较两人的成绩,然后决定选择哪一个人参赛.[解](1)对于甲:极差是9-4=5,众数是9,中位数是7;对于乙:极差是9-5=4,众数是7,中位数是7.(2)x甲=7+8+6+9+6+5+9+9+7+410=7,s2甲=110×[(7-7)2+(8-7)2+(6-7)2+(9-7)2+(6-7)2+(5-7)2+(9-7)2+(9-7)2+(7-7)2+(4-7)2]=2.8,s甲=s2甲= 2.8≈1.673.x乙=9+5+7+8+7+6+8+6+7+710=7,s2乙=110×[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(7-7)2+(6-7)2+(8-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2,s乙=s2乙= 1.2≈1.095.(3)∵x甲=x乙,s甲>s乙,∴甲、乙两人的平均成绩相等,乙的成绩比甲的成绩稳定一些,从成绩的稳定性考虑,可以选择乙参赛.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度.在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中、越稳定.[活学活用]某班20位女同学平均分为甲、乙两组,她们的劳动技术课考试成绩如下(单位:分):甲组60,90,85,75,65,70,80,90,95,80;乙组85,95,75,70,85,80,85,65,90,85.(1)试分别计算两组数据的极差、方差和标准差;(2)哪一组的成绩较稳定?。

高中数学B版 必修4 教科书 课后习题 参考答案

高中数学B版 必修4 教科书 课后习题 参考答案

新课标人教A高一数学必修1测试题第Ⅰ卷(选择题共60分)一、选择题(本大题共10小题,每小题5分,共60分)1.已知A={x|y=x,x∈R},B={y|y=x2,x∈R},则A∩B等于A.{x|x∈R}B.{y|y≥0}C.{(0,0),(1,1)}D.2.方程x2-px+6=0的解集为M,方程x2+6x-q=0的解集为N,且M∩N={2},那么p+q等于A.21B.8C.6D.73. 下列四个函数中,在(0,+∞)上为增函数的是A.f(x)=3-xB.f(x)=x2-3xC.f(x)=-D.f(x)=-|x|4.函数f(x)=x2+2(a-1)x+2在区间(-∞,4〕上递减,则a的取值范围是A.〔-3,+∞〕B.(-∞,-3)C.(-∞,5〕D.〔3,+∞)5. 下列四个函数中,与y=x表示同一函数的是A.y=( )2B.y=C.y=D.y=6. 函数y= +1(x≥1)的反函数是A.y=x2-2x+2(x<1)B.y=x2-2x+2(x≥1)C.y=x2-2x(x<1)D.y=x2-2x(x≥1)7. 已知函数f(x)= 的定义域是一切实数,则m的取值范围是A.0<m≤4B.0≤m≤1C.m≥4D.0≤m≤48.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是A.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y=ax2+bx与指数函数y=( )x的图象只可能是10. 已知函数f(n)= 其中n∈N,则f(8)等于A.2B.4C.6D.711.如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A、a<b<c<dB、a<b<d<cC、b<a<d<cD、b<a<c<d12..已知0<a<1,b<-1,函数f(x)=ax+b的图象不经过:()A.第一象限;B.第二象限;C.第三象限;D.第四象限第Ⅱ卷(非选择题共70分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知f(x)=x2-1(x<0),则f-1(3)=_______.14.函数的定义域为______________15.某工厂8年来某产品产量y与时间t年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是_______.16. 函数y= 的最大值是_______.三、解答题17. 求函数y= 在区间〔2,6〕上的最大值和最小值.(10分)18.(本小题满分10分) 试讨论函数f(x)=loga (a>0且a≠1)在(1,+∞)上的单调性,并予以证明.答案一. BACCB BDCAD BA 二。

(北师大版)高中数学必修四:3.3三角恒等变形公式汇总(含答案)

(北师大版)高中数学必修四:3.3三角恒等变形公式汇总(含答案)

知识归纳:三角恒等变形一、两角和与差公式及规律 常见变形sin()sin cos cos sin .cos()cos cos sin sin .tan tan tan().1tan tan αβαβαβαβαβαβαβαβαβ±=±±=±±= (1)tan tan :tan tan tan()(1tan tan ).1tan :tan().41tan αβαβαβαβπααα±=±±±=,的和(差)与积互相转化(2)特例二、二倍角公式及规律 常见变形( ※ )三、积化和差与和差化积公式 1sin cos [sin()sin()].2αβαβαβ=++- 1cos sin [sin()sin()].2αβαβαβ=+-- 1cos cos [cos()cos()].2αβαβαβ=++- 1sin sin [cos()cos()].2αβαβαβ=-+--sin sin 2sin cos.22αβαβαβ+-+= 四、学习本章应注意的问题1、两角差的余弦公式是本章中其余公式的基础,应记准该公式的形式.222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2tan .21cos αααααααααα+⎧=⎪⎧⎪⎪-⎪⎪⇒±==⎨⎨⎪⎪⎪-⎪⎩=⎪+⎩222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2tan .21cos αααααααααα+⎧=⎪⎧⎪⎪-⎪⎪⇒±==⎨⎨⎪⎪⎪-⎪⎩=⎪+⎩2sin 2sin 2cos ,sin .1sin (sin cos ).2cos 2cos 22ααααααααα⇒==±=± sin 22sin cos .ααα=2222cos 2cos sin 2cos 112sin .ααααα=-=-=- 22tan tan 2.1tan ααα=- sin sin 2cos sin .22αβαβαβ+--= cos cos 2cos cos .22αβαβαβ+-+=cos cos 2sin sin .22αβαβαβ+--=-2、倍角公式ααα22sin 211cos 22cos -=-=有升、降幂的功能,如果升幂,则角减半,如果降幂,则角加倍,根据条件灵活选用.3、公式的“三用”(顺用、逆用、变用)是熟练进行三角变形的前提.。

高中数学北师大版必修4学案附答案:第三章三角恒等变形3二倍角的三角函数(一)学案.doc

高中数学北师大版必修4学案附答案:第三章三角恒等变形3二倍角的三角函数(一)学案.doc

高考数学北师大版必修 4 学案附答案§3 二倍角的三角函数 ( 一)内容要求1. 会从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式 ( 重 点).2. 能熟练运用二倍角的公式进行简单的恒等变换,并能灵活地将公式变形运用( 难点 ) .知识点 1 二倍角公式1.sin( α+ β) = sin_ αcos_ β+ cos_ αsin_ β,令 β=α,得 sin 2α =2sin_ αcos_α. 2. cos( α+ β) = cos_αcos_β- sin_ αsin_ β,令 β= α,得 cos 2 α= cos 2α- sin 2α= 2cos 2α- 1= 1- 2sin 2α .tan α+ tanβ2tan α3. tan( α+ β) =1- tan αtan β,令 β= α,得 tan 2α=1- tan 2α.【预习评价】1.计算 1- 2sin 215°的结果为 ()12A.B.223C. 2 D . 1答案 C2.sin 105 °cos 105 °的值为 ( )11 A. 4B .- 43 3C. 4 D .- 4答案 B知识点 2 二倍角公式的变形 1.公式的逆用1222tan α2sin αcos α= sin 2α, sin αcos α= 2s in 2α, cos α-sin α= cos_2 α , 1- tan 2α= t an 2 α.2.二倍角公式的重要变形——升幂公式和降幂公式升幂公式:222α2α1+ cos 2 α= 2cos α,1- cos 2 α= 2sin α, 1+ cos α= 2cos2 , 1-cos α= 2sin2,降幂公式: cos2α= 1+cos 2α, sin 2α= 1- cos 2 α .22【预习评价】31.已知 cos x = 4,则 cos 2 x = ()1 1 A .- 4B. 4 11 C .- 8D. 8x23 2 1解析 cos 2= 2cos- 1=2· - 1= ,故选 D.x 4 8答案 Dtan 75 °2. 1- tan 275°的值是 ( )33A. 6B .- 6C . 2 3D .-2 3答案 B题型一化简求值【例 1】求下列各式的值.ππ(1)sin12cos 12;(2)1 - 2sin 2750°;2tan150 °(3)1- tan 2150°;13(4)s in 10 °-cos 10 °.πππ2sin 12cos 12sin 6 1解 (1) 原式= 2 =2 =4.(2) 原式= cos(2 ×750°) =cos 1 500 °1=cos(4 ×360°+ 60°) =cos 60 °= 2.(3) 原式= tan(2 ×150°) =tan 300 °= t an(360°- 60°) =- tan 60 °=-3.(4) cos 10 °- 3sin 10 °原式= °cos 10 °sin 102 1 3=2cos 10°- 2 sin 10 ° sin 10 °cos 10 °4 sin 30 °cos 10 °- cos 30 °sin 10 ° =2sin 10 °cos 10 °4sin 20 °=sin 20 ° =4.规律方法 在使用二倍角公式化简时,要注意三种应用 (1)正用公式,从题设条件出发,顺 着问题的线索,运用已知条件和推算手段逐步达到目的. (2) 公式逆用,要求对公式特点有一个整体感知. (3) 公式的变形应用. 【训练 1】求下列各式的值.13(1)cos 72 °cos 36 °; (2) sin 50 ° +cos 50 ° .2sin 36 °cos 36 °cos 72 °2sin 72 °cos 72 ° sin 144 °解 (1)cos 72°cos 36°=2sin 36 °=4sin 36 ° =4sin 36 ° =1.413(2)cos 50 °+ 3sin 50 °2 2cos 50 °+ 2 sin 50 °2sin 80 °原 式 == 1==sin 50 °cos 50 °12×2sin 50 °cos 50 ° 2sin 100 °2sin 80 ° = 4.12sin 80 °24 π【例 2】 (1) 已知 sin 2 α=- 25, α∈ - 4 , 0 ,则 sin α+ cos α = ()1 1A. 5B .- 5 7 7C .- 5D. 5 π 3 )(2) 已知 sin- x = ,则 sin 2 x 的值为 (4519 16 A. 25 B. 25147C. 25D. 25解析 (1) ∵ α∈ -π, 0 ,∴ sin α+ cos α> 0.4∴sin α+cosα = 1+ sin 2 α=1- 24= 1.故选 A.25 5π2π18 7(2)sin 2 x = cos 2 - 2x = 1-2sin4 - x = 1- 25= 25.答案 (1)A (2)Dππ【迁移 1】若 (1) 中 α∈ - 2,- 4 ,求 sin α+ cos α 的值.π π解 因为 α∈ - ,-,24所以 sin α+ cos α< 021(sin α+ cos α) = 1+ sin 2 α=,1所以 sinα+ cos α=- 5.【迁移 2】在 (1) 中的条件下求 tan α 的值.解因为 sin 2 α=2sinαcos α2sin αcos α24=sin 2α + cos 2α=-25,2tan α24故tan 2α + 1=- 25,4 3 解得 tan α=- 或- ,34π因为 α∈ - 4 , 0 , tanα>- 1,3故 tan α=- 4.规律方法1. 从角的关系寻找突破口, 这类三角函数求值问题常有两种解题途径: 一是对题设条件变形, 将题设条件中的角、 函数名向结论中的角、 函数名靠拢; 另一种是对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.π2.当遇到 4 ± x 这样的角时可利用互余角的关系和诱导公式,将条件与结论沟通.cos 2 x=sin π-2x = 2sin πx ·cos π - x . 类似这样的变换还有: cos 2 x = sinπ+2 2 -4 24 x =ππ2sin4 + x cos 4 +x ,π2πsin 2 x=cos 2- 2x = 2cos 4- x -1. 题型三三角函数式的化简或证明【例 3】化简: (1) cos 10 °1+ 3tan 10°;cos 70 ° 1+cos 40 °(2)2cos 2α- 1.π2π2tan +α-α sin44cos 10 °3sin 10 °1+cos 10 °解(1) 原式=2sin 20 °cos 20 °cos 10 °+3sin 10 °=22 sin 40 °23 1cos 10 °+sin 10 °2 2=22 sin 40 °=2 2sin 40 °=2 2. sin40 °(2) 原式=2cos 2α- 1π2sin 4-α 2 ππ·cos -αcos44-α=2cos 2α- 1ππ2sin 4-αcos 4-α2cos 2α- 1 cos 2 α=cos 2 α=cos 2 α=1.规律方法被化简的式子中有切函数和弦函数时,常首先将切化弦,然后分析角的关系,看是否有互余或互补的.若有,则应用诱导公式转化;若没有,则利用两角和与差的三角函数公式或二倍角公式化简.【训练 2】化简下列各式:(1) 2sin 2 αcos 2α1+ cos 2 α×cos 2 α;(2) 1-cos 20 °;cos 80 °1-cos 20 °1 θ-1θ .(3)1- tan 1+ tan2sin 2 α cos 2α解 (1) 原式= 2cos 2α × cos 2 α = tan 2 α.(2) 原式=2sin 210°= 2sin 210°sin 10 ° 2sin= 2.210° 2sin 210°1+ tan θ- 1-tan θ 2tan θ(3) 原式= 1- tanθ1+tan θ= 1- tan 2θ= tan 2 θ .课堂达标4π 4π1. sin 12- cos 12等于()13A .- 2B .- 21 3 C. 2D. 2解析 原式= sin2π+ cos 2π · sin 2π - cos 2π12 12 12122π2ππ3=- cos 12- sin 12 =- cos6=-2.答案 B2.已知 sin α- cos4α= () α = ,则 sin 2372A .- 9B .- 9 27C. 9D. 9( sin α- cos α) 2- 17解析 sin 2 α= 2sin αcos α=- 1=- 9.答案 A3.若 tan α= 2,则 tan 2α= ________.2tan α 4 4解析 tan 2 α=1- tan 2α= 1- 4=- 3.答案 4- 3.已知 cos x - π= 2 ,则 sin 2 x = ________.4 4 10π π6π 2 π=cos 2[( x-4)]=2cos x-4-1=2× 224 2-1=- .10 2524答案-25sin 50 °1+ 3tan 10 ° - cos 20 °5.求值:.cos 80 ° 1-cos 20 °解∵sin 50 °(1 + 3tan 10 °)=sin 50cos 10 °+3sin 10 °°·cos 10 °2sin 40 °=s in 50 °·cos 10°= 1,cos 80 ° 1-cos 20 °= sin 10 ° 2sin 210°=2sin 210°,∴sin 50 ° 1+ 3tan 10 °-cos 20 °cos 80 ° 1-cos 20 °1-cos 20 °=2sin 210°=2.课堂小结1.对含有三角函数的平方的式子进行处理时,一般要用降幂公式:cos 2α =1+ cos 2 α,2sin 2α=1-cos 2 α.2π2.对题目中含有的单角、倍角,应将倍角化为单角,同时应注意以下变形式2α,2α-2,πα-等之间关系的应用.43.式中出现1+ cosα,1+ sinα时,往往采用倍角公式去掉根号,但要注意去掉根号后的符号 .基础过关1.函数f ( x) = sin x cos x 的最小值是()1A.- 1B.-21C.2D. 111 1解析 f ( x ) = 2sin 2 x ∈ -2,2 . 答案 B2.已知 x ∈ ( - π, 0) , cos x = 4,则 tan 2 x 等于 ()2577A. 24 B .- 2424 24 C. 7D .- 74π3解析 cos x = 5, x ∈( - 2 ,0) ,得 sin x =- 5,所以 tan 3x =- ,42×3所以 tan 2 2tan x- 424,故选 D. x =2==-1- tan x1-3 2 7- 4答案 D22π3.已知 sin 2 α =3,则 cosα+ 4 等于 () 1 1 A. 6 B. 3 1 2 C. 2D. 31+ cos[2π ]因为 cos 2π α+ 4 解析 α+ 4 = 21+ cos π2α+ 2 1- sin 2 α,= 2 =21-2π1- sin 23 12α所以 cos α + 4 =2= 2 =6,选 A.答案 A4. 2sin 222.5 °- 1= ________.解析 2原式=- cos 45 °=-.2答案 -225.sin 6 °sin 42 °sin 66 °sin 78 °=________.解析原式= sin 6 °cos 48 °cos 24 °cos 12 °sin 6 °cos 6 °cos 12 °cos 24 °cos 48 °=cos 6 °sin 96 °cos 6 °1=16cos 6 °= 16cos 6 ° =16.1答案16π6.已知 sin α= cos 2 α, α∈ 0,,求 sin 2 α 的值.2 解 ∵ sin α= 1- 2sin 2α,即 2sin 2α+ sin α-1= 0,∴sin α=- 1 或 sin1α= .2π 又∵ α∈0,2 ,1π∴ sin α= , α= .263∴cos α= 2 .∴sin 2 α= 2sin1 3 3αcos α=2× ×= .222π31+ 2cos2α - 4 7.已知角 α 在第一象限且cos α= 5,求sin π的值.α+23 4解 ∵ cos α= 且 α 在第一象限,∴ sinα= .55227∴cos 2 α= cos α- sin α=- 25,24sin 2 α= 2sinα cos α= 25,ππ1+ 2cos 2αcos 4 + sin 2 αsin 4原式=cos α1+ cos 2 α+ sin 2α 14=cos α= 5 .能力提升28.已知等腰三角形底角的余弦值为3,则顶角的正弦值是 ()4 5 2 5A. 9B. 94 5 2 5C .- 9D .- 9解析 令底角为 α,顶角为 β,则 β=π- 2α,2∵cos α= 3, 0< α<π,5∴ s in α= 3 .∴sin β=sin( π- 2α) = sin 2 α= 2sin αcos α2 5 4 5= 2×3×3= 9 .答案 A2sin 2x -1 π29.已知 f ( x ) = 2tan x - x x ,则 f 12 的值为()sin 2cos 2A . 4 3 8 3B.3C . 4D . 82sin x 2cos x解析 ∵ f ( x ) = cos x + sin x2sin 2x + 2cos 2x= sin x cos x4= sin 2 x ,π 4∴f 12 = π = 8.sin 6答案 Dθ 1- cos θ+ sin θ10.已知 tan 2 =3,则1+ cos θ+ sin θ= ______.2θ θ θ1- cos θ+ sin θ2sin 2 + 2sin 2 cos 2解析 1+ cos θ+ sin θ = 2cos2θθ θ + 2sin cos 2 2 2102sinθ sin θ θ2 + cos θ 2 2 = θ θ θ = tan 2 =3. 2cos cos 2 + sin22 答案 32 711.函数 f ( x ) = cos x - sin x -cos 2 x +4的最大值是 ______.解析 ∵ f ( x ) = cos x - (1 -cos 2x ) - (2cos 2x - 1) +742 7 1 2 =- cos x + cos x + =- cos x - + 2.4 21∴当 cos x = 2时, f ( x ) max = 2.答案 22π 12.已知 sin 2α+ sin 2 αcos α - cos 2 α= 1, α∈ (0 , ) ,求 α . 解 ∵ sin 22α+ sin 2 α cos α- (cos 2 α+ 1) = 0,∴ 4sin 2αcos 2α+ 2sin α cos 2α-2cos 2α = 0.∵ α π 2 α >0.∈ (0 , 2 ) ,∴ 2cos ∴2sin 2α+ sin α- 1= 0. 1 π ∴sin α= 2(sin α=- 1 舍) .∴ α= 6 .13. ( 选做题 ) 设函数 f ( x ) = 2 3sincos + 2cos 2 - 1( ω > 0) ,且以 2π 为最小正ωx ωx ωx 周期.π π(1) 求 f ( x ) 的解析式,并求当 x ∈ 6 , 3 时, f ( x ) 的取值范围;π 6(2) 若 f x - 6 = 5,求 cos x 的值.解 (1) f ( x ) = 3sin 2 ωx +cos 2 ωxπ= 2sin 2ωx + 62π π∵T = 2ω=ω=2π,1∴ω = 2.π∴f ( x ) = 2sin x + 6 ,11πππππ当 x∈6 ,3时, x+6∈3 ,2 ,f ( x)∈[3,2].(2) f xπ= 2sin xππ 6-6-+=5,6 63 2 4sin x=5,∴cos x=±1-sin x=±5.12。

北师大版高中数学必修4-第一章三角函数-4正弦函数和余弦函数的定义与诱导公式-典题题库

北师大版高中数学必修4-第一章三角函数-4正弦函数和余弦函数的定义与诱导公式-典题题库

北师⼤版⾼中数学必修4-第⼀章三⾓函数-4正弦函数和余弦函数的定义与诱导公式-典题题库第⼀章三⾓函数-4正弦函数和余弦函数的定义与诱导公式⼀、选择题(共26⼩题,每⼩题5.0分,共130分)1.已知sin=,则sin的值为()A.B.-C.D.-【答案】C【解析】∵sin=,∴sin)=sin=sin=.2.使函数y=sin x递减且函数y=cos x递增的区间是()A.B.(k∈Z)C.(k∈Z)D.(k∈Z)【答案】D【解析】y=sin x的单调递减区间是[+2kπ,π+2kπ],k∈Z,y=cos x的递增区间是[π+2kπ,2π+2kπ],k∈Z,在区间(k∈Z)上y=sin x递减,y=cos x为递增函数,故D符合要求.3.函数f(x)=|sin x-cos x|+(sin x+cos x)的值域为()A. [-,]B. [-,2]C. [-2,]D. [-2,2]【答案】B【解析】由题意得f(x)==当x∈[2kπ+,2kπ+]时,f(x)∈[-,2];当x∈(2kπ-,2kπ+)时,f(x)∈(-,2).故可求得其值域为[-,2].4.函数f(a)=cos2θ+a cosθ-a(a∈[1,2],θ∈[,])的最⼩值是() A.C. 3+(-1)aD. cos2θ+2cosθ-2【答案】D【解析】∵θ∈[,],∴cosθ-1<0,∴f(a)=cos2θ+a cosθ-a=(cosθ-1)a+cos2θ在[1,2]上是减少的,∴f(a)的最⼩值为f(2)=cos2θ+2cosθ-2.5.函数y=sin2x-sin x+1(x∈R)的值域是()A. [,3]B. [1,2]C. [1,3]D. [,3]【答案】A【解析】令sin x=t,则y=t2-t+1=(t-)2+,t∈[-1,1],由⼆次函数性质,得当t=时,y取得最⼩值.当t=-1时,y取得最⼤值3,∴y∈[,3].6.函数y=sin2x+sin x-1的值域为()A. [-1,1]B.C.D.【答案】C【解析】y=sin2x+sin x-1=(sin x+)2-,当sin x=-时,y min=-;当sin x=1时,y max=1.7.若f(x)=a sin x+b(a,b为常数)的最⼤值是3,最⼩值是-5,则的值为()A.-4B. 4C. ±4D. 2【答案】C【解析】∵f(x)=a sin x+b(a,b为常数)的最⼤值是3,最⼩值是-5,∴b+|a|=3,且b-|a|=-5,解得b=-1,|a|=4,即b=-1,a=±4,∴=±4.8.已知函数y=sin x的定义域为,值域为,则b-的值不可能是()B.C.D.【答案】D【解析】∵y=sin x的定义域为,值域为,⽽sin=sin=,sin=-1,∴≤b≤,∴≤b-≤,∴b-∈[,].∵,,均在区间[,]内,⽽?[,].9.如果≥,那么sin x的取值范围为() A. [-,)B. (,1]C. [-,)∪(,1]D. [-,)【答案】C【解析】若≥,则0<≤,解得-≤x≤,且x≠,则-≤sin x≤1,且sin x≠,故sin x的取值范围为[-,)∪(,1].10.函数f(x)=,x∈(0,2π)的定义域是() A. [,]B. [,]C. [,]D. [,]【答案】B【解析】由题意得sin x≥,⼜x∈(0,2π)∴x∈. 11.函数y=的定义域是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【答案】B【解析】∵2sin x-1≥0,∴sin x≥,∴2kπ+≤x≤2kπ+(k∈Z). 12.下列函数中,与函数y=定义域相同的函数为() A.y=B.y=C.y=x e xD.y=【解析】∵函数y=的定义域为{x∈R|x≠0},∴对于A,其定义域为{x|x≠kπ}(k∈Z),故A不满⾜;对于B,其定义域为{x|x>0},故B不满⾜;对于C,其定义域为{x|x∈R},故C不满⾜;对于D,其定义域为{x|x≠0},故D满⾜.13.函数y=lg(sin x)的定义域为()A.(k∈Z)B. (2kπ,2kπ+π) (k∈Z)C.(k∈Z)D.(k∈Z)【答案】B【解析】由题意得sin x>0,函数的定义域为(2kπ,2kπ+π),k∈Z.14.函数f(x)的定义域为,则f(sin x)的定义域为()A.B.C.(k∈Z)D.∪(k∈Z)【答案】D【解析】∵函数f(x)的定义域为,∴-≤sin x≤,解得2kπ-≤x≤2kπ+或2kπ+≤x≤2kπ+(k∈Z),∴所求函数的定义域是∪(k∈Z).15.函数y=的定义域是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【答案】D【解析】由题意得cos x≥-,所以函数的定义域为(k∈Z).16.若⾓α∈(,π),则点P(sinα,cosα)位于()A.第⼀象限B.第⼆象限C.第三象限D.第四象限【解析】∵⾓α∈,∴sinα>0,cosα<0.∴点P(sinα,cosα)位于第四象限.17.当α为第⼆象限⾓时,-的值是()A. 1B. 0C. 2D.-2【答案】C【解析】∵α为第⼆象限⾓,∴sinα>0,cosα<0.∴-18.若三⾓形的两内⾓α,β满⾜:sinα·cosβ<0,则此三⾓形的形状为()A.锐⾓三⾓形B.钝⾓三⾓形C.直⾓三⾓形D.不能确定【答案】B【解析】因为三⾓形的两内⾓α,β满⾜:sinα·cosβ<0,⼜sinα>0,所以cosβ<0,所以90°<β<180°,故β为钝⾓.19.已知sinθcosθ<0,那么⾓θ是()A.第⼀或第⼆象限⾓B.第⼆或第三象限⾓C.第⼆或第四象限⾓D.第⼀或第四象限⾓【答案】C【解析】由题意知,sinθcosθ<0,则或,所以⾓θ在第⼆或第四象限.20.函数y=+的值域是()A. {2}B. {2,-2}C. {2,0,-2}D. {2,0}【答案】C【解析】当x是第⼀象限⾓时,sin x>0,cos x>0,则y=+=1+1=2;当x是第⼆象限⾓时,sin x>0,cos x<0,当x是第三象限⾓时,sin x<0,cos x<0,则y=+=-1-1=-2;当x是第四象限⾓时,sin x<0,cos x>0,则y=+=-1+1=0.综上可得函数y=+的值域是{2,-2, 0}.21.已知α是第⼆象限⾓,P(x,)为其终边上⼀点,且cosα=x,则x等于()A.B. ±C.-D.-【答案】D【解析】∵cosα===x,∴x=0(∵α是第⼆象限⾓,舍去)或x=(舍去)或x=-.22.已知⾓α的终边经过点(3,-4),则sinα+cosα的值为()A. ±B. ±C.-D.【答案】C【解析】由题意可得x=3,y=-4,r=5,∴sinα==-,cosα==,∴sinα+cosα=-.23.已知⾓α的终边经过点P(-b,4)且cosα=-,则b的值等于()A. 3B.-3C. ±3D. 5【答案】A【解析】∵⾓α的终边经过点P(-b,4)且cosα=-,∴cosα==-,则b>0,平⽅得=,即b2=9,解得b=3或b=-3(舍).24.已知⾓α的终边过点P(-8m,-6sin 30°),且cosα=-,则m的值为() A.-B.C.-D.【答案】B=-,解得m=.25.已知⾓α的终边过点P(-4m,3m)(m<0),则2sinα+cosα的值是() A. 1B.C.-D.-1【答案】C【解析】∵⾓α的终边过点P(-4m,3m)(m<0),∴r=|OP|===-5m,则2sinα+cosα=2×+=-+=-.26.已知⾓α的终边在射线y=-3x(x≥0)上,则sinαcosα等于()A.-B.C.D.-【答案】A【解析】∵在⾓α的终边所在的射线y=-3x(x≥0)上任意取⼀点M(1,-3),则x=1,y=-3,r=|OM|=,cosα==,sinα==,则sinαcosα=·=.⼆、填空题(共40⼩题,每⼩题5.0分,共200分)27.若函数f(x)满⾜f(+x)=sin x(x∈R),则f(x)等于_____.【答案】-cos x【解析】令+x=t,,则x=t-,∴f(+x)=f(t)=sin x=sin(t-),即f(t)=sin(t-)=-cos t,∴f(x)=-cos x.28.已知=,则cos(3π-θ)=____.【答案】【解析】由已知得:=?cosθ=-,所以cos(3π-θ)=-cosθ=.【答案】-【解析】cos(α+)=sin(-α-)=-sin(α+)=-.30.已知cos(α+)=-,则sin(α-)=____.【答案】【解析】∵cos(α+)=-,∴sin=sin[(α+)-]=-sin[-(α+)]=-cos(α+)=.31.已知f(n)=sin(n∈Z),则f(1)+f(2)+…+f(100)=________.。

2024-2025年北师大版数学必修第一册4.3.3.2对数函数的综合应用(带答案)

2024-2025年北师大版数学必修第一册4.3.3.2对数函数的综合应用(带答案)

第2课时 对数函数的综合应用必备知识基础练知识点一 利用单调性求范围问题 1.若log a 23 <1,则a 的取值范围是( )A .(0,23 )B .(23 ,+∞)C .(23 ,1)D .(0,23)∪(1,+∞)2.不等式log 2(2x +3)>log 2(5x -6)的解集为( ) A .(-∞,3) B .(-32 ,3)C .(-32 ,65 )D .(65,3)3.已知a >0且a ≠1,若函数y =log a (4-ax )在[1,2]上是减函数,则实数a 的取值范围是( )A .(0,1)B .(1,2)C .(1,2]D .(1,4) 知识点二 对数函数的实际应用4.某种动物繁殖数量y (只)与时间x (年)的关系为y =m log 2(x +1),设这种动物第一年有200只,到第7年它们发展到( )A .300只B .400只C .500只D .600只5.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13 ,则使产品达到市场要求的最少过滤次数为(参考数据:lg 2≈0.301,lg 3≈0.477)( )A .10B .9C .8D .7知识点三 对数函数的综合应用6.已知函数y =log 2(x 2-2kx +k )的值域为R ,则k 的取值范围是( ) A .0<k <1 B .0≤k <1C .k ≤0或k ≥1 D.k =0或k ≥17.若函数f (x )=log a (x +x 2+2a 2)是奇函数,则a =________. 8.已知奇函数f (x )=ln ax +1x -1. (1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并利用函数单调性的定义证明; (3)当x ∈[2,5]时,ln (1+x )>m +ln (x -1)恒成立,求实数m 的取值范围.关键能力综合练1.已知实数a =log 45,b =(12 )0,c =log 30.4,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a2.已知函数f (x )=lg 1-x1+x ,f (a )=b ,则f (-a )=( )A .bB .-bC .1bD .-1b3.函数f (x )=|log 12x |的单调递增区间是( )A .(0,12] B .(0,1] C .(0,+∞) D.[1,+∞)4.若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫34,1B .⎝ ⎛⎦⎥⎤1,32 C .(1,2) D .(1,2]5.(探究题)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(1,2] D .(0,12 )6.(易错题)函数f (x )=log 0.6(2-x ) 的定义域为________.7.已知函数f (x )=ln (x +x 2+1 )+1,若实数a 满足f (-a )=2,则f (a )=________. 8.写出一个同时满足下列两个条件的函数f (x )=________. ①对∀x 1,x 2∈(0,+∞),有f (x 1x 2)=f (x 1)+f (x 2); ②当x ∈(4,+∞)时,f (x )>1恒成立.9.已知a >0,a ≠1且log a 3>log a 2,若函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为1.(1)求a 的值;(2)解不等式log 13(x -1)>log 13(a -x );(3)求函数g (x )=|log a x -1|的单调区间.核心素养升级练1.(多选题)若定义域为[0,1]的函数f (x )同时满足以下三个条件:①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2).就称f (x )为“A 函数”,下列定义在[0,1]上的函数中,是“A 函数”的有( ) A .f (x )=log 12(x +1)B .f (x )=log 2(x +1)C .f (x )=xD .f (x )=2x-12.(学科素养—逻辑推理)若函数f (x )=log a x (a >0且a ≠1)在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a -m 的值是________.第2课时 对数函数的综合应用必备知识基础练1.答案:D解析:由log a 23 <1,得log a 23<log a a ,若a >1,由函数y =log a x 为增函数,得a >23 ,所以a >1;若0<a <1,由函数y =log a x 为减函数,得0<a <23 ,所以0<a <23 .综上所述,0<a <23 或a >1.故选D.2.答案:D解析:由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,得65<x <3.3.答案:B解析:y =4-ax 在[1,2]上是减函数,y =log a (4-ax )在[1,2]上是减函数,故a >1, 考虑定义域:4-2a >0,故a <2, 综上所述:1<a <2.故选B. 4.答案:D解析:由已知第一年有200只,得m =200.将m =200,x =7代入y =m log 2(x +1),得y =600.5.答案:C解析:设经过n 次过滤,产品达到市场要求,则2100 ×(23 )n ≤11000 ,即(23 )n ≤120 ,由n lg 23 ≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2 ≈7.4,所以选C.6.答案:C解析:令t =x 2-2kx +k ,由y =log 2(x 2-2kx +k )的值域为R ,得函数t =x 2-2kx +k 的图象一定恒与x 轴有交点,所以Δ=4k 2-4k ≥0,即k ≤0或k ≥1.7.答案:22解析:∵x +x 2+2a 2>0恒成立,∴函数f (x )的定义域为R ,又∵f (x )是奇函数,∴f (0)=0,即log a 2a 2=0, ∴2a 2=1,∴a =22. 综验证,此时函数y =log a (x +x 2+1 )为奇函数,满足题意,故a =22. 8.解析:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ),即ln -ax +1-x -1 =-ln ax +1x -1,∴ax -1x +1 =x -1ax +1即(a 2-1)x 2=0,解得a =±1, 经检验,a =-1时不符合题意,∴a =1.(2)f (x )在(1,+∞)上为减函数.证明如下:由(1)知,f (x )=ln x +1x -1,任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=lnx 1+1x 1-1 -ln x 2+1x 2-1 =ln (x 1+1x 1-1 ·x 2-1x 2+1 )=ln (x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1),∵x 1<x 2,∴x 2-x 1>0,x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1>1,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(1,+∞)上为减函数.(3)由已知得m <ln (1+x )-ln (x -1),即m <ln x +1x -1. 由(2)知f (x )=lnx +1x -1在[2,5]上为减函数, ∴当x =5时,(lnx +1x -1 )min =ln 32 ,∴m <ln 32. 关键能力综合练1.答案:D解析:由题意知,a =log 45>1,b =(12 )0=1,c =log 30.4<0,故c <b <a .2.答案:B解析:由1-x1+x >0,得f (x )的定义域为(-1,1).因为f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),所以f (x )是奇函数,所以f (-a )=-f (a )=-b . 3.答案:D解析:f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.答案:B解析:若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增, 则⎩⎪⎨⎪⎧a >0a >122-2a ≥0a2≤22a -2a ≤log a(22-2a ),解得1<a ≤32 ,即实数a 的取值范围为⎝ ⎛⎦⎥⎤1,32 .故选B. 5.答案:C解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,显然不成立.当a >1时,如图所示,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,∴log a 2≥1,∴1<a ≤2.6.答案:[1,2)解析:要使函数f (x )有意义,则需满足⎩⎪⎨⎪⎧log 0.6(2-x )≥0,2-x >0, 解得1≤x <2.7.答案:0解析:设g (x )=ln (x +x 2+1 ),则g (-x )=ln (-x +(-x )2+1 )=ln 1x +x 2+1=-ln (x +x 2+1 )=-g (x ),又g (x )的定义域关于原点对称,所以g (x )为奇函数.因此f (-a )=g (-a )+1=2,所以g (-a )=1,从而g (a )=-1,所以f (a )=g (a )+1=-1+1=0.8.答案:log 2x (答案不唯一)解析:因为由f (x )满足的两个条件可以联想到对数函数,当f (x )=log 2x 时,对∀x 1,x 2∈(0,+∞),f (x 1x 2)=log 2(x 1x 2)=log 2x 1+log 2x 2=f (x 1)+f (x 2),满足条件①;当x ∈(4,+∞)时,f (x )>log 24=2>1,满足条件②. 9.解析:(1)∵log a 3>log a 2,∴a >1, ∴y =log a x 在[a ,2a ]上为增函数, ∴log a (2a )-log a a =1,∴a =2.(2)依题意可知⎩⎪⎨⎪⎧x -1<2-x ,x -1>0,2-x >0,解得1<x <32,∴所求不等式的解集为(1,32 ).(3)∵g (x )=|log 2x -1|,∴g (x )=⎩⎪⎨⎪⎧log 2x -1,x ≥2,1-log 2x ,0<x <2.∴函数g (x )在(0,2)上为减函数,在[2,+∞)上为增函数, 即g (x )的单调递减区间为(0,2),单调递增区间为[2,+∞).核心素养升级练1.答案:CD解析:选项A 中,f (1)=log 12(1+1)=-1,f (x )=log 12(x +1)不是“A 函数”.选项B 中,若x 1≥0,x 2≥0,x 1+x 2≤1,则f (x 1)+f (x 2)=log 2(x 1+1)+log 2(x 2+1)=log 2(x 1x 2+x 1+x 2+1)≥log 2(x 1+x 2+1)=f (x 1+x 2),不满足③,因此,f (x )=log 2(x +1)不是“A 函数”.选项C 中,f (x )显然满足①②,又f (x 1+x 2)=x 1+x 2=f (x 1)+f (x 2),因此,f (x )=x 是“A 函数”.选项D 中,f (x )显然满足①②.∵f (x 1+x 2)=2x 1+x 2-1,f (x 1)+f (x 2)=2x 1+2x 2-2,∴f (x 1+x 2)-[f (x 1)+f (x 2)]=2x 1+x 2-2x 1-2x 2+1=(2x 1-1)( 2x 2-1).又x 1,x 2∈[0,1],∴2x 1-1≥0,2x 2-1≥0.从而f (x 1+x 2)≥f (x 1)+f (x 2).因此,f (x )=2x-1是“A 函数”.故选CD.2.答案:3解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,因此有f (4)=log a 4=2,解得a =2,所以m =log 212 =-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a -m =2-(-1)=3;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12 =log a 12 =2,a =22 ,所以m =log 22 4=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意.综上所述,a =2,m =-1,a -m =3.。

最新北师大版高中数学必修必修课后习题答案(精品)优秀名师资料

最新北师大版高中数学必修必修课后习题答案(精品)优秀名师资料

北师大版高中数学必修必修课后习题答案(精品)第一章算法初步1(1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数. r2第二步,计算以为半径的圆的面积. Sr,,rS第三步,得到圆的面积.2、算法步骤:第一步,给定一个大于1的正整数. ni,1第二步,令.i第三步,用除,等到余数. nrr,0ii第四步,判断“”是否成立. 若是,则是的因数;否则,不是的因数. nn ii第五步,使的值增加1,仍用表示.in,第六步,判断“”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)di,1算法步骤:第一步,给定精确度,令.i第二步,取出的到小数点后第位的不足近似值,赋给;取出的到小数点22abi后第位的过剩近似值,赋给.ba第三步,计算m,,55.2amd,ii第四步,若,则得到的近似值为;否则,将的值增加1,仍用表示.55 返回第二步.a第五步,输出5.程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.3为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m的部分,每立方收费1.5元,并加收0.4元的城市污水处理费. 3设某户每月用水量为 m,应交纳水费元, yx1.2,07xx ,,,那么与之间的函数关系为 yxy,,1.94.9,7xx,, ,我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量. x第二步:判断输入的是否不超过7. 若是,则计算; xyx,1.2 若不是,则计算. yx,,1.94.9第三步:输出用户应交纳的水费. y程序框图: 2、算法步骤:第一步,令i=1,S=0.第二步:若i?100成立,则执行第三步;否则输出S.2第三步:计算S=S+i.第四步:i= i+1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x,设收取的卫生费为m元.第二步:判断x与3的大小. 若x>3,则费用为; mx,,,,5(3)1.2 m,5若x?3,则费用为.第三步:输出. m程序框图:B组 1、算法步骤:第一步,输入.. abcabc,,,,,111222 bcbc,2112. 第二步:计算x,abab,1221acac,1221第三步:计算. y,abab,1221第四步:输出xy,.程序框图:2、算法步骤:第一步,令n=1?6.8,则执行下一步; 第二步:输入一个成绩r,判断r与6.8的大小. 若r 若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n?9,则返回第二步;若n>9,则结束算法.程序框图: 说明:本题在循环结构的循环体中包含了一个条件结构.1(2基本算法语句练习(P24)、程序:、程序:1 2 INPUT “a,b=”;a,b INPUT “F=”;Fsum=a+b C=(F,32)*5/9diff=a,b PRINT “C=”;Cpro=a*b ENDquo=a/bPRINT sum,diff,pro,quo END 、程序:3 INPUT “a,b,c=”;a,b,c 、程序:4 p=(a+b+c)/2 INPUT “a,b,c=”;a,b,cs=SQR(p*(p,a) *(p,b) *(p,c)) sum=10.4*a+15.6*b+25.2*cPRINT “s=”;s PRINT “sum =”;sumEND END 练习(P29)、程序:1 INPUT “a,b,c=”;a,b,cIF a+b>c AND a+c>b AND b+c>a THENPRINT “Yes.”ELSEPRINT “No.”END IFEND、本程序的运行过程为:输入整数若是满足的两位整数,则先取出的十位,记2x. x9<x<100x作,再取出的个位,记作,把,调换位置,分别作两位数的个位数与十位数,然后输出新axbab的两位数如输入,则输出. 2552.、程序:3 INPUT “Please input an integer:”;aIF a MOD 2=0 THENPRINT “Even.”ELSEPRINT “Odd.”END IFEND、程序:4 INPUT “Please input a year:”;yb=y MOD 4c=y MOD 100d=y MOD 400IF b=0 AND c<>0 THENPRINT “Leap year.”ELSEIF d=0 THENPRINT “Leap year.”ELSEPRINT “Not leap year.”END IFEND IFEND练习(P32)、程序:、程序:1 2 INPUT “n=”;n INPUT “n=”;n i=2 i=1DO f=1r=n MOD i WHILE i<=ni=i+1 f=f*iLOOP UNTIL i>n,1 OR r=0 i=i+1IF r=0 THEN WENDPRINT “n is not a prime number.” PRINT f ELSE ENDPRINT “n is a prime number.”END IFEND习题1.2 A组(P33),,,xx1(0) ,,yx,,0(0) 1、 ,,xx,,1(0) ,、程序:、程序:2 3 INPUT “n=”;n INPUT “a,b,h=”;a,b,h i=1 p=a+bsum=0 S=p*h/2WHILE i<=n PRINT “S=”;Ssum=sum+(i+1)/i ENDi=i+1WENDPRIN T“sum=”;sumEND 习题1.2 B组(P33)、程序:、程序:1 2 INPUT “a,b,c=”;a,b,c n=1INPUT “r,s,t=”;r,s,t p=1000d=a*s,r*b WHILE n<=7IF d?0 THEN p=p*(1+0.5)x=(s*c,b*t)/d n=n+1y=(a*t,r*c)/d WENDPRINT “x,y=”;x,y PRINT pELSE ENDPRINT “Please input again.”END IFEND、程序:、程序:3 4 INPUT “x=”;x INPUT “a=”;a INPUT “n=”;n IF x<1 THENy=x tn=0ELSE sn=0IF x<10 THEN i=1y=2*x,1 WHILE i<=nELSE tn=tn+ay=3*x,11 sn=sn+tnEND IF a=a*10END IF i=i+1PRINT “y=”;y WENDEND PRINT snEND 1(3算法案例练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75., 20083730,3、, ()2()8习题1.3 A组(P48)1、(1)57; (2)55.2、21324.2123153、(1)104; (2) (3)1278; (4). ()7()6、4习题1.3 B组(P48)n,45i,1a,0b,0c,01、算法步骤:第一步,令,,,,.第二步,输入. ai()aa,,1第三步,判断是否. 若是,则,并执行第六步. 0()60,,ai bb,,1第四步,判断是否. 若是,则,并执行第六步. 60()80,,aicc,,1第五步,判断是否80()100,,ai. 若是,则,并执行第六步.ii,,1i,45第六步,. 判断是否. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]abc,,的人数. 2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)、()程序框图:程序:11 INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y END、()程序框图:程序:12 INPUT “x=”;x IF x<0 THENy=(x,2),2 ELSEIF x=0 THENy=4ELSEy=(x,2),2 END IFEND IFPRINT “y=”;y END2、见习题1.2 B组第1题解答.3、INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.” ELSE IF t>0 AND t<=180 THEN y=0.2 ELSE IF (t,180) MOD 60,0 THEN y=0.2,0.1*(t-180),60 ELSE y=0.2,0.1*((t-180),60,1) END IF END IF PRINT “y=”;y END IF END、程序框图:程序:4 INPUT “n=”;ni=1S=0WHILE i<=nS=S+1,ii=i+1WENDPRINT “S=”;SEND5、 (1)向下的运动共经过约199.805 m i=100(2)第10次着地后反弹约0.098 m sum=0(3)全程共经过约299.609 m k=1WHILE k<=10sum=sum+ii=i,2k=k+1WENDPRINT “(1)”;sumPRINT “(2)”;iPRINT “(3)”;2*sum,100 END第二章复习参考题B组(P35) 、、1 2 INPUT “n=”;nIF n MOD 7=0 THENPRIN T “Sunday”END IFIF n MOD 7=1 THENPRINT “Monday”END IFIF n MOD 7=2 THENPRINT “Tuesday”END IFIF n MOD 7=3 THENPRINT “Wednesday”END IFIF n MOD 7=4 THENPRINT “Thursday”END IFIF n MOD 7=5 THENPRINT “Friday”END IFIF n MOD 7=6 THENPRINT “Saturday”END IFEND3xn、算法步骤:第一步,输入一个正整数和它的位数.n,1nm,m,nnn 第二步,判断是不是偶数,如果是偶数,令;如果是奇数,令.22i,1 第三步,令iix 第四步,判断(1)ni,,的第位与第位上的数字是否相等. 若是,则使的值增加1,ix仍用表示;否则,不是回文数,结束算法.im,n 第五步,判断“”是否成立. 若是,则是回文数,结束算法;否则,返回第四步.第二章统计2(1随机抽样练习(P57)1、.抽样调查和普查的比较见下表:抽样调查普查节省人力、物力和财力需要大量的人力、物力和财力可以用于带有破坏性的检查不能用于带有破坏性的检查结果与实际情况之间有误差在操作正确的情况下,能得到准确结果抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6,10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;118kk,,7.375 (2)计算间隔,由于不是一个整数,我们从总体中随机剔除6个样16本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余k,7的112位教师进行编号,计算间隔;(3)在1,7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性. 练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0,364天用简单随机抽样设计方案:制作365个号签,依次标上0,364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0,349. 制作7个分别标有0,7的号签,放在容器中充a分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为,则编号为akk,,,7(050)所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.2564298,,5、田径队运动员的总人数是(人),要得到28人的样本,占总体的比例为.72281612,,于是,应该在男运动员中随机抽取(人),在女运动员中随机抽取(人).5616,,7这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1,10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案.习题2.1 B组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程, (2)你每月的零花钱平均是多少,(3)你最喜欢看《新闻联播》吗, (4)你每天早上几点起床,(5)你每天晚上几点睡觉,要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案.2(2用样本估计总体练习(P71)364.41362.511.90,,0.191、说明:由于样本的极差为,取组距为,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为: 茎叶10 7 811 0 2 2 2 3 6 6 6 7 7 8 12 0 0 1 2 2 3 4 4 6 6 7 8 8 13 0 2 3 4由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74) 这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.s,6.55x,496.862、(1)平均重量,标准差.66.67 (2)重量位于之间有14袋白糖,所占的百分比约为,. (,)xsxs,,15.2s,12.50x,19.253、(1)略. (2)平均分,中位数为,标准差.这些数据表明这x,15.2些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,说明存在大的异常数据,值得关注. 这些异常数据使标准差增大.习题2.2 A组(P81)1、(1)茎叶图为:茎叶 (2)汞含量分布偏向于大于1.00 ppm的方向,即多数鱼的汞含量分布在大于1.00 ppm的区域. 0.0 7(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和0.2 4这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能0.3 9为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. 0.5 40.6 1 s,0.45 (4)样本平均数,样本标准差. x,1.080.7 2 (5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的0.8 1 2 4 范围内. 0.9 15 8 81.0 2 2 81.1 41.2 0 0 6 91.3 1 71.4 0 41.5 81.6 2 81.8 52.1 02、作图略. 从图形分析,发现这批棉花的纤维长度不是特别均匀,有一部分的纤维长度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在x,100已知知道至少有一个人的收入为万元,那么其他员工的收入之和为 5049(万元) x,,,,3.55010075,i,i1每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.7525(3)能,可以确定有,的员工工资在1万元以上,其中,的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.x=1.5y,1.26、甲机床的平均数,标准差;乙机床的平均数,标准差s=1.2845甲z甲. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比s,0.8718z甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略习题2.2 B组(P82)1、(1)由于测试的标准差小,所以测试结果更稳定,所以该测试做得更好一些. TT11(2)由于测出的值偏高,有利于增强队员的信心,所以应该选择测试. TT22(3)将10名运动员的测试成绩标准化,得到如下的数据:A B C D E F G H I J(20)2T,,0.00 1.50 2.00 -1.00 -1.50 -2.00 2.50 2.00 0.50 -0.50 1-1.33 1.33 1.33 -2 -2.33 -1.33 1.67 -1.67 -1.33 -1.67 (35)3T,,2从两次测试的标准化成绩来看,运动员G的平均体能最强,运动员E的平均体能最弱.2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2(3变量间的相关关系练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同.练习(P92),x,01、当时,,这个值与实际卖出的热饮杯数150不符,原因是:线性回y,147.767归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果,的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x,预报值能y,ye够等于实际值. 事实上:ybxae,,,. (这里是随机变量,是引起预报值与真实值yye之间的误差的原因之一,其大小取决于的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、 (2)回归直线如下图所示: (1)散点图如下:(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:,(2)回归方程为:. yx,,0.66954.933(3)加工零件的个数与所花费的时间呈正线性相关关系.4、(1)散点图为:, (2)回归方程为:. yx,,0.546876.425(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B组(P95)1、(1)散点图如下:,(2)回归方程为:. yx,,1.44715.843,(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为(万元). y,42.0372、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可. 第二章复习参考题A组(P100)A1、.nm2、(1)该组的数据个数,该组的频数除以全体数据总数; (2). NA3、(1)这个结果只能说明城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖A啡色,因为光顾连锁店的人使一种方便样本,不能代表城市其他人群的想法.A (2)这两种调查的差异是由样本的代表性所引起的. 因为城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)组的样本标准差为,组的样本标准差为. 由于专业裁ABS,3.730S,11.789AB判给分更符合专业规则,相似程度应该高,因此组更像是由专业人士组成的. A7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好.8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42,.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章复习参考题B组(P101)1、频率分布如下表: 分组频数频率累计频率[12.34,13.62]2 0.04 0.04(13.62,14.9]4 0.08 0.12(14.9,16.18]3 0.06 0.18(16.18,17.46]8 0.16 0.34(17.46,18.74]13 0.26 0.6(18.74,20.02]11 0.22 0.82(20.02,21.3]3 0.06 0.88 从表中看出当把指标定为17.46千元 (21.3,22.58]3 0.06 0.94 时,月65,的推销员经过努力才能完成销 (22.58,23.86] 1 0.02 0.96 售指标.(23.86,25.14] 2 0.04 12、(1)数据的散点图如下:, (2)用表示身高,表示年龄,则数据的回归方程为. yxyx,,6.31771.984(3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3,16岁的身高年均增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3(1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1,1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)DB1、0.7 2、0.615 3、0.4 4、 5、习题3.1 A组(P123)D1、. 2、(1)0; (2)0.2; (3)1.439070,0.067,0.14010.891,,3、(1); (2); (3). 6456456454、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到11红球的概率为,在第二种下也为. 第4次摸到红球的频率与第1次摸到红球的频率应10101该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是. 10习题3.1 B组(P124)1、. D2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3(2古典概率练习(P130)1111、. 2、. 3、. 1076练习(P133)331、,. 88112132、(1); (2); (3); (4); 1313413210(5); (6); (7); (8)1. 132说明:模拟的方法有两种.(1)把1,52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1,4的随机数,代表4个花色;第二次产生1,13的随机数,代表牌号.43、(1)不可能事件,概率为0; (2)随机事件,概率为; (3)必然事件,概率为91;(4)让计算机产生1,9的随机数,1,4代表白球,5,9代表黑球.14、(1); (2)略; 6(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)11、游戏1:取红球与取白球的概率都为,因此规则是公平的. 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 12、程序:3练习(P29) 14、2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.34、程序框图:5(1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m B 组(P35)1 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第二章统计2.1随机抽样练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)+≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.a k k显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)(1)散点图如下: 2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等. 2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈. 4、略 5、0.13 6、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。

相关文档
最新文档