莱阳市实验中学2018-2019学年上学期高二数学12月月考试题含解析
2018-2019学年上学期高二数学12月月考试题含解析(1689)
铁岭县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3122. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .03. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .4. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13(D )12-5. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .6. 函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π7. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .C .D .26cm8. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015D .20161111]9. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A 51B 15- C. 221 D2110.某几何体的三视图如图所示,该几何体的体积是()A .B .C .D .11.P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .a B .b C .cD .a+b ﹣c 12.若椭圆+=1的离心率e=,则m 的值为( )A.1 B.或C.D.3或二、填空题13.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:①若m=,则a5=2;②若a3=3,则m可以取3个不同的值;③若m=,则数列{a n}是周期为5的周期数列.其中正确命题的序号是.14.定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(log8x)>0的解集是.15.设变量x,y满足约束条件,则的最小值为.16.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.17.已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是.18()23k x=-+有两个不等实根,则的取值范围是.三、解答题19.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C (1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程.20.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.21.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求: (1)p q ,的值;(2)数列{}n x 前项和n S 的公式.22.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据: x 2 4 5 6 8 y 30 40 60 50 70(1)画出散点图; (2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.23.设p:关于x的不等式a x>1的解集是{x|x<0};q:函数的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.24.已知命题p:x2﹣2x+a≥0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围.铁岭县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.2.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.3.【答案】D【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,∴|AB|的最小值为4,当AB⊥x轴时,|AB|取得最小值为4,∴=4,解得b2=6,b=.故选:D.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.4.【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C. 5. 【答案】C【解析】解:由于q=2,∴∴;故选:C .6. 【答案】C【解析】解:函数y=2sin 2x+sin2x=2×+sin2x=sin (2x ﹣)+1,则函数的最小正周期为=π,故选:C .【点评】本题主要考查三角恒等变换,函数y=Asin (ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.7. 【答案】D 【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 8. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()0,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)9. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值.10.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.11.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.12.【答案】D【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x轴和y轴进行分类讨论.二、填空题13.【答案】①②.【解析】解:对于①由a n+1=,且a1=m=<1,所以,>1,,,∴a5=2 故①正确;对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.若,则.若a1>1a1=,若0<a1≤1则a1=3,不合题意.所以,a3=2时,m即a1的不同取值由3个.故②正确;若a=m=>1,则a2=,所a3=>1,a4=1故在a1=时,数列{a}是周期为3的周期数列,③错;n故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目14.【答案】(0,)∪(64,+∞).【解析】解:∵f(x)是定义在R上的偶函数,∴f(log8x)>0,等价为:f(|log8x|)>f(2),又f(x)在[0,+∞)上为增函数,∴|log8x|>2,∴log8x>2或log8x<﹣2,∴x>64或0<x<.即不等式的解集为{x|x>64或0<x<}故答案为:(0,)∪(64,+∞)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.15.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.16.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.17.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.18.【答案】53,124⎛⎤⎥⎝⎦ 【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+与圆相切时,即2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.三、解答题19.【答案】 【解析】解(1)∵,∴根据直线的斜截式方程,直线AB:,化成一般式为:4x ﹣3y+12=0,∴根据点到直线的距离公式,点C 到直线AB的距离为; (2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y ﹣7=0,∴AB 边的高所在直线的方程为3x+4y ﹣7=0.20.【答案】【解析】解:(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,即|﹣x|﹣|+x|≥a 2﹣3a恒成立.由于f (x )=|﹣x|﹣|+x|=,故f (x )的最小值为﹣2,∴﹣2≥a 2﹣3a ,求得1≤a ≤2.(Ⅱ)由于f (x )的最大值为2,∴f (m )≤2,f (n )≤2,若f (m )+f (n )=4,∴m <n ≤﹣,∴m+n <﹣5.【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.21.【答案】(1)1,1==q p ;(2)2)1(221++-=-n n S n n . 考点:等差,等比数列通项公式,数列求和. 22.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.23.【答案】【解析】解:∵关于x的不等式a x>1的解集是{x|x<0},∴0<a<1;故命题p为真时,0<a<1;∵函数的定义域为R,∴⇒a≥,由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,当p真q假时,则⇒0<a<;当q真p假时,则⇒a≥1,综上实数a的取值范围是(0,)∪[1,+∞).24.【答案】【解析】解:若P是真命题.则△=4﹣4a≤0∴a≥1;…(3分)若q为真命题,则方程x2+2ax+2﹣a=0有实根,∴△=4a2﹣4(2﹣a)≥0,即,a≥1或a≤﹣2,…(6分)依题意得,当p真q假时,得a∈ϕ;…(8分)当p假q真时,得a≤﹣2.…(10分)综上所述:a的取值范围为a≤﹣2.…(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.。
莱州市高中2018-2019学年上学期高二数学12月月考试题含解析
莱州市高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x 则)1(f 的值为( )A .8B .81 C .2 D .212. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%3. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]4. 有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .35. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x +y ,则( )A.x=﹣B.x=C.x=﹣D.x=6.已知函数f(x)=,则=()A.B. C.9 D.﹣97.已知A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},则a的值是()A.a=3 B.a=﹣3 C.a=±3 D.a=5或a=±38.已知两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,则实数a等于()A.1或﹣3 B.﹣1或3 C.1或3 D.﹣1或﹣39.阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()A.i>4?B.i>5?C.i>6?D.i>7?10.“方程+=1表示椭圆”是“﹣3<m<5”的()条件.A.必要不充分B.充要C.充分不必要D.不充分不必要11.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为()A.3,6,9,12,15,18 B.4,8,12,16,20,24C.2,7,12,17,22,27 D.6,10,14,18,22,2612.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.(﹣∞,﹣2)B. D.上是减函数,那么b+c()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣二、填空题13.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x1,x2,…,x90和y1,y2,…,y90,在90组数对(x i,y i)(1≤i≤90,i∈N*)中,经统计有25组数对满足,则以此估计的π值为.14.阅读如图所示的程序框图,则输出结果S的值为.【命题意图】本题考查程序框图功能的识别,并且与数列的前n项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.15.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .16.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .17.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+,则sin cos()4C B π-+取最大值时C = .18.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.三、解答题19.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力20.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1; (II )求证:EF ∥平面B 1BCC 1; (III )求四棱锥B ﹣A 1ACC 1的体积.21.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为222x t y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.22.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n 人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人. (1)求n 的值;(2)把在前排就坐的高二代表队6人分别记为a ,b ,c ,d ,e ,f ,现随机从中抽取2人上台抽奖.求a 和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.23.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.2.072 2.7063.841 5.024(参考公式:,其中n=a+b+c+d)24.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.莱州市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:()()311328f f -===,故选B 。
莱阳市高级中学2018-2019学年高二上学期第一次月考试卷数学
莱阳市高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设方程|x2+3x﹣3|=a的解的个数为m,则m不可能等于()A.1 B.2 C.3 D.42.命题“∃x∈R,使得x2<1”的否定是()A.∀x∈R,都有x2<1 B.∃x∈R,使得x2>1C.∃x∈R,使得x2≥1 D.∀x∈R,都有x≤﹣1或x≥13.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a4.已知直线a,b都与平面α相交,则a,b的位置关系是()A.平行 B.相交 C.异面 D.以上都有可能5.设集合,,则( )ABCD6.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A.i≥7?B.i>15?C.i≥15?D.i>31?7.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为()A.64 B.32 C.643D.3238.已知向量=(﹣1,3),=(x,2),且,则x=()A.B.C.D.9.已知直线y=ax+1经过抛物线y2=4x的焦点,则该直线的倾斜角为()A.0 B.C.D.10.设集合M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k的取值范围是()A.(﹣∞,﹣1] B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1)11.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A.B.C.D.12.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④二、填空题13.如图,函数f(x)的图象为折线AC B,则不等式f(x)≥log2(x+1)的解集是.14.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为.15.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.16.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .17.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .18.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.三、解答题19.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.20.设A (x 0,y 0)(x 0,y 0≠0)是椭圆T :+y 2=1(m >0)上一点,它关于y 轴、原点、x 轴的对称点依次为B ,C ,D .E 是椭圆T 上不同于A 的另外一点,且AE ⊥AC ,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.21.已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB;(2)证明:平面PMB⊥平面PAD;(3)求点A到平面PMB的距离.22.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积V =,求A 到平面PBC 的距离.111]23.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AD ,点F 是棱PD 的中点,点E 为CD 的中点. (1)证明:EF ∥平面PAC ; (2)证明:AF ⊥EF .24.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.莱阳市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.2.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.3.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C4.【答案】D【解析】解:如图,在正方体ABCD﹣A1B1C1D1中,AA1∩平面ABCD=A,BB1∩平面ABCD=B,AA1∥BB1;AA1∩平面ABCD=A,AB1∩平面ABCD=A,AA1与AB1相交;AA1∩平面ABCD=A,CD1∩平面ABCD=C,AA1与CD1异面.∴直线a,b都与平面α相交,则a,b的位置关系是相交、平行或异面.故选:D.5.【答案】C【解析】送分题,直接考察补集的概念,,故选C。
莱州市实验中学2018-2019学年上学期高二数学12月月考试题含解析
莱州市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知函数f(x)=m(x﹣)﹣2lnx(m∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)<g (x0)成立,则实数m的范围是()A.(﹣∞,] B.(﹣∞,)C.(﹣∞,0] D.(﹣∞,0)2.在△ABC中,a2=b2+c2+bc,则A等于()A.120°B.60°C.45°D.30°3.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()A.B.C.D.4.平面α与平面β平行的条件可以是()A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行5.已知集合M={0,1,2},则下列关系式正确的是()A.{0}∈M B.{0}∉M C.0∈M D.0⊆M6.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有()A.34种B.35种C.120种D.140种7.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)8.已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是()A.2 B.C.D.9.已知函数f(x)=31+|x|﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A .B .C .(﹣,)D .10.已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .11.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.12.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,] D .(﹣∞,]二、填空题13.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .14.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k+1)”;其中所有正确结论的序号是 .15.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.16.(文科)与直线10x -=垂直的直线的倾斜角为___________.17.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .18.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .三、解答题19.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
莱阳市高中2018-2019学年上学期高二数学12月月考试题含解析
莱阳市高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知向量=(﹣1,3),=(x ,2),且,则x=()A .B .C .D .2. 若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1 B .2C .3D .43. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是()A .(1,+∞)B .(﹣∞,﹣1)C .D .4. 若复数满足(为虚数单位),则复数的虚部为( )71i i z+=A .1 B . C .D .1-i-5. 设a ,b 为实数,若复数,则a ﹣b=()A .﹣2B .﹣1C .1D .26. 曲线y=x 3﹣3x 2+1在点(1,﹣1)处的切线方程为( )A .y=3x ﹣4B .y=﹣3x+2C .y=﹣4x+3D .y=4x ﹣57. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .8. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是()A .f (a+1)≥f (b+2)B .f (a+1)>f (b+2)C .f (a+1)≤f (b+2)D .f (a+1)<f (b+2)9. 集合的真子集共有( ){}1,2,3A .个B .个C .个D .个10.已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( )A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}11.A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )A .(0,1)B .(﹣∞,﹣2)C .(﹣2,0)D .(﹣∞,﹣2)∪(0,1) 12.方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称二、填空题13.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC ∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.14.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 . 15.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .16.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .17.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小;③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数;④四棱锥C ′﹣MENF 的体积v=h (x )为常函数;以上命题中真命题的序号为 . 18.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形PACB 的周长最小时,△ABC 的面积为________.三、解答题19.函数。
莱阳市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
莱阳市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知三次函数f (x )=ax 3+bx 2+cx+d的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣32. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( ) A .65 B.5 C.5D.53. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥β D .若α⊥β,m ⊥β,m ⊄α,则m ∥α4.设集合( )A. B.C.D.5. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 6. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -= 7. 设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则( )A .f (2)>e 2f (0),fB .f (2)<e 2f (0),fC .f (2)>e 2f (0),fD .f (2)<e 2f (0),f8. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题. 9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .210.奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,11.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°12.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4二、填空题13.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .14.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
2018-2019学年上学期高二数学12月月考试题含解析(529)
正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 112. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=3. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q 是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( ) A .①④B .②③C .③④D .②④4. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.5. f ()=,则f (2)=( )A .3B .1C .2D .6. 设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i7. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .08. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .369. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)10.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .311.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞12.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种二、填空题13.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .14.已知平面向量a ,b 的夹角为3π,6=-b a,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .18.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.三、解答题19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.20.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.24.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积.正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵a n =29﹣n ,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C2. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .3. 【答案】D【解析】解:∵命题p ;对任意x ∈R ,2x 2﹣2x+1≤0是假命题, 命题q :存在x ∈R ,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D .4. 【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2c o s (2)6f x x π=-,则5(0)2c o s (36f π=-=,故选D.5. 【答案】A【解析】解:∵f ()=,∴f(2)=f()==3.故选:A.6.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.7.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.8.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1). 故答案为:A .10.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .11.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8k x =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
2018-2019学年高二数学12月月考试题文 (II)
2018-2019学年高二数学12月月考试题文 (II)一. 选择题(本题共12道小题,每题5分,共60分) 1. 命题“若,则”的逆否命题为( ) A . 若,则 B . 若,则 C . 若,则 D . 若,则2.执行如图所示的程序框图,输出的值为( ) A .2 B ) C . D . 3.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查。
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈。
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名。
为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本。
较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样4.相关变量x 、y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3 D .0.4 5.设,则“”是“”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 6. 下列命题中,假命题的是( )A .∃x 0∈R ,ln x 0<0B .∀x ∈(-∞,0),e x>0C .∀x >0 , 5x >3xD .∃x 0∈(0,+∞),⎝ ⎛⎭⎪⎫12x 0<⎝ ⎛⎭⎪⎫13x 07.对变量有观测数据,得散点图(1);对变量有观测数据(,得散点图(2),由这两个散点图可以判断( )A.变量与正相关,与正相关 B.变量与正相关,与负相关C.变量与负相关,与正相关 D.变量与负相关,与负相关8.某工厂生成三种不同型号的产品,产品的数量之比依次为,现在用分层抽样的方法抽出容量为的样本,样本中型号产品有15件,那么样本容量为.A.50 B.60 C.70 D.809. 如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是( )A.12.5,12.5 B.13,13 C.13.5,12.5 D.13.5,1310. 设某校共有112名教师,为了支援西部教育事业,现要从中抽取16名组成暑假西部讲师团,教师从1~112进行编号.按编号顺序平均分成16组(1~7号,8~14号,…,106~112号),若第8组应抽出的号码为52,则在第一组中按此抽签方法确定的号码是()A.1 B.2 C.3 D.411. 已知命题设,则“”是“”的必要不充分条件;命题若a∙b<0,则a 与b的夹角为钝角。
莱阳市一中2018-2019学年高二上学期第二次月考试卷数学
莱阳市一中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=1相切,则双曲线的离心率为()A.B.C. D.2.已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=()A.B.C.﹣D.﹣3.若集合M={y|y=2x,x≤1},N={x|≤0},则N∩M()A.(1﹣1,] B.(0,1] C.[﹣1,1] D.(﹣1,2]4.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.2 B. C. D.45.已知一三棱锥的三视图如图所示,那么它的体积为()A.13B.23C.1D.26.某三棱锥的三视图如图所示,该三棱锥的表面积是A、28+B、30+C、56+D、60+7.如图所示,程序执行后的输出结果为()A .﹣1B .0C .1D .28. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )A .720B .270C .390D .3009. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=110.方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分11.函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)12.过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( ) A .1 B .2C .3D .4二、填空题13.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .14.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.15.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .16.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)17.若函数y=ln (﹣2x )为奇函数,则a= .18.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .三、解答题19.设函数f (x )=lnx ﹣ax 2﹣bx .(1)当a=2,b=1时,求函数f (x )的单调区间;(2)令F (x )=f (x )+ax 2+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求实数a 的取值范围;(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2]内有唯一实数解,求实数m 的取值范围.20.已知函数f(x)=ax2﹣2lnx.(Ⅰ)若f(x)在x=e处取得极值,求a的值;(Ⅱ)若x∈(0,e],求f(x)的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.21.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.22.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.莱阳市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.2.【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣.故选:C.【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.3.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4. 【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c , 由椭圆和双曲线的定义可知, 设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1MF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2,即=﹣1,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e 2=时取等号.即取得最大值且为.故选C .【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.5. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 6. 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥, 所求表面积为三棱锥四个面的面积之和。
莱阳市民族中学2018-2019学年上学期高二数学12月月考试题含解析
交换机的端口聚合配置技术原理1)端口聚合(又称为链路聚合),将交换机上的多个端口在物理上连接起来,在逻辑上捆绑在一起,形成一个拥有较大宽带的端口,可以实现负载分担,并提供冗余链路。
2)端口聚合使用的是EtherChannel特性,在交换机到交换机之间提供冗余的高速的连接方式。
将两个设备之间多条FastEthernet或GigabitEthernet物理链路捆在一起组成一条设备间逻辑链路,从而增强带宽,提供冗余。
3)两台交换机到计算机的速率都是100M,SW1和SW2之间虽有两条100M 的物理通道相连,可由于生成树的原因,只有100M可用,交换机之间的链路很容易形成瓶颈,使用端口聚合技术,把两个100M链路聚合成一个200M的逻辑链路,当一条链路出现故障,另一条链路会继续工作。
4)一台S2000系列以太网交换机只能有1个汇聚组,1个汇聚组最多可以有4个端口。
组内的端口号必须连续,但对起始端口无特殊要求。
在一个端口汇聚组中,端口号最小的作为主端口,其他的作为成员端口。
同一个汇聚组中成员端口的链路类型与主端口的链路类型保持一致,即如果主端口为Trunk端口,则成员端口也为Trunk端口;如主端口的链路类型改为Access端口,则成员端口的链路类型也变为Access端口。
5)所有参加聚合的端口都必须工作在全双工模式下,且工作速率相同才能进行聚合。
并且聚合功能需要在链路两端同时配置方能生效。
6)端口聚合主要应用的场合:交换机与交换机之间的连接:汇聚层交换机到核心层交换机或核心层交换机之间。
交换机与服务器之间的连接:集群服务器采用多网卡与交换机连接提供集中访问。
交换机与路由器之间的连接:交换机和路由器采用端口聚合解决广域网和局域网连接瓶颈。
服务器和路由器之间的连接:集群服务器采用多网卡与路由器连接提供集中访问实验设备Switch_2960 2台;PC 4台;直连线实验设备配置PC0设置192.168.1.2255.255.255.0PC1设置192.168.1.3255.255.255.0实验验证。
莱阳市一中2018-2019学年上学期高二数学12月月考试题含解析
莱阳市一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是()A.x=πB.C.D.2.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR33.如图是一个多面体的三视图,则其全面积为()A.B.C.D.4.∃x∈R,x2﹣2x+3>0的否定是()A.不存在x∈R,使∃x2﹣2x+3≥0 B.∃x∈R,x2﹣2x+3≤0C.∀x∈R,x2﹣2x+3≤0 D.∀x∈R,x2﹣2x+3>05.双曲线4x2+ty2﹣4t=0的虚轴长等于()A. B.﹣2t C.D.46.设集合A={x|y=ln(x﹣1)},集合B={y|y=2x},则A B()A.(0,+∞)B.(1,+∞)C.(0,1) D.(1,2)7.设m是实数,若函数f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,但不是偶函数,则下列关于函数f (x)的性质叙述正确的是()A.只有减区间没有增区间 B.是f(x)的增区间C.m=±1 D.最小值为﹣38.抛物线x=﹣4y2的准线方程为()A.y=1 B.y=C.x=1 D.x=9. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .2 10.已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)11.与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条12.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .4二、填空题13.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .14.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .15.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为16.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .17.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .18.命题“若1x ≥,则2421x x -+≥-”的否命题为.三、解答题19.已知直线l 1:(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系,圆C 1:ρ2﹣2ρcos θ﹣4ρsin θ+6=0.(1)求圆C 1的直角坐标方程,直线l 1的极坐标方程; (2)设l 1与C 1的交点为M ,N ,求△C 1MN 的面积.20.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.21.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.22.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(∁U A)∩B;(3)求∁U(A∩B).23.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)①求实数a的值;②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.24.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.莱阳市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x ,再向右平移个单位得到y=cos[(x )],由(x )=k π,得x =2k π,即+2k π,k ∈Z ,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.2. 【答案】A【解析】解:2πr=πR ,所以r=,则h=,所以V=故选A3. 【答案】C【解析】解:由三视图可知几何体是一个正三棱柱, 底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C .【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.4. 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x ∈R ,x 2﹣2x+3>0的否定是:∀x ∈R ,x 2﹣2x+3≤0. 故选:C .5.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.6.【答案】A【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)则A∪B=(0,+∞)故选:A.【点评】本题考查了集合的化简与运算问题,是基础题目.7.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.8.【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .9. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值.10.【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.11.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0的方程可化为,;; ∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.∴两圆的圆心距=r 2﹣r 1; ∴两个圆外切,∴它们只有1条内公切线,2条外公切线. 故选C .12.【答案】A【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),∴a n =5t 2﹣4t=﹣,∴a n ∈,当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.∴q ﹣p=2﹣1=1, 故选:A .【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.二、填空题13.【答案】2016.【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.14.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.15.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=016.【答案】(﹣∞,﹣1).【解析】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增 由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1) 故答案为:(﹣∞,﹣1)17.【答案】 4 .【解析】解:由已知可得直线AF 的方程为y=(x ﹣1),联立直线与抛物线方程消元得:3x 2﹣10x+3=0,解之得:x 1=3,x 2=(据题意应舍去),由抛物线定义可得:AF=x 1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.18.【答案】若1x <,则2421x x -+<- 【解析】试题分析:若1x <,则2421x x -+<-,否命题要求条件和结论都否定. 考点:否命题.三、解答题19.【答案】 【解析】解:(1)∵,将其代入C 1得:,∴圆C 1的直角坐标方程为:. 由直线l 1:(t 为参数),消去参数可得:y=x ,可得(ρ∈R ). ∴直线l 1的极坐标方程为:(ρ∈R ).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x<1}∴A∩B={x|0<x<1}(2)若A∩B=∅当A=∅时,有a﹣1≥2a+1∴a≤﹣2当A≠∅时,有∴﹣2<a≤或a≥2综上可得,或a≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.21.【答案】【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.那么:A∩B={x|6≥x≥3}.∴C R(A∩B)={x|x<3或x>6}.(2)C={x|x≤a},∵A C,∴a≥6∴故得实数a的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.22.【答案】【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)A∪B={1,2,3,4,5,7}(2)(∁U A)={1,3,6,7}∴(∁U A)∩B={1,3,7}(3)∵A∩B={5}∁U(A∩B)={1,2,3,4,6,7}.【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.23.【答案】【解析】解:(1)因为抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,所以函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,因为函数f(x)在[﹣1,3m]上不单调,所以3m>1,…(2分)得,…(3分)(2)①因为f(1)=g(1),所以﹣2+a=0,…(4分)所以实数a的值为2.…②因为t1=f(x)=x2﹣2x+1=(x﹣1)2,t2=g(x)=log2x,t3=2x,所以当x∈(0,1)时,t1∈(0,1),…(7分)t2∈(﹣∞,0),…(9分)t3∈(1,2),…(11分)所以t2<t1<t3.…(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.24.【答案】【解析】解:(1)∵OC=OD,∴∠OCD=∠ODC,∴∠OAC=∠ODB.∵∠BOD=∠A,∴△OBD∽△AOC.∴,∵OC=OD=6,AC=4,∴,∴BD=9.…(2)证明:∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.∴∠AOD=180°﹣∠A﹣∠ODC=180°﹣∠COD﹣∠OCD=∠ADO.∴AD=AO …【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法.第11 页,共11 页。
莱阳市三中2018-2019学年上学期高二数学12月月考试题含解析
莱阳市三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,20172. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( ) A .3条 B .2条 C .1条 D .0条3. 在极坐标系中,圆的圆心的极坐标系是( )。
ABC D4. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4} C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}5. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .﹣2B .2C .﹣98D .986. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若5L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B )0⎛ ⎝⎦ (C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤ ⎝⎛5540, 7. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .108. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( )A .[﹣2,0]B .[﹣3,﹣1]C .[﹣5,1]D .[﹣2,1)9. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( ) A.B .6C.D .310.设sin(+θ)=,则sin2θ=( )A.﹣ B.﹣ C. D.11.在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力. 12.不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .15.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示). 16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 17.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .18.如图,函数f(x)的图象为折线AC B,则不等式f(x)≥log2(x+1)的解集是.三、解答题19.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.20.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.(Ⅰ)求函数f (x )的解析式;(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.21.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.22.已知函数f (x )=1+(﹣2<x ≤2).(1)用分段函数的形式表示函数; (2)画出该函数的图象; (3)写出该函数的值域.23.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II )在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.24.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.莱阳市三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】2.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.3.【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
莱阳市高级中学2018-2019学年上学期高二数学12月月考试题含解析
莱阳市高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16B .6C .4D .82. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定3. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直4. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=25. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A .B .C .D .06. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④7. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位8. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.9. 下列语句所表示的事件不具有相关关系的是( )A .瑞雪兆丰年B .名师出高徒C .吸烟有害健康D .喜鹊叫喜10.以的焦点为顶点,顶点为焦点的椭圆方程为( )A. B. C. D.11.已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 12.已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣2二、填空题13.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .14.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .15.已知x 是400和1600的等差中项,则x= .16.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .17.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .18.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN的取值范围为.【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.三、解答题19.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.20.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.21.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.(Ⅰ)求底面积并用含x的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?22.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.23.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.24.已知函数322()1f x x ax a x =+--,0a >. (1)当2a =时,求函数()f x 的单调区间;(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.莱阳市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S △ABC =absinC==8.故选:D .2. 【答案】C【解析】解:设过右焦点F 的弦为AB ,右准线为l ,A 、B 在l 上的射影分别为C 、D连接AC 、BD ,设AB 的中点为M ,作MN ⊥l 于N根据圆锥曲线的统一定义,可得==e ,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB 为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|) ∴圆M 到l 的距离|MN|>r ,可得直线l 与以AB 为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F ,求以经过F 的弦AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.3. 【答案】B【解析】解:∵ =(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥, 因此l ⊥α.故选:B.4.【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos+cos2xsin)=2sin(2x+),∴T==π,A=2故选:B5.【答案】B【解析】解法一:∵,∴(C为常数),取x=1得,再取x=0得,即得,∴,故选B.解法二:∵,∴,∴,故选B.【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.6.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.7.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.8.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.9.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.10.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.11.【答案】A【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 12.【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D .二、填空题13.【答案】 甲 .【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= [(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.14.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.15.【答案】1000.【解析】解:∵x是400和1600的等差中项,∴x==1000.故答案为:1000.16.【答案】4.【解析】解:双曲线x 2﹣my 2=1化为x 2﹣=1,∴a 2=1,b 2=,∵实轴长是虚轴长的2倍,∴2a=2×2b ,化为a 2=4b 2,即1=,解得m=4. 故答案为:4.【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.17.【答案】 (﹣1,﹣1) .【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).18.【答案】(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值范围为.22yxB三、解答题19.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f(x)min=…6分(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,∴sin(+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.20.【答案】【解析】解:(I)∵椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.∴点在椭圆G上,又离心率为,∴,解得∴椭圆G的方程为.(II)由(I)可知,椭圆G的方程为.∴点F的坐标为(﹣1,0).设点P的坐标为(x0,y0)(x0≠﹣1,x0≠0),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.21.【答案】【解析】解:(Ⅰ)设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则(Ⅱ)设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元.答:x=40时,总造价最低为297600元.22.【答案】【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.由|2|21x m ≤+,得1122m x m --≤≤+,……………………2分 所以,由122m +=,解得32m =.……………………4分(2)不等式()2|23|2yy a f x x ≤+++等价于|21||23|22y y a x x --+≤+,由题意知max (|21||23|)22yy a x x --+≤+.……………………6分23.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为n n a 3=.………………5分24.【答案】(1)()f x 的单调递增区间是(),2-∞-和2,3⎛⎫+∞ ⎪⎝⎭,单调递减区间为2(2,)3-;(2)[1,)+∞.【解析】试题分析:(1) 2a =时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;(2) 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.试题解析:(1)当2a =时,32()241f x x x x =+--,所以2'()344(32)(2)f x x x x x =+-=-+, 由'()0f x >,得23x >或2x <-, 所以函数()f x 的单调递减区间为2(2,)3-.(2)要使()0f x ≤在[1,)+∞上有解,只要()f x 在区间[1,)+∞上的最小值小于等于0. 因为22'()32(3)()f x x ax a x a x a =+-=-+,令'()0f x =,得103ax =>,20x a =-<.1考点:导数与函数的单调性;分类讨论思想.。
莱阳市二中2018-2019学年上学期高二数学12月月考试题含解析
莱阳市二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A .B .C .D .2. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠ ,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个 3. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .4. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 5. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 6. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -= 7. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>08. 如果执行如图所示的程序框图,那么输出的a=( )A .2B .C .﹣1D .以上都不正确9. 已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π10.已知平面向量=(1,2),=(﹣2,m ),且∥,则=( ) A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)11.如图所示,程序执行后的输出结果为( )A .﹣1B .0C .1D .212.已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .二、填空题13.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .14.已知数列的前项和是, 则数列的通项__________15.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足A B =∅ ,{}|52A B x x =-<≤ ,求实数a =__________.16.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .17.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 18.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .三、解答题19.设不等式的解集为.(1)求集合; (2)若,∈,试比较与的大小。
莱阳市高中2018-2019学年高二上学期第一次月考试卷数学
优选高中模拟试卷莱阳市高中 2018-2019 学年高二上学期第一次月考试卷数学班级 __________姓名__________分数__________一、选择题1.已知直线x﹣ y+a=0 与圆心为 C 的圆 x2+y 2+2x﹣ 4y+7=0 订交于 A ,B 两点,且? =4,则实数 a 的值为()A.或﹣B.或3C.或5D.3或52.是首项,公差的等差数列,假如,则序号等于()A .667B . 668C. 669 D .6703.过直线 3x﹣2y+3=0 与 x+y ﹣4=0 的交点,与直线2x+y ﹣ 1=0 平行的直线方程为()A .2x+y ﹣ 5=0B . 2x﹣ y+1=0C. x+2y ﹣ 7=0 D .x﹣ 2y+5=04.阅读以下图的程序框图,运转相应的程序.若该程序运转后输出的结果不大于20,则输入的整数i 的最大值为()A .3B.4C.5D.65.已知两点M (1,),N(﹣4,﹣),给出以下曲线方程:①4x+2y ﹣ 1=0 ;② x2+y 2=3;2③+y =1 ;④﹣ y2=1.在曲线上存在点P 知足 |MP|=|NP|的全部曲线方程是()A .①③B .②④C .①②③D.②③④6.一个几何体的三视图以下图,假如该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC. 16πD. 48π7.以下图,在平行六面体ABCD ﹣ A1 B1C1D1中,点 E 为上底面对角线 A 1C1的中点,若=+x+y,则()A .x= ﹣B .x= C. x= ﹣D. x=8.已知 a∈R,复数 z= ( a﹣2i )( 1+i )( i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点 M 在第四”)象限的(A .充足而不用要条件B .必需而不充足条件C.充足必需条件 D .既不充足也不用要条件9.设 i 是虚数单位,若 z=cosθ+isin θ且对应的点位于复平面的第二象限,则θ位于()A .第一象限B .第二象限C .第三象限D .第四象限10.已知 PD⊥矩形 ABCD 所在的平面,图中互相垂直的平面有()A.2 对 B.3对 C.4对 D.5对11.某单位安排甲、乙、丙三人在某月1 日至 12 日值班,每人 4 天.甲说:我在 1 日和 3 日都有值班;乙说:我在8 日和 9 日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必然值班的日期是()A.2日和 5日B.5日和 6日C.6 日和 11 日D.2 日和 11 日12.函数 y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣ cos2x 的图象()A .向左平移个单位获得 B.向右平移个单位获得C.向左平移个单位获得 D.向左右平移个单位获得二、填空题13.设双曲线﹣=1, F1, F2 是其两个焦点,点M 在双曲线上.若∠ F1 MF2 =90°,则△F1MF 2的面积是.14.某高中共有学生1000 名,此中高一年级共有学生380 人,高二年级男生有180 人 .假如在全校学生中抽取 1 名学生,抽到高二年级女生的概率为0.19 ,先采纳分层抽样(按年级分层)在全校抽取100 人,则应在高三年级中抽取的人数等于.15.圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm 的点 A 处有一点蜜糖. A 点正对面的外壁(不是 A 点的外壁)距杯底 2cm 的点 B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少cm.(不计杯壁厚度与小虫的尺寸)16.设不等式组表示的平面地区为 D ,在地区 D 内随机取一个点,则此点到坐标原点的距离大于 2 的概率是.17.以点( 1, 3)和( 5,﹣ 1)为端点的线段的中垂线的方程是.18.假如直线3ax+y ﹣ 1=0 与直线( 1﹣ 2a) x+ay+1=0 平行.那么 a 等于.三、解答题19.(此题满分12 分)为了认识某地域心肺疾病能否与性别有关,在某医院随机地对住院的50 人进行了问卷检查,获得了以下的2 2 列联表:患心肺疾病患心肺疾病共计男20525女10 15 25共计30 20 50( 1)用分层抽样的方法在患心肺疾病的人群中抽 6 人,此中男性抽多少人?( 2)在上述抽取的 6 人中选 2 人,求恰有一名女性的概率 .( 3)为了研究心肺疾病能否与性别有关,请计算出统计量K 2,判断心肺疾病与性别能否有关?下边的临界值表供参照:P(K 2 k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参照公式: K 2 n(ad bc)2 ,此中 n a b c d )(a b)(c d)(a c)(b d)20.计算:(1 ) 8 +(﹣)0﹣;(2 )lg25+lg2 ﹣l og 29 ×log 32 .21.已知会合2 3x+1 0} Q={x| x a x a 1 0} P={x|2x ﹣≤ ,(﹣)(﹣﹣)≤ .(1)若 a=1,求 P∩Q;( 2)若 x∈P 是 x∈Q 的充足条件,务实数 a 的取值范围.22.为配合国庆黄金周,促使旅行经济的发展,某火车站在检查中发现:开始售票前,已有 a 人在排队等待购票.开始售票后,排队的人数均匀每分钟增添 b 人.假定每个窗口的售票速度为 c 人 /min ,且当开放 2 个窗口时, 25min 后恰巧不会出现排队现象(即排队的人恰巧购完);若同时开放 3 个窗口,则15min 后恰巧不会出现排队现象.若要求售票10min 后不会出现排队现象,则起码需要同时开几个窗口?23 .在长方体 ABCD ﹣ A 1B1 C1D 1中, AB=BC=1 ,AA 1=2, E 为 BB 1中点.(Ⅰ)证明: AC ⊥D 1E;(Ⅱ)求 DE 与平面 AD 1E 所成角的正弦值;(Ⅲ)在棱 AD 上能否存在一点 P,使得 BP∥平面 AD 1E?若存在,求DP 的长;若不存在,说明原因.24.已知函数f( x0=.(1)画出 y=f ( x)的图象,并指出函数的单一递加区间和递减区间;(2)解不等式 f (x﹣ 1)≤﹣.莱阳市高中 2018-2019 学年高二上学期第一次月考试卷数学(参照答案)一、选择题1.【答案】 C【分析】解:圆 x2+y2+2x﹣ 4y+7=0 ,可化为( x+)2+(y﹣2)2=8.∵? =4,∴2 ?2 cos∠ACB=4∴cos∠ACB=,∴∠ACB=60 °∴圆心到直线的距离为,∴= ,∴a= 或 5 .应选: C.2.【答案】C【分析】由已知,由得,应选 C答案: C3.【答案】 A【分析】解:联立,得 x=1, y=3 ,∴交点为( 1, 3),过直线 3x﹣ 2y+3=0 与 x+y ﹣ 4=0 的交点,与直线 2x+y ﹣1=0 平行的直线方程为:2x+y+c=0 ,把点( 1, 3)代入,得: 2+3+c=0 ,解得 c= ﹣5,∴直线方程是: 2x+y ﹣ 5=0,应选: A.4.【答案】 B【分析】解:模拟履行程序框图,可得s=0, n=0知足条件n< i , s=2, n=1知足条件n< i , s=5, n=2知足条件n< i , s=10,n=3知足条件n< i , s=19,n=4知足条件n< i , s=36,n=5所以,若该程序运转后输出的结果不大于20,则输入的整数i 的最大值为4,有 n=4 时,不知足条件 n< i ,退出循环,输出 s 的值为 19.应选: B.【评论】此题主要考察了循环构造的程序框图,属于基础题.5.【答案】 D【分析】解:要使这些曲线上存在点P 知足 |MP|=|NP|,需曲线与 MN 的垂直均分线订交.MN 的中点坐标为(﹣, 0), MN 斜率为=∴MN 的垂直均分线为y=﹣ 2( x+ ),∵①4x+2y ﹣ 1=0 与 y= ﹣ 2(x+ ),斜率同样,两直线平行,可知两直线无交点,从而可知①不切合题意.② x2+y 2=3 与 y= ﹣ 2( x+ ),联立,消去 y 得 5x2﹣ 12x+6=0 ,△=144﹣ 4×5×6> 0,可知②中的曲线与 MN 的垂直均分线有交点,③中的方程与y=﹣ 2( x+ ),联立,消去y 得 9x2﹣ 24x﹣ 16=0,△>0 可知③中的曲线与MN 的垂直均分线有交点,④中的方程与y=﹣ 2(x+ ),联立,消去 y 得 7x2﹣ 24x+20=0 ,△>0 可知④中的曲线与MN 的垂直均分线有交点,应选 D6.【答案】 B【分析】解:由三视图可知几何体是底面半径为 2 的圆柱,∴ 几何体的侧面积为2π×2×h=12 π,解得 h=3,2∴几何体的体积 V= π×2×3=12 π.应选 B.【评论】此题考察了圆柱的三视图,构造特点,体积,表面积计算,属于基础题.7.【答案】 A【分析】解:依据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x= ﹣,y= ,应选: A.【评论】此题考察了空间向量的应用问题,是基础题目.8.【答案】 A【分析】解:若 a=0,则 z=﹣ 2i( 1+i ) =2 ﹣ 2i,点 M 在第四象限,是充足条件,若点 M 在第四象限,则z=(a+2) +( a﹣2) i ,推出﹣ 2< a< 2,推不出a=0,不是必需条件;应选: A.【评论】此题考察了充足必需条件,考察了复数问题,是一道基础题.9.【答案】 B【分析】解:∵z=cosθ+isin θ对应的点坐标为( cosθ,sinθ),且点( cosθ, sinθ)位于复平面的第二象限,∴,∴ θ为第二象限角,应选: B.【评论】此题考察复数的几何意义,考察三角函数值的符号,注意解题方法的累积,属于中档题.10.【答案】 D【分析】解:∵PD⊥矩形 ABCD 所在的平面且PD? 面 PDA , PD? 面 PDC,∴面 PDA ⊥面 ABCD ,面 PDC⊥面 ABCD ,又∵四边形 ABCD 为矩形∴BC⊥ CD,CD ⊥ AD∵PD⊥矩形 ABCD 所在的平面∴ PD⊥ BC,PD ⊥CD∵PD∩AD=D , PD∩CD=D∴CD ⊥面 PAD, BC ⊥面 PDC, AB ⊥面 PAD,∵CD ? 面 PDC, BC ? 面 PBC, AB ? 面 PAB,∴面 PDC⊥面 PAD,面 PBC⊥面 PCD,面 PAB⊥面 PAD综上互相垂直的平面有 5 对故答案选 D11.【答案】 C【分析】解:由题意, 1 至 12 的和为 78,由于三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,依据甲说:我在 1 日和 3 日都有值班;乙说:我在8 日和 9 日都有值班,可得甲在1、 3、 10、 12 日值班,乙在 8、9、 2、 7 或 8、 9、4、 5,据此可判断丙必然值班的日期是6日和 11日,应选: C.【评论】此题考察剖析法,考察学生剖析解决问题的能力,比较基础.12.【答案】 C【分析】解: y=sin2x+cos2x= sin(2x+ ),y=sin2x ﹣ cos2x= sin( 2x﹣) = sin[2 ( x﹣) + ) ] ,∴由函数 y=sin2x ﹣ cos2x 的图象向左平移个单位获得y= sin( 2x+ ),应选: C.【评论】此题主要考察三角函数的图象关系,利用协助角公式将函数化为同名函数是解决此题的重点.二、填空题13.【答案】9.【分析】解:双曲线﹣=1 的 a=2, b=3 ,可得 c2=a2+b2=13 ,又 ||MF 1|﹣ |MF 2||=2a=4, |F1F2|=2c=2,∠ F1MF2=90°,在△ F1AF 2中,由勾股定理得:22 2|F1F2| =|MF 1 | +|MF 2|2=( |MF 1|﹣ |MF 2|) +2|MF 1||MF 2|,2 2即 4c =4a +2|MF 1||MF 2|,优选高中模拟试卷可得 |MF1||MF 2|=2b2=18 ,即有△ F1MF 2的面积 S= |MF 1||MF 2|sin∠ F1 MF2 =×18×1=9.故答案为: 9.【评论】此题考察双曲线的简单性质,侧重考察双曲线的定义与a、b、c 之间的关系式的应用,考察三角形的面积公式,考察转变思想与运算能力,属于中档题.14.【答案】25【解析】考点:分层抽样方法.15.【答案】10 cm【分析】解:作出圆柱的侧面睁开图以下图,设 A 对于茶杯口的对称点为 A ′,则 A ′A=4cm , BC=6cm ,∴A ′C=8cm ,∴A′B==10cm .故答案为: 10.【评论】此题考察了曲面的最短距离问题,往常转变为平面图形来解决.16.【答案】.【分析】解:到坐标原点的距离大于 2 的点,位于以原点O 为圆心、半径为 2 的圆外地区 D:表示正方形 OABC ,(如图)此中 O 为坐标原点, A ( 2,0), B( 2, 2), C( 0, 2 ).所以在地区 D 内随机取一个点P,则 P 点到坐标原点的距离大于 2 时,点 P 位于图中正方形OABC 内,且在扇形 OAC 的外面,如图中的暗影部分2 2∵S正方形 OABC =2 =4,S暗影=S正方形 OABC ﹣S扇形 OAC =4﹣π?2=4﹣π∴所求概率为 P= =故答案为:【评论】此题给出不等式组表示的平面地区,求在地区内投点使该到原点距离大于 2 的概率,侧重考察了二元一次不等式组表示的平面地区和几何概型等知识点,属于基础题.17.【答案】x﹣ y﹣ 2=0.【分析】解:直线AB 的斜率k AB =﹣ 1,所以线段AB 的中垂线得斜率k=1 ,又线段AB 的中点为( 3, 1),所以线段AB 的中垂线得方程为y﹣1=x ﹣ 3 即 x﹣ y﹣ 2=0,故答案为x﹣ y﹣ 2=0 .【评论】此题考察利用点斜式求直线的方程的方法,别的,此题还能够利用线段的中垂线的性质(中垂线上的点到线段的 2 个端点距离相等)来求中垂线的方程.18.【答案】.【分析】解:∵直线 3ax+y ﹣ 1=0 与直线( 1﹣2a) x+ay+1=0 平行,∴3aa=1(1﹣ 2a),解得 a=﹣1 或 a= ,经查验当 a=﹣ 1 时,两直线重合,应舍去故答案为:.【评论】此题考察直线的一般式方程和平行关系,属基础题.三、解答题19.【答案】【分析】【命题企图】此题综合考察统计中的有关剖析、概率中的古典概型,突出了统计和概率知识的交汇,对概括、剖析推理的能力有必定要求,属于中等难度.20.【答案】【分析】解:(1) 8 +(﹣)0﹣=2﹣1+1﹣( 3﹣ e)=e﹣.(2)lg25+lg2﹣log 293×log 2===1﹣ 2=﹣ 1.(6 分)莱阳市高中2018-2019学年高二上学期第一次月考试卷数学优选高中模拟试卷【评论】此题考察指数式、对数式化简求值,是基础题,解题时要仔细审题,注意对数、指数性质及运算法例的合理运用.21.【答案】【分析】解:( 1)当 a=1 时, Q={x| ( x﹣1)( x﹣2)≤0}={x|1 ≤x≤2}则 P∩Q={1}(2)∵a≤a+1,∴Q={x| ( x﹣ a)( x﹣ a﹣ 1)≤0}={x|a ≤x≤a+1}∵ x∈P 是 x∈Q 的充足条件,∴P? Q∴,即实数 a 的取值范围是【评论】此题属于以不等式为依靠,求会合的交集的基础题,以及充足条件的运用,也是高考常会考的题型.22.【答案】【分析】解:设起码需要同时开x 个窗口,则依据题意有,.由①②得,c=2b,a=75b,代入③ 得,75b+10b≤20bx,∴ x≥,即起码同时开 5 个窗口才能知足要求.23.【答案】【分析】(Ⅰ)证明:连结BD∵ABCD ﹣A 1B 1C1 D1是长方体,∴D 1D⊥平面 ABCD ,又 AC ? 平面 ABCD ,∴D1D⊥AC 1 分在长方形 ABCD 中, AB=BC ,∴ BD ⊥AC 2 分又BD ∩D1D=D ,∴ AC ⊥平面 BB 1D 1D, 3 分而D1E? 平面 BB1D1D ,∴AC ⊥ D1E 4 分(Ⅱ )解:如图成立空间直角坐标系Dxyz,则A 1 0 0),D1(,,( 0,0,2),E( 1,1,1),B( 1,1,0),∴ 5 分设平面 AD 1E 的法向量为,则,即令 z=1,则7 分∴8 分∴ DE 与平面 AD 1E 所成角的正弦值为9 分(Ⅲ )解:假定在棱AD 上存在一点P,使得 BP∥平面 AD 1E.设 P 的坐标为( t, 0, 0)( 0≤t≤1),则∵ BP∥平面 AD 1E∴,即,∴ 2( t﹣ 1)+1=0 ,解得, 12分∴在棱 AD 上存在一点P,使得 BP∥平面 AD 1E,此时 DP 的长. 13分.24.【答案】【分析】解:( 1)图象以下图:由图象可知函数的单一递加区间为(﹣∞, 0),( 1, +∞),丹迪减区间是(0, 1)( 2)由已知可得或,解得 x≤﹣1 或≤x≤,故不等式的解集为(﹣∞,﹣ 1]∪[ ,].【评论】此题考察了分段函数的图象的画法和不等式的解集的求法,属于基础题.。
莱阳市高中2018-2019学年高二上学期数学期末模拟试卷含解析
第 9 页,共 17 页
【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题. 11.【答案】 【解析】解析:选 A.sin 15°-2 sin 80° sin 5° sin(10°+5°) = -2cos 10°= sin 5° sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5° sin 5° sin 10°cos 5°-cos 10°sin 5° sin(10°-5°) = = =1,选 A. sin5 ° sin 5° 12.【答案】B 【解析】解法一:∵ ∴ 取 x=1 得 再取 x=0 得 ∴ 故选 B. 解法二:∵ ∴ ∴ 故选 B. 【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用. , , , ,即得 , , , , (C 为常数),
ห้องสมุดไป่ตู้1 的前 n 项和 S n . an 1 an
21.(本小题满分 14 分) 设函数 f ( x) ax bx 1 cos x , x 0, (其中 a , b R ). 2
2
1 ,求 f ( x) 的单调区间; 2 (2)若 b 0 ,讨论函数 f ( x) 在 0, 上零点的个数. 2
第 7 页,共 17 页
因此集合 M∩N 中元素的个数为 2 个, 故选 B. 【点评】本题既是交集运算,又是函数图形求交点个数问题 4. 【答案】D 【解析】解:由奇函数的性质可知,若奇函数 f(x)在区间上是减函数,且最小值 3, 则那么 f(x)在区间上为减函数,且有最大值为﹣3, 故选:D 【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础. 5. 【答案】 B 【解析】 试题分析: V
莱阳市实验中学2018-2019学年高二上学期第二次月考试卷数学
莱阳市实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A .B .1C .D .2. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .钱B .钱C .钱D .钱3. 函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a <C .<a <1D .a ≤0或a >14. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.5. 已知二次曲线+=1,则当m ∈[﹣2,﹣1]时,该曲线的离心率e 的取值范围是( )A .[,]B .[,]C .[,]D .[,]6. 由直线与曲线所围成的封闭图形的面积为( )AB1CD7.设函数F(x)=是定义在R上的函数,其中f(x)的导函数为f′(x),满足f′(x)<f(x)对于x∈R恒成立,则()A.f(2)>e2f(0),f B.f(2)<e2f(0),fC.f(2)>e2f(0),f D.f(2)<e2f(0),f8.()0﹣(1﹣0.5﹣2)÷的值为()A.﹣B.C.D.9.若向量(1,0,x)与向量(2,1,2)的夹角的余弦值为,则x为()A.0 B.1 C.﹣1 D.210.在△ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2﹣c2=3bc,则A等于()A.30°B.60°C.120°D.150°11.函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,e)D.(3,4)12.已知集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则实数a的范围是()A.[3,+∞)B.(3,+∞)C.[﹣∞,3] D.[﹣∞,3)二、填空题13.已知命题p:实数m满足m2+12a2<7am(a>0),命题q:实数m满足方程+=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为.14.在(2x+)6的二项式中,常数项等于(结果用数值表示).15.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c﹣b)sinC,且bc=4,则△ABC 的面积为.16.如图,在矩形ABCD中,AB=⊥,BC=,E在AC上,若BE AC3则ED的长=____________17.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=lnx-mx(m∈R)在区间[1,e]上取得最小值4,则m=________.18.已知数列{a n}满足a n+1=e+a n(n∈N*,e=2.71828)且a3=4e,则a2015=.三、解答题19.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.20.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.21.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.22.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=a f(x)﹣1(a>0且a≠1).(Ⅰ)求k的值;(Ⅱ)求g(x)在[﹣1,2]上的最大值;(Ⅲ)当时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.23.已知四棱锥P ﹣ABCD ,底面ABCD 是∠A=60°、边长为a 的菱形,又PD ⊥底ABCD ,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN ∥平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.24.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.莱阳市实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.2.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.3.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.4.【答案】B【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=﹣x3在(0,+∞)上单调递减.故选B.【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.5.【答案】C【解析】解:由当m∈[﹣2,﹣1]时,二次曲线为双曲线,双曲线+=1即为﹣=1,且a2=4,b2=﹣m,则c2=4﹣m,即有,故选C.【点评】本题考查双曲线的方程和性质,主要考查离心率的范围,属于基础题.6.【答案】D【解析】由定积分知识可得,故选D。
莱阳市高中2018-2019学年高二上学期第二次月考试卷数学
莱阳市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (1 2. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞, 3. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个4. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .585. 已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .6. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .37. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( ) A .①④B .②③C .③④D .②④8. 10y -+=的倾斜角为( )A .150B .120C .60D .309. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++=成立,则实数a的取值范围是()A.1[,]eeB.2(,]eeC.2(,)e+∞ D.21(,)ee e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.11.如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<)的图象过点(0,),则f(x)的图象的一个对称中心是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)12.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.二、填空题13.已知实数x,y满足,则目标函数z=x﹣3y的最大值为14.自圆C:22(3)(4)4x y-++=外一点(,)P x y引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则PQ的最小值为()A.1310B.3C.4D.2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.15.设复数z满足z(2﹣3i)=6+4i(i为虚数单位),则z的模为.16.已知函数5()sin(0)2f x x a xπ=-≤≤的三个零点成等比数列,则2log a=.17.已知线性回归方程=9,则b=.18.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是.三、解答题19.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.20.如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.(1)求证:EF∥平面PBC;(2)求E到平面PBC的距离.21.已知函数f(x)=lnx的反函数为g(x).(Ⅰ)若直线l:y=k1x是函数y=f(﹣x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.23.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB . (Ⅰ)求cosB 的值; (Ⅱ)若,且,求a 和c 的值.24.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.(1)若cos ∠ADC=,求AB 的值;(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?莱阳市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.2.【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式.3.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.4.【答案】B【解析】5.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.6.【答案】C【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2>0”,是真命题; 否命题是“若x 2≤0,则x ≤0”,是真命题; 逆否命题是“若x ≤0,则x 2≤0”,是假命题;综上,以上3个命题中真命题的个数是2. 故选:C7. 【答案】D【解析】解:∵命题p ;对任意x ∈R ,2x 2﹣2x+1≤0是假命题,命题q :存在x ∈R ,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D .8. 【答案】C 【解析】10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 9. 【答案】B【解析】10.【答案】B【解析】解:设圆锥底面圆的半径为r ,高为h ,则L=2πr ,∴=(2πr )2h ,∴π=.故选:B.11.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.12.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题二、填空题13.【答案】5【解析】解:由z=x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,﹣1).代入目标函数z=x﹣3y,得z=2﹣3×(﹣1)=2+3=5,故答案为:5.14.【答案】D【解析】15.【答案】2.【解析】解:∵复数z满足z(2﹣3i)=6+4i(i为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.16.【答案】1 2考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.17.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.18.【答案】.【解析】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题三、解答题19.【答案】[]1,2-. 【解析】试题分析:先化简条件p 得31x -≤<,分三种情况化简条件,由p 是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a --由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p 是的什么条件,需要从两方面分析:一是由条件p 能否推得条件,二是由条件能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的. 20.【答案】【解析】(1)证明:∵AE=PE ,AF=BF , ∴EF ∥PB又EF ⊄平面PBC ,PB ⊂平面PBC , 故EF ∥平面PBC ;(2)解:在面ABCD 内作过F 作FH ⊥BC 于H ∵PC ⊥面ABCD ,PC ⊂面PBC ∴面PBC ⊥面ABCD又面PBC ∩面ABCD=BC ,FH ⊥BC ,FH ⊂面ABCD ∴FH ⊥面PBC又EF||平面PBC ,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离FH .在直角三角形FBH 中,∠FBC=60°,FB=,FH=FBsin ∠FBC=a ,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离,等于a .21.【答案】【解析】解:(Ⅰ)∵函数f(x)=lnx的反函数为g(x).∴g(x)=e x.,f(﹣x)=ln(﹣x),则函数的导数g′(x)=e x,f′(x)=,(x<0),设直线m与g(x)相切与点(x1,),则切线斜率k2==,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,故k2k1=﹣×e=﹣1,则l⊥m.(Ⅱ)不妨设a>b,∵P﹣R=g()﹣=﹣=﹣<0,∴P<R,∵P﹣Q=g()﹣=﹣==,令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,故φ(x)<φ(0)=0,取x=,则a﹣b﹣+<0,∴P<Q,⇔==1﹣令t(x)=﹣1+,则t′(x)=﹣=≥0,则t(x)在(0,+∞)上单调递增,故t(x)>t(0)=0,取x=a﹣b,则﹣1+>0,∴R>Q,综上,P<Q<R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.22.【答案】【解析】23.【答案】【解析】解:(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB﹣2RsinCcosB,故sinBcosC=3sinAcosB﹣sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA≠0,因此.(II)解:由,可得accosB=2,,由b2=a2+c2﹣2accosB,可得a2+c2=12,所以(a﹣c)2=0,即a=c,所以.【点评】本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.24.【答案】【解析】(本小题满分12分)解:(1)∵,∴,∴…2分(注:先算∴sin∠ADC给1分)∵,…3分∴,…5分(2)∵∠BAD=θ,∴, (6)由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f(θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莱阳市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知复数z满足z•i=2﹣i,i为虚数单位,则z=()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i的六条棱所在的直线中,异面直线共有()111]2.如图所示,在三棱锥P ABCA.2对B.3对C.4对D.6对3.定义:数列{a n}前n项的乘积T n=a1•a2•…•a n,数列a n=29﹣n,则下面的等式中正确的是()A.T1=T19B.T3=T17C.T5=T12D.T8=T114.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.15B.C.15D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.5. 执行如图所示的程序框图,则输出的S 等于()A .19B .42C .47D .896. 设0<a <1,实数x ,y满足,则y 关于x 的函数的图象形状大致是( )A. B. C. D.7. 抛物线y 2=8x的焦点到双曲线的渐近线的距离为( )A .1B.C.D.8. 在等差数列中,已知,则( )A .12B .24C .36D .48 9. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ11.已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12112.在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°二、填空题13.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .14.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 15.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .16.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .17.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.18.命题p :∀x ∈R ,函数的否定为 .三、解答题19.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.20.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.21.解不等式|2x ﹣1|<|x|+1.22.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==.(1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.23.已知数列{a n }是各项均为正数的等比数列,满足a 3=8,a 3﹣a 2﹣2a 1=0. (Ⅰ)求数列{a n }的通项公式(Ⅱ)记b n =log 2a n ,求数列{a n •b n }的前n 项和S n .24.已知f (x )=x 2+ax+a (a ≤2,x ∈R ),g (x )=e x ,φ(x )=.(Ⅰ)当a=1时,求φ(x )的单调区间;(Ⅱ)求φ(x )在x ∈[1,+∞)是递减的,求实数a 的取值范围;(Ⅲ)是否存在实数a ,使φ(x )的极大值为3?若存在,求a 的值;若不存在,请说明理由.莱阳市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】解:由z •i=2﹣i 得,,故选A2. 【答案】B 【解析】试题分析:三棱锥P ABC 中,则PA 与BC 、PC 与AB 、PB 与AC 都是异面直线,所以共有三对,故选B .考点:异面直线的判定. 3. 【答案】C 【解析】解:∵a n =29﹣n,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C4. 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面ABCD ,如图所示,所以此四棱锥表面积为1S =262创?1123+22622创创?15=,故选C .4646101011326E VD CBA5. 【答案】B【解析】解:模拟执行程序框图,可得 k=1 S=1满足条件k <5,S=3,k=2 满足条件k <5,S=8,k=3 满足条件k <5,S=19,k=4 满足条件k <5,S=42,k=5不满足条件k <5,退出循环,输出S 的值为42. 故选:B .【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S ,k 的值是解题的关键,属于基础题.6. 【答案】A【解析】解:0<a<1,实数x,y 满足,即y=,故函数y 为偶函数,它的图象关于y 轴对称, 在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.7. 【答案】A【解析】解:因为抛物线y 2=8x ,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A.【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.8.【答案】B【解析】,所以,故选B答案:B9.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.10.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.11.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n na a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)1)52222+++== ,∴120n =,选C . 12.【答案】A【解析】解:如图所示,设AB=2,则A (2,0,0),B (2,2,0),B 1(2,2,2),C 1(0,2,2),E (2,1,0),F (2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF 和BC 1所成的角是60°. 故选:A .【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.二、填空题13.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx)=﹣1﹣1=﹣2, 则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.15.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:916.【答案】.【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.17.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.18.【答案】∃x0∈R,函数f(x0)=2cos2x0+sin2x0>3.【解析】解:全称命题的否定是特称命题,即为∃x∈R,函数f(x0)=2cos2x0+sin2x0>3,故答案为:∃x∈R,函数f(x0)=2cos2x0+sin2x0>3,三、解答题19.【答案】【解析】解:(1)由已知得:f′(x)=.要使函数f(x)在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a>0可知,只需a,x∈[1,+∞)即可.易知,此时=1,所以只需a≥1即可.(2)结合(1),令f′(x)==0得.当a≥1时,由(1)知,函数f(x)在[1,e]上递增,所以f(x)min=f(1)=0;当时,,此时在[1,)上f′(x)<0,在上f′(x)>0,所以此时f(x)在上递减,在上递增,所以f(x)min=f()=1﹣lna﹣;当时,,故此时f′(x)<0在[1,e]上恒成立,所以f(x)在[1,e]上递减,所以f(x)min=f(e)=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.20.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a,b=2,C=,∴由余弦定理可得c2=a2+b2﹣2abcosC,∴4a2=a2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC的面积S=absinC==21.【答案】【解析】解:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为﹣2x+1<﹣x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当时,原不等式可化为﹣2x+1<x+1,解得x>0,又,此时其解集为{x|}.③当时,原不等式可化为2x﹣1<x+1,解得,又由,此时其解集为{x|},∅∪{x| }∪{x| }={x|0<x <2};综上,原不等式的解集为{x|0<x <2}.【点评】本题考查绝对值不等式的解法,涉及分类讨论的数学思想,关键是用分段讨论法去掉绝对值,化为与之等价的不等式来解.22.【答案】(1)2()243f x x x =-+;(2)102a <<;(3)1m <-.试题解析:(1)由已知,设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+.(2)要使函数不单调,则211a a <<+,则102a <<. (3)由已知,即2243221x x x m -+>++,化简得2310x x m -+->, 设2()31g x x x m =-+-,则只要min ()0g x >,而min ()(1)1g x g m ==--,得1m <-.考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为()()()20f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为()()()()120f x a x x x x a =--≠.23.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a n>0可得q>0,且a3﹣a2﹣2a1=0,化简得q2﹣q﹣2=0,解得q=2或q=﹣1(舍),∵a3=a1•q2=4a1=8,∴a1=2,∴数列{a n}是以首项和公比均为2的等比数列,∴a n=2n;(Ⅱ)由(I)知b n=log2a n==n,∴a n b n=n•2n,∴S n=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n×2n,2S n=1×22+2×23+…+(n﹣2)×2n﹣1+(n﹣1)×2n+n×2n+1,两式相减,得﹣S n=21+22+23+…+2n﹣1+2n﹣n×2n+1,∴﹣S n=﹣n×2n+1,∴S n=2+(n﹣1)2n+1.【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.24.【答案】【解析】解:(I)当a=1时,φ(x)=(x2+x+1)e﹣x.φ′(x)=e﹣x(﹣x2+x)当φ′(x)>0时,0<x<1;当φ′(x)<0时,x>1或x<0∴φ(x)单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);(II)φ′(x)=e﹣x[﹣x2+(2﹣a)x]∵φ(x)在x∈[1,+∞)是递减的,∴φ′(x)≤0在x∈[1,+∞)恒成立,∴﹣x2+(2﹣a)x≤0在x∈[1,+∞)恒成立,∴2﹣a≤x在x∈[1,+∞)恒成立,∴2﹣a≤1∴a≥1∵a≤2,1≤a≤2;(III)φ′(x)=(2x+a)e﹣x﹣e﹣x(x2+ax+a)=e﹣x[﹣x2+(2﹣a)x]令φ′(x)=0,得x=0或x=2﹣a:由表可知,φ(x)极大=φ(2﹣a)=(4﹣a)e a﹣2设μ(a)=(4﹣a)e a﹣2,μ′(a)=(3﹣a)e a﹣2>0,∴μ(a)在(﹣∞,2)上是增函数,∴μ(a)≤μ(2)=2<3,即(4﹣a)e a﹣2≠3,∴不存在实数a,使φ(x)极大值为3.。