解分式方程(1)导学案
人教版数学八年级上册导学案:15.3分式方程(1)
分式方程导学案(1)一、学习目标1.会区别分式方程与前面所学的整式方程.2.会解简单的分式方程并能总结出解分式方程的步骤。
二、知识储备(课前完成)1.什么是方程?我们已经学过哪些方程?2.解方程:131223)1(=+--x x (2) ⎩⎨⎧=+=-1123332y x y x三、自主学习(课前完成)1.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,则轮船顺流航行的速度为_________千米/时,逆流航行的速度为_________千米/时,顺流航行100千米时间为_________小时,逆流航行60千米时间为__________小时,根据题意可得方程______________________________________________。
分式方程的概念:分母中含有___________的方程叫分式方程。
思考:如何解分式方程呢?通过__________转化为整式方程,写出解答过程:解:设____________________________可列方程_______________________方程两边同乘_________________,得:______________________________解得 V=_______检验:将V=______代入方程,左边=____=右边,所以v =____为方程的解。
答:水流速度为______千米/时。
反思:(1)将分式方程转化为整式方程的关键是什么?____________(2)总结解分式方程的一般步骤有哪些?①在方程的两边都乘以____________,化为_____方程;②解这个方程;③检验。
(3)为什么要检验?解分式方程时是否必须检验?2.解方程2510512-=-x x 解:)5)(5(2510)5)(5(512+-⨯-=+-⨯-x x x x x x 105=+x5=x检验:把5=x 代入0)5)(5(=+-x x ,所以5=x 不是原方程的解,原方程无解。
15.3.1分式方程导学案(1)
2
23 6 (2) x 1 x 1 x 2 1
2x x 2 (4) 2x 1 x 2
2 1 0 (5) 5 x 1 x
2 3 4 0 (7) x 2 x x 2 x x 2 1
四、课堂小结 1、本节课你的收获是什么?
6 1 4x 7
(6) 3x 8
8 3x
1 5 3 (8) x 1 2x 2 4
x2 x (1) 2 3
43 7
1 3
(2) x y
(3) x 2 x
x(x 1) 1 (4) x
Hale Waihona Puke 3x x2x x 1 10 x 1 2
(5) 2 (6)
5
(7) x
2x 1 3x 1 (8) x
100 60 2,解方程; 20 v 20 v
方程两边同时乘以(20+v)(20-v)得
15.3. 分式方程(一)导学案 【学习目标】 1.了解分式方程的概念, 和产生增根的原因. 2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学习重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学习难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学习过程 一,复习引入
x 2 2x 3 1
1,回忆一元一次方程的解法,并且解方程 4
6
2,一艘轮船在静水中的最大航速为 20 千米/时,它沿江以最大航速顺流航行 100 千米所用时间,与以最 大航速逆流航行 60 千米所用时间相等,江水的流速为多少? 分析:设江水的流速为 v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程
解得:v=
检验: 将 v=
人教版八年级上册数学 15.3第1课时 分式方程及其解法15.3.1分式方程导学案1
15.3.1 分式方程(一)【学习目标】1. 掌握分式方程的解法.2.会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.3.了解分式方程的增根, 和产生增根的原因.【学习重点】找最简公分母. 【学习难点】列分式方程. 【知识准备】1.解方程:163242=--+x x【自习自疑】一、阅读教材内容,思考并回答下面的问题1. 中含未知数的方程叫做分式方程.2、解分式方程的解的两种情况:①所得的根是原方程的根. ②所得的根不是原方程的根在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的 。
产生增根的原因:在把分式方程转化为 时,分式的两边同时乘以了 验根:将整式方程的解代入 ,如果最简公分母的值不为零,则整式方程的解 原分式方程的解;否则,这个解 原分式方程的解2、解方程vv -=+206020100请你将预习中未能解决的问题和有疑问的问题写下来。
等级 组长签字【自主探究文】【探究一】识别分式方程.下列方程中, (1)1)1(-=-x x x , (2)23x x =-π, (3)10512=-+x x , (4)21=-x x , (5)1312=++x xx 分式方程有 ;整式方程有 .【探究二】解分式方程.(1)1613122-=-++x x x (2)114112=---+x x x【归纳】解分式方程的基本思想:把分式方程“转化”为 ,再利用 的解法求解。
解分式方程的方法:在方程的两边同乘 ,就可约去 ,化成 。
解分式方程的一般步骤:1. 2. 3.【探究三】解分式方程:()531222x x x x -=--总结:解分式方程的一般步骤是:1.“化”.在方程两边同乘以最简公分母,化成 方程;2.“解”即解这个 方程;3.“检验”:即把 方程的根代入 。
如果值 ,就是原方程的根;如果值 ,就是增根,应当 。
【自测自结】1.能使分式122--x x x 的值为零的所有x 的值是( ) A .0=x B .1=x C .0=x 或1=x D .0=x 或1±=x2.把分式方程12121=----xx x 化为整式方程,正确的是( ) A .1)1(1=--x B .1)1(1=-+x C .2)1(1-=--x x D .2)1(1-=-+x x3.解下列方程:(1)23x x ++1=726x + (2)12x x --=12x--2.(3)11262213x x=---通过本节课的学习,你有哪些收获?还有哪些困惑呢?。
人教版八年级数学上册15.3.1《分式方程(第1课时)》导学案
人教版义务教育教科书八年级数学上册15.3.1《分式方程》第1课时导学案一、学习目标1、理解分式方程的意义;了解解分式方程的基本思路和解法;2、经历“实际问题—分式模型—求解——验证解的合理性”的数学思考过程,体会数学模型思想。
二、预习内容(一)温故1、什么叫方程?什么叫方程的解? 。
2、我们学过的方程有哪一些? 。
3、解方程 (1) (2)211242x x +++=(二)知新自学课本149页,完成下列问题:1、问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,轮船顺流航行速度为 千米/时,逆流航行速度为 千米/时,顺流航行90千米所用时间为 小时,逆流航行60千米所用时间为 小时,列出方程为 。
2、方程90603030v v=+- 与以前所学的整式方程有何不同? 。
3.什么叫分式方程? 。
三、探究学习1、在上问题中:得到方程 (类比整式方程解法,思考怎么样来解分式方程?)尝试解该方式方程:2、结合上述探究活动归纳出解分式方程的基本思路和做法? 。
1123x x +-=90603030v v=+-3、思考:解整式方程与解分式方程有何异同? 。
4、(小试牛刀)解分式方程(1) (2)2313x x =-+ (4)四、巩固测评1.判断下列各式哪个是分式方程?3x y +=( ); 1153x y -+=( ); 11x +( ); 05yy =+( ).2.把分式方程x x 23422=-化为整式方程,方程两边需同时乘以( )A .2xB .2x -4C .2x (2x -)D .2x (2x -4)3.解下列分式方程: ⑴.132+=x x ⑵.13132=-+--x x x4、(1)下列方程中,哪些是分式方程?哪些是整式方程.?A 、B 、C 、D 、E 、F 、 分式方程的是( )整式方程的是( )(2)解分式方程 (3)4分钟解出分式方程五、学习心得 。
分式方程导学案(1)
6.3.1 解分式方程导学练案一、学习目标1.使学生理解分式方程的定义.2.使学生掌握分式方程的一般解法.并理解验根的重要性。
二.学习重难点 1.重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想. 2.难点:去分母及检验分式方程的根。
三、学习过程1、分析学生现状,学生对解一元一次方程的掌握情况;2、分式方程的引入;3、解分式方程的方法及步骤;4、对分式方程的根进行检验5、强化练习16.3.1 解分式方程学案一、学习目标1.使学生理解分式方程的定义.2.使学生掌握分式方程的一般解法.并理解验根的重要性。
二.学习重难点 1.学习重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想. 2.学习难点:去分母及检验分式方程的根。
三、知识准备:1、找最简公分母2、解一元一次方程的一般步骤。
四、学习过程:1、找出下列各组分式的最简公分母:(1)11+x 与11-x (2)21+a 与412-a(3)x x +21与661+x (4)4212+-y y 与21-y2、概念:分式方程:分母中含有 的方程叫分式方程。
3、练习:判断下列各式哪个是分式方程.4、试一试:解分式方程:02111=--xx 解:最简公分母为 ,方程两边同时乘以最简公分母;得:( )×(0)2111=--xx ×( ) 化简得: (此方程是 方程) 求解此方程得总结:解分式方程的基本思想是将分式方程化为一元一次 方程,方法是方程两边同乘以 ,去掉分母。
5.解方程:1x 5-=210x 25- 解:方程两边同乘最简公分母(x -5)(x +5),得解得:检验:将x=5代入原方程,分母x -5= 和2x 25-= ,相应的分式 (有或无)意义。
因此,x=5不是原方程的解,即此分式方程无解。
6.归纳:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应如下检验:(1)将整式方程的解代入 ,如果 的值不为0,则整式方程的解是 的解;(2)将整式方程的解代入 ,如果 的值为0,则整式方程的解不是 的解,此时原分式方程无解。
分式方程导学案1.doc
文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持.分式方程学案学习目标: 1、结合实际问题理解分式方程的意义,学会区分整式方程与分式方程;2、初步学会解可化为一元一次方程的分式方程;3、通过把分式方程转化为解整式方程的过程,体验化归的思想;一、自学指导 1:1、什么是分式方程?------------------------------------------------------------2 辨一辨:下列方程中,哪些是关于x 的分式方程,哪些不是?( 1)2x x 1 6 ;(2)x 1 1 2 0 ;3 x;(3)x 53 x 2 x 17 ;(4)4 a二自学指导 2想一想:如何来解分式方程呢?例 1 解方程:480 600 45x 2x解:方程的两边都乘以2X, 得960-600=90X解这个方程 , 得X=4检验:将 x=4 代人原方程得左边 =45=右边∴x=4 是原方程的解想一想:对照上面方程的解法,你能理解分式方程为什么要把解进行检验吗?解:方程的两边都乘以 x-2 ,得1-x= -1-2(x-2)解这个方程 , 得X=2--------------------------------------------------------------------------------------------------------你认为 x=2 是方程的根吗?将解方程过程补充完整想一想:除了代入原方程进行检验,你还有其他的检验方式吗?---------------------------例 4 解方程:x 13x 11)( x2)( x 解:方程两边同乘以(x-1 )(x+2),得X(x+2)-(x-1)(x+2)=3 解这个方程,得X=1检验:当 X=1时, (x-1)(x+2)=0所以原方程无解2、解分式方程的一般步骤是什么?体现了什么数学思想? 步骤:1.----------------------------------------------2--------------------------------3-------------------------------------------------- 4.----------------------------------------数学思想: ---------------------------三自学指导 36 x 5找一找:小明同学对方程 x 1x(x1) 的解答如下:解 : 方程两边同乘最简公分母 x(x+1), 得6x=x+5解这个方程 , 得x=1所以原方程的解是 x=1小丽认为小明的解答有误,你认为小明错在_________。
最新苏科版八年级下数学105分式方程(1)导学案
最新苏科版八年级下数学105分式方程(1)导学案
课题
10.5分式方程(1)1.经历分式方程的概念,能将实际问题中的等量关
系用分式方程表示,体会分式方程的模型作用。
2.经历“实际问题-分式
方程方程模型”的过程,发展学
自主空间
学习目标
生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生
的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生
努力寻找解决问题的进取心,体会数学的应用价值。
学习重点学习难点
将实际问题中的等量关系用分式方程表示。
找实际问题中的等量关系。
学习流程1、甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知
乙加工24件服装所用时间与甲加工20件服装所用时间相同。
甲每天加工
多少服装如果设甲每天加工某件服装,那么乙每天加工________件服装,
根据题意,可列出方程:___________________2、一个两位数的各位数字
是4,如果把各位数字与十位
预习导航
数字对调,那么所得的两位数与原两位数的比值是位数的十位数字是几?
7原两4
如果设原两位数的十位数字是某,那么可以列出方程:
3、某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。
已知汽车的速度是自行车的速度的3倍,求自行车速度。
如果设自行车的速度是某km/h,那么可列出方程:。
分式方程的解法导学案
2、会解分式方程;记住分式方程要验根,并掌握分式方程的验根方法。
【重点】解分式方程的基本思路和解法。
【难点】理解解分式方程时可能无解的原因。
学习过程:
一、巩固检查:
1.解方程
回顾:解一元一次方程的一般步骤为①________②________③________
一般()
年级部签字:
分母中含有,等号左右两边的式子是____。
得出:分母中含有___________的方程叫做分式方程。
练习:下列方程中,哪些是分式方程?哪些是整式方程?
, , ,
, , x+y+ =5
问题:上面这个方程如何解呢?能想办法把上面方程转化为我们会解的方程吗?
检验:
归纳出:解分式方程的步骤:。
例2.解方程: =
分析:设江水的流速为v千米/时,
填空:(1)轮船顺流航行速度为_____________,逆流航行速度为________________
(2)顺流航行90千米所用时间为__________小时
(3)逆流航行60千米所用时间为__________小时
(4)根据题意可列方程:
观察方程特点,与以前学的整式方程有何不同?
导学设计流程:
教学目标:
知识与技能:
1.理解分式方程的意义。
2.了解解分式方程的基本思路和解法。
3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法。
过程与方法
1.能将实际问题中的相等关系用分式方程表示,体会分式方程的模型作用。
2.经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
八年级数学分式方程(1)导学案
125 八年级数学分式方程(1)导学案 主备人: 教案审核: 姓名 班级 课 题10.5 分 式 方 程 (1) 教 学目 标1.经历“实际问题-分式方程模型”的过程,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.知道分式方程的概念、意义,会解可化为一元一次方程的分式方程. 重点将实际问题中的等量关系用分式方程表示.难点 找实际问题中的等量关系. 学会学习 学会合作 学会表达 学会创造 体验成功 体验快乐 随笔栏一、情境引入京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长约1500km ,是我国最繁忙的铁路干线之一.如果货车的速度为x km/h ,快速列车的速度是货车的2倍,那么 ①货车从北京到上海需要 小时.②快速列车从北京到上海需要 小时.③已知从北京到上海快速列车比货车少用12h ,你能列出一个方程吗?二、探索研究1.(1)甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同.设甲每天加工x 件,则乙每天加工 件,根据题中的数量关系列出方程为 .(2) 一个两位数的个位数字是4,如果把个位数字与十位数字对调,那么所得的两位数与原两位数的比值是74.设原两位数的十位数字是x ,则原两位数可表示为10x+4,现两位数可表示为 ,根据题中的数量关系列出方程为 .2.上面所得到的方程有什么共同特点?与我们学过的一元一次方程有什么不同特征?归纳:分母中含有 方程为分式方程.3.参照课本114页例1,解下列方程(1)275-=x x (2)xx x x --=+-4114归纳:解分式方程的一般步骤为:三、典例研究例1.下列方程中,哪些是分式方程,哪些不是分式方程?为什么?(1)2x +x -15 =10 (2)x - 1x =2 (3) 12x +1-3=0 (4) 2x 3 +2x-1126 例2.已知关于x 的方程x x -3 =2-m 3-x 的解为正数,求m 的取值范围.四、课堂反馈1.解下列方程:(1)47424=++x x (2) 125552=-+-x x x(3)041=+--x x x x (4) 1617222-=-++x x x x x五、拓展提高 探究:(1)如果13123++=+-x m x x ,求m ; (2)如果c x m a c x b ax ++=++(其中a 、b 、c 为常数),求m ; (3)你能得出一般性的结论吗?六、课堂小结课堂反思127。
人教版数学八年级上册导学案:15.3分式方程(1)
八年级数学下册:第十五章分式
课题:15.3 分式方程(1)课型:新授教材内容:149-151页总序第51课时主备人:副备人:审核:使用时间:
学习提示:
1、课标要求:能解可化为一元一次方程的分式方程。
2、结合前面所学,阅读课本149-151页内容,了解分式方程的定义,掌握解分式方程的一般
解法和分式方程可能产生增根的原因,解分式方程必须,学习中体会转化的数学思想。
3、结合自学将学案中的问题独立解决,将学习中的疑问和联想到的与本节有关的知识写在“学
学习之旅学习拓展
一、自主学习:
1、回忆一元一次方程的解法,
解方程1
6
3
2
4
2
=
-
-
+x
x
(完成后同组展示)
2、(1)方程
v
v-
=
+30
60
30
90
,观察它的特征,想一想和以前所学的方
程一样吗?区别在哪里?
(2)归纳:分式方程的概念________________ _.
3、自学检测:
判断下列各式哪个是分式方程.
二、合作探究:
1、阅读课本149页思考以上部分.
2、思考:(小组内说说自己的看法)
(1)分式方程的特征?能否转化为我们熟悉的会解的方程的形式?
(2)如何进行转化?关键是什么?
3、试解方程:
1)
v
v-
=
+20
60
20
100
2)
25
10
5
1
2-
=
-x
x。
人教版八年级数学上册《分式》导学案:分式方程(第一课时)
人教版八年级数学上册《分式》导学案分式方程(第一课时)【学习目标】1.理解分式方程的概念,并能判断一个方程是不是分式方程;2.能将实际问题中的等量关系用分式方程表示.【知识梳理】1.方程的定义:含有 的等式叫做方程.2.解一元一次方程的一般步骤:3.分式方程的定义:【典型例题】知识点一 分式方程的定义1.方程:1255341112362235552122=-=+-=-=--=-x x y x x x x x x π)()()()()(其中分式方程的个数是( )A.1B.2C.3D.42.下列方程是分式方程的有 (填序号).()()().124;0141313;1252;242212为常数)、(为常数)、()(b a abx x x x b a b x a x x x x =-=-+--++=-=+-小结;(1)分式方程的主要特征:①含有分母;②分母中含有未知数;③是方程.⑵分式方程与整式方程的区别在于分母中是否含有未知数.知识点二 列分式方程3.部分学生自行组织春游,预计费用为120元,后来又有2名学生参加,费用不变,这样每人可少交3元.若设原来的人数是x ,则可列方程为 .4.为切实加强我市学校新冠疫情防控工作,筑牢校园疫情防控屏障,保障广大师生员工生命健康安全,某校师生员工共2000人需要开展全员核酸检测工作,由于组织有序,实际上每小时检测人数比原计划增加100人,结果提前1小时完成检测任务.若设原计划每小时检测x 人,则据题意可列方程为( )A .+100=B .﹣100= C .+1=D .﹣1=小结:列方程的关键是找出等量关系。
【巩固训练】1.在方程①1111x y=+-;②210x+=;③1x ya b+=(a,b为常数);④21xx=;⑤23356x x-+-=;⑥137xxa-=-+(a是常数);⑦2=πx中是分式方程的有(只填序号)2.某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x天,则根据题意,可列方程为_________________.3.某地对一段长达4800m的河堤进行加固.在加固600m后,采用新的加固模式,每天的加固长度是原来的2倍.用9天完成了全部加固任务.如果设原来每天加固河堤x米,请列出关于x的分式方程.等量关系式:列出方程:4.小亮从图书馆借了一本书,共280页,借期是两周.当他读完书的一半时,发现以后平均每天读书的页数必须增加1倍才能在借期内读完.如果设小亮读前半本书时平均每天读x页,请列出关于x的分式方程.等量关系式:列出方程:5.某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米.(请列出符合题意的分式方程)。
15.3 分式方程 导学案
第十一课时 15.3 分式方程(1)【学习目标】1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想. 3.了解解分式方程根需要进行检验的原因. 【学习重点】利用去分母的方法解分式方程 【学习难点】产生增根的原因.一、学前准备1、前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。
(2)一元一次方程是 方程。
(3)一元一次方程解法 步骤是:①去 ;②去____;③移项;④合并 ;⑤_____化为12、解方程:163242=--+x x二、探索思考探究(一):1、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多2、 仔细观察这个方程,未知数的位置有什么特点?3、方程 与上面的方程有什么共同特征?4、分式方程的概念:【练习一】下列式子中,属于分式方程的是 ,属于整式方程的是 (填序号).探索(二) 1、你能试着解分式方程探索(一)列出的方程及以下方程吗? (1)v v -=+30603090 (2)275-=x x (3)1132-=+x x2、思考:(1)如何把分式方程转化为我们会解的整式方程呢? (2)怎样去分母?(3)这样做的依据是什么?三、典例分析【例】解下列分式方程 (1)2510512-=-x x (2)13321++=+x x x x (3) 23112-+=--x x x x【例题反思】1、解分式方程为什么要检验? 2、解分式方程的一般步骤:① ;② ③ ;④ 四、当堂反馈 解方程:(1)3221+=x x (2)14122-=-x x (3)()531222x x x x -=--(4)01522=--+x x x x (5)2324111x x x +=+-- (6)23132--=--xx x五、学习反思1、学习目标完成情况反思:2、 错题原因分析:21133=+++x x x x 21211023525==+--x x x x ;;第十二课时 15.3 分式方程(2)【学习目标】1.会解较复杂的分式方程和较简单的含有字母系数的分式方程. 2.能够列分式方程解决简单的实际问题.3.通过学习分式方程的解法,体会转化的数学思想.【学习重点】解分式方程,列分式方程解决简单的实际问题. 【学习难点】解含有字母系数的分式方程. 一、学前准备1、 整式方程与分式方程的区别在哪里?________________________________________________________.2、解分式方程的步骤是什么?(1)___________________;(2)___________________(3)____________________.(4) 3、解分式方程 ⑴11122x x =-- ⑵ 63041x x -=+- (3)()()31112x x x x -=--+二、探索思考探索(一)1、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的二分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?(1)填右表 (2)等量关系:(3)设未知数,据等量关系列出方程并解答【练习一】 某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2 000个零件 所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?【例】 解关于x 的方程 ≠【练习二】 解关于x 的方程 ≠ ≠四、当堂反馈1、若x =2是关于x 的分式方程2372a x x+=的解,则a 的值为 2、解方程 ①2373226x x +=++ ②2512552x x x +=+- ③1637222-=-++x x x x x3、(1)在公式1221P P V V =中,20P ≠,求出表示2V 的公式 (2)在公式12111RR R =+中,1R R ≠,求出表示2R 的公式4、要在规定的日期内加工一批机器零件,如果甲单独做,恰好在规定的日期内完成,如果乙单独做, 则要超过规定如期3天才能完成,现甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定的日期是多少天?五、学习反思1、学习目标完成情况反思:2、 错题原因分析:工作效率 工作时间 工作量甲队乙队x111+=.-a b b x a()001-=+mn m n x x ().第十三课时 15.3 分式方程(3)【学习目标】列分式方程解决实际问题【学习重点】列分式方程解决实际问题【学习难点】找实际问题中的数量关系及等量关系一、学前准备1、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.2、列分式方程解应用题的一般步骤是什么?(1);(2)(3)(4)(5)二、探索思考探索(一)某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶60 km,提速前列车的平均速度为多少?(1)这个问题中的已知量有、、,未知量是、(2)等量关系:(3)设未知数,据等量关系列出方程并尝试解答【练习一】八年级学生去距学校s km的博物馆参观,一部分学生骑自行车先走,过了t min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.【例】一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t min. 求两根水管各自的注水速度。
八年级数学下册 3.4分式方程(一)导学案(无答案) 北师大版
§3.4 分式方程(一)一、导学目标:(一)教学知识点 1.解分式方程的一般步骤. 2.了解解分式方程验根的必要性. (二)能力训练要求1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.(三)情感与价值观要求1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.2.运用“转化”的思想,将分式方程转化为整式方程,获得一种成就感和学习数学的自信.二、导学重点:1.解分式方程的一般步骤,熟练掌握分式方程的解决.2.明确解分式方程验根的必要性.三、导学难点:明确分式方程验根的必要性.四、导学方法:探索发现法五、导学设计:(一)温故:列方程:1、有两快面积相同的小麦实验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 ㎏和15000 ㎏,已知第一块的小麦实验田每公顷的产量比第二块少3000㎏,如何设未知数列方程?2、从甲地到乙地有两条路可以走:一条全长600 km普通公路,另一条是全长 480km 的高速公路,某客车在高速公路上行驶的平均速度比普通公路上快45km/h,由高速公路从甲地到乙地的所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间?(二)链接:试说一下什么是分式方程?(三)知新:解方程213-x+325+x=2-624-x[例1]解方程:21-x =x 3. [例2]解方程:x 300-x 2480=4根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.不适合原方程的整式方程的根,叫原方程的增根.练习:1.解方程:(1)13-x =x 4; (2)1210-x +x 215-=2(四)拓展:理解分式方程的意义,掌握解分式方程的一般方法和步骤;了解解分式方程时可能产生增根的原因,掌握解分式方程的验根方法;会利用分式方程解决简单的社会生产建设和日常生活中的应用问题.一、选择题1.下列各式中,是分式方程的是( )A.x +y =5B.3252z y x -=+ C.x 1 D.5+x y =0 2.关于x 的方程4332=-+x a ax 的根为x =1,则a 应取值( ) A.1 B.3 C.-1 D.-33.方程1+1)1(2-+x x =0有增根,则增根是( ) A.1 B.-1 C.±1 D.04.沿河两地相距s 千米,船在静水中的速度为a 千米/时,水流速度为b 千米/时,此船一次往返所需时间为( ) A.b a s +2小时 B.b a s -2小时 C.(b s a s +)小时 D.(ba sb a s -++)小时 5.赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 二、填空题6.方程457+=x x 的根是________. 7.当x =________时,分式xx ++51的值等于21. 8.如果关于x 的方程x x x a --=+-42114有增根,则a 的值为________. 9.一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.10.我国政府为解决老百姓看病问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%至a 元,则这种药品在2001年涨价前的价格为________元.三、解答题11.解下列方程 (1)x x x --=+-34231 (2)2123442+-=-++-x x x x x12.下表是某校初三年级的捐款情况表,其中初三(四)班参加捐款同学的平均捐款数比全年级四个班参加捐款同学的平均捐款数多2元,请求出初三(四)班的捐款人数.四、创新训练1, 先阅读某同学解下面分式方程的具体过程.解方程23321441-+-=-+-x x x x 14322341---=---x x x x . ①341028610222+-+-=+-+-x x x x x x . ②34186122+-=+-x x x x . ③∴x 2-6x+8= x 2-4vx +3 , ④∴x=25. ⑤经检验,x=25是原方程的解.请你回答:(1)得到②的具体做法是 ;②得到③的具体做法是 ;得到④的理由是 .(2)上述解法对吗〉若不对,请指出错误的原因,并改正.五、活动与探究若关于x 的方程31--x x =932-x m 有增根,则m 的值是____________.。
分式方程(1)导学案
第11课时导学内容:16.3.1 分式方程(1) 导学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 导学重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 导学难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.导学方法:引导启发、合作探究、讲练结合 导学过程:【导入新课】回忆一元一次方程的解法,并且解方程163242=--+x x【提出目标】1.完成本章引言的问题,小组议一议:方程vv-=+206020100的特征,然后概括出分式方程的概念__________________________________。
2.分式方程与整式方程的区别是___________________________________。
【检查预习】下列方程中,哪些是分式方程?哪些是整式方程?322x x =-, 734=+yx,xx 321=-,1)1(-=-xx x ,23x x=-π, 10512=-+x x , 21=-xx ,1312=++x xx【学习展示】 1、探究:如何解方程vv-=+206020100(1)、小组内讨论交流解法;(2)、在教师的引导下,师生共同探析。
方程两边同时乘以(20+v )(20-v )得100(20-v )=60(20+v ) 解得:v=5 检验:将v=5代入分式方程,左边=4=右边【此步应强调,学生容易漏掉此步。
】所以v=5是原分式方程的根.【让学生掌握解答步骤】 2、学生用同样的方法尝试解方程:2510512-=-x x例后学生与老师共同概括解分式方程的基本思想:把分式方程“转化”为整式方程,再利用整式方程的解法求解 解分式方程的方法:在方程的两边同乘最简公分母,就可约去分母,化成整式方程 解分式方程的解的两种情况:①所得的根是原方程的根、②所得的根不是原方程的根 原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零验根:把求得的根代入最简公分母,看它的值是否为零。
《分式方程(1)》导学案1
第四节 分式方程(1)【学习目标】1、理解什么是分式方程2、掌握分式方程与整式方程的联系与区别.3、掌握列方程的最基本的思维步骤【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:判断什么样的是分式方程;难点:根据实际数学模型列方程【学习过程】模块一 预习反馈1、分式方程的定义. 叫分式方程.分式方程与整式方程的区别是 .2、找找看,下列方程哪些是分式方程:11(1)(3) ; (2)1221(3)3 ; (4) 11223x x x x x x x x -==-=-=-- 模块二 合作学习甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍.1、找一找这一问题中的所有等量关系2、如果设特快列车的平均行驶速度为x km/h ,那么 x 满足怎样的条件?3、如果设小明乘高铁列车从甲地道乙地需 y h ,那么 y 满足怎样的条件?模块三随堂练习1、“退耕还林还草”是在我国西部地区实施一项重要生态工程.某地规划退耕面积共690002hm,退耕还林与退耕还草的面积比为5∶3,设退耕还林的面积为x2hm,那么x满足怎样的分式方程?2、王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元。
后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?如果设原定是x人,那么x满足怎样的分式方程?模块四小结评价一、本课知识点:1、什么是分式方程?2、分式方程与整式方程的联系与区别.3、列方程的最基本的思维步骤.二、本课典型例题:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、根据题意可得方程:______________________.
该方程有何特征?答:_________________________________.
方程与上面列的方程有什么共同特征?
3、(我理解)分式方程是:__________________________
7、模仿上面的解法解问题一中得到的方程,并检验。
四
学习
心
得
三、我来总结:
8、我认为解分式方程的思路是这样的:把分式方程化成_____方程,解这个______方程,最后再_______.
9、基本过程是:
(1)、在分式方程的两边同时乘以______,约去分母,化成_______方程.
(2)、解这个_____________方程.
三
过程学习
一、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的水流速度为多少?
1、分析:
设江水的水流速度为v千米/时,
轮船顺流航行的ቤተ መጻሕፍቲ ባይዱ度为_____千米/时,
逆流航行的速度为_____千米/时,
顺流航行100千米所用时间为______小时,
(3)、把_____方程的解代入最简公分母,如果最简公分母的值____为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去.
五
热身练习
四、练习(解方程):10、11、
解分式方程(1)导学案
步
骤
年级
学科
学习准备
学习引导
教学时间
八年级
数学
来荣平
来荣平
2010.04.26
一
学习目标
1、理解分式方程的概念。
2、理解分式方程的解题思路。
3、掌握解分式方程的步骤。
4、掌握分式方程验根的方法。
二
知识
准备
1、整式方程的定义,特征。
2、一元一次方程的解法及步骤。
3、分式的运算及最简公分母的求法。
(2)、解整式方程:_______________得x=________;(3)、检验:把x=____代入最简公分母________=___,
__(填等于0或不等于0)(若等于0,则x=___是这个整式方程的解,而不是原分式方程的解,舍去,原分式方程无解,把x=__叫这个分式方程的增根;若不等于0,则这个整式方程的解也是原分式方程的解)。即x=____(不、是)原方程的解。
4、练习:A.B.前面A、B中,()是分式方程,()是整式方程.理由:_________.
二、解分式方程:
5、解一元一次方程的五步是:___、___、___、___、__。
6、解方程它的最简公分母是:_______;
(1)、去分母:两边同时乘以最简公分母即:
()( )约分后得整式方程_________;