1.4.1 平均数、中位数、众数、极差、方差
什么是中位数,众数,平均数
什么是中位数,众数,平均数中位数,又称中点数,中值。
中数是按顺序排列的一组数据中居于中间位置的数;众数是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平;平均数是指在一组制数据中所有数据之和再除以数据的个数。
什么是中位数,众数,平均数中位数:把一组数据从小到大排列,最中间的那个数就是中位数。
众数:一组数据中出现次数量多的那个数,众数可以是多个。
平均数:一组数据之和,除以这组数的个数,所得的结果就是平均数。
中位数,众数,平均数的作用中位数:表示数据的中等水平。
中位数与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:表示数据的普遍情况。
与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性。
平均数:表示数据的总体水平。
与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数,众数,平均数怎么求1.中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
2.众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3.平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
(在选手比赛成绩统计中通常会去掉一个最高分和一个最低分,以示公平)。
4.1平均数、中位数、众数
单位:米
1.50 1.60 2 3
1.65 2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
人数
分别求这些运动员成绩的众数,中位数与 平均数
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70; 这组数据的平均数是
3、由于平均数与每一个样本的数据 有关,所以任何一个样本数据的改变 都会引起平均数的改变,这是众数、 中位数都不具有的性质。也正因如此 , 与众数、中位数比较起来,平均数可 以反映出更多的关于样本数据全体的 信息,但平均数受数据中的极端值的 影响较大,使平均数在估计时可靠性 降低。
众数占天时(偶尔出现) 中位数占地利(位置不变) 平均数人和(民主和谐) 它们刻画了一组数据的集中趋势。
4.1 众数、中位数、平均数、
极差、方差
一 众数、中位数、平均数的概念
众数:在一组数据中,出现次数最多的数据叫 做这组数据的众数.
中位数:将一组数据按大小依次排列,把处在 最中间位置的一个数据(或最中间两个数据的 平均数)叫做这组数据的中位数.
平均数: 一组数据的算术平均数,即
1 X ( x1 x2 xn ) n
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
北师大必修三数学 平均数、中位数、众数、极差、方差 标准差
首页
上一页
下一页
末页
结束
数字特征与统计图表的综合问题 [典例] (1)为了普及环保知识,增强环保意识,某大学随机 抽取 30 名学生参加环保知识测试,得分(十分制)如图所示,假 设得分值的中位数为 me,众数为 mo,平均值为 x ,则( )
A.me=mo= x B.me=mo< x C.me<mo< x D.mo<me< x
x
=
2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10 30
≈5.97.
于是得 mo<me< x .
首页
上一页
下一页
末页
结束
(2)观察图形可得:样本 A 的数据均小于或等于 10,样本 B 的数据均大于或等于 10,故 x A< x B,又样本 B 的波动范围 较小,故 sA>sB.
()
A.平均数
B.极差
C.中位数
D.方差
解析:选 C 判断是不是能进入决赛,只要判断是不是前 8 名,
所以只要知道其他 15 位同学的成绩中是不是有 8 个高于他,
也就是把其他 15 位同学的成绩排列后看第 8 个的成绩即可,
小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能
进入决赛,这个第 8 名的成绩就是这 15 位同学成绩的中位数.
1.平均数、中位数、众数
(1)平均数
如果有 n 个数 x1,x2,…,xn,那么 x =
x1+x2+…+xn n
,
叫作这 n 个数的平均数.
(2)中位数
把一组数据按从小到大的顺序排列,把处于 最中间位置的那个
数(或中间两数的平均数)称为这组数据的中位数.
(3)众数
一组数据中重复出现次数 最多的数称为这组数的众数,一组数
统计学基本指标
统计学基本指标统计学基本指标是统计学中用来描述和分析数据的一组常见指标。
这些指标能够帮助我们对数据进行概括和解释,从而更好地理解数据的特征和趋势。
本文将介绍一些常用的统计学基本指标,包括平均数、中位数、众数、离散程度、偏度和峰度。
一、平均数平均数是一组数据的总和除以数据个数所得的值。
它是最常用的描述数据集中趋势的指标之一。
平均数可以帮助我们了解数据的集中程度。
当数据集中趋势明显时,平均数的值会比较接近数据的中心。
二、中位数中位数是一组数据中排在中间位置的值。
将数据按照大小顺序排列,如果数据个数为奇数,中位数就是中间那个数;如果数据个数为偶数,中位数就是中间两个数的平均值。
中位数可以帮助我们了解数据的分布情况,特别适用于存在离群值的数据集。
三、众数众数是一组数据中出现次数最多的值。
众数可以帮助我们找出数据中的重要特征。
当数据集中存在多个众数时,我们可以称之为多峰分布。
四、离散程度离散程度是一组数据分散程度的度量。
常见的离散程度指标有极差、方差和标准差。
极差表示数据的最大值与最小值之间的差异;方差是每个数据与平均数之差的平方和的平均数;标准差是方差的平方根。
离散程度指标能够帮助我们了解数据的分散程度,从而判断数据的可靠性和稳定性。
五、偏度偏度是一组数据分布偏斜程度的度量。
正偏分布指数据的右尾较长,负偏分布指数据的左尾较长。
偏度为0表示数据分布对称。
通过偏度指标,我们可以判断数据的分布形态,从而选择合适的处理方法。
六、峰度峰度是一组数据分布峰态的度量。
正常分布的峰度为3,大于3表示峰态较高,小于3表示峰态较平。
峰度指标可以帮助我们判断数据的分布形态,从而选择合适的分析方法。
统计学基本指标是描述和分析数据的重要工具。
通过平均数、中位数、众数、离散程度、偏度和峰度等指标,我们可以更好地理解数据的特征和趋势,为后续的数据分析和决策提供依据。
在实际应用中,我们根据具体问题选择合适的指标进行分析,以获得准确和可靠的结果。
平均数、众数、中位数、极差、方差、标准差
平均数、众数、中位数、极差、方差、标准差说明6个基本统计量(平均数、众数、中位数、极差、方差、标准差)的内涵,学生学习过程中可能产生的困难及主要原因、应对策略.首先,结合简单实例认真把握这6个基本统计量的内涵。
一、平均数、众数、中位数是刻画一组数据的“平均水平”的数据代表。
(八上《第八章数据的代表》)平均数分算术平均数和加权平均数,算术平均数是指n个数据的和的平均值,学生理解与计算都不成问题,只要注意细心运算就是其中的取标准值后的简便算法也都是在小学早已熟练的(公式:x=1/n(x1+x2+x3+……+xn);而加权平均数是一组数据里的各个数据乘各自的“权”之后的平均数。
此处理解“权”的概念可能产生很大困难,因为“权”的理解的确不易,若是照搬教材直接给出其定义,学生会迷惑成团,再进行应用更是不可思议。
所以应对措施:讲好、用好加权平均数就要先举例、后分析、再给出定义,比如:某同学的一次考试各科成绩如下:语文110、数学105、英语106、物理95、化学90、政治86、历史98、地理66、生物89,你可以先让学生算算各科的平均数,再按中考计分法将语、数、英各取120%,物、化、政各取100%,史、地、生各取40%后的平均值算出,两个结果一比较,学生就会很容易发现不同的原因是加入了所谓的“权”,这样,不仅通俗易懂,而且对“权”内涵的理解和应用就不再困难。
众数是一组数据中出现次数最多的数。
其内涵很好理解和掌握,就是结合实际应用也顺理成章,如商店老板进货号多大的男鞋好?那当然是“众数”(调查数据最多的号)所代表的。
中位数顾名思义是一组数据中间位置的数,但考虑一组数可能有偶数个或奇数个,所以要注意强调取中位数的方法。
教材上给出的内涵很好:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8的中位数是1/2(1.65+1.7),即1.675。
高中数学《平均数、中位数、众数、极差、方差 标准差》导学案
1.4.1平均数、中位数、众数、极差、方差1.4.2标准差[航向标·学习目标]1.理解平均数、中位数、众数、极差、方差、标准差的概念.2.会计算数据的平均数、标准差.3.体会用统计量表达样本数据,提高学生的学习兴趣.[读教材·自主学习]1.平均数:一般地,对于n个数x1,x2,…,x n,我们把□011n(x1+x2+…+x n)叫作这n个数的算术平均数,简称平均数.2.中位数:一般地,将n个数据按大小顺序排列,处于□02最中间的一个数(或最中间两个数据的平均数)叫作这组数据的中位数.3.众数:一组数据中□03出现次数最多的那个数据叫作这组数据的众数.4.极差:极差是数据的□04最大值与□05最小值的差.5.标准差:各个数据与平均数□06之差的平方的平均数,称为这组数据的方差,方差的□07算术平方根称为这组数据的标准差.[看名师·疑难剖析]1.平均数、中位数、众数刻画一组数据集中趋势的统计量有平均数、中位数和众数等,它们作为一组数据的代表各有优缺点,也各有各的用处,从不同的角度出发,不同的人会选取不同的统计量来表达同一组数据的信息.平均数是刻画一组数据集中趋势最常用的统计量.2.方差、标准差n 个数据x 1,x 2,…,x 3,我们把x 1+x 2+…+x n n记为x -,则方差可以用s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]来表示,将方差的算术平方根s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]称为标准差. 刻画一组数据离散趋势的统计量有方差、标准差等.对方差和标准差的理解还要注意以下几方面:(1)标准差、方差描述了一组数据围绕平均数的波动大小.标准差、方差越大,数据离散程度越大,稳定性越差;标准差、方差越小,数据离散程度越小,稳定性越好;(2)因方差与原始数据单位不同,且平方后可能夸大了偏差程度,所以虽然标准差与方差在体现数据分散程度上是一样的,但解决问题时一般用标准差;(3)标准差与方差的取值范围是[0,+∞).考点一 平均数、众数、中位数的计算例1 求下列一组数据的平均数、中位数、众数:10,20,80,40,30,90,50,40,50,40. [分析] 明确各概念,利用定义解题.[解] 这组数据的平均数为(10+20+80+40+30+90+50+40+50+40)÷10=45.将这组数据按从小到大的顺序排列,得10,20,30,40,40,40,50,50,80,90,所以中位数为(40+40)÷2=40.又因为40出现3次,出现次数最多,所以众数为40.类题通法求平均数必须先将所有数据求和,再把和除以数据的个数.求中位数时,必须将所有数据按从小到大的顺序排列后,把中间的数或中间两项的平均数称为这组数据的中位数.而众数则是出现次数最多的数据.在解答本类问题时,一定要审清题意,明确各数据出现的次数,认真计算,以防计算失误.[变式训练1] (1)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.(2)在如下图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.答案(1)2423(2)4546解析(1)由茎叶图可知甲的平均数为(9+8+20)+(1+3+2+100)+(1+1+5+90)=24,乙的平均数为10(9+7+1+30)+(1+4+2+4+80)+(2+90)=23.10(2)甲组数据从小到大排序后,最中间的数是45,即甲组数据的中位数为45;乙组数据从小到大排序后,最中间的数是46,即乙组数据的中位数是46.考点二平均数、众数、中位数的应用例2个体户李某经营一家快餐店,下面是快餐店所有工作人员8月份的工资表:李某大厨二厨采购员杂工服务生会计3000元450元350元400元320元320元410元(1)计算所有员工8月份的平均工资;(2)由(1)计算出的平均工资能否反映打工人员这个月收入的一般水平?为什么?(3)去掉李某的工资后,再计算平均工资,这能代表打工人员当月的收入水平吗?(4)根据以上计算,以统计的观点,你对(3)的结果有什么看法?[解] (1)这7个人的8月份平均工资是x -1=17(3000+450+350+400+320+320+410)=750(元).(2)计算出的平均工资不能反映打工人员的当月收入的一般水平,可以看出,打工人员的工资都低于平均工资,因为这7个值中有一个极端值——李某的工资特别高,所以他的工资对平均工资的影响较大,同时他也不是打工人员.(3)去掉李某的工资后的平均工资x -2=16(450+350+400+320+320+410)=375(元),该平均工资能代表打工人员的当月收入的一般水平.(4)从本题的计算可以看出,个别特殊值对平均数有很大的影响,因此在选择样本时,样本中尽量不用特殊数据.类题通法本题充分说明了平均数在具体问题中的意义.[变式训练2] 据报道,某公司的33名职工的月工资(以元为单位)如下:(1)求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.解 (1)平均数是x -=1500+4000+3500+2000×2+1500+1000×5+500×3+0×2033≈1500+591=2091(元),中位数是1500元,众数是1500元. (2)平均数是x -′=1500+28500+18500+2000×2+1500+1000×5+500×3+0×2033≈1500+1788=3288(元).中位数是1500元,众数是1500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.考点三 方差与标准差的计算例3 一个样本数据的方差是s 2=120[(x 1-3)2+(x 2-3)2+(x 3-3)2+…+(x 20-3)2].(1)求样本的容量n 及平均数x -;(2)如果样本数据的平方和为200,求样本的方差.[分析] 本题主要用方差的公式进行变形求解,我们要熟练掌握公式的变形. [解] (1)由样本数据方差公式可以得到样本容量n =20,平均数x -=3. (2)由s 2=120[(x 1-3)2+(x 2-3)2+…+(x 20-3)2]=120[(x 21+x 22+…+x 220)-6(x 1+x 2+…+x 20)+20×9]=120(200-360+180)=1.类题通法解决此类问题一定要熟记公式.[变式训练3] 甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s 1、s 2、s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1 答案 B解析 x -甲=(7+8+9+10)×520=8.5,s 21=5×[(7-8.5)2+(8-8.5)2+(9-8.5)2+(10-8.5)2]20 =1.25,x -乙=(7+10)×6+(8+9)×420=8.5,s 22=6×[(7-8.5)2+(10-8.5)2]+4×[(8-8.5)2+(9-8.5)2]20=1.45,x -丙=(7+10)×4+(8+9)×620=8.5,s 23=4×[(7-8.5)2+(10-8.5)2]+6×[(8-8.5)2+(9-8.5)2]20=1.05,由s 22>s 21>s 23得s 2>s 1>s 3.故选B.考点四 数据的数字特征的应用例4 一次科技知识竞赛,两组学生成绩如下表:已经计算得到两个组成绩的平均数都是80分,请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁次,并说明理由.[分析]优次之分的标准是通过数据的各数字特征来反映.[解](1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组的成绩好一些;(2)s2甲=150×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172(分2).s2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256(分2).因为s2甲<s2乙,所以甲组的成绩比乙组的成绩好.(3)甲、乙两组成绩的中位数、平均数都是80分,其中,甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,从这一角度来看,甲组的成绩总体较好.(4)从成绩统计表来看,甲组的成绩高于90分(含90分)的人数为14+6=20(人),乙组的成绩高于90分(含90分)的人数为12+12=24(人),所以乙组成绩集中在高分段的人数多,同时乙组得满分的比甲组得满分的多6人,从这一角度来看,乙组的成绩较好.类题通法用数据的数字特征来反映该组数据的特点,本例就是从众数、中位数、方差、高分段以及满分的人数等数字特征全方位进行综合分析、比较,并作出判断.[变式训练4]有一组数据:x1,x2,…,x n(x1<x2<…<x n)的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9,若去掉其中最小的一个,余下数据的算术平均值为11.(1)求出第一个数x 1关于n 的表达式及第n 个数x n 关于n 的表达式; (2)若x 1,x 2,…,x n 都是正整数,试求第n 个数x n 的最大值,并举出满足题目要求且x n 取到最大值的一组数据.解 (1)依条件得⎩⎪⎨⎪⎧x 1+x 2+…+x n =10n , ①x 1+x 2+…+x n -1=9(n -1),②x 2+x 3+…+x n =11(n -1), ③由①-②得x n =n +9. 又由①-③得x 1=11-n .(2)由于x 1是正整数.故x 1=11-n ≥1⇒1≤n ≤10, 故x n =n +9≤19.当n =10时,x 1=1,x 10=19,x 2+x 3+…+x 9=80.此时,x 2=6,x 3=7,x 4=8,x 5=9,x 6=11,x 7=12,x 8=13,x 9=14.[例] (12分)某酒厂有甲、乙两条生产线生产同一种型号的白酒,产品在自动传输带上包装传送,每15分钟抽一瓶测定其质量是否合格,分别记录抽查的数据如下(单位:毫升):甲生产线:508,504,496,510,492,496 乙生产线:515,520,480,485,497,503 问:(1)这种抽样是何种抽样方法?(2)分别计算甲、乙两条生产线的平均值与标准差,并说明哪条生产线的产品较稳定.(一)精妙思路点拨(二)分层规范细解(1)根据题意知,抽样是每15分钟抽一瓶,是等距抽样,所以这种抽样是系统抽样.4分(2)根据已知抽样数据可计算:x -甲=16×(508+504+496+510+492+496)=501①,6分∴s 2甲=16×[(508-501)2+(504-501)2+(496-501)2+(510-501)2+(492-501)2+(496-501)2]=45①,∴s 甲=35≈6.708.8分x -乙=16×(515+520+480+485+497+503)=500①,∴s 2乙=16×[(515-500)2+(520-500)2+(480-500)2+(485-500)2+(497-500)2+(503-500)2]≈211.3①10分∴s 乙≈14.536.∴s 甲<s 乙,甲生产线的产品较稳定②.12分 (三)来自一线的报告通过阅卷后分析,对解答本题的失分警示和解题启示总结如下:(注:此处的①②见分层规范细解过程)(四)类题练笔掌握从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm): 甲:25,41,40,37,22,14,19,39,21,42; 乙:27,16,44,27,44,16,40,40,16,40. 问:(1)哪种玉米的苗长得高? (2)哪种玉米的苗长得齐?解 (1)x -甲=110×(25+41+40+37+22+14+19+39+21+42) =110×300=30(cm),x -乙=110×(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm),∵x-甲<x-乙,∴乙种玉米的苗长得高.(2)s2甲=110×[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110×1042=104.2(cm2),s2乙=110×[(27-31)2×2+(16-31)2×3+(44-31)2×2+(40-31)2×3]=110×1288=128.8(cm2).∵s2甲<s2乙,∴甲种玉米的苗长得齐.(五)解题设问(1)本题中样本数据的个数是多少?________.(2)需用样本数据的哪些数字特征?需要求出样本数据的________,用来衡量玉米的高度;求出样本数据的________(或________)用来衡量玉米长得是否齐.答案(1)有10个(2)平均数方差标准差1.已知某班8名学生的身高(单位:m)分别为:1.74,1.68,1.72,1.80,1.64,1.69,1.75,1.82,则这8名学生的平均身高为()A.1.60 m B.1.82 mC.1.73 m D.1.64 m答案 C解析求平均数.2.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为() A.9.40.484 B.9.40.016C.9.50.04 D.9.50.016答案 D解析 去掉最高分9.9和最低分8.4,余下的数为9.4,9.4,9.6,9.4,9.7,其平均数x -=3×9.4+9.6+9.75=9.5,s 2=15×(0.12+0.12+0.12+0.12+0.22)=0.016.3.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各有1人,则该小组成绩的平均数、众数、中位数分别是( )A .85、85、85B .87、85、86C .87、85、85D .87、85、90答案 C4.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a ,b 的取值分别是________.答案 a =10.5,b =10.5解析 依题意及中位数定义可知:a =10.5,b =10.5.5.甲、乙两台机床在相同的技术条件下,同时生产一种零件,现在从中抽测10个,它们的尺寸(单位:mm)分别如下.甲:10.2,10.1,10,9.8,9.9,10.3,9.7,10,9.9,10.1 乙:10.3,10.4,9.6,9.9,10.1,10.9,8.9,9.7,10.2,10分别计算上面两个样本的平均数和方差.如果图纸规定零件的尺寸为10 mm ,从计算的结果来看,用哪台机床加工这种零件较合适?(要求利用公式笔算)解 x -甲=110×(10.2+10.1+…+10.1)=110×100=10, x -乙=110×(10.3+10.4+…+10)=110×100=10.所以s 2甲=110×[(10.2-10)2+(10.1-10)2+…+(10.1-10)2]=0.03(mm 2), 所以s 2乙=110×[(10.3-10)2+(10.4-10)2+…+(10-10)2]=0.06(mm 2). 所以s 2甲<s 2乙.所以甲机床比乙机床稳定,即用甲机床加工较合适.一、选择题1.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )89⎪⎪⎪ 9 73 1 6 4 0 2A .91.5和91.5B .91.5和92C .91和91.5D .92和92答案 A解析 中位数为12(91+92)=91.5;平均数为18(87+89+90+91+92+93+94+96)=91.5.2.某校高一有四个班,1~4班的人数分别为N 1,N 2,N 3,N 4,总人数为N ,英语成绩的平均分分别为M 1,M 2,M 3,M 4,则该校高一英语的平均分是( )A .M 1,M 2,M 3,M 4的平均数B .M 1,M 2,M 3,M 4的中位数C .M 1N 1,M 2N 2,M 3N 3,M 4N 4的平均数D .M 1N 1,M 2N 2,M 3N 3,M 4N 4的和与1N 的乘积 答案 D3.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A.65 B.65 C. 2 D .2答案 D解析 由题可知样本的平均值为1,所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,故选D. 4.甲、乙两名同学在五次考试中数学成绩统计用茎叶图表示如下图所示,则下列说法正确的是( )A.甲的平均成绩比乙的平均成绩高B .甲的平均成绩比乙的平均成绩低C .甲成绩的方差比乙成绩的方差大D .甲成绩的方差比乙成绩的方差小 答案 C解析 x -甲=15(98+99+105+115+118)=107, x -乙=15(95+106+108+112+114)=107.s 2甲=15[(98-107)2+(99-107)2+(105-107)2+(115-107)2+(118-107)2]=66.8,s 2乙=15[(95-107)2+(106-107)2+(108-107)2+(112-107)2+(114-107)2]=44.所以排除A 、B 、D ,选C.5.如下图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )A.x -A >x -B ,s A >s BB.x -A <x -B ,s A >s BC.x -A >x -B ,s A <s BD.x -A <x -B ,s A <s B 答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10, B 组的6个数为15,10,12.5,10,12.5,10, 所以x -A =2.5+10+5+7.5+2.5+106=37.56, x -B =15+10+12.5+10+12.5+106=706.显然x -A <x -B ,又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以s A >s B ,故选B.6.某次考试,班长算出了全班40人的数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么M ∶N 为( )A .40∶41B .41∶40C .2∶1D .1∶1答案 D解析 由题意知全班40个同学的总分为40M ,则N =40M +M41,整理,得M =N .二、填空题7.若40个数据的平方和是48,平均数是12,则这组数据的方差是________. 答案 1920解析 由题可得x 21+x 22+…+x 240=48,x -=12. 所以s 2=140[(x 1-x -)2+(x 2-x -)2+…+(x 40-x -)2] =140[(x 21+x 22+…+x 240)+40x -2-2x -(x 1+x 2+…+x 40)] =140⎝ ⎛⎭⎪⎫48+40×14-2×12×12×40=1920.8.从甲、乙、丙三个厂家生产的同一种产品中抽取8件产品,对其使用寿命(单位:年)进行追踪调查的结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数,众数,中位数中的哪一种集中趋势的特征数.甲:________,乙:________,丙:________. 答案 众数 平均数 中位数9.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.答案 3.2解析本题主要考查统计知识——方差的计算.5个数据的平均数x-=10+6+8+5+65=7,所以s2=15×[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.三、解答题10.某校在一次考试中,甲、乙两班学生的数学成绩统计如下:选用平均数与众数、中位数评估这两个班的成绩.解甲班平均数79.6分,乙班平均数80.2分,从平均分看成绩较好的是乙班;甲班众数为90分,乙班众数为70分,从众数看成绩较好的是甲班;甲班的第25个和第26个数据都是80,所以中位数是80分,同理,乙班中位数也是80分,但是甲班成绩在中位数以上(含中位数)的学生有31人,占全班学生的62%,同理乙班27人,占54%,所以从中位数看成绩较好的是甲班.如果记85分以上为优秀,甲班有20人,优秀率为40%;乙班有24人,优秀率为48%,从优秀率来看成绩较好的是乙班.可见,一个班学生成绩的评估方法很多,需视要求而定.11.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况.有关数据如下表:每户丢弃旧塑料袋个数234 5户数6161513(1)求这50户居民每天丢弃旧塑料袋的平均数;(2)求这50户居民每天丢弃旧塑料袋的标准差.解根据平均数和标准差的公式计算即可.(1)平均数x -=150(2×6+3×16+4×15+5×13)=18550=3.7. (2)这50户居民每天丢弃旧塑料袋的方差为s 2=150[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97.所以标准差s ≈0.985.12.两台机床同时生产直径为10毫米的零件,为了检验产品质量,检验员从两台机床的产品中各抽出4件进行测量,结果如下(单位:毫米):如果你是检验员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件更符合要求?解 先计算平均直径:x -甲=14×(10+9.8+10+10.2)=10(毫米).x -乙=14×(10.1+10+9.9+10)=10(毫米).由于x -甲=x -乙,因此,平均直径反映不出两台机床生产的零件的优劣.再计算方差:s 2甲=14×[(10-10)2+(9.8-10)2+(10-10)2+(10.2-10)2]=0.02(毫米2),s 2乙=14×[(10.1-10)2+(10-10)2+(9.9-10)2+(10-10)2]=0.005(毫米2). 由于s 2乙<s 2甲,这说明乙机床生产出的零件直径波动小,因此,从产品质量稳定性的角度考虑,乙机床生产的零件更符合要求.13.近几届冬奥会男、女1500米速滑的冠军成绩分别如下表所示:(1)分别求出男、女1500米速滑的冠军成绩的平均数和中位数;(2)分别求出男、女1500米速滑的冠军成绩的标准差;(3)通过(1)(2)的计算,请用自己的语言描述近几届冬奥会男、女1500米速滑的冠军成绩分别有什么特点.解(1)近几届冬奥会男子1500米速滑冠军成绩的平均数和中位数分别是1′54.17″,1′54.81″;女子的平均数和中位数分别是2′05.32″,2′03.42″.(2)近几届冬奥会男、女1500米速滑冠军成绩的标准差分别是3.7637″,6.0194″.(3)从上面的计算结果我们不难看出:近几届冬奥会男子速滑的冠军成绩相比女子成绩优异而且比较稳定.。
北师大版数学高一必修3教案1.4.1平均数、中位数、众数、极差、方差4.2标准差
§4数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差整体设计教学分析在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题.在这个基础上,高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,达到在具体的问题中能根据情况有针对性地选择一些合适的数字特征.三维目标1.能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息,培养学生解决问题的能力.2.通过实例理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力.重点难点教学重点:平均数、中位数、众数、极差、方差的计算、意义和作用.教学难点:根据问题的需要选择适当的数字特征来表达数据的信息.课时安排1课时教学过程导入新课思路那么怎样判断中国女排和俄罗斯女排的队员谁的身材更为高大?我们分别求出两队球员的平均身高,谁的平均身高数值大,谁的身材就更高大,教师点出课题:数据的数字特征.思路 2.小明开设了一个生产玩具的小工厂,管理人员由小明、他的弟弟和六个亲戚组成.工作人员由五个领工和十个工人组成.工厂经营得很顺利,需要增加一个新工人,小亮需要一份工作,应聘而来与小明交谈.小明说:“我们这里报酬不错,平均薪金是每周300元.你在学徒期每周75元,不过很快就可以加工资了.”小亮工作几天后找到小明说:“你欺骗了我,我已经找其他工人核对过了,没有一个人的工资超过每周100元,平均工资怎么可能是一周300元呢?”小明说:“小亮啊,不要激动,平均工资是300元,你看,这是一张工资表.”工资表如下:人员 小明 小明弟弟 亲戚 领工 工人 周工资 2 400 1 000 250 200 100 人数 1 1 6 5 10 合计2 4001 0001 5001 0001 000这到底是怎么了?教师点出课题:数据的数字特征. 推进新课 新知探究 提出问题1.什么叫平均数?有什么意义? 2.什么叫中位数?有什么意义? 3.什么叫众数?有什么意义? 4.什么叫极差?有什么意义? 5.什么叫标准差?有什么意义? 6.什么叫方差?有什么意义? 讨论结果:1.一组数据的和与这组数据的个数的商称为这组数据的平均数.数据x 1,x 2,…,x n的平均数为x =x 1+x 2+…+x nn.平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.2.一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据中的中位数是唯一的,反映了该组数据的集中趋势.3.一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势.4.一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.5.标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用公式s =1n[x 1-x 2+x 2-x 2+…+x n -x 2]来计算.可以用计算器或计算机计算标准差.标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差大,数据的离散程度大;标准差小,数据的离散程度小.标准差的取值范围是[0,+∞).样本数据x 1,x 2,…,x n 的标准差的计算步骤:(1)计算样本数据的平均数,用x 来表示;(2)计算每个样本数据与样本数据平均数的差:x i -x (i =1,2,…,n ); (3)计算x i -x (i =1,2,…,n )的平方;(4)计算这n 个x i -x (i =1,2,…,n )的平方的平均数,即方差;(5)计算方差的算术平方根,即为样本标准差.6.方差等于标准差的平方,即s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],与标准差的作用相同,描述一组数据围绕平均数波动的程度的大小.方差的取值范围是[0,+∞).应用示例思路1(1)分别计算该公司员工月工资的平均数、中位数和众数.(2)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)经过简单计算可以得出:该公司员工的月工资平均数为1 373元,中位数为800元,众数为700元.(2)公司经理为了显示本公司员工的收入高,采用平均数1 373元作为月工资的代表;而税务官希望取中位数800元,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数700元作为代表,因为每月拿700元的员工数最多.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数大,对于非对称的数据集,中位数更实际地描述了数据的中心;当变量是分类变量时,众数往往经常被使用. 变式训练请参照这个表解答下列问题:(1)用含x ,y 的代数式表示该班参加“环保知识竞赛”的班平均分f ; (2)若该班这次竞赛的平均分为2.5分,求x ,y 的值.解:(1)f =3x +5y +5940;(2)依题意,有⎩⎪⎨⎪⎧3x +5y =41,x +y =11,解得⎩⎪⎨⎪⎧x =7,y =4.2.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人(1)该风景区调整前后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?(2)游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%,问游客是怎样计算的?(3)你认为风景区和游客哪一方的说法较能反映整体实际? 解:(1)风景区是这样计算的: 调整前的平均价格: 10+10+15+20+255=16(元),调整后的平均价格:5+5+15+25+305=16(元),因为调整前后的平均价格不变,平均日人数不变, 所以平均日总收入不变. (2)游客是这样计算的: 原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元), 现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元),所以平均日总收入增加了175-160160≈9.4%.(3)游客的说法较能反映整体实际.例2 甲、乙两台机床同时生产直径是40 mm 的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示. 甲机床直径/mm 40.0 39.8 40.1 40.2 39.9 40.0 40.2 39.8 40.2 39.8 乙机床直径/mm40.040.039.940.039.940.1 40.140.140.039.9分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差,并判断哪台机床生产过程更稳定.解:从数据很容易得到甲、乙两台机床生产的这10件产品直径的平均值x 甲=x 乙=40(mm).我们分别计算它们直径的标准差:s 甲=[40-402+39.8-402+…+39.8-402]/10=0.161(mm), s 乙=[40-402+40-402+…+39.9-402]/10=0.077(mm).由上面的计算可以看出:甲、乙两台机床生产的产品直径的平均值相同,而甲机床生产的产品直径的标准差为0.161 mm ,比乙机床的标准差0.077 mm 大,说明乙机床生产的零件要更标准些,即乙机床的生产过程更稳定一些.点评:对数据数字特征内容的评价,应当更多地关注对其本身意义的理解和在新情境中的应用,而不是记忆和使用的熟练程度. 变式训练设有容量为n 的样本x 1,x 2,…,x n ,其标准差为s x ,另有容量为n 的样本y 1,y 2,…,y n ,其标准差为s y ,且y k =3x k +5(k =1,2,…,n ),则下列关系正确的是( ).A .s y =3s x +5B .s y =3s xC .s y =3s xD .s y =3s x +5 答案:B思路2例1 800 800 800 800 800 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 500 1 5001 5001 5001 5001 5001 500(1)计算该公司员工的月工资的平均数、中位数和众数;(2)假如你去这家企业应聘职位,你会如何看待员工的收入情况?分析:(1)根据平均数、中位数和众数的定义可以分别求得;(2)主要根据月工资的平均数来看待员工的收入情况,当然也要考虑中位数和众数.解:(1)公司员工的月工资的平均数为5×800+10×1 000+20×1 200+7×1 500+5×2 000+3×2 50050=1 320(元),中位数为1 200元,众数为1 200元.(2)由于该公司员工的月工资的中位数和众数与平均数比较接近, 所以主要考虑月工资的平均数1 320元作为月工资的代表,这样以该公司月平均工资1 320元与同类企业的工资待遇作比较即可. 点评:大多情况下人们会把眼光仅停留在工资表中的最大与最小值处,把最高工资作为一个单位工资的评价,这是一种错误的评价方式. 变式训练1.已知10个数据:1 203,1 201,1 194,1 200,1 204,1 201,1 199,1 204,1 195,1 199,它们的平均数是( ).A .1 400B .1 300C .1 200D .1 100 答案:C2根据表中提供的信息填空:(1)该公司每人所创的年利润的平均数是__________万元. (2)该公司每人所创的年利润的中位数是__________万元.(3)你认为应该使用平均数和中位数中哪一个来描述该公司每人所创的年利润的一般水平?答案:(1)3.36 (2)2.1 (3)中位数.(1)甲、乙的平均成绩谁较好? (2)谁的各门功课发展较平衡?分析:(1)利用公式计算平均数;(2)计算方差来分析.解:(1)∵x 甲=15(60+80+70+90+70)=74,x 乙=15(80+60+70+80+75)=73,∴甲的平均成绩较好.(2)s 2甲=15(142+62+42+162+42)=104,s 2乙=15(72+132+32+72+22)=56,∵s 2甲>s 2乙,∴乙的各门功课发展较平衡.点评:平均数和方差是样本的两个重要数字特征,方差越大,表明数据越分散,相反地,方差越小,数据越集中、稳定;平均数越大表明数据的平均水平越高,平均数越小表明数据的平均水平越低. 变式训练已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( ). A .1 B .2 C .3 D .4解析:∵x =3+5+7+4+65=5,∴方差s 2=15[(5-3)2+(5-5)2+(5-7)2+(5-4)2+(5-6)2]=2.答案:B 知能训练1.下列说法正确的是( ).A .甲、乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样B .期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好C .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好D .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好答案:D2.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是__________分.( ).A .97.2B .87.29C .92.32D .82.86 答案:B3s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ). A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1解析:方法一:计算得x 甲=x 乙=x 丙=8.5,s 21=2520,s 22=2820,s 23=2120,则s 2>s 1>s 3;方法二:可以计算三名运动员成绩的平均数都等于8.5,观察对比三个表格,相比之下丙的环数集中在8.5周围,比甲和乙要稳定,乙的环数比甲更分散,则有s 1>s 3,s 2>s 1.答案:B4.某人射击5次,分别为8,7,6,5,9环,则这个人射击命中的平均环数为__________. 答案:75.华山鞋厂为了了解中学生穿鞋的鞋号情况,对某中学八年级(1)班的20名男生所穿鞋号的统计如下表:鞋号 23.5 24 24.5 25 25.5 26 人数344711那么这20名男生鞋号数据的平均数是__________,中位数是__________,众数是__________,在平均数、中位数和众数中,鞋厂最感兴趣的是__________.答案:24.55 24.5 25 众数6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是__________.答案:-3拓展提升甲 25 41 40 37 22 14 19 39 21 42 乙27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解:(1)∵x 甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x 乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm),∴x 甲<x 乙,即乙种玉米的苗长得高.(2)∵s 2甲=104.2(cm 2),s 2乙=128.8(cm 2),∴s 2甲<s 2乙,即甲种玉米的苗长得齐. 课堂小结本节课学习了平均数、中位数、众数、极差、方差的计算、意义和作用. 作业习题1-4 1,2.设计感想本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差的计算、意义和作用,重在应用.备课资料备选习题1.现有同一型号的汽车50辆.为了了解这种汽车每耗油1 L 所行路程的情况,要从中抽出5辆汽车在同一条件下进行耗油 1 L 所行路程的试验,得到如下数据(单位:km):11,15,9,12,13.则样本方差是( ).A .20B .12C .4D .2解析:可以计算得平均数x =11+15+9+12+135=12,则方差s 2=15[(11-12)2+(15-12)2+(9-12)2+(12-12)2+(13-12)2]=4.答案:C2.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( ).A .1B .2C .3D .4解析:由平均数为10,得(x +y +10+11+9)×15=10,整理得x +y =20;又由于方差为2,则15×[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]=2,整理得x 2+y 2-20(x +y )+192=0,所以x 2+y 2=208,则2xy =192.故|x -y |=x -y 2=x 2+y 2-2xy =4.答案:D3.某农科所为寻找高产稳定的油菜品种,选了三个不同的油菜品种进行试验,每一品试评定哪一品种既高产又稳定.解:∵三个品种的产量的平均数分别为x1=21.0(kg),x2=21.0(kg),x3=20.48(kg),方差为s21=0.572,s22=2.572,s23=3.597 6,∴x1=x2>x3,s21<s22<s23.故第一个品种既高产又稳定.已经算得两个组的平均分数都是80分,请根据你所学过的统计知识,进一步判断这两个组本次竞赛中的成绩哪组更好一些,并说明理由.分析:该题不仅运用了统计的有关基础知识,还考查应用数学的意识,结论具有开放性,从众数、方差、中位数、高分数段以及满分人数全方位进行综合分析、比较,并作出判断.解:分析1:从众数看,甲组成绩的众数是90分,乙组成绩的众数是70分,甲组成绩好一些.分析2:从方差看,s2甲=172,s2乙=256,s2甲<s2乙,甲组成绩较乙组成绩稳定一些.分析3:甲、乙两组成绩的中位数、平均数都是80分,其中,甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,甲组的成绩总体好一些.分析4:从成绩统计表看,甲组成绩高于80分的人数为20人,乙组成绩高于80分的人数为24人,所以乙组成绩在高分段的人数多,同时乙组得满分的人数比甲组多6人,乙组成绩好一些.点评:答案不唯一,只要符合实际数据就行.(设计者:张建国)。
6 1.4.1 平均数、中位数、众数、极差、方差 教案
单元(章节)课题
北师大版必修三 第一章 统计
本节课题
1.4.1 平均数、中位数、众数、极差、方差
三维目标
1.知识与技能:能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息
2.过程与方法:通过相关案例研究,体会数字特征在描述相关问题中的作用,培养学生观察分析问题能力。
3.情感态度与价值观选择适当的数字特征来表达数据的信息,培养学生解决问题的能力
提炼的课题
平均数、中位数、众数、极差、方差的应用
教学重难点
重点:平均数、中位数、众数、极差、方差的计算、意义和作用。
难点:根据问题的需要选择适当的数字特征来表达数据的信息
教学手段运用
教学资源选择
PPT、学案.
教学过程
环节
学生要解决的问题或任务
C.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好。
D.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好。
2.甲、乙两种玉米苗各抽10株,分别测得它们的株高如下(单位:cm)
甲
25
41
40
37
22
14
19
39
21
42
乙
27
16
44
27
44
16
40
40
16
40
问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?
3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是
课后作业布置
必做:课本第31页A组第1 题。
1.4.1平均数、中位数、众数、极差、方差 1.4.2标准差导学案
4.1平均数、中位数、众数、极差、方差.4.2标准差使用说明:1.用15分钟左右的时间,阅读探究课本的基础知识,自主高效预习,提升自己的阅读理解能力;2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成教材助读设问及自测练习。
3.通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的学习目标【学习目标】1.了解平均数、中位数和众数的含义,并掌握各自的求法。
2.了解极差、方差、标准差的含义,能通过实例理解样本数据方差及标准差的意义和作用,会计算数据的极差、方差和标准差。
3.在分析和解决具体具体实际问题过程中,学会用恰当的统计量表示数据的方法,并能通过统计量对所给数据的分布情况作出合理的解释【学习重点和难点】重点:理解各个统计量的意义和作用,学会计算数据的标准差难点:根据给定的数据,合理地选择统计量表示数据。
预习案教材助读1.回顾什么是平均数、中位数、众数、极差和方差?2.刻画数据离散程度的度量,其理想形式应满足什么原则?3.什么是标准差?预习自测1.某公司员工月工资情况如下表所示.月工资/元5000 4000 2000 1000 900 800 700 600 500员工/人 2 4 6 7 6 8 20 5 2分别计算该公司员工月工资平均数、中位数和众数。
2.甲乙两台机床同时生产直径是40mm的零件。
为了检查产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表:甲机床生产的零件直径/mm39.9 40.0 40.2 39.8 40.2 39.8 40.0 39.8 40.1 40.2乙机床生产的零件直径/mm40.1 40.0 40.1 39.9 39.9 40.0 39.9 40.1 40.0 40.0(1)分别计算上面从甲乙两台机床抽取的10件产品直径的极差、方差和标准差(2)通过上面的计算,我们可以看到那个机床所生产的零件更标准?3.下表给出了小宇和志强在最近8场篮球比赛中的得分:小宇7 13 11 21 16 9 15 12小强12 9 13 10 26 6 10 16他们在这8场比赛中的平均得分分别是多少?谁发挥得更稳定些?探究案基础知识探究4.为了了解面包的销售情况,面包店随机选取24个营业日,分别纪录下每天销售的新鲜面包的数量(个)53,49,27,48,60,52,44,38,47,52,82,4655,31,39,54,51,47,50,45,50,61,43,64(1)请用不同的方式分别表示上面的数据;(2)分别计算以上数据的平均数、中位数和众数(3)根据以上结果,你认为该面包店每天应该生产多少新鲜面包?5.在1976~1998年间的几届冬季奥运会中,男子、女子1500米速滑的冠军成绩分别如下表所示:年份1976年1980年1984年1988年1992年1994年1998年男子1´59.38´´1´55.44´´1´58.36´´1´52.06´´1´54.81´´1´51.29´´1´47.87´´女子2´16.58´´2´10.95´´2´03.42´´2´00.68´´2´05.87´´2´02.19´´1´57.58´´1´59.38´´表示1分59.38秒。
平均数、众数、中位数、极差、方差、标准差
(平均数、众数、中位数、极差、方差、标准差六个统计量的数学内涵,学生学习过程中可能产生的困难及主要原因、因对策略)一、六个统计量的数学内涵1、平均数是对于几个数据的算数平均数。
平均数是反映样本或总体的平均水平的特征数,反映了一组数据的集中趋势。
平均数的大小与一组数据里的每一个数据都有关系,其中任何一个数据的变化都会引起平均数的变化,即平均数受较大数和较小数的影响,是衡量一组数据波动大小的基准。
2、在一组数据中出现次数最多的数据叫做这一组数据的众数。
众数的大小仅与一组数据中的部分数据有关,他着眼于对数据出现的次数的分析。
这就告诉我们在求一株数据的众数是,既不要排列,又不需要计算,只要能找出出现次数最多的一个(或几个)数据就可以,众数也是描述一组数据集中趋势的统计量。
一组数据的众数又是不唯一,也可以没有众数。
3、中位数是指将一组数据按大小顺序排列后,处在最中间的一个数或处在最中间的两个数的平均数(数据有奇数个时是最中间的一个,有偶数个时最中间的两个的平均数),中位数的大小仅与数据的排列位置有关,他前后的数各占一半,不受偏大和偏小数的影响,一组数据的中位数是唯一的。
4、一组数据中的最大值减去最小值所得的差叫极差。
他能反映数据的变化范围。
极差在计算时简单方便,但只对极端值较为敏感,因此用它来表示一组数据的波动还比较粗略。
5、方差是一组数据中的各个数据与其平均数的差的平方的平均数。
一组数据的方差越大,说明这组数据的波动越大;方差越小,说明数据的波动越小。
要比较数据的稳定性,一般会用到方差,方差计算比较复杂,但可以比较全面地反映数据的离散程度。
6、有时为了运用方便,常将求出的方差开平方,即算术平方根。
这个算术平方根,即称为这组数据的标准差。
标准差也是用来表示一组数据的波动大小的量。
标准差是为了实际的应用,将求出的方差再开平方得到的。
二、基本规律1、反映一组数据的集中程度的统计量主要有平均数、中位数、众数这三种,这三个统计量能从不同的角度反映一组数据的集中趋势,都可作为一组数据的代表。
平均数、中位数、众数、极差、方差、标准差辅导讲义
一组数据中出现次数最多的那个数据叫做这组数据的众数。
2. 平均数、中位数、众数的特征
(1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”。
学生签名:签字日期:
(4)众数的可靠性较差,它不受极端数据的影响,求法简便。当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量。
3. 算术平均数和加权平均数的联系与区别及举例
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4. 加权平均数中权的差异对平均数的影响及举例
4.下图反映了甲、乙两班学生的体育成绩。
(1)不用计算,根据条形统计图,你能判断哪个班级学生的体育成绩好一些吗?
(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?
(3)如果依次将不及格、及格、中、良好、优秀记为55分、65分、75分、85分、95分,分别估计一下,甲、乙两班学生体育成绩的平均值大致是多少?算一算看你的估计结果怎么样?
在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大。加权平均数中,由于权的不同,会导致结果的差异。
目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。
注意事项:在重点知识的回顾中,应注重理论联系实际,重视学生的举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平和学习的情感态度,使他们具有:一双能用数学视角观察世界的眼睛;一个能用数学思维思考世界的头脑。
1.4.1平均数、中位数、众数、极差、方差课时作业5
1.4.1平均数、中位数、众数、极差、方差课时作业5A 级 巩固基础一、单选题1.某校学生的男女人数之比为2:3,按照男女比例通过分层随机抽样的方法抽到一个样本,样本中男生每天运动时间的平均值为100分钟、女生为80分钟.结合此数据,估计该校全体学生每天运动时间的平均值为( )A .98分钟B .90分钟C .88分钟D .85分钟 2.—组数据28、27、26、24、23、22的中位数为( )A .26B .25C .24D .26和24 3.一组数据6,7,7,8,7的方差为( )A .2B .2C .25D .74.某学校鼓励学生参加社区服务,学生甲2019年每月参加社区服务的时长(单位:小时)分别为1x ,2x ,…,12x ,其均值和方差分别为x 和2s ,若2020年甲每月参加社区服务的时长增加1小时,则2020年甲参加社区服务时长的均值和方差分别为( ) A .x ,2s B .1x +,21s + C .x ,21s + D .1x +,2s 5.下图是某次民族运动会上,几位评委为某民族舞蹈节目打出分数的茎叶图,则其中位数和众数分别是( )A .84,92B .84,84C .86,92D .86,84 6.样本中共有五个个体,其值分别为a,0,1,2,3,,若该样本的平均值为1,则样本方差为 A .65 B 65C .2D 27.已知一组数据为20、30、40、50、60、60、70,则这组数据的众数、中位数、平均数的大小关系为( )A .中位数 >平均数 >众数B .众数 >中位数 >平均数C .众数 >平均数 >中位数D .平均数 >众数 >中位数8.重庆市2013年各月的平均气温(°C )数据的茎叶图如下8 9 12 5 8 20 0 3 3 8 31 2则这组数据中的中位数是( )A .19B .20C .21.5D .23 B 级 综合应用9.如果五个数12345x x x x x ,,,,的平均数是7,那么1234511111x x x x x +++++,,,,这五个数的平均数是( )A .5B .6C .7D .810.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .57.2,3.6B .57.2,56.4C .62.8,63.6D .62.8,3.6二、填空题11.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为_________.12.一组数据1,10,5,2,x ,2(25)x <<,若该数据的众数是中位数的23倍,则该数据的方差为______.13.如下一组数据:10,12,25,10,30,10,13;则该组数据的中位数与众数的差为_________.14.某校高二年级从甲、乙两个班各选出10名学生参加数学竞赛,他们取得的成绩从低到高排列如下m甲班:747576818488929798n乙班:797980828391919698的值为其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是86,则m n_______.三、解答题15.在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图(如图).若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由.C级拓展探究16.在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A,B 两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001—900.(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43 (2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:(3)若采用分层轴样,按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4:样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.参考答案1.C【分析】根据学生的男女人数之比为2:3,设样本中男生人数为2a ,女生人数为3a ,利用平均数公式求解.【详解】设样本中男生人数为2a ,女生人数为3a ,则样本容量为5a ,又男生每天运动时间的平均值为100分钟、女生为80分钟, 所以该校全体学生每天运动时间的平均值为1002803885a a a ⨯+⨯=, 故选:C2.B【分析】根据中位数的概念直接求中位数即可.【详解】因为数据为28、27、26、24、23、22,所以中位数为2624252+=. 故选:B3.C【分析】先求出这组数据的平均数,再运用方差的计算公式可得选项.【详解】 这一组数据的平均数6+7+7+8+775x ==, 所以其方差()()()()()2222221267++++7777877575S ⎡⎤=--⎣-=⎦--, 故选:C.4.D【分析】利用均值和方差公式求解判断即可【详解】解:由题意可知12121()12x x x x =++⋅⋅⋅+,222121221[()()()]12s x x x x x x =-+-+⋅⋅⋅+-,设2020年甲参加社区服务时长的均值和方差分别为'x ,'2s ,则 '1212121211[(1)(1)(1)][()12]11212x x x x x x x x =++++⋅⋅⋅++=++⋅⋅⋅++=+, '222212121[(11)(11)(11)]12x x x x x x s =+--++--+⋅⋅⋅++-- 22212121[()()()]12x x x x x x =-+-+⋅⋅⋅+-2s = 故选:D5.B【分析】根据茎叶图中的数据,结合题意,求出中位数与众数即可.【详解】根据茎叶图中的数据,从小到大依次排列得:71,74,84,84,84,86,87,92,92, ∴它的众数是84,,中位数是84.故选B .【点睛】本题考查了茎叶图的应用,众数与中位数的定义,是基础题目.6.C【详解】由题意,可得01235a ++++=,所以1a =-; 因此222222(11)(01)(11)(21)(31)25s --+-+-+-+-==. 故选:C.7.B【解析】试题分析:众数为60,中位数为为50,平均数为2030405060607033077++++++=,所以众数 >中位数 >平均数考点:众数,中位数,平均数8.B【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20,故选B.考点:茎叶图与中位数.9.D【解析】 试题分析:利用平均数12x .......x nn x x +++=计算,或利用结论:样本x 1,x 2,…x n 的平均数为7,12n 12n x 1x 1x 1x x x n ++++⋯++=++⋯++()()()() ∴样本x 1+1,x 2+1,…,x n +1的平均数=7+1=8,故选D .考点:本题主要考查平均数的意义及其计算.点评:基本题型,注意掌握平均数计算公式.在此基础上推出一般结论更好.10.D【解析】平均数是2.8+60=62.8,根据方差公式可知方差不变.11.90【分析】找出原始数据直接计算平均数即可.【详解】由茎叶图可以得出五位裁判打出的分数为89,89,90,91,91, 所以平均分为8989909191905++++=. 故答案为:90.12.9【分析】 先根据众数是中位数的23倍,求出x ,再根据方差的计算公式计算即可. 【详解】解:根据题意知,该组数据的众数是2,则中位数是3,把这组数据从小到大排列,为1,2,2,x ,5,10, 则232x +=, 解得:4x =,∴这组数据的平均数为()1122451046x =⨯+++++=, 方差为()()()()()222222114242445410496s ⎡⎤=⨯-+-⨯+-+-+-=⎣⎦. 故答案为:9.13.2【分析】由中位数和众数的概念可得数据的中位数和众数,即可得解.【详解】由题意,该组数据的中位数为12,众数为10,所以该组数据的中位数与众数的差为2.故答案为:2.【点睛】本题考查了数据中位数及众数的求解,牢记知识点是解题关键,属于基础题.14.174【分析】根据平均数和中位数的定义可求得m 、n 的值,由此可求得m n +的值.【详解】 由题意可得甲班学生成绩的平均分是7475768184889297988510m +++++++++=,解得85m =, 乙班学生成绩的中位数是83862n +=,解得89n =. 因此,174m n +=.故答案为:174.【点睛】本题考查利用平均数与中位数求参数,考查计算能力,属于基础题.15.可选择学生乙参加知识竞赛,理由见解析.【分析】计算甲、乙的平均数以及方差,由乙的方差小,乙发挥更稳定,即可得出结果.【详解】 学生甲的平均成绩687679868895=6x +++++甲=82, 学生乙的平均成绩717582848694=6x +++++乙=82, 又21=6s 甲×[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77, 21=6s 乙×[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=1673, 则=x x 甲乙,22s s >乙甲,说明甲、乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.16.(1)667; (2)4130; (3)平均数为7.2,方差为3.56.【分析】(1)根据题意读出的编号,将有效编号从小到大排列,由此能求出中位数。
2018版高中数学第一章统计1.4.1平均数中位数众数极差方差1.4.2标准差学案
2018版高中数学第一章统计1.4.1平均数中位数众数极差方差1.4.2标准差学案1.4.1 平均数、中位数、众数、极差、方差 1.4.2 标准差1.会求一组数据的平均数、中位数、众数、极差、方差、标准差.(重点)2.方差、标准差在实际问题中的应用.(难点)[基础·初探]教材整理1 平均数、中位数、众数阅读教材P25~P26“4.2标准差”以上部分,完成下列问题.1.众数的定义一组数据中出现次数最多的数称为这组数据的众数,一组数据的众数可以是一个,也可以是多个.2.中位数的定义及求法把一组数据按从小到大(或从大到小)的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.3.平均数的定义如果有n个数x1,x2,…,x n,那么x=x1+x2+x3+…+xn,叫作这n个数的平均数.n判断(正确的打“√”,错误的打“×”)(1)当样本中的数据都增加相同的量时,平均数不变.( )(2)一组样本数据的众数只有一个.( )(3)样本的中位数可以有两个值.( )【解析】(1)×,根据平均数的定义可知错误.(2)×,根据众数定义知众数可以一个,也可以多个.(3)×,由中位数的定义可知错误.样本均值.(3)方差的简化计算公式:s2=1n[(x21+x22+…+x2n)-n x2]=1n(x21+x22+…+x2n)-x2.2.极差一组数据的最大值与最小值的差称为这组数据的极差.3.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.判断(正确的打“√”,错误的打“×”)(1)数据极差越小,样本数据分布越集中、稳定.( )(2)数据平均数越小,样本数据分布越集中、稳定.( )(3)样本的标准差和方差都是正数.( )【解析】(1)√,极差与标准差都反映了样本数据的波动性和离散程度.(2)×,平均数与数据的波动性无关.(3)√,根据标准差与方差的公式可知.【答案】(1)√(2)×(2)√[小组合作型]平均数、中位数、众数的计算据了解,某公司的33名职工月工资(单位:元)如下:职务董事长副董事长董事总经理经理管理员职员人数11215320 工资 5 500 5 000 3 3 000 2 2 000 1(1)求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.【精彩点拨】首先根据众数、中位数、平均数的概念进行求解,然后再根据众数、中位数、平均数反映的数字特征来进行讨论.【自主解答】(1)平均数是x=1 500+错误!≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)平均数是x′=1 500+错误!≈1 500+1 788=3 288(元),中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数和众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.中位数、众数、平均数的应用要点:中位数、众数反映了一组数据的“中等水平”“多数水平”,平均数反映了数据的平均水平,我们需根据实际需要选择使用.1求中位数的关键是将数据排序,一般按照从小到大的顺序排列.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响.中位数可能在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述数据的集中趋势.2确定众数的关键是统计各数据出现的频数,频数最大的数据就是众数.当一组数据中有不少数据多次重复出现时,众数往往更能反映数据的集中趋势.3平均数与每一个样本数据都有关,受个别极端数据比其他数据大很多或小很多的数据的影响较大,因此若在数据中存在少量极端数据,平均数对总体估计的可靠性较差,这时往往用众数或中位数去估计总体.有时也采用剔除最大值与最小值后所得的平均数去估计总体.[再练一题]1.在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:成绩 1. 1. 1. 1. 1. 1. 1. 1.(单位:m)5060657075808590 人数2323411 1分别求这些运动员成绩的众数、中位数与平均数.【解】在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是 1.70;这组数据的平均数是x=117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69.所以这17名运动员成绩的众数、中位数、平均数依次为1.75,1.70,1.69.方差、标准差的计算甲、乙两机床同时加工直径为100 cm的零件,为检验质量,各从中抽取6件测量,数据为:【导学号:63580009】甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.【精彩点拨】(1)分别利用求平均数和求方差的公式求解.(2)从平均数与方差两方面比较.【自主解答】(1)x甲=16(99+100+98+100+100+103)=100,x乙=16(99+100+102+99+100+100)=100.s2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均值相同,又s2甲>s2乙,所以乙机床加工零件的质量更稳定.1.计算标准差的五个步骤:(1)算出样本数据的平均数x.(2)算出每个样本数据与样本数据平均数的差:x i-x(i=1,2,3,…,n).(3)算出(2)中x i-x(i=1,2,3,…,n)的平方.(4)算出(3)中n个平方数的平均数,即为样本方差.(5)算出(4)中方差的算术平方根,即为样本标准差.2.标准差(方差)的两个作用:(1)标准差(方差)越大,数据的离散程度越大;标准差(方差)越小,数据的离散程度越小.(2)在实际应用中,常常把平均数与标准差结合起来进行决策.在平均值相等的情况下,比较方差或标准差以确定稳定性.[再练一题]2.对划艇运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲:27,38,30,37,35,31;乙:33,29,38,34,28,36.根据以上数据,试估计两人最大速度的平均数和标准差,并判断他们谁更优秀.【解】x甲=16×(27+38+30+37+35+31)=1986=33,s2甲=16×[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=946,s甲=946≈3.96,x乙=16×(33+29+38+34+28+36)=1986=33,s2乙=16×[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=766,s乙=766≈3.56.由以上知,甲、乙两人最大速度的平均数均为33 m/s,甲的标准差为3.96 m/s,乙的标准差为 3.56 m/s,说明甲、乙两人的最大速度的平均值相同,但乙的成绩比甲的成绩更稳定,故乙比甲更优秀.[探究共研型]数据的数字特征的综合应用探究1 在一次人才招聘会上,有一家公司的招聘员告诉你“我们公司的收入水平很高”“去年,在50名员工中,最高收入达到了100万,他们年收入的平均数是3.5万”.如果你希望获得年薪2.5万元,你是否能够判断自己可以成为此公司的一名高收入者?【提示】这里的“收入水平”是指员工收入数据的某种中心点,即可以是中位数、平均数或众数,若是平均数,则需进一步了解企业各类岗位收入的离散情况.探究2 极差与方差是怎样刻画数据离散程度的?【提示】方差与极差越大,数据的离散程度就越大,也越不稳定,数值越小,离散程度就越小,越稳定.在一次科技知识竞赛中,两组学生的成绩如下表:分数5060708090100人数甲组25101314 6 乙组441621212已经算得两个组的平均分都是80分.请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.【精彩点拨】解答本题可从众数、平均数、方差等几方面综合分析.【自主解答】(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)x甲=12+5+10+13+14+6(50×2+60×5+70×10+80×13+90×14+100×6)=150×4 000=80(分),x乙=14+4+16+2+12+12(50×4+60×4+70×16+80×2+90×12+100×12)=150×4000=80(分).s2甲=12+5+10+13+14+6[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s2甲<s2乙,∴甲组成绩比乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,∴乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好.像这样的实际问题还得从实际的角度去分析,如本例的“满分人数”;其次要在恰当地评估后,组织好正确的语言做出结论.[再练一题]3.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图141所示:图141(1)请填写下表:平均数中位数命中9环以上的次数(含9环)甲7乙(2)从下列三个不同角度对这次测试结果进行分析:①从平均数和中位数相结合看,谁的成绩好些?②从平均数和命中9环及9环以上的次数相结合看,谁的成绩好些?③从折线图中两人射击命中环数的走势看,谁更有潜力?【解】(1)由图可知,甲打靶的成绩为2,4,6,8,7,7,8,9,9,10;乙打靶的成绩为9,5,7,8,7,6,8,6,7,7.甲的平均数是7,中位数是7.5,命中9环及9环以上的次数是3;乙的平均数是7,中位数是7,命中9环及9环以上的次数是1.(2)由(1)知,甲、乙的平均数相同.①甲、乙的平均数相同,甲的中位数比乙的中位数大,所以甲成绩较好.②甲、乙的平均数相同,甲命中9环及9环以上的次数比乙多,所以甲成绩较好.③从折线图中看,在后半部分,甲呈上升趋势,而乙呈下降趋势,故甲更有潜力.1.已知一组数据为20,30,40,50,50,60,70,80,其中平均数,中位数和众数的大小关系是( )A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位数=平均数【解析】可得该组数据的平均数、中位数和众数均为50.【答案】 D2.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( )A.65B.65C. 2 D.2【解析】∵样本的平均数为1,即15×(a+0+1+2+3)=1,∴a=-1,∴样本方差s2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.【答案】 D3.若某校高一年级8个班参加合唱比赛的得分如茎叶图如图142所示,则这组数据的中位数和平均数分别是( )图142A.91.5和91.5 B.91.5和92C.91和91.5 D.92和92【解析】将这组数据从小到大排列,得87,89,90,91,92,93,94,96.故平均数x=87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5. 【答案】 A4.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.【解析】 该组数据的平均数为10+6+8+5+65=7, 方差s 2=错误!=错误!.【答案】 1655.甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计一下两名战士的射击情况.【解】(1)x甲=110(8+6+7+8+6+5+9+10+4+7)=7(环).x乙=110(6+7+7+8+6+7+8+7+9+5)=7(环).(2)由方差公式s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]可求得s2甲=3.0(环),s2乙=1.2(环).(3)∵x甲=x乙,s2甲>s2乙,∴乙战士的射击成绩较稳定.。
数学基本概念(平均数、众数、中位数、极差、方差、标准差、加权平均值)
一.平均数、众数、中位数、极差、方差、标准差的数学内涵:平均数:是指一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数众数:在一组数据中出现次数最多的数叫做这组数据的众数。
极差:一组数据中最大值与最小值的差叫做这组数据的极差。
方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差标准差:方差的算术平方根叫做标准差算术平均值Arithmetic mean:等差中项:n个数字的总和除n. [(a1+a2+……+an)/n是算术平均值]几何平均值Geometric mean:n个数字的乘积的n次根.[(a1*a2*……*an)^(1/n)是几何平均值]n个数的平方根,就是n个数的平方和除n,再开根号。
例如a b c 的均方根即[(a*a+b*b+c*c)/3]^(1/2)均方根值(RMS)、均方根误差(RMSE)、各种平均值论文写作中经常需要比较几个算法的优略,下面列举的是一些常用的评估方法。
均方根值也称作为效值,它的计算方法是先平方、再平均、然后开方。
比如幅度为100V而占空比为0.5的方波信号,如果按平均值计算,它的电压只有50V,而按均方根值计算则有70.71V。
这是为什么呢?举一个例子,有一组100伏的电池组,每次供电10分钟之后停10分钟,也就是说占空比为一半。
如果这组电池带动的是10Ω电阻,供电的10分钟产生10A的电流和1000W的功率,停电时电流和功率为零。
那么在20分钟的一个周期内其平均功率为500W,这相当于70.71V 的直流电向10Ω电阻供电所产生的功率。
而50V直流电压向10Ω电阻供电只能产生的250W的功率。
对于电机与变压器而言,只要均方根电流不超过额定电流,即使在一定时间内过载,也不会烧坏。
PMTS1.0抽油机电能图测试仪对电流、电压与功率的测试计算都是按有效值进行的,不会因为电流电压波形畸变而测不准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科目:数学教师:授课时间:第10周星期2016年月日
单元(章节)课题
1.4.1平均数、中位数、众数、极差、方差
本节课题
统计
三维目标
1.知识与技能:能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息
2.过程与方法:通过相关案例研究,体会数字特征在描述相关问题中的作用,培养学生观察分析问题能力。
教师如何教
学生如何学
回顾
复习
自主
学习
完成
学案
合作
动手
统计图表有哪些?
学生阅读课本数据数字特征相关内容.
1、什么叫平均数?有什么意义?2、什么叫中位数?有什么意义?3、什么叫众数?有什么意义?4、什么叫极差?有什么意义?5、什么叫方差?有什么意义?
引导学生回顾旧知,为
本节新知识的学习奠定基础
培养学生自学能力
C.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好。
D.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好。
2.甲、乙两种玉米苗各抽10株,分别测得它们的株高如下(单位:cm)
甲
25
41
40
37
22
14
19
39
21
42乙27来自16442744
16
40
40
16
40
问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?
3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是
课后作业布置
必做:课本第31页A组第1题。
选做:课本第31页A组第2题
预习内容布置
预习课本26页4.2《标准差》内容。
培养学生合作探究能力
学生回顾统计图表所学的主要内容
对平均数、中位数、众数、极差、方差的内容按导学案展开学习
探讨平均数、中位数、众数、极差、方差在实际案例中的作用
课堂检测内容
1、下列说法正确的是()
A.甲、乙两班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样。
B.期末考试数学成绩的方差甲班比乙班小,这表明甲班的数学学习情况比乙班好。
3.情感态度与价值观选择适当的数字特征来表达数据的信息,培养学生解决问题的能力
提炼的课题
平均数、中位数、众数、极差、方差的应用
教学重难点
重点:平均数、中位数、众数、极差、方差的计算、意义和作用
难点:根据问题的需要选择适当的数字特征来表达数据的信息
教学手段运用
教学资源选择
PPT、学案.
教学过程
环节
学生要解决的问题或任务