有关圆锥曲线的三类最值问题
圆锥曲线的最值问题常见类型及解法演示文稿
x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
分析:
本题可以根据椭圆的方程设出满足条件的 点的坐标,然后根据两点间的距离公式借 助于二次函数求出此最大值,并求出点的 坐标。
例3
求点 P(0,3 )到椭圆
2
x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
解:
设点
Q(x,y)为椭圆
x2 4
y2
1
上的任意一点,
则 PQ 2 (x 0)2 (y 3)2
2
又因为x2 = 4- 4y2
所以
PQ
2
4 4y 2
y2
3y
9 4
3y 2
3y
25 4
3(y 1 )2 7 2
(-1≤y≤1)
所以 PQ 的最大值为 7 此时, y 1,x 3
2
即此时Q的坐标为:( 3, 1)、( 3, 1)
2
2
思考题:
求:点P(0,m),使其到椭圆x2 y 2 1上的 4
最大距离是 7。
变式训练:
已知双曲线C:x2 y2 1 ,P为C
4
上任一点,点A(3,0),则|PA|的最小 值为________.
类
例1: 已知抛物线y2=4x,以抛物线上两点
型
A(4,4)、B(1,-2)的连线为底边的△ABP,其顶点P 在抛物线的弧AB上运动,求: △ABP的最大面
略解: 圆心到直线L的距离d1=
16 32 22
16 13 13
r 所以圆上的点到直线的最短距离为 d=d1-
16 13 2 13
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?
2022年高考数学专题圆锥曲线中的“三定问题”(定点、定值、定直线)
圆锥曲线中的“三定问题”(定点、定值、定直线)1.定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.2.定点问题解决步骤:①设直线代入二次曲线方程,整理成一元二次方程;②根与系数关系列出两根和及两根积;③写出定点满足的关系,整体代入两根和及两根积;④整理③所得表达式探求其恒成立的条件.3.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.4.存在型定值问题的求解,解答的一般思路如下:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.5.求定线问题常见的方法有两种:①从特殊入手,求出定直线,再证明这条线与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.1.在平面直角坐标系xOy 中,已知动点P 到 0,1F 的距离比它到直线2y 的距离小1. (1)求动点P 的轨迹C 的方程;(2)过点F 的直线与曲线C 交于A ,B 两点, 2,1Q ,记直线QA ,QB 的斜率分别为1k ,2k ,求证:1211k k为定值.2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2.(1)求抛物线的方程;(2)过点P(1,1)作两条动直线l1,l2分别交抛物线于点A,B,C,D.设以AB为直径的圆和以CD为直径的圆的公共弦所在直线为m,试判断直线m是否经过定点,并说明理由.3.已知椭圆22221(0)x y a b a b 的一个焦点到双曲线2212x y 渐近线的距离为3,且点2M 在椭圆上.(1)求椭圆的方程;(2)若四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O ,直线AC 和BD 的斜率之积-22b a,证明:四边形ABCD 的面积为定值.4.已知点(1,2)P 在抛物线2:2C y px 上,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A 、B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO ,QN QO uuu r uuu r ,试判断11+ 是否为定值,若是,求11+ 值;若不是,求11+的取值范围.5.已知双曲线的对称中心在直角坐标系的坐标原点,焦点在坐标轴上,双曲线的一条渐近线的方程为4,6,过双曲线上的一点P(P在第一象限)作斜率不为l,l与直线y ,且双曲线经过点x 交于点Q且l与双曲线有且只有一个交点.1(1)求双曲线的标准方程;(2)以PQ为直径的圆是否经过一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.6.已知双曲线C :22221x y a b 0,0a b 的两条渐近线互相垂直,且过点D.(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于,M N (,M N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.7.已知椭圆2222:1x y C a b,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为2x a ,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.22a b 122一点.(1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t 引两条切线,分别交椭圆C 于点,P Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k 为定值.22a b 12221:()1F x c y 与圆222:()9F x c y 相交,两圆交点在椭圆E 上.(1)求椭圆E 的方程;(2)设直线l 不经过 0,1P 点且与椭圆E 相交于,A B 两点,若直线PA 与直线PB 的斜率之和为2 ,证明:直线l 过定点.10.已知抛物线2:4C y x 的焦点为F ,斜率为k 的直线与抛物线C 交于A 、B 两点,与x 轴交于 ,0P a (1)当1k ,3a 时.求AF BF 的值;(2)当点P 、F 重合时,过点A 的圆 2220x y r r 与抛物线C 交于另外一点D .试问直线BD 是否过x轴上的定点Q ?若是,请求出点Q 坐标;若不是,请说明理由.11.已知抛物线22(0)y px p 上一点 4,t 到其焦点的距离为5. (1)求p 与t 的值;(2)过点 21M ,作斜率存在的直线l 与拋物线交于,A B 两点(异于原点O ),N 为M 在x 轴上的投影,连接AN 与BN 分别交抛物线于,P Q ,问:直线PQ 是否过定点,若存在,求出该定点,若不存在,请说明理由.12.已知抛物线 21:20C y px p 的焦点是椭圆 22222:10x y C a b a b的右焦点,且两条曲线的一个交点为 000,2p E x y x,若E 到1C 的准线的距离为53,到2C 的两焦点的距离之和为4.(1)求椭圆2C 的方程;(2)过椭圆2C 的右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C ,点B ,D ,且12l l ,M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.13.已知抛物线C : 220y px p 的焦点到准线的距离是12.(1)求抛物线方程;(2)设点 ,1P m 是该抛物线上一定点,过点P 作圆O : 2222x y r (其中01r )的两条切线分别交抛物线C 于点A ,B ,连接AB .探究:直线AB 是否过一定点,若过,求出该定点坐标;若不经过定点,请说明理由.14.已知抛物线 2:20C y px p 的焦点为F ,点M 在抛物线C 上,O 为坐标原点,OMF 是以OF 为底边的等腰三角形,且OMF 的面积为 (1)求抛物线C 的方程.(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点.若是,求出所过定点的坐标;若否,请说明理由.15.如图,已知抛物线 2:20C y px p 与圆 22:412M x y 相交于A ,B ,C ,D 四点.(1)若8OA OD ,求抛物线C 的方程;(2)试探究直线AC 是否经过定点,若是,求出定点坐标;若不是,请说明理由.16.已知抛物线 2:20C y px p 上一点01,4y到焦点的距离为54.(1)求抛物线C 的标准方程;(2)若点A ,B 为抛物线位于x 轴上方不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足1212444k k k k ,求证:直线AB 过定点.17.如图,已知抛物线2:2(0)C y px p 与圆22:(4)12M x y 相交于A ,B ,C ,D 四点. (1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.18.设双曲线22221x y a b ,其虚轴长为(1)求双曲线C 的方程;(2)过点 3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM APMB PB,证明:点M 落在某一定直线上.19.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b 的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),b )都在双曲线C 上. (1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1//BF 2.证明:1211AF BF 为定值.20.已知双曲线2222:1(0,0)x y C a b a b2,1F ,2F为其左右焦点,Q 为其上任一点,且满足120QF QF,122QF QF .(1)求双曲线C 的方程;(2)已知M ,N 是双曲线C 上关于x 轴对称的两点,点P 是C 上异于M ,N 的任意一点,直线PM 、PN 分别交x 轴于点T 、S ,试问:||||OS OT 是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中O 是坐标原点).21.已知双曲线 2222:10,0x y C a b a b ,四点13M , 2M ,32,3M ,43M中恰有三点在C 上. (1)求C 的方程;(2)过点 3,0的直线l 交C 于P ,Q 两点,过点P 作直线1x 的垂线,垂足为A .证明:直线AQ 过定点.22.已知动点P 与定点(1,0)F 的距离和它到定直线:4l x 的距离之比为12,记P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.23.在平面直角坐标系xOy 中,椭圆C : 22210xy a a的左右顶点为A ,B ,上顶点K 满足3AK KB .(1)求C 的标准方程:(2)过点 1,0的直线与椭圆C 交于M ,N 两点.设直线MA 和直线NB 相交于点P ,直线NA 和直线MB 相交于点Q ,直线PQ 与x 轴交于S .①求直线PQ 的方程; ②证明:SP SQ 是定值.24.已知椭圆C : 222210x y a b a b ,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,四边形1122A B A B 的面积为(1)求椭圆C 的方程;(2)过点 0,1D 且斜率存在的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.25.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB uu u r uu r ,3AF FB. (1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若 121k k k ,证明直线l 过定点,并求出定点的坐标.26.已知O 为坐标原点,椭圆2222Γ:1(0)x y a b a b 的右顶点为A ,动直线1:(1)l y x m 与相交于,B C 两点,点B 关于x 轴的对称点为B ,点B 到 的两焦点的距离之和为4.(1)求 的标准方程;(2)若直线B C 与x 轴交于点M ,,OAC AMC 的面积分别为12,S S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.。
圆锥曲线中的最值问题
02பைடு நூலகம்
求解方法
设两点坐标,利用距离公式求解,再通过求导找出极值 点,确定最大最小值。
03
应用场景
通信、导航等领域,经常需要求解信号的最远和最近传 输距离等问题。
圆锥曲线上的点的最值坐标
定义
指的是在圆锥曲线上找到具有某种性质最值(如距离最值、角度最值等)的点,并求出其坐标。
求解方法
通常要根据具体性质设立目标函数,再利用求导等数学工具求出极值点,进而得到最值坐标。
求解方法
通过运用圆锥曲线与直线的 交点的坐标表达式,结合距 离公式,利用微积分工具求
解最值。
应用场景
该问题在光学、几何设计等 领域有应用,如望远镜的设 计、镜面的曲率选择等。
圆锥曲线内接多边形的最值面积
定义与背景
圆锥曲线内接多边形是指多边形的顶点都在圆锥曲线上的多边形 。在最值情况下,该多边形的面积达到最大或最小值。
最值问题在物理学中的应用
光学
在物理学中,圆锥曲线与光学有着密 切的联系。例如,利用圆锥曲线的性 质可以解决光的反射、折射等最值问 题,从而优化光学系统的设计。
力学
圆锥曲线在力学中也有应用,例如在 研究天体运动时,可以利用圆锥曲线 的性质来解决最值问题,从而预测天 体的运行轨迹和位置。
最值问题在工程实践中的应用
性质
圆锥曲线有许多重要的性质,如对称性、焦点性质、准线性质等。这些性质在 最值问题的研究中起着重要作用。
最值问题的概述
定义
最值问题是寻找函数在给定区间上的最大值和最小值的问题 。在圆锥曲线中,最值问题通常涉及到曲线上的点与特定直 线或点之间的距离、角度等的最值。
解决方法
解决最值问题的方法包括导数法、不等式法、几何法等。在 圆锥曲线的最值问题中,通常结合曲线的几何性质和代数方 法来进行求解。
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案
例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题
有关圆锥曲线的三类最值问题
圆锥曲线中的三类最值问题在选修1-1圆锥曲线中求有关距离最值问题主要有一下三个类型:一、圆锥曲线上一动点到一定点与到一焦点的距离和求最值方法:利用圆锥曲线的定义转化求最值法.根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等.例1:已知点F 1 、F 2是椭圆122x +32y =1的左右焦点,定点A (1,1),P 是椭圆上动点,则|PA|+|PF 2|的最小值、最大值分别为分析:根据椭圆定义:|PF 1|+|PF 2|=2a,∴|PF 2|=2a-|PF 1|,∴|PA|+|PF 2|=|PA|-|PF 1|+2a ,这样求|PA|+|PF 2|最值问题就转化为求|PA|-|PF 1|的最值问题.画出图知道当点P 、A 、F 1三点共线时取得最值.|PA|-|PF 1|的最小值为-|AF 1|,最大值为|AF 1|,∴|PA|+|PF 2|的最小值 为2a -|AF 1|、最大值为2a +|AF 1|.解:由椭圆定义知:|PA|+|PF 2|=|PA|-|PF 1|+2a 而-|AF 1|≤|PA|-|PF 1|≤|AF 1|,又由椭圆方程122x +32y =1,∴a=32,c=3,∴F 1(-3,0),∴|AF 1|=17,∴34―17≤|PA|+|PF 2|≤34+17 【点评】此类问题一般先利用圆锥曲线的定义转化,再结合三角形两边之和大于第三边,两边之差小于第三边易知在共线处取得最值.请同学们动手做做一下几个题:1、已知点F 1 F 2是双曲线4x 2―122y =1的左右焦点,定点A (3,2),P 是双曲线上动点,则|PA|+|PF 2|的最小值为 .(提示:由题意可知点P 在双曲线右支,根据定义可知|PF 1|-|PF 2|=2a,∴|PF 2|=|PF 1|-2a,∴|PA|+|PF 2|=|PA|+|PF 1|-2a,∴求|PA|+|PF 2|最小值转化为求|PA|+|PF 1|的最小值。
求解圆锥曲线中的几何最值问题
求解圆锥曲线中的几何最值问题一、根据圆锥典线第一定义转化为三点共线问题:例1:已知椭圆1162522=+y x 内有一点A (2,1),F 为椭圆的左焦点,P 是椭圆上动点,求PF PA +的最大值与最小值。
分析:求PF PA +的最大值与最小值,考虑用普通方法比较难解,则我们可作适当转化,利用椭圆第一定义,把PF 转化为与另一焦点有关的线段,即F P a PF '-=2,再结合平面内三点共线时有最值,而点P 在线段延长线的不同侧时,会使F P PA '+取得最大值或最小值。
解:如图1,设椭圆的右焦点为F ',可知其坐标为F '(3,0),由椭圆的第一定义得: 10='+F P PF ,则F P PA PF PA '-+=+10,可知,当P 为F A '的延长线与椭圆的交点时,F P PA '-最大,最大值为2='F A ,当P 为A F '的延长线与椭圆的交点时,F P PA '-最小,最小值为2-='-F A 。
故PF PA +的最大值为210+,最小值为210-。
策略:本题中巧用第一定义解题:动点到两定点距离之和等于定值a 2,两定点为焦点,a 为长半轴,利用这定义,把所要求的目标:转化为容易求解的目标。
即把PF PA +转化F P PA '-+10,即转化为A 、F '、P 三点共线进行讨论,当P 点在F A '延长线时,所求函数有最大值,当P 点在A F '的延长线时,所求函数有最小值。
例2:已知双曲线191622=-y x 内有一点()2,6B ,1F 、2F 分别为双曲线左右焦点,P 是双曲线右支上的动点,求PB PF +2的最小值。
分析:求PB PF +2的最值,用一般方法来解比较困难,则我们可以从定义入手,利用双曲线第一定义,把2PF 转化为81-PF ,而1PF PB +为平面内三点距离之和,当B ,P ,1F 点共线时有最小值。
圆锥曲线中的最值问题
面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。
高考圆锥曲线中的最值和范围问题的专题
高考专题圆锥曲线中的最值和范围问题★★★高考要考什么1 圆锥曲线的最值与范围问题(1)圆锥曲线上本身存在的最值问题:①椭圆上两点间最大距离为2a(长轴长).②双曲线上不同支的两点间最小距离为2a(实轴长).③椭圆焦半径的取值范围为[a-c,a+c],a-c与a+c别离表示椭圆核心到椭圆上的点的最小距离与最大距离.④抛物线上的点中极点与抛物线的准线距离最近.(2)圆锥曲线上的点到定点的距离的最值问题,经常使用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解.(3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法.(4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,经常使用参数方程代入转化为三角函数的最值问题,或依照平面几何知识或引入一个参数(有几何意义)化为函数进行处置.(5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.与圆锥曲线有关的最值和范围问题的讨论经常使用以下方式解决:(1)结合概念利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的转变范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示那个函数,通过讨论函数的值域来求参数的转变范围。
(4)利用代数大体不等式。
代数大体不等式的应用,往往需要制造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。
直线、圆或椭圆的参数方程,它们的一个一起特点是均含有三角式。
因此,它们的应用价值在于:①通过参数θ简明地表示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮忙求解诸如最值、范围等问题;(6)构造一个二次方程,利用判别式0。
圆锥曲线专题:最值与范围问题的6种常见考法(解析版)
圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
圆锥曲线求最值方法总结及典型例题
圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。
解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。
以下从五个方面予以阐述。
一.求距离的最值例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1, 则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411, 当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。
二.求角的最值例2.M ,N 分别是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠MPN 的最大值是 .解析:不妨设l 为椭圆的右准线,其方程是22=x ,点)0)(,22(00>y y P ,直线PM 和PN 倾斜角分别为βα和.∵)0,2(),0,2(N M -∴,232220tan 00y y k PM =+-==α22220tan 00y y k PN =--==β于是)tan(tan αβ-=∠MPN 2321232tan tan 1tan tan 0000y y y y ⋅+-=+-=αβαβ 33622262262200200=≤+=+=y y y y ∵)2,0[π∈∠MPN ∴6π≤∠MPN 即∠MPN 的最大值为6π. 评注:审题时要注意把握∠MPN 与PM 和PN 的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M 和F 分别是椭圆192522=+y x 上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求45|MF|+|MB|的最小值. 解析:易知椭圆右焦点为F(4,0),左焦点F ′(-4,0),离心率e=54,准线方程x=±425. ⑴|MF| + |MB| = 10―|MF ′ | + |MB| =10―(|MF ′|―|MB|)≥10―|F ′B|=10―210.故当M ,B ,F ′三点共线时,|MF|+|MB|取最小值10―210.⑵过动点M 作右准线x=425的垂线,垂足为H , 则54||||==e MH MF ⇒||54|H |MF M =. 于是45|MF|+|MB|=|MH|+|MB|≥|HB|=417. 可见,当且仅当点B 、M 、H 共线时,45|MF|+|MB|取最小值417. 评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。
高考数学专题复习:圆锥曲线中的最值(范围)问题
[解] (1)由题意知 M(0,-4),F0,p2 ,圆 M 的半径 r=1,所以|MF|-r=4,即
p 2
+4-1=4,解得 p=2.
(2)由(1)知,抛物线方程为 x2=4y,
由题意可知直线 AB 的斜率存在,设 Ax1,x421
,Bx2,x422
,直线 AB 的方程为
y=kx+b,
联立得yx=2=k4xy+,b, 消去 y 得 x2-4kx-4b=0, 则 Δ=16k2+16b>0 (※),x1+x2=4k,x1x2=-4b,
寻找不等关系的突破口 (1)利用判别式来构造不等式,从而确定所求范围; (2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数 之间建立相等关系; (3)利用隐含的不等关系,从而求出所求范围; (4)利用已知不等关系构造不等式,从而求出所求范围; (5)利用函数值域的求法,确定所求范围.
联立方程x42+y2=1, 得(m2+4)y2+8my+12=0. 由 Δ=64m2-48(m2+4)>0,得 m2>12, 所以 y1y2=m21+2 4 .
λ=|MA|·|MB|= m2+1 |y1|· m2+1 |y2|
=(m2+1)·|y1y2|=12(mm2+2+41) =121-m23+4 . 由 m2>12,得 0<m23+4 <136 ,所以349 <λ<12.
已知椭圆 C:xa22
+by22
=1(a>b>0)的离心率 e=
3 2
,直线 x+
3
y-1=0 被以椭圆 C
的短轴为直径的圆截得的弦长为 3 .
(1)求椭圆 C 的方程;
(2)过点 M(4,0)的直线 l 交椭圆于 A,B 两个不同的点,且 λ=|MA|·|MB|,求 λ 的取值
高中数学 考前归纳总结 圆锥曲线中的最值问题
一、常见基本题型:(1)利用基本不等式求最值,例1、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一 象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交 椭圆于A 、B 两点,求△PAB 面积的最大值。
解、设椭圆方程为22221y x a b+=,由题意可得2,2,22a b c ===,故椭圆方程为22142y x +=设AB 的直线方程:m x y +=2.由⎪⎩⎪⎨⎧=++=142222y x m x y ,得0422422=-++m mx x , 由0)4(16)22(22>--=∆m m ,得2222<<-mP 到AB 的距离为3||m d =, 则3||3)214(21||212m m d AB S PAB ⋅⋅-=⋅=∆2)28(81)8(8122222=+-≤+-=m m m m 。
当且仅当()22,222-∈±=m 取等号, ∴三角形PAB 面积的最大值为2。
(2)利用函数求最值,例2.如图,椭圆222:12x y C a +=的焦点在x 轴上,左右顶点分别为1,A A ,上顶点为B ,抛物线12,C C 分别以A,B 为焦点,其顶点均为坐标原点O ,1C 与2C 相交于直线2y x =上一点P.(1)求椭圆C 及抛物线12,C C 的方程;(2)若动直线l 与直线OP 垂直,且与椭圆C 交于不同的两点M,N,已知点(Q ,求QM QN 的最小值. 解:(1)由题意(,0),A a B ,故抛物线C 1 的方程可设为ax y 42=,C 2的方程为y x 242=由⎪⎪⎩⎪⎪⎨⎧===xy y x axy 224422 得)28,8(,4P a =所以椭圆C:121622=+y x ,抛物线C 1:,162x y =抛物线C 2:y x 242= (2)由(1)知,直线OP 的斜率为2,所以直线l 的斜率为22-设直线l 方程为b x y +-=22由⎪⎪⎩⎪⎪⎨⎧+-==+b x y y x 22121622,整理得0)168(28522=-+-b bx x因为动直线l 与椭圆C 交于不同两点,所以0)168(2012822>--=∆b b 解得1010<<-b设M (11,y x )、N (22,y x ),则21212816,55b x x b x x -+== 58)(2221)22)(22(2221212121-=++-=+-+-=b b x x b x x b x b x y y 因为),2(),,2(2211y x y x +=+=所以2)(2),2)(,2(2121212211++++=++=⋅y y x x x x y x y x5141692-+=b b因为1010<<-b ,所以当98-=b 时,⋅取得最小值其最小值等于938514)98(516)98(592-=--+-⨯ 例3、已知抛物线)0(2:2>=p py x C 的焦点为F ,抛物线上一点A 的横坐标为 1x )0(1>x ,过点A 作抛物线C 的切线1l 交x 轴于点D ,交y 轴于点Q ,交直线 :2pl y =于点M ,当2||=FD 时, 60=∠AFD . (1)求证:AFQ ∆为等腰三角形,并求抛物线C 的方程;(2)若B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线2l 交直线1l 于点P ,交直线l 于点N ,求PMN ∆面积的最小值,并求取到最小值时的1x 值.解:(1)设),(11y x A ,则切线AD 的方程为pxx p x y 2211-=,所以),0(),0,2(11y Q x D -,12||y p FQ +=,, 所以||||FA FQ =, 所以AFQ ∆为等腰三角形且D 为AQ 中点,所以AQ DF ⊥, 60,2||=∠=AFD DF , 12,60==∠∴pQFD,得2=p ,抛物线方程为y x 42= (2)设)0(),(222<x y x B ,则B 处的切线方程为22222xx x y -=由)4,2(42422121222211x x x x P x x x y x x x y +⇒⎪⎪⎩⎪⎪⎨⎧-=-=,)1,22(14211211x x M y x x x y +⇒⎪⎩⎪⎨⎧=-= 同理)1,22(22x x N +, 所以面积212211221221116)4)(()41)(2222(21x x x x x x x x x x x x S --=---+=……①设AB 的方程为b kx y +=,则0>b由044422=--⇒⎩⎨⎧=+=b kx x yx bkx y ,得代入①得:bb k b b b b k S ++=++=2222)1(64)44(1616,使面积最小,则0=k ,得到bbb S 2)1(+=…………②令t b =,由②得t t t t t t S 12)1()(322++=+=,222)1)(13()(tt t t S +-=', 所以当)33,0(∈t 时)(t S 单调递减;当),33(+∞∈t )(t S 单调递增, 所以当33=t 时,S 取到最小值为9316,此时312==t b ,0=k ,所以311=y ,即3321=x 。
圆锥曲线中的最值、范围、证明问题
第九节 圆锥曲线中的最值、范围、证明问题突破点(一) 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.考点贯通 抓高考命题的“形”与“神”利用几何性质求最值[例1] 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|P A |+|PB |=2a =10,连接P A ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|P A |+|PB |-2R =8;连接P A ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|P A |+|PB |+2R =12,即最小值和最大值分别为8,12.[答案] C[方法技巧]利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法.建立目标函数求最值本节主要包括3个知识点: 1.圆锥曲线中的最值问题; 2.圆锥曲线中的范围问题; 3.圆锥曲线中的几何证明问题.[例2] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.[解] (1)由题意知焦点F (0,1),准线方程为y =-1. 设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2, 所以P (22,2)或P (-22,2),由PF =3FM ,得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0. 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415, 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k 2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43, 令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数, 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135. [方法技巧](1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等.利用基本不等式求最值[例3] 已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3, 所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|= 2(x 1+x 2)2-4x 1x 2=247.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0), 联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1),消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. [方法技巧](1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析:(1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4, 所以|AB |=1+k 2×(x 1+x 2)2-4x 1x 2=1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为410×4552=8 2.2.[考点二]平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解析:(1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*)则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2.设m 21+4k 2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3. 当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3.3.[考点三]定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.解析:(1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M . ∵|NM |+|NF |=4>|FM |,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k 2,∴|OA |2=x 2A +y 2A =4(1+k 2)1+4k 2.将上式中的k 替换为-1k ,可得|OC |2=4(1+k 2)k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=4(1+k 2)1+4k 2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4). ∵(1+4k 2)(k 2+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)2,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .突破点(二) 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.考点贯通 抓高考命题的“形”与“神”利用判别式构造不等关系求范围[例1] 已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.[解] (1)因为|BC |=2|AC |且BC 过(0,0),则|OC |=|AC |.因为AC ·BC =0,所以∠OCA =90°, 即C (3,3).又因为a =23,设椭圆的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c 2=1,解得c 2=8,b 2=4.所以椭圆的方程为x 212+y 24=1.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0 由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0),则x 0=x 1+x 22=-3kt1+3k 2,y 0=kx 0+t =t1+3k 2,所以H ⎝⎛⎭⎫-3kt 1+3k 2,t1+3k 2,由|DP |=|DQ |,所以DH ⊥PQ ,即k DH =-1k ,所以t1+3k 2+2-3kt 1+3k 2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4). 综上可得t ∈(1,2).[方法技巧]圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.利用函数性质求范围[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2.(1)求椭圆C 的方程;(2)若λ∈⎣⎡⎦⎤12,2,求弦长|AB |的取值范围.[解] (1)由已知e =22,得c a =22, 又当直线垂直于x 轴时,|AB |=2, 所以椭圆过点⎝⎛⎭⎫1,22, 代入椭圆方程得1a 2+12b2=1,∵a 2=b 2+c 2,联立方程可得a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点, λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,由根与系数的关系可得,⎩⎨⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m 2m 2+2,又知λ∈⎣⎡⎦⎤12,2, ∴-λ-1λ+2∈⎣⎡⎦⎤-12,0, ∴-12≤-4m 2m 2+2≤0,解得m 2∈⎣⎡⎦⎤0,27. |AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝⎛⎭⎫1-1m 2+22, ∵m 2∈⎣⎡⎦⎤0,27, ∴1m 2+2∈⎣⎡⎦⎤716,12,∴|AB |∈⎣⎡⎦⎤2,928. [方法技巧]利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围.1.[考点一]设F 1,F 2分别是椭圆E :x 24+y 2b 2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.解析:(1)易知a =2,c =4-b 2,b 2<4, 所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则1PF ·2PF =(-4-b 2-x ,-y )·(4-b 2-x ,-y )=x 2+y 2-4+b 2=x 2+b 2-b 2x 24-4+b 2=⎝⎛⎭⎫1-b 24x 2+2b 2-4.因为x ∈[-2,2],故当x =±2,即点P 为椭圆长轴端点时,1PF ·2PF 有最大值1, 即1=⎝⎛⎭⎫1-b24×4+2b 2-4,解得b 2=1. 故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0,故y 1+y 2=2kk 2+4,y 1·y 2=-3k 2+4.又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0,又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k 24+k 2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝⎛⎭⎫-12,12. 2.[考点二]已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C .(1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.解析:(1)由x 2+y 2+2x -15=0,得(x +1)2+y 2=16, 所以圆心为H (-1,0),半径为4.连接MA ,由l 是线段AB 的中垂线,得|MA |=|MB |, 所以|MA |+|MH |=|MB |+|MH |=|BH |=4, 又|AH |=2<4.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎫1,-32·⎝⎛⎭⎫-3,32=-3-94=-214. ②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214. ③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将直线PQ 的方程代入曲线C 的方程,并整理得,(3+4k 2)x 2-8k 2x +4k 2-12=0, 所以x P +x Q =8k 23+4k 2,x P ·x Q =4k 2-123+4k 2.于是AP ·AQ =(x P -1)(x Q -1)+y P ·y Q =(1+k 2)[x P x Q -(x P +x Q )+1] =(1+k 2)⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-9(1+k 2)3+4k 2.将上面的k 换成-1k ,可得AE ·AF =-9(1+k 2)4+3k 2,所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝⎛⎭⎫13+4k 2+14+3k 2. 令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝⎛⎭⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝⎛⎭⎫1t -122. 由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎡⎦⎤-214,-367.突破点(三) 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等.考点贯通 抓高考命题的“形”与“神”圆锥曲线中的几何证明问题[典例] 如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .[解] (1)设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). ∵|MN |=3,∴r 2=⎝⎛⎭⎫322+22,解得r 2=254. ∴r =52,圆C 的方程为(x -2)2+⎝⎛⎭⎫y -522=254. (2)证明:把x =0代入方程(x -2)2+⎝⎛⎭⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4). ①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1. 联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2. ∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x 2.若k AN +k BN =0,则∠ANM =∠BNM . ∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0, ∴∠ANM =∠BNM .1.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3.(1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .解析:(1)由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23,所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1.(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC ,所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝⎛⎭⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .2.已知点A (-4,0),直线l :x =-1与x 轴交于点B ,动点M 到A ,B 两点的距离之比为2.(1)求点M 的轨迹C 的方程;(2)设C 与x 轴交于E ,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE ,PF 分别与C 交于另一点S ,T ,证明:A ,S ,T 三点共线.解析:(1)设点M (x ,y ),依题意,|MA ||MB |=(x +4)2+y 2(x +1)2+y 2=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)证明:由(1)知曲线C 的方程为x 2+y 2=4,令y =0得x =±2,不妨设E (-2,0),F (2,0),如图所示.设P (-1,y 0),S (x 1,y 1),T (x 2,y 2),则直线PE 的方程为y =y 0(x +2),由⎩⎪⎨⎪⎧y =y 0(x +2),x 2+y 2=4得(y 20+1)x 2+4y 20x +4y 20-4=0, 所以-2x 1=4y 20-4y 20+1,即x 1=2-2y 20y 20+1,y 1=4y 0y 20+1.直线PF 的方程为y =-y 03(x -2),由⎩⎪⎨⎪⎧y =-y 03(x -2),x 2+y 2=4得(y 20+9)x 2-4y 20x +4y 20-36=0, 所以2x 2=4y 20-36y 20+9,即x 2=2y 20-18y 20+9,y 2=12y 0y 20+9.所以k AS =y 1x 1+4=4y 0y 20+12-2y 20y 20+1+4=2y 0y 20+3, k AT =y 2x 2+4=12y 0y 20+92y 20-18y 20+9+4=2y 0y 20+3,所以k AS =k AT ,所以A ,S ,T 三点共线.[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解析:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.(2013·新课标全国卷Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解析:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.[课时达标检测] 难点增分课时——设计3级训练,考生据自身能力而选 一、全员必做题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎫1,22.(1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且2F A =λ2F B ,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.解析:(1)由题易知c =1,1a 2+12b 2=1,又a 2=b 2+c 2,解得b 2=1,a 2=2,故椭圆E 的标准方程为x 22+y 2=1.(2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 22+y 2=1得(k 2+2)y 2+2ky -1=0, Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2.QC =QA +QB =(x 1+x 2-4,y 1+y 2)=⎝ ⎛⎭⎪⎫-4(k 2+1)k 2+2,-2k k 2+2,∴|QC |2=|QA +QB |2=16-28k 2+2+8(k 2+2)2,由此可知,|QC |2的大小与k 2的取值有关.由2F A =λ2F B 可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=(y 1+y 2)2-2y 1y 2y 1y 2=-6k 2-4k 2+2,由λ∈[-2,-1]得⎝⎛⎭⎫λ+1λ∈⎣⎡⎦⎤-52,-2,从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎡⎦⎤716,12,∴|QC |2=8t 2-28t +16=8⎝⎛⎭⎫t -742-172, ∴当t =12时,|QC |min =2.2.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解析:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r. 因为点A(2,m)在抛物线E :y2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A(2,22). 由A(2,22),F(1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22x -1,y2=4x ,得2x2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G(-1,0),故直线GA 的方程为22x -3y +22=0, 从而r =|22+22|8+9=4 217 .又直线GB 的方程为22x +3y +22=0, 所以点F 到直线GB 的距离 d =|22+22|8+9=4217=r.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.3.已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围. 解析:(1)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由条件知,⎩⎪⎨⎪⎧2a =4,e =c a =32,a 2=b 2+c 2,解得a =2,c =3,b =1,故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,设△OAB 的面积为S ,由x 1x 2=-3k 2+4<0,知S =12×1×|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=2k 2+3(k 2+4)2,令k 2+3=t ,知t ≥3, ∴S =21t +1t+2. 对函数y =t +1t (t ≥3),知y ′=1-1t 2=t 2-1t 2>0,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32. 故△OAB 面积的取值范围为⎝⎛⎦⎤0,32. 二、重点选做题1.过离心率为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0)作直线l 与椭圆C 交于不同的两点A ,B ,设|F A |=λ|FB |,T (2,0).(1)求椭圆C 的方程;(2)若1≤λ≤2,求△ABT 中AB 边上中线长的取值范围. 解析:(1)∵e =22,c =1,∴a =2,b =1, 即椭圆C 的方程为:x 22+y 2=1.(2)①当直线的斜率为0时,显然不成立. ②设直线l :x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2+2y 2-2=0,x =my +1得(m 2+2)y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,由|F A |=λ|FB |,得y 1=-λy 2, ∵-λ+1-λ=y 1y 2+y 2y 1,∴-λ+1-λ+2=(y 1+y 2)2y 1y 2=-4m 2m 2+2,∴m 2≤27,又∵AB 边上的中线长为12 |TA +TB |=12(x 1+x 2-4)2+(y 1+y 2)2=4m 4+9m 2+4(m 2+2)2= 2(m 2+2)2-7m 2+2+4∈⎣⎡⎦⎤1,13216.2.如图所示,已知直线l 过点M (4,0)且与抛物线y 2=2px (p >0)交于A ,B 两点,以弦AB 为直径的圆恒过坐标原点O .(1)求抛物线的标准方程;(2)设Q 是直线x =-4上任意一点,求证:直线QA ,QM ,QB 的斜率依次成等差数列. 解析:(1)设直线l 的方程为x =ky +4, 代入y 2=2px 得y 2-2kpy -8p =0.设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=2kp ,y 1y 2=-8p ,而AB 为直径,O 为圆上一点,所以OA ·OB =0, 故0=x 1x 2+y 1y 2=(ky 1+4)(ky 2+4)-8p =k 2y 1y 2+4k (y 1+y 2)+16-8p , 即0=-8k 2p +8k 2p +16-8p ,得p =2, 所以抛物线方程为y 2=4x .(2)设Q (-4,t )由(1)知y 1+y 2=4k ,y 1y 2=-16,所以y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32.因为k QA =y 1-t x 1+4=y 1-t y 214+4=4(y 1-t )y 21+16,k QB =y 2-t x 2+4=y 2-t y 224+4=4(y 2-t )y 22+16,k QM =t -8,所以k QA +k QB =4(y 1-t )y 21+16+4(y 2-t )y 22+16=4×(y 1-t )(y 22+16)+(y 2-t )(y 21+16)(y 21+16)(y 22+16)=4×y 1y 22+16y 1-ty 22-16t +y 2y 21+16y 2-ty 21-16t y 21y 22+16(y 21+y 22)+16×16=-t (y 21+y 22)-32t 8×16+4(y 21+y 22)=-t (16k 2+32)-32t 8×16+4(16k 2+32) =-t 4=2k QM . 所以直线QA ,QM ,QB 的斜率依次成等差数列.三、冲刺满分题1.已知椭圆C :x 24+y 2b 2=1(0<b <2)的离心率为32,与坐标轴不垂直且不过原点的直线l 1与椭圆C 相交于不同的两点A ,B (如图所示),过AB 的中点M 作垂直于l 1的直线l 2,设l 2与椭圆C 相交于不同的两点C ,D ,且CN =12CD . (1)求椭圆C 的方程;(2)设原点O 到直线l 1的距离为d ,求d |MN |的最大值. 解析:(1)依题意得,⎩⎪⎨⎪⎧a =2,c a =32,c 2=a 2-b 2,解得b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)设直线l 1:y =kx +m (k ≠0,m ≠0), 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m 得(1+4k 2)x 2+8kmx +4m 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2.故M ⎝⎛⎭⎫-4mk 1+4k 2,m 1+4k 2. l 2:y -m 1+4k 2=-1k ⎝⎛⎭⎫x +4mk 1+4k 2,即y =-1k x -3m 1+4k 2.由⎩⎨⎧ y =-1k x -3m 1+4k 2,x 24+y 2=1, 得⎝⎛⎭⎫1+4k 2x 2+24m k (1+4k 2)x +36m 2(1+4k 2)2-4=0, 设C (x 3,y 3),D (x 4,y 4),则x 3+x 4=-24mk (1+4k 2)(k 2+4), 故N ⎝⎛⎭⎫-12mk (1+4k 2)(k 2+4),-3mk 2(1+4k 2)(k 2+4). 故|MN |=|x M -x N | 1+1k 2=4|m |(k 2+1)k 2+1(1+4k 2)(k 2+4). 又d =|m |1+k 2,所以d |MN |=(1+4k 2)(k 2+4)4(k 2+1)2. 令t =k 2+1(t >1),则d |MN |=4t 2+9t -94t 2=-94t 2+94t +1=-94⎝⎛⎭⎫1t -122+2516≤2516(当且仅当t =2时取等号), 所以d |MN |的最大值为2516. 2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解析:(1)由题意得c =3,根据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1. (2)法一:由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2).所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a 2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为2F A =(x 1-3,y 1),2F B =(x 2-3,y 2), 所以2F A ·2F B =(x 1-3)(x 2-3)+y 1y 2=⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8, 结合b 2+9=a 2,解得a 2=12(a 2=6舍去), 所以离心率e =32.(若设A (x 1,y 1),B (-x 1,-y 1)相应给分) 法二:设A (x 1,y 1),又AB ,F 1F 2互相平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得:⎩⎨⎧ x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1, 将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1, 由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21, 又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14, 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 即直线PB 的斜率k 2的取值范围是⎝⎛⎭⎫18,14.。
圆锥曲线有关的最值问题
7、椭圆
的内接三角形面积的最大值为 C
8、椭圆
的内接距形面积的最大值为 A 间的最短距离为 D
9、直线l:x+y+5=0与抛物线
10、四边形ABCD内接于椭圆
且A(4,0),C(0,5)
B在第一象限,D在第三象限,则四边形ABCD面积的最大值为 B 二、填空题 1、抛物线 所在直线的方程为 2、双曲线 上一动点P,A(m,0)为x轴上一定点,且 所有过焦点的弦中,最短的焦点弦
3、抛物线
在
2 x轴上被截得的弦长的最大值为 4、抛物线 上有一动点P,点P到直线y=4x-5
距离最短时, P点的坐标为 5、已知动点P(x,y) 在圆 上,则 的最大值为 焦点为焦点
6、直线l:x-y+9=0上任一点P,过P且以椭圆 作椭圆,其中长轴最短时椭圆方程为
内切圆方程为: x 2 y 2 1
则所求面积之和为:
S
E B
P
o D
C
x
4 [( x 1) 2 ( y 2) 2 ( x 1) 2 ( y 1) 2 ( x 3) 2 ( y 1) 2 ] 4
( PA2 PB 2 PC 2 )
4、在抛物线 上有一点P,P到 距离最小,这最小值为 A 5、过抛物线 M到直线x-y=0的最短距离为 D 6、已知抛物线
A 2B 2 2 2 C D 2 3 4
左顶点
的焦点F作动弦AB,M点为线段AB中点,则
上有两定点A(3,-6),B(12,12)在
抛物线的弧AOB(O为原点)上有动点P,且三角形APB面积最 B 大,则P点坐标为
解:设椭圆左焦点为A`(-4,0)。显然A(4,0)为椭圆右焦点, 因而由椭圆定义得|MA|+|MA`|=10 y 如上图所示: |MA|+|MB| =|MA|+|MA`|+|MB|-|MA| =10+|MB|-|MA`|
圆锥曲线中三种非常规的最值问题
在圆锥曲线中的最值问题,常规的题目都会含有参数,若只有一个参数,则求解最值的方法肯定用到了导数,函数,不等式中的求最值方法,因此这是常规最值的求法,没什么可讲的,若有多个参数,则题目肯定能将多个参数转化为一个,即使存在两个参数没法转化,则也肯定可以使用均值不等式求最值,因此在这里说最值问题没意义,前期工作准备好了,各种联立各种韦达定理各种求根公式,最后加上常规最值方法这些东西足够繁琐,靠的是多练,否则谁也帮不了大家。
今天要说的是三种非常规的最值题目,这种题目没有太多计算的过程,更多的是思考方向的正确性:
第一种:动点最值问题。
在解析几何中一个常用的最值方法就是三角形的三边的不等关系,两边之和大于第三边,两边之和小于第三边,注意若构成三角形,则上述两种等号均取不到,因此也就不存在最值,所以若能取得最值,则三点无法构成三角形,即三点共线,既然是三角形三边的关系,此类最值问题常与距离之和或差的形式出现,以和的最小值为例:
若点C是动点,若能构成三角形,则AC+BC>AB,此时AB并不是AC+BC的最小值,即无最小值。
若点C是动点,此时若三点共线,且点C位于AB或BA的延长线上,此时AC+BC也是不存在最小值,也不存在最大值,距离之和只是一个变量。
若点C是动点,此时若三点共线,且点C位于AB上(包括两端点),此时AC+BC=AB,若点C超出AB的范围也和逐渐变大,因此此时存在最小值。
对题目的解读:在焦点三角形专题中讲到过,若出现椭圆上的一动点和一个焦点的连线,则一般还要考虑另外一个焦点,从而组成焦点三角形然后用定义法来解,连接另外一个焦点F,。
圆锥曲线的最值问题常见类型及解法
例1: 在圆x2+y2=4上求一点P,使它到直线L:3x-2y-16=0的距离最短。
略解:
圆心到直线L的距离d1=
所以圆上的点到直线的最短距离为 d=d1-r
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?
16 32 22
16 13 13
16 13 2 13
思考: 例1是否还有其他解题方法?
∵ |AF’|=
[1(4) ]2 1 26
∴ |MF|+|MA| 的最大值为 问题:本题解题到此结束了吗?
10 26
最小值为
10 26
变式训练:
1 . 已知P点为抛物线
上的点,那么P点到点Q(2,-1)的距离与P点到抛物线焦点的距
离之和的最小值为 _ __,此时P点坐标为
y_. 2 4 x
y
x Q
3
,面积为
的等腰梯形. (1)求椭圆的方程; (2)过点F1的直线和椭圆交于两点A、B,求
33
F2AB面积的最大值.
练习、设椭圆中心在坐标原点A(2,0)、B(0,1)是它的两个顶点,直线 两点,求四边形AEBF面积的最大值.
ykx (k0)
y
与椭圆交于E、F
思维导图: 用k表示四边形的面积
B F
yx2 3
解:设椭圆与
平y行的切x线方程2为 3
y xb
y xb
x2 2
y2
1
3x2 4bx2b2 20 (1) (4b)2 43(2b2 2) 0
b 3
1)当b
3时,代入(1)得dmin
6; 2
2)当b
3时,代入(1)得dmax
3 6. 2
变式训练:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中的三类最值问题
在选修1-1圆锥曲线中求有关距离最值问题主要有一下三个类型:
一、圆锥曲线上一动点到一定点与到一焦点的距离和求最值
方法:利用圆锥曲线的定义转化求最值法.根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等.
例1:已知点F 1 、F 2是椭圆122x +3
2
y =1的左右焦点,定点A (1,1),P 是椭圆上动点,则|PA|+|PF 2|的最小值、最大值分别为
分析:根据椭圆定义:|PF 1|+|PF 2|=2a,∴|PF 2|=2a-|PF 1|,∴|PA|+|PF 2|=|PA|-|PF 1|+2a ,这样求|PA|+|PF 2|最值问题就转化为求|PA|-|PF 1|的最值问题.画出图知道当点P 、A 、F 1三点共线时取得最
值.|PA|-|PF 1|的最小值为-|AF 1|,最大值为|AF 1|,∴|PA|+|PF 2|的最小值 为2a -|AF 1|、最大值
为2a +|AF 1|.
解:由椭圆定义知:|PA|+|PF 2|=|PA|-|PF 1|+2a 而-|AF 1|≤|PA|-|PF 1|≤|AF 1|,又由椭圆方程122x +3
2
y =1,∴a=32,c=3,∴F 1(-3,0),∴|AF 1|=17,∴34―17≤|PA|+|PF 2|≤34+17 【点评】此类问题一般先利用圆锥曲线的定义转化,再结合三角形两边之和大于第三边,两边之差小于第三边易知在共线处取得最值.
请同学们动手做做一下几个题:
1、已知点F 1 F 2是双曲线4x 2―12
2y =1的左右焦点,定点A (3,2),P 是双曲线上动点,则|PA|+|PF 2|的最小值为 .
(提示:由题意可知点P 在双曲线右支,根据定义可知|PF 1|-|PF 2|=2a,∴|PF 2|=|PF 1|-2a,∴|PA|+|PF 2|=|PA|+|PF 1|-2a,∴求|PA|+|PF 2|最小值转化为求|PA|+|PF 1|的最小值。
∵ 两点之间线段最短,∴|PA|+|PF 1|的最小值为|AF 1|,∴|PA|+|PF 2|最小值为|AF 1|-2a.)
2、已知P 点为抛物线y 2=4x 上的点,那么P 点到点Q (2,-1)的距离与P 点到抛物线焦点F 的距离之和的最小值为 _ __.
(提示:过P 点作准线x =-1的垂线,垂足为K,根据抛物线定义可知|PF|=|PK|,∴|PF|+|PQ|=|PK|+|PQ|,易知当P 、K 、Q 三点共线时距离最小,即最小值为点Q 到准线的距离.)
二、曲线上一动点到一定点距离求最值
方法:转化成二次函数求最值。
即把所求最值的目标表示为关于某个变量的函数,通过研究这个函数求最值,是求各类最值最为普遍的方法.在此处主要转化为二次函数求最值.
例2:已知椭圆32x + 2
2
y =1内一点A (0,2),点M 为椭圆上一动点,求|AM |最大值. 分析:设出点M 坐标,由椭圆方程及|AM |2消去x 或y ,将|AM |2
转化为二次函数后求最值.
解:设点M (x,y ),∴3x 2+ 22y =1,∴x 2=3―2
32
y ,∴ |AM |2=(y ―2)2+x 2=(y ―2)2+3―232y =-21y 2―22y +5 =-2
1(y +22)2+9 (-2≤y <2),∴当y=-2时,|AM |2取得最大值8,|AM |取得最大值22.
【点评】此类问题转化成关于x 或y 的二次函数后,需注意变量x 或y 的取值范围.
同理,同学们动手做做下题:
1、已知一定点A(3,0),P 是双曲线4
2
x -y 2 =1上任意一点,求|PA|最小值. 2、:若点P 在抛物线y 2 =x 上,点Q 在圆(x-3)2 +y 2 =1上 ,求|PQ|最小值.
(提示:求两动点距离问题可转化为先求抛物线上一动点P 到一定点圆心A (3,0)距离的最小值问题,再将|PA|的最小值减去圆的半径即为|PQ|最小值.)
三、曲线上一动点到一定直线距离求最值
方法:常用切线法.当所求的最值是圆锥曲线上点到某条定直线距离的最值时,可以通过作与这条直线平行的圆锥曲线的切线,则两平行线间的距离就是所求的最值,切点就是曲线上取得最值时的点.
例3、求椭圆 x 2 +8y 2 =8上的点到直线x-y+4=0的距离的最大值和最小值.
分析:先求与直线x-y+4=0平行的椭圆的切线,切线与直线x-y+4=0的距离即为为最值. 解:设与x-y+4=0平行的椭圆切线方程为y=x+b
【点评】此题还可转化为三角函数求最值,但切线法更直观明了.
同理,同学们动手做做下题:已知动点P 在抛物线 y 2 =2x 上,求点P 到直线 x-y+3=0的最短距离,并求出此时P 点的坐标..
22(1)12y x b x y =+⎧⎪∴⎨+=⎪⎩222234220(4)43(22)0
x bx b b b
b ∴++
-=∆=-⨯⨯-=∴=min max 1),22),2b d b d ===当代入(1)得当代入(1)得。