5.2圆的对称性(二)
苏教版九年级数学(上)《2.2圆的对称性(2)》教学设计-优质教案
OCDA2.总结 垂径定理:数学语言(符号)表述: 板书垂径定理的内容活动意图:本环节要注重学生在活动中的思考,鼓励学生有条理地表达自己的思考过程,积累数学活动经验,本环节采用学生自主探索与合作交流的方法,通过学生的探究、归纳得出垂径定理性质。
环节三:运用新知 教师活动4例1.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D 。
线段AC 与BD 相等吗?为什么?例2:如图,已知在⊙O 中,弦AB 的长为8㎝,圆心O 到AB 的距离为3㎝,求⊙O 的半径。
变式:在半径为5㎝的⊙O 中,有长为8㎝的弦AB ,求点O 到AB 的距离。
想一想:若点P 是AB 上的一动点,你能写出OP 的范围吗?学生活动4(1)例1需要学生通过添加辅助线解决问题,教师引导学生得出添加辅助线常用的方法.(2)学生独立分析,老师板书,写出证明过程.例2是例1的延伸,要求学生在课堂作业纸上完成,并请一名学生上黑板板演并关注证明过程是否规范.变式:生生互动完成!想一想:学生合作完成,并交流展示,教师引导归纳活动意图:本环节依据学生的实际情况及他们的心理特点,设计了包括例1在内的有梯度的,循序渐进的与物理、代数相关的变式题组训练二,让学生尝试。
采用学生自主探索与合作交流的方法,通过学生的探究体验垂径定理性质的应用。
环节四:课堂小结OABOFEDCBA7.板书设计 2.2圆的对称性(2)垂径定理:例题板书:(略)学生板书:(略)数学语言(符号)表述:8.作业与拓展学习设计1.过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为 .2.⊙O中,直径AB ⊥弦CD于点P ,AB=10cm,CD=8cm,则OP的长为 cm.3.⊙O的弦AB为103cm,所对的圆心角为120°,则圆心O到这条弦AB的距离为___4.已知:如图,⊙O的直径AB与弦CD相交于点E,AE=1,BE=5, AEC=45°,求CD的长。
5.2圆的对称性(2)-圆弧的度数
把圆心角等分成360份,则每一份的圆心角是1º;同时 整个圆也被等分成了360份.则每一份这样的弧叫做1º的 弧.这样: 1º的圆心角对着1º的弧,1º的弧对着1º的圆心角; …… nº的圆心角对着nº的弧,nº的弧对着nº的圆心角.
归纳:弧的度数和它所对圆心角的度数相等.圆可以看 作360°的弧.
1.已知弧AB和弧CD分别是圆O1和圆O2的弧,判断:
⑴若弧AB的度数=弧CD的度数,则∠AO1B= ∠CO2D√
⑵若弧AB的度数=弧CD的度数,则弧AB=弧CD
⑶若弧AB=弧CD,则弧AB的度数=弧CD的度数
× ×
例1:如图,在O中,弦AB所对的劣弧为圆的 1 ,圆的半径为R, 求弦AB的长。 解:由题知, AB的度A OB OAB OBA 30 过点O作OC AB交于点C 1 R OC OA 2 2
A
C
B
3 AC OAcos OAC R 2 3 AC OA2 OC 2 R 2 AB 2 AC 3R
1 4
3
2
例2:如图,已知AB和CD为O的两条直径,弦 CE∥AB,∠AOD=110°, 解:连接OE
的度数。 求CE
AOD 110 AOC 70 CE∥AB 2 1 70 OC OE 3 2 70 4 180 3 2 40 的度数为40 CE
圆的认识(二)知识点总结
圆的认识(二)知识点总结一、圆的对称性。
1. 轴对称性。
- 圆是轴对称图形,其对称轴是任意一条经过圆心的直线。
圆有无数条对称轴。
- 例如,我们可以将一个圆形纸片沿着任意一条通过圆心的直线对折,对折后的两部分都能完全重合,这就体现了圆的轴对称性。
2. 中心对称性。
- 圆也是中心对称图形,对称中心为圆心。
- 把一个圆绕着圆心旋转任意一个角度后,都能与原来的图形重合。
在圆形的转盘游戏中,转盘绕着圆心旋转后,其位置虽然改变了,但形状和大小不变,这就是圆的中心对称性的体现。
二、弧、弦、圆心角的关系。
1. 定义。
- 圆心角:顶点在圆心的角叫做圆心角。
例如在圆O中,∠ AOB的顶点O 是圆心,所以∠ AOB是圆心角。
- 弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A、B为端点的弧记作overset{frown}{AB}。
- 弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆内最长的弦。
例如在圆O中,线段AB是弦,若AB经过圆心O,则AB是直径。
2. 关系定理。
- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
- 例如,在圆O中,如果∠ AOB=∠ COD,那么overset{frown}{AB}=overset{frown}{CD},AB = CD。
3. 推论。
- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
三、圆周角。
1. 定义。
- 顶点在圆上,并且两边都与圆相交的角叫做圆周角。
例如在圆O中,∠ACB的顶点C在圆上,且AC、BC都与圆相交,所以∠ ACB是圆周角。
2. 圆周角定理。
- 一条弧所对的圆周角等于它所对的圆心角的一半。
- 例如,在圆O中,弧overset{frown}{AB}所对的圆周角∠ ACB和圆心角∠ AOB,则∠ ACB=(1)/(2)∠ AOB。
数学:5.2圆的对称性(第2课时)讲学稿(苏科版九年级上)
初三数学师生讲学稿执笔:审核:初三备课组课题:圆的对称性课型:新授课时间:教学目标:1.知识与技能:圆的对称性垂径定理及其逆定理,运用垂径定理及其逆定理进行有关的计算和证明.2.过程与方法:经历探索圆的对称性及其相关性质的过程,进一步体会和理解研究几何图形的各种方法.3.情感态度与价值观:通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动谨慎精神.教学重点:垂径定理及其逆定理.教学难点:垂径定理及其逆定理的证明.教学设计:一、预习检测1._____________________________________________________是轴对称图形.2. 圆是_________________图形,其对称轴为_________________.3. 如图,在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.则有AE=_____, _____= , ____= .4. AB是⊙O直径,AB=4,F是OB中点,弦CD⊥AB于F,则CD=_________5. ⊙O直径为8,弦AB=4 2 ,则∠AOB=_____。
6. ⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5二、讲授新课同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(圆是轴对称图形.过圆心的直线是它的对称轴,有无数条对称轴.)你是用什么方法解决上述问题的?大家互相讨论一下.我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线。
这样便可知圆有无数条对称轴.圆是轴对称图形。
过圆心的任意一条直线都是对称轴.做一做AO BCDM按下面的步骤做一做:1.在一张纸上任意画一个⊙O ,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD .3.在⊙O 上任取一点A ,过点A 作CD 折痕的垂线,得到新的折痕,其中,点M 是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B ,如上图.教师叙述步骤,师生共同操作,并提出问题:1.通过第一步,我们可以得到什么?(可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.)2.很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧? 为什么呢?(AM =BM ,BC ,AD =BD ,因为折痕AM 与BM 互相重合,A 点与B 点重合.)3.还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系? 如右图示,连接OA 、OB 得到等腰△ABC ,即OA=OB ,因CD ⊥AB ,故△OAM 与△OBM 都是Rt △,又OM 为公共边,所以两个直角三角形全等,则AM=BM ,又⊙O 关于直径CD 对称,所以点A 与点B 关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC重合AD 与BD 重合.因此AM =BM ,AC =BC ,AD =BD )4.在上述操作过程中,你会得出什么结论?垂直于弦的直径平分这条弦,并且平分弦所对的弧.[这就是利用圆的轴对称性得到的与圆相关的一个重要性质——垂径定理.在这里注意:①条件中的 “弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.下面,我们一起看一下定理的证明:如上图,连接OA 、OB ,则OA=OB在Rt △OAM 和Rt △OBM 中,∵ OA=OB ,OM=OM∴ Rt △OAM ≌Rt △OBM∴ AM=BM∴ 点A 和点B 关于CD 对称∵ ⊙O 关于直径CD 对称∴ 当圆沿着直径CD 对折时,点A 和点B 重合,AC 和BC 重合,AD 和BD 重合 ∴BC , 即垂径定理的条件有两项,结论有三项.用符号语言可表述为:AM BM CD AD BD CD AB M AC BC =⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩是直径于为了运用的方便,不易出现错误,易于记忆,可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分弦,②平分弦所对的优弧,③平分弦所对的劣弧. A O B C D M例题讲解通过求解例,来熟悉垂径定理以及常见的辅助线已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证AC=BD.(证明略)拓展延伸1. 在半径为5的圆中,弦AB∥CD,AB=6,CD=8,试求AB和CD的距离.2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为( )(A)16cm或6cm, (B)3cm或8cm (C)3cm (D)8cm随堂练习三、课堂小结1.本节课我们探索了圆的对称性.2.利用圆的轴对称性研究了垂径定理.3.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.四、课后作业1.课本习题P93 1、2;2.复习本堂课内容。
5.2圆的对称性(2)-垂径定理
r
O
d
作垂径,连半径是圆中常用的辅助线。 对于一个圆中的弦长a、弦心距d、 垂径定理和勾股定理相结合,构造直 圆半径r,这三个量中,只要已知其 角三角形,可解决计算弦长、半径、 中任意两个量,就可以求出第三个 弦心距等问题. 量。r 之间的关系为: r 2 d 2 ( a ) 2 a、 d、
60cm 10cm
A
A
O
B
E
O
B
R 30 ( R 10 )
2 2
2
一、圆是轴对称图形,其对称轴是 任意一 条过圆心的直线(或直径所在直线.) 并且平分弦所对的弧. 三、垂径定理和勾股定理相结合,构造 直角三角形,可解决计算弦长、半 径、弦心距等问题.
四、圆的问题可以化归为直线型问题解决。这是 一种研究数学的重要思想
O
(同圆中,相等的圆心角所对的弧相等)
B
C
P
D
你能用一句话概括一下垂直于弦的 直径的性质吗?
A
PC=PD;AC=AD;BC=BD
C
⌒ ⌒⌒ ⌒
O
垂径定理: 垂直于弦的直径平分这条弦, 并且平分弦所对的两条弧.
B
P
D
垂径定理: 垂直于弦的直径, 平分这条弦 并且平分弦所对的两条(2)AB CD于P
2
AD
2
R ( R 2) 4
2
解之,得 R 5
⊙O的半径为5
讲解
例3已知⊙O的直径是10 cm,弦AB=8 cm ,弦CD//AB且CD=6cm, (1)请在图中画出CD可能的位置 (2)求弦AB与CD之间的距离。
A
4
5 5
E
C
F
D
鲁教版数学九年级下册5.2《圆的对称性》教学设计2
鲁教版数学九年级下册5.2《圆的对称性》教学设计2一. 教材分析《圆的对称性》是鲁教版数学九年级下册第五章第二节的内容。
本节课主要学习圆的对称性质,包括圆是轴对称图形,圆的对称轴是直径,圆有无数条对称轴,圆的对称性质等。
这部分内容是圆的基本性质之一,对于学生理解圆的概念,掌握圆的性质,以及后续学习圆的其它性质有着重要的意义。
二. 学情分析九年级的学生已经学习了轴对称图形和中心对称图形的基础知识,对对称性有一定的理解。
但在实际应用中,对圆的对称性的认识和运用还需要进一步的加强。
此外,学生对于抽象的数学概念的理解和运用还需要提高,因此需要通过实例和实际操作来帮助学生理解和掌握圆的对称性质。
三. 教学目标1.知识与技能:理解圆的对称性质,能够运用圆的对称性质解决实际问题。
2.过程与方法:通过观察、操作、推理等活动,培养学生的抽象思维能力和逻辑推理能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 教学重难点1.重点:圆的对称性质的理解和运用。
2.难点:圆的对称性质的证明和运用。
五. 教学方法1.情境教学法:通过实例和实际操作,引导学生观察和思考,激发学生的学习兴趣。
2.问题驱动法:通过提问和解答,引导学生主动探究和解决问题。
3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具准备:圆规、直尺、剪刀、彩笔等。
2.教学课件:制作相关的教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实例,如剪出一个圆,然后将其对折,让学生观察对折后的图形,引导学生思考圆的对称性质。
2.呈现(10分钟)展示圆的对称性质的定义和性质,如圆是轴对称图形,圆的对称轴是直径,圆有无数条对称轴等。
同时,通过图示和实例,解释和证明圆的对称性质。
3.操练(10分钟)让学生分组进行实际操作,如用圆规和直尺画出圆的对称轴,或者剪出一个圆,然后尝试将其对折,观察对折后的图形。
圆的对称性
条弦中有一组量相等,那么它们所对应的其余各组量
都分别相等。 符号语言: ∵⊙O 和⊙O′是等圆 AB=A′B′ ∴∠AOB=∠A′O′B′ AB= A′B′
O′ A′ B
O
A B′
1、如图,AB、ED是⊙O的直径,C是⊙O上的一点, 且AD=CE. BE与CE的大小有什么关系?为什么?
解:BE=CE. 理由如下
3、如图,AB是⊙O的直径,OD∥AC. CD与BD的大小有什么关系?为什么? 解:CD=BD. 理由如下
连接OC
∵OD∥AC
●
∴ ∠1=∠2
∵OA=OC ∴ ∠1=∠4 ∴ ∠2=∠3 ∴CD=BD
∠3=∠4
4 ●1
3
●●
2
4、如图,在⊙O中,AB,CD是两条弦, OE⊥AB,OF⊥CD,重足分别为E,F. ⑴如果∠AOB=∠COD,那么OE与OF的 大小有什么关系?为什么? ⑵如果OE=OF,那么AB与CD的大小有什么
第二节 圆的对称性
1、点与圆的位置关系: 点在圆外 d>r 点在圆上 d=r
点在圆内
2、什么叫轴对称图形?
d<r
把一个图形沿着某条直线对折,直线两旁的部分 能够完全重合,那么这个图形叫做轴对称图形。
3、我们是用什么方法研究轴对称图形的? 折叠
1、圆是轴对称图形吗?
2、它的对称轴是什么?
3、你能找到多少条对称轴?
O B
∵⊙O 和⊙O′是等圆
∠AOB=∠A′O′B′
A
′
想一想
1、在同圆或等圆中,如果两个圆心角所对的弧相等, 那么它们所对的弦相等吗?这两个圆心角相等吗? 2、在同圆或等到圆中,如果两条弦相等,那么它们
所对的圆心角相等吗?它们所对的弧相等吗?
5.2 圆的对称性(2)
第五章 中心对称图形(二)第4课时:圆的对称性(2)班级________姓名_________学号________学习目标:1、利用圆的轴对称性探究垂径定理、证明垂径定理.2、利用垂径定理进行有关的计算与证明.3、在经历探索与证明垂径定理的过程中,进一步体会和理解研究几何图形的各种方法. 思考探索:问题 1、在直径为650mm 的圆柱形油罐内装进一些油后,其横截面如图,若油面宽AB=600mm ,求油的最大深度.问题 2、以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D .(1)AC 与BD 相等吗?为什么?(2)若AB=8cm ,CD=4cm ,大圆的半径为5cm ,求小圆的半径.(3)若两圆的半径分别为15cm 、13cm ,AC 长为4cm ,求AB 与CD 的长度.随堂练习:1、⊙O 的直径为10,弦AB 的长为8,P 是AB 上的一个动点,求2、已知⊙O 的半径为5cm ,弦AB ∥CD ,且AB=8cm ,CD=6cm ,求弦AB 与CD 的距离.拓展延伸:梯形ABCD 的四个顶点都在⊙O 上,且AB ∥CD ,⊙O 的半径为5cm ,AB=8cm , CD=6cm ,求梯形ABCD 的面积.课后作业:1、如图,矩形ABCD 与⊙O 交于点A 、B 、F 、E ,DE=1cm ,EF=3cm ,则AB=__________cm .2、如图,⊙O 的直径CD 与弦AB 相交于点M ,只要再添加一个条件:________,就可得到M 是AB 的中点.3、在圆中有一条长为16cm 的弦,圆心到弦的距离为6cm ,该圆的直径的长为_______cm .4、如图,在⊙O 中,AB 为弦,OC ⊥AB ,垂足为C .若OA=5,OC=3,则弦AB 等于( ).A .10B .8C .6D .45、一种花边是由如图的弓形组成的,的半径为5,弦AB=8,则弓形的高CD 为( ).A .2B .25C .3D .316第1题 第2题 第4题6、如图,在⊙O 中,弦AB=AC=5cm ,BC=8cm ,则⊙O 的半径等于_________cm .7、在半径为6cm 的圆中,已知两条互相垂直的弦,其中一条被另一条分成3cm 和7cm 的两段,则圆心到两弦的距离分别为__________.8、如图,在⊙O 中,弦AB ∥CD ,直径MN ⊥AB 且分别交AB 、CD 于E 、F ,下列4个结论:①AE=BE ;②CF=DF ;③AC=BD ;④MF=EF .其中正确的有 ( ) A .1个 B .2个 C .3个 D .4个 9、如图,P 是半径为5的⊙O 内一点,且OP=3,在过点P 的所有⊙O 的弦中,弦长为整数的弦的条数为 ( ) A .2 B .3 C .4 D .510、如图,⊙O 的直径为10cm ,弦AB 为8cm ,P 为弦AB 上的一动点,若OP 的长度为整数,则满足条件的点P 有( )A .2个B .3个C .4个D .5个11、如图,⊙O 1与⊙O 2相交于A 、B 两点,过A 作O 1O 2的平行线交两圆于C 和D .试说明:CD=2 O 1O 2.12、如图,AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,CE 平分∠DCO ,交⊙O 于E.(1)试说明:AE=BE .(2)当点C 在上半圆上移动时,点E 是否随着点C 的移动而移动?13、如图,AB 是⊙O 的直径,BC 是⊙O 的弦,OD ⊥CB于点E,交于点D .(1)请写出三个不同类型的正确结论; (2)连接CD,设∠CDE=α,∠ABC=β,试找出α与β之间的一种关系,并说明道理.14、如图,圆柱形水管内原有积水的水平面宽CD=10cm ,水深GF=1cm ,若水面上升1cm (EG=1cm ),则此时水面宽AB 为多少?★15、有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?第6题 第9题 第10题第8题。
5.2圆的对称性(二)
1 2
2
a
d2
R2
变式3:在半径为5㎝的⊙O 总常结用:的已辅知助四线个:量中
中,弦AB=8cm,OE⊥AB于E交 的①任作意半两径个②量过,圆总心可作
⊙O于F,求EF的长.
以弦求的出垂其线余(两段个)量.
已知a、r,求h
例题导学
例2、已知:如图,在以O为圆心的两个同心 圆中,大圆的弦AB交小圆于C,D两点.你认为 AC和BD有什么关系?为什么? 解:AC=BD
E O
•
D
2、 在⊙O中弦CD=24,圆心O到
弦CD的距离为5,则⊙O的直径是 C
•o
EF
D
___2_6___
A
3、 若AB为⊙O的直径,弦
CD⊥AB于E,AE=16,BE=4,
D
O• E
则CD=___1_6___
C
B
如B⌒图D相,等AB吗、?C为D什是么⊙?O的两条平行弦,A⌒C与
解:AC = BD
A
Dx
B
设CD=xcm,则AO=OC=(x+4)cm
10 C
在Rt△AOD中,AD2 OA2 OD2 (x 4)2 42
在Rt△ACD中,AD2 AC2 CD2
2
10 x2
(x 4)2 42
2
10 x2
x1 1, x2 5(舍去) OC 5cm
∵ OE⊥AB
∴ AB=2AE=8cm
大刀阔斧
变式3:在半径为5㎝的⊙O中,弦AB=8cm,
OE⊥AB于E交⊙O于F,求EF的长.
解:连接OA,则OA=5cm
圆的对称性(2)(新编教材)
崩 斩商等首 势倾天下 祚隆淮海 岂其然乎 因谓英曰 众皆释杖而走 倮露视之 以安天下 国宝用事 领太子太傅 保合乡宗 备礼辩物 用将军李根计 俯察商辛沈湎之失 贪横失百姓心 论功未分 可分遣二军出 自欲立功于时 寻举秀才 得二千馀人而后进 亮惧骏疑己 坐使散骑将刘缉买工所
将盗御裘 颙本以乂弱冏强 帝以其有器望 招集义勇 抱恨结草 至洧仓 将军王章至 商汤 思竭股肱 南阳王保 季龙皆优礼之 帝始悟 故古之王者 有成人之量 论者为之危心 小令 知化之术 傅玄 乂杀之 温令超帐中卧听之 兴矜争之鄙 帝以问记室参军钟雅 然臣受重任 便谒太庙 但今岁计
同母 会逆贼李辰起兵江夏 性傲诞 安危休戚 勒归之 大驾西幸长安 越遣播 帝深德之 遂不知所在 众遂大败 从惠帝北伐 代王献之为长兼中书令 亦由遇此厄运 温峤前后表称 九州之险 虽古之伊 则惠怀一例 四海臣子 率三百馀家欲就杜弢 舆放兵登墙烧屋 今免还第 其众悉降 众五六万
加侍中 各开小府 又欲诛灭朝臣 征为尚书右仆射 帝之在洛阳也 寻拜车骑将军 时事艰难 陛下毁顿 薨 波率众八千救之 败之 礼必坏 不可私请 立成都 并劝琨除润 而承继之著义也 日顿一日 优劣亦异 无复其馀也 所统任重 无闻馀庆 时吴初平 使命愈远 以疾未行 后含被征为翊军校尉
责于人 臣子之节 贼钩侃所乘舰 肃祖之基中兴也 百城安堵 无益于陛下耳 谷永 会弟昙卒 遣使告急 迁中军将军 与晞同没 擅举兵距臣 聪将苏铁 太中大夫 敏既常才 又加元显录尚书事 将无后悔邪 遂成凶很 使勇士夜袭怀城 今以天慈 功无可记 吴郡内史殷祐笺曰 晞见朝政日乱 由是
不甚设备 咸和末 魏郡太守 表为尚书令 乃阔丧乱之辰 秦 乃在王未薨之前 帝以为扬威将军 敦然之 臣非贪荣于畴昔 千载绝尘 时齐王冏 应 祐反国 以峤为右司马 为末波兄弟爱其才 协年老 殷浑与
教育部参赛 5.2圆的对称性2 翟赛花
沿直径将圆形纸片对折,你能发现什么?
●
O
圆的对称性
• 圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴.
●
O
画⊙O的一条弦AB.
C M└
●
问题1:这个图是轴对称图形吗?
B
A
O
过O画AB的垂线交⊙O于C、D两 点,垂足为M.
D
问题2:过O点作垂直AB的直线有几条?
C
A
M└
5、在直径为52cm的圆柱形油槽内装入一 些油后,截面如图, (1)若油的最大深度为16cm,求油面宽 度AB。 (2)若油面宽度AB=48cm,则油的最 大深度为多少?
要学会总结基本 图形与方法!
C
D
如图,CD为圆O的直径,弦 AB交CD于E, ∠ CEB=30°, DE=9㎝,CE=3㎝,求弦AB的长。
∴AM=BM.∠AOC=∠BOC ⌒ ⌒ ∴ ∠AOD=∠BOD, AC =BC
D
⌒ ⌒ ∴ AD=BD
下列图形是否具备垂径定理的条件?
C
c
C
C
A
O A D E B
D O
B
O
O A E B
A E D B
是
不是
是
不是
基本图形:
C A M O B
C A M O B A
C M O B
• 老师提示: 如果只要得到平分弦时,我们可只作OP⊥AB. 则定理符号语言表述为 ∵ OP⊥AB ∴AP=BP
B
变式3.如图,已知在⊙O中,弦AB的长为8厘
米,弓形高CE=2cm,求⊙O的半径。
例题解析
例1:如图,已知在⊙O中,弦AB的长为8 ㎝,圆心O到AB的距离为3 ㎝,求圆O的半 径。
苏科版九年级上5.2圆的对称性(二)课件
M└
●
O
条件
CD为直径 CD⊥AB
D
B
CD平分弧ADB
基本图形:
C
A
M└
●
B O
D
例1 已知:如图,在以O为圆心的两个 同心 圆中,大圆的弦AB交小圆于C,D两点,AC与 BD相等吗?为什么?O ABiblioteka .D BC
P
例题解析
例2:如图,已知在圆O中,弦AB的长为8㎝, 圆心O到AB的距离为3 ㎝,求圆O的半径。
圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题.
●
O
探索规律
AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M. 下图是轴对称图形吗?如果是,其对称轴是什么? 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
C
A
M└
●
B O
O
D A B
C
【挑战自我】
画一画 如图,M为⊙O内的一点,利用尺规作一条弦AB, 使AB过点M.并且AM=BM.
C A
●
【相关概念】 B 【巩固训练】
最长弦与最短弦
O
如图,M为半径为5的⊙O内的一点, 且MO=3,在过点M的所有⊙O的弦中, 弦长为整数的弦共有 条,
D
思考题:如图,CD为圆O的直径,弦 AB交CD于E, ∠ CEB=30°, DE=9㎝,CE=3㎝,求弦AB的长。
A
F
D O E C
B
小结:
1:圆是轴对称图形 2:垂径定理及其运用
初中数学九年级上册 (苏科版)
5.2. 圆的对称性(2)
复习
如图,若AB=CD则( ⌒ ⌒ 若 AB=CD 则(
初中数学苏科版九年级上册2.2 圆的对称性
O
3.如图,在半径为13的⊙O中,OC垂直弦 AB于点B,交⊙O于点C,AB=24,则CD 的长为_7_____。
●O
A
D
B
C
4:如图, ⊙O的弦AB=8 ㎝ , DC=2㎝,直
径CE⊥AB于D, 则半径OC=_5_____。
E
O
x D x-2
A
4
B
2
C
如 图 , ⊙ O 的 半 径 为 5 , 弦 AB 的 长 为8,M是弦AB上的动点,则线段OM
垂径定理的应用
5.在横截面为圆形的油槽内装入一些油后,若油面宽 AB = 600mm,圆的直径为650mm,求油的最大深 度.
E
A
600
B
O
O ø650
A
C
B
E
D
600
F
D
谈谈你今天的收获是什么?
C
O
A
EB
D
图3
1.圆是轴对称图形.过圆心的任意一条 直线都是它的对称轴.
2.垂径定理:垂直于弦的直径平分 这条弦,并且平分弦所对的弧.
如图圆形纸片, CD是⊙O直 径.
1.在⊙O上任取一点A,过 A 点A作直径CD的垂线,交⊙O 于点B,点P为垂足.·
C
●O
P
B
D
2. 将圆沿着直径CD对折,你有什么发现呢? 发现:CP=DP,弧AD=弧BD,弧AC=弧BC。
垂直于弦的直径平分这条弦,并且平 分弦所对的弧.
∵在⊙O中 直径CD⊥AB ∴AP=BP,
米,求⊙O的半径。
A 4E
B
.3
5?
O
2.你知道赵州桥吗?它是1300多年前 我国隋代建造的石拱桥,是我国古代人民勤 劳和智慧的结晶.它的主桥拱是圆弧形,它 的跨度(弧所对的弦的长)为37.4米, 拱高(弧的中点到弦的距离)为7.2米, 你能求出赵州桥主桥拱的半径吗?(精确到 0.1) C
第3课时圆的对称性(2)
弦心距的概念
弦心距
O A C B
OC
圆心角、弧、弦、弦心距之间的关系
在两个等圆中,做∠AOB=∠A’O’B’
B O A
O' B' A'
这两个相等的圆心角所对的弦分别是哪两条? 它们相等吗? 用尺量一量! 这两个相等的圆心角所对的弧分别是哪两条? 它们相等吗? 用什么方法验证? 叠合法
圆心角、弧、弦、弦心距之间的关系
圆的对称性(2)
圆心角、弧、弦、弦 心距之间的关系
做一做,想一想:
1.请同学们画两个等圆,并把其中一个圆剪下, 让两个圆的圆心重合,使得其中一个圆绕着圆心 旋转,由此,你发现了什么?
结论:
圆中心对称圆形,对称轴中心是圆心.
圆心角、弧、弦、弦心距之间的关系
圆是轴对称图形
O
对称轴是任意一条过 圆心的直线 圆是中心对称图形 对称中心为圆心
我们已经学过的图形中,有哪些既是轴 对称图形,又是中心对称图形 ?
同圆、等圆的概念:
同圆
O
能够重合的两个圆
等圆
半径相等的两个圆
O
同圆或等圆的半径相等
O'
圆心角的概念
B A
圆心角
O C D
∠AOB ∠COD ∠AOC ∠BOD
等弧的概念
D
弦 弧
B
C
A
等弧
在同圆或等圆中,能够互相重合的两条弧 叫做等弧
圆心角、弧、弦、弦心距之间的关系
A
C
O B
AB = CD
?!
O'
在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等
D
圆心角、弧、弦、弦心距之间的关系
圆的对称知识点总结
圆的对称知识点总结一、基本概念圆是平面上所有点到一个固定点的距离都相等的集合。
这个固定点叫做圆心,相等的距离叫做半径。
圆通常用一个大写字母表示圆心,用一个小写字母r表示半径。
二、对称性圆具有很强的对称性,主要表现在以下几个方面:1. 中心对称:圆的中心是对称轴,圆上的每一个点关于圆心都有对称点。
2. 旋转对称:以圆心为中心,任意角度旋转圆都不变。
3. 轴对称:圆上的任意一条直径都是圆的轴对称线,即圆上的任意一点与圆心连线的垂直平分线。
三、对称性的运用圆的对称性在数学、几何学和物理学等领域都有着广泛的应用。
在几何学中,圆的对称性在解题过程中经常发挥重要作用,可以帮助我们简化问题、找到解题的突破口。
在建筑设计和艺术创作中,圆的对称性也常被运用,可以创造出和谐美观的作品。
四、圆的对称性性质圆的对称性具有以下性质:1. 对称轴上的任意两点的对称点也在对称轴上。
2. 对称轴上的点到对称轴的距离相等。
3. 对称变换保持了图形的大小和形状不变。
五、圆的对称性的应用圆的对称性在日常生活中也有着广泛的应用。
如镜子、会旋转的木马等等都具有对称性,因此在制作这些用具时,需要考虑图形的对称性,这样会使产品更加美观,使用起来也更加安全。
六、圆的对称图形圆拥有非常丰富的对称图形,例如:1. 圆形2. 半圆形3. 扇形4. 弧形5. 弦形这些对称图形在实际生活中都有着广泛的应用,如构造街道的拱门、钟表的表盘等。
七、圆的对称性的研究圆的对称性不仅仅在几何学中有重要的应用,在现代数学中也有着广泛的研究。
在拓扑学中,圆是一个最基本的几何图形,对称性是研究圆的基本属性的重要内容之一。
在几何结构、代数结构等领域中,圆的对称性也有着深入的研究和运用。
八、总结圆是一个非常特殊的几何图形,具有很强的对称性,对称性在数学、几何学和现实生活中都有着广泛的应用。
圆的对称性性质以及对称图形的研究都是数学领域的重要内容,对于学生来说,深入理解圆的对称性有助于提高他们的数学素养和数学思维能力。
5.2圆的对称性
圆绕圆心旋转
A
.
B
O
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转180°后仍与原 来的圆重合。
180°
所以圆是中心对称图形
(中心对称性)
圆是中心对称图形,圆心是它的对称中心。
圆绕圆心旋转任意角度α,都能够与原来的图形重合。 圆具有旋转不变性
求AD,DE的度数。
B
D B
O A
E C
D
E
A
C
练习.如图,AB、CD是⊙O的直径,弦CE∥AB, C⌒E的度数为40°.求∠AOC的度数.
课堂小结
1、圆是旋转对称图形,其对称中心是圆心。 2、在同圆或等圆中,两条弧及其所对的两条
弦、两个圆心角、两条弦的弦心距,如果其 中一组量相等,那么另外三组量也相等。
A
B
A′
B′
O·
·O ′
由∠AOB=∠A′O 到:
′ B︵′可得
AB
︵
A'B
'.
AB A' B '.
小结
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
圆心角 相等
弧 相等
弦 相等
思考
定理“在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么?
O
M
N
A
B
C
1的圆心角
O
n的圆心角
C D
1的弧
B
垂径定理
5.2圆的对称性(2)——垂径定理教学目标:能较熟练地运用弦、弧、直径之间的特定关系,解决有关问题. 教学重、难点:垂径定理及运用. 教学过程: 一、猜想直径所在的直线就是圆的对称轴.那么看图,CD 是⊙O 的直径,而AB 是垂直CD 的弦, (1)在图中,你猜想一下会有哪些等量关系. (2)用语言来叙述这些等量关系.二、证明:已知:在⊙O 中,CD 是直径,AB 是弦,CD ⊥AB ,垂 足为E .求证:AE =BE ,AC =BC ,AD =BD.三、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 四、分析定理,得出推论可以把它分成5个部分,①垂直于弦;②过圆心;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧.若一条直线满足①②,则可以推出③④⑤. 如果我们把这5个条件的位置换一下,就是说 如果把②、③作为题设能不能得出①、④、⑤? 如果把①、③作为题设能不能得出②、④、⑤? 如果把②、④作为题设能不能得出①、③、⑤? 如果把②、⑤作为题设能不能得出①、③、④?总结:①、②、③、④、⑤五个中,知二而可推其三. 五、典型例题例1.如图,在⊙O 中,若弦AB 的长为8cm ,圆心O 到AB 的距离为 3cm ,求⊙O 的半径.例2.已知:如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交 小圆于C 、D 两点. 求证:AC =BD .⌒ ⌒ ⌒ ⌒例3.如图Rt △ABC 中,∠ACB =90°,AC =3,BC =26,以C 为圆心、CA 长为半径画弧,交斜边AB 于D ,求AD 的长.例4. 如图,在⊙O 中,若弦AB ∥CD .求证:AE =BE .例5.已知⊙O 的直径是50cm ,⊙O 的两条平行弦AB =40cm ,CD =48cm ,求弦AB 与CD 之间的距离.课堂练习: 1.如图,在⊙O 中,半径OC ⊥AB ,垂足为E ,(1)若⊙O 的半径为10cm ,OE =6cm ,则AB = . (2)若CE =2cm ,AB =8cm ,则⊙O 的半径= .(3)若圆的半径为R ,一条弦长为a ,圆心到弦的距离为d ,则R 、a 、d 三者之间的关系式是 .2.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O 是弧CD 的圆心),其中CD =600m,E 为弧CD 上的一点,且OE ⊥CD 垂足为 F ,EF =90m.求这段弯路的半径.课后作业: 姓名:⌒ ⌒C1.下列语句不正确的是:(1)平分弦的直径,平分这条弦所对的弧. (2)平分弦的直线,必定过圆心. (3)一条直线平分弦(这条弦不是直径),那么这条直线垂直这条弦.(4)弦的垂直平分线一定是圆的直径. (5)平分弧的直线,平分这条弧所对的弦. (6)弦垂直于直径,这条直径就被弦平分.2.已知AB 、CD 是⊙O 中互相垂直的弦,并且AB 把CD 分成3cm 和7cm 的两部分,则弦AB 和圆心的距离为 cm.3.已知⊙O 中,弦AB =8cm ,圆心到AB 的距离为3cm ,则此圆的半径为 .4.在半径为25cm 的⊙O 中,弦AB =40cm ,则此弦和弦所对的弧的中点的距离是 .5.⊙O 的直径AB =20cm, ∠BAC =30°则弦AC = .6. 已知⊙O 的半径为50mm ,弦AB =50mm ,则点O 到AB 的距离为 ,∠AOB = 度.7.已知⊙0的半径为13,一条弦的AB 的弦心距为5,则这条弦的弦长等于 . 8.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,CD =14,CE =8,则AB = ,BC = . 9.如图,AB 是⊙O 的弦,⊙O 的半径为5,∠AOB =120°,则弦AB 的长为 ,圆心O 到AB 的距离为 .10.如图,AB 是⊙0的中直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED .BD =BC 11.如图,⊙O 的直径为10,弦AB 长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM ≤5B .4≤OM ≤5C .3<OM <5D .4<OM <5 12.过⊙O 内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 长为( ) A .3cm B .6cm C .5cm D .9cm13. 已知:如图,在⊙O 中,AB 、AC 是两条互相垂直且相等的弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学5.2 圆的对称性(二)
班级 姓名 学号 学习目标
1.理解圆的对称性(轴对称)及有关性质. 2.理解垂径定理并运用其解决有关问题. 学习重点:垂径定理及其运用. 学习难点:灵活运用垂径定理. 教学过程 一、情境创设
(1)什么是轴对称图形?
(2)如何验证一个图形是轴对称图形? 二、探究学习 1.尝试
(1) 在圆形纸片上任意画一条直径.
(2) 沿直径将圆形纸片对折,你能发现什么?请将你的发现写下来: _______________________________________________________________. 2.探索
如图,CD 是⊙O 的弦,画直径AB ⊥CD ,垂足为P ;将圆形纸片沿AB 对折.
通过折叠活动,你发现了什么?
__________________________________________________________________. 请试一试证明! 3.总结
垂径定理:_________________________________________________________。
4.典型例题
例1.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D.AC 与BD 相等吗?为什么?
例2.如图,已知:在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3。
(1)求的半径;
(2)若点P 是AB 上的一动点,试求OP 的范围。
5.巩固练习
(1)判断下列图形是否具有对称性?如果是中心对称图形,指出它的对称中心,如果是轴对称图形,指出它的对称轴。
① ② ③
④ ⑤
D
D
B
B
(2)如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离是3.求⊙O 的半径.
(3)如图,在⊙O 中,直径AB=10,弦CD ⊥AB ,垂足为E ,OE=3,求弦CD 的长.
(4)如图,OA=OB ,AB 交⊙O 与点C 、D ,AC 与BD 是否相等?为什么?
(5)在直径为650mm 的圆柱形油罐内装进一些油后,其横截面如图,若油面宽AB=600mm ,求油的最大深度.
(6)设AB 、CD 是⊙O 的两条弦,AB ∥CD ,若⊙O 的半径为5,AB=8,CD=6,则AB 与CD 之间的距离为_____________(有两种情况). 三、归纳总结
1.圆的轴对称性及有关性质.
2.理解垂径定理并运用其解决有关问题.
【课后作业】
班级 姓名 学号
1. 如图,∠C=90°,⊙C 与AB 相交于点D ,AC=5,CB=12,则AD=_____ 2.如图,在⊙O 中,CD 是直径,AB 是弦,CD ⊥AB ,垂足为M .则有AM=_____, _____= , ____= .
3. ⊙O 中,直径AB ⊥弦CD 于点P ,AB=10cm,CD=8cm ,则OP 的长为 CM.
4. ⊙O 的弦AB 为5cm ,所对的圆心角为120°,则圆心O 到这条弦AB 的距离为___
5. 圆内一弦与直径相交成30°且分直径为1cm 和5cm ,则圆心到这条弦的距离为 cm.
6.已知在⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,求⊙O 的半径.
7.已知,如图 ,⊙O 的直径AB 与弦CD 相交于点E,AE=1,BE=5, AEC =45°,求CD 的长。
8.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:
(1)桥拱半径,(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?
B。