几何证明——角平分线模型(高级)

合集下载

三角平分线模型定理

三角平分线模型定理

三角平分线模型定理1.引言1.1 概述三角平分线模型定理是三角形中一个重要的几何定理,它涉及到三角形的平分线以及与之相关的性质。

在我们的日常生活和实际应用中,三角形是非常常见的图形,所以了解和掌握三角形的性质和定理对我们的学习和应用都有重要的意义。

本文旨在介绍三角平分线的定义和性质,以及三角平分线模型定理。

首先,我们将给出三角平分线的定义。

三角形的平分线是指从三角形的一个顶点引出的直线,将对立边分成两个相等的线段。

这个定义非常直观和容易理解,同时也是我们后续讨论的基础。

接着,我们将探讨三角平分线的性质。

首先,三角形的三条平分线的交点被称为三角形的内心,该内心与三个顶点的连线的交点分别是三角形的三条边的中点。

这一性质的直观解释是,平分线将对立边分成相等的线段,所以三条平分线的交点就是三个中点的共同点。

除此之外,我们还将研究三角平分线模型定理。

该定理是一个重要的几何定理,它给出了三角形内心与三角形的三个顶点之间的距离关系。

根据三角平分线模型定理,内心到三角形每条边的距离等于该边上相邻两边的长度之差的一半。

这一定理的应用范围广泛,在许多几何问题的解决中都起到了关键的作用。

通过对三角形平分线的概念、性质和模型定理的深入了解,我们将能够更好地理解和运用三角形的相关知识。

本文将系统地介绍这些内容,帮助读者全面掌握三角平分线的概念和定理,并为读者进一步探索几何学和应用数学提供基础知识。

下面将详细讨论三角平分线的定义和性质,以及三角平分线模型定理,以便读者对这一主题有更清晰和全面的理解。

1.2文章结构文章结构部分的内容可以包括以下内容:文章结构:本文主要包含引言、正文和结论三个部分。

引言部分:引言部分将对本文的内容进行概述,并介绍文章的结构和目的。

正文部分:正文部分将包括两个小节,分别是“三角平分线的定义和性质”和“三角平分线的模型定理”。

1. 三角平分线的定义和性质:这一小节将详细介绍三角平分线的定义和相关的性质。

2022年中考数学几何模型之角平分线的五种模型(讲+练)(解析版)

2022年中考数学几何模型之角平分线的五种模型(讲+练)(解析版)

专题01 角平分线的五种模型模型一、角平分线垂两边例1.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【答案】A【详解】过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=3:2.故选A.例2.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【答案】2【详解】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC//OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO =30°,在直角三角形CEP 中,∠ECP =30°,PC =4,∴PE =12PC =2,则PD =PE =2.故答案为:2. 【变式训练1】如图所示,在四边形ABCD 中,DC //AB ,∠DAB =90°,AC ⊥BC ,AC =BC ,∠ABC 的平分线交A D ,AC 于点E 、F ,则BFEF的值是___________.11221BCBC BC ==--【详解】解:如图,作FG ⊥AB 于点G ,∠DAB -90°,∴FG /AD ,∴BF EF =BGAGAC ⊥BC ,∴∠ACB =90° 又BF 平分∠ABC ,∴FG =FC 在Rt △BGF 和Rt △BCF 中BF BFCF GF=⎧⎨=⎩ ∴△BGF ≌△BCF (HL ),∴BC =BGAC =BC ,∴∠CBA =45°,∴AB =2BC1BF BG BC EF AG AB BG ∴====- 【变式训练2】如图,BD 平分ABC 的外角∠ABP ,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,求BE 的长.【答案】1【详解】解:过点D 作BA 的垂线交AB 于点H ,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,DE DHDB DB=⎧⎨=⎩,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,DE DHDC DA=⎧⎨=⎩,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图易知:AH=AB−BH,CE=BE+BC,∴AB−BH=BE+BC,∴BE+BH=AB−BC=5−3=2,而BE=BH,∴2BE=2,故BE=1.【变式训练3,的平分线相交于点E,过点E作交AC于点F,则EF的长为.【答案】【解析】延长FE交AB于点D G H,如图所示:四边形BDEG是矩形,平分CE平分,四边形BDEG是正,,设,则,,,解得,,即,解得,.模型二、角平分线垂中间例.如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E .求证:2BD CE =. 【答案】见解析【详解】证明:如图,延长CE 与BA 的延长线相交于点F ,∵90,90EBF F ACF F ∠+∠=︒∠+∠=︒,∴EBF ACF ∠=∠,在ABD △和ACF 中,EBF ACF AB AC BAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD ACF ASA △≌△,∴BD CF =,∵BD 是ABC ∠的平分线,∴EBC EBF ∠=∠.在BCE ∆和BFE ∆中,EBC EBF BE BE CEB FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BCE BFE ASA ≌△△, ∴CE EF =,∴2CF CE =, ∴2BD CF CE ==.【变式训练1】如图,已知△ABC ,∠BAC =45°,在△ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【答案】(1)见解析;(2)AE BC ⊥,理由见解析;(3)【详解】(1)证明:∵BD AC ⊥,45BAC ∠=︒,∴90,45EDA BDC ABD BAD ∠=∠=︒∠=∠=︒,∴AD BD =,在Rt ADE △和Rt BDC 中,∵AD BDAE BC =⎧⎨=⎩ ∴()Rt ADE Rt BDC HL ≅,∴CD =DE ; (2)AE BC ⊥,理由如下:如图,延长AE ,交BC 于点F , 由(1)得,90EAD EBF EAD AED ∠=∠∠+∠=︒,∵AED AEF ∠=∠,∴90BEF EBF ∠+∠=︒,∴90EFB =︒,即AE BC ⊥;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【答案】3【解答】解:如图,延长CE ,AB 交于点F .AE 平分∠BAC ,AE ⊥EC ,∴∠F AE =∠CAE ,∠AEF =∠AEC =90°在△AFE 和△ACE 中,EAF EAC AE AE AEF AEC =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△AFE ≌ACE (ASA ),∴AF =AC =16,EF =EC ,∴B F =6又D 是BC 的中点,∴BD =CD ,∴DE 是△CBF 的中位线,∴DE =12BF =3,故答案为:3. 【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【答案】见解析【解答】证明:延长AD 交BC 于点F .CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=ADC ∴∆≌FDC ∆,AD FD ∴=. 又DE ∥BC ,EA EB ∴=.模型三、角平分线+平行线构造等腰三角形例.如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【答案】12【解答】解:如图,延长BQ 交射线EF 于点M .E 、F 分别是AB 、AC 的中点,∴EF //BC ,∴∠CBM =∠EMBBM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠EMB =∠EBM ,∴EB =EM ,∴EP +BP =EP +PM =EM CQ =13CE ,∴EQ =2CQ由EF //BC 得,△EMQ ∽△CBQ∴2 212 12EM EQEM BC EP BP BC CQ==∴==∴+=【变式训练1】如图,平分于点C ,,求OC 的长?【解析】如图所示:过点D 作交OA 于点E ,则,平分,,中,,.【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且,则AC=.【解析】过点E于G,连接CF,如图所示:分别是,CF是的平分线,,,由勾股定理可得.模型四、利用角平分线作对称例.平分.【答案】见解析【解析】证明:在AB上截取,连接DE,如图所示:.【变式训练】AD是△ABC的角平分线,过点D作DE⊥AB于点E,且DE=3,S△ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.【答案】(1)203;(2)253【详解】解:(1)如图1,作DF⊥AC于F,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×AB ×3+12×AC ×3=20,解得,AC =AB =203; (2)如图2,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×5×3+12×AC ×3=20,解得,AC =253. 模型五、内外模型例.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠AC E 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°【答案】A4321DA【解析】∵∠ABC与∠AC E的平分线相交于点D,∴∠DCE=∠DCA,∠CBD=∠ABD,即.的外角的平分线CP与内角BP交于点P,若,则.【解析】平分平分又,过点P的延长线,垂足分别为点E、F、G,如图所示:由角平分线的性质可得,AP是.课后训练1.如图,BD是ABC的外角∠ABP的角平分线,DA=DC,DE⊥BP于点E,若AB=5,BC=3,则BE 的长为()A .2B .1.5C .1D .0【答案】C【详解】解:如图,过点D 作DF AB ⊥于F ,BD 是ABP ∠的角平分线,DF AB ⊥,DE ⊥BP ,DE DF ∴=,在Rt BDE 和Rt BDF 中,BD BDDE DF =⎧⎨=⎩,()Rt BDE Rt BDF HL ∴△≌△,BE BF ∴=,在Rt ADF 和Rt CDE △中,DA DCDE DF=⎧⎨=⎩,()Rt ADF Rt CDE HL ∴△≌△,AF CE ∴=,AF AB BF =-,CE BC BE =+,AB BF BC BE ∴-=+,2BE AB BC ∴=-,5AB =,3BC =,2532BE ∴=-=,解得:1BE =.故选:C .2.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .6【答案】A【详解】∵AD 是ABC ∆中BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥交AC 于点F ,∴32DF DE ==. 又∵ABCABD ACDSSS=+,5AB =,∴1313752222AC =⨯⨯+⨯⨯,∴133AC =.故选:A . 3.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A.1B.2C.2.5D【答案】B【详解】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.4.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD 的面积是______.【答案】30【详解】过D作DE⊥AB,交BA的延长线于E,则∠E=∠C=90°,∵∠BCD=90°,BD平分∠ABC,∴DE=DC=4,∴四边形ABCD的面积S=S△BCD+S△BAD=12×BC×CD+12×AB×DE=12×9×4+12×6×4=30,故答案为:30.5.如图,在△ABC中,AD为△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,若AB=5,AC=3,DF=2,则△ABC的面积为______.【答案】8【详解】解:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∴△ABC的面积=12×5×2+12×3×2=8,故答案侍:8.6.在△ABC中,∠ABC=62°,∠ACB=50°,∠ACD是△ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB=_____︒【答案】25【详解】解:如图示:过点E ,分别作EF BD ⊥交BD 于点E ,EG AC ⊥交AC 于点G ,EH AB ⊥,交AB 延长线于点H , ∵BE 平分ABC ∠,CE 平分ACD ∠,∴EH EF =,EG EF =,∴EH EG =,∴AE 平分HAC ∠, ∵62ABC ∠=︒,50∠=°ACB ,∴6250112HAC ABC ACB ∠=∠+∠=︒+︒=︒,∴111125622EAO HAC ∠=∠=⨯︒=︒, ∵BE 平分ABC ∠,62ABC ∠=︒∴11623122EBC ABC ∠=∠=⨯︒=︒ 在AOE △和BOC 中,OBC OCB OAE AEB ∠+∠=∠+∠∴31505625AEB OBC OCB OAE ∠=∠+∠-∠=︒+︒-︒=︒,故答案是:25. 7.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC :(2)已知AC =18,BE =4,求AB 的长. 【答案】(1)见解析;(2)10AB =.【详解】(1)证明:DE AB ∵⊥,DF AC ⊥,90E DFC ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BD CD BE CF =⎧⎨=⎩,∴Rt BED Rt CFD ≅()HL ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:DE DF =,AD AD =,Rt ADE Rt ADF ∴≅()HL ,AE AF ∴=,AB AE BE AF BE AC CF BE =-=-=--,184410AB ∴=--=.8.如图1,在平面直角坐标系中,△ABC 的顶点A (-4,0),B (0,4),AD ⊥BC 交BC 于D 点,交y 轴正半轴于点E (0,t )(1)当t=1时,点C 的坐标为 ; (2)如图2,求∠ADO 的度数;(3)如图3,已知点P (0,3),若PQ ⊥PC ,PQ=PC ,求Q 的坐标(用含t 的式子表示). 【答案】(1)点C 坐标(1,0);(2)∠ADO =45°;(3)Q (-3,3-t ). 【详解】(1)如图1,当t =1时,点E (0,1), ∵AD ⊥BC , ∴∠EAO +∠BCO =90°, ∵∠CBO +∠BCO =90°,∴∠EAO =∠CBO ,在△AOE 和△BOC 中,∵90EAO CBOAO BO AOE BOC ∠=∠⎧⎪=⎨⎪∠=∠︒⎩=,∴△AOE ≌△BOC (ASA ),∴OE =OC =1,∴点C 坐标(1,0). 故答案为:(1,0);(2)如图2,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC , ∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;AD ⊥BC ,90ADC ∴∠=︒∴∠ADO =1452ADC ∠=︒;(3)如图3,过P 作GH ∥x 轴,过C 作CG ⊥GH 于G ,过Q 作QH ⊥GH 于H ,交x 轴于F ,∵P (0,3),C (t ,0),∴CG =FH =3,PG =OC =t , ∵∠QPC =90°,∴∠CPG +∠QPH =90°, ∵∠QPH +∠HQP =90°,∴∠CPG =∠HQP ,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=3,PG=QH=t,∴Q(-3,3-t).。

专题 角平分线四大模型在三角形中的应用(知识解读)-中考数学(全国通用)

专题  角平分线四大模型在三角形中的应用(知识解读)-中考数学(全国通用)

N M O A B PPO N M B A专题01 角平分线四大模型在三角形中的应用(知识解读)【专题说明】角平分线在几何中占有重要地位,是解决许多问题的桥梁和纽带,角平分线把一个角分成相等的两个部分,其“轴承对称功能”衍生出“角平分线上的点到角两边的距离相等”以及“等腰三角形三线合一”、“三角形的内心到三边的距离相等”等性质,而角平分线与平行线相结合构造出等腰三角形,也常在解题中给我们带来帮助,本专题介绍四种常考解题方法。

【方法技巧】模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。

结论:PB=PA 。

【模型分析】利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。

模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。

结论:△OPB ≌△OPA 。

P O N M B AQP O N M 【模型分析】利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。

利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

模型3 角平分线+垂线构造等腰三角形如图,P 是∠MO 的平分线上一点,AP⊥OP 于P 点,延长AP 于点B 。

结论:△AOB 是等腰三角形。

【模型分析】构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。

这个模型巧妙地把角平分线和三线合一联系了起来。

模型4 角平分线+平行线如图,P 是∠MO 的平分线上一点,过点P 作PQ ∥ON ,交OM 于点Q 。

结论:△POQ 是等腰三角形。

【模型分析】有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。

角平分线模型知识点

角平分线模型知识点

角平分线模型知识点什么是角平分线模型?角平分线模型是几何学中的一个重要概念,用于描述一个角被一条直线平分的情况。

角平分线模型在数学和物理学中有广泛的应用,特别是在三角函数的计算和几何图形的构建中起着重要的作用。

角平分线的性质角平分线有一些重要的性质,我们来逐一介绍:1.角平分线将一个角分为两个相等的角。

这意味着如果一条直线与一个角的两边相交,并且将这个角分为两个相等的角,那么这条直线就是这个角的平分线。

2.角平分线与角的两边相交于角的顶点。

也就是说,角平分线从角的顶点开始,穿过角的两边,并且与两边相交。

3.角平分线与角的两边垂直。

这意味着角平分线与角的两边形成的角是直角。

4.在三角形中,三条角的平分线的交点是三角形的内心。

内心是三角形内部到三条边的距离之和最小的点。

角平分线的应用角平分线模型在实际应用中有很多用途,下面我们列举几个常见的应用场景:1.三角函数的计算:角平分线可以帮助我们计算三角函数的值。

通过将一个角平分为两个相等的角,我们可以简化三角函数的计算,并且减少计算的复杂性。

2.几何图形的构建:在绘制几何图形时,角平分线模型可以帮助我们确定图形的对称性和角度的关系。

通过绘制角平分线,我们可以准确地构建各种形状的几何图形。

3.三角形的内心:角平分线的交点是三角形的内心,内心是三角形内部到三条边的距离之和最小的点。

在解决与三角形相关的问题时,内心的位置和性质都是非常重要的。

4.证明几何定理:在几何证明中,角平分线模型可以用于证明一些重要的几何定理。

通过利用角平分线的性质,我们可以简化证明过程,提高证明的效率。

总结角平分线模型是几何学中的一个重要概念,用于描述一个角被一条直线平分的情况。

角平分线具有许多重要的性质,包括将角分为两个相等的角、与角的两边相交于角的顶点、与角的两边垂直等。

角平分线模型在数学和物理学中有广泛的应用,特别是在三角函数的计算和几何图形的构建中起着重要的作用。

在实际应用中,角平分线模型可以帮助我们计算三角函数的值、构建几何图形、确定三角形的内心位置,以及证明几何定理。

专题16 角平分线四大模型(解析版)

专题16 角平分线四大模型(解析版)

专题16 角平分线四大模型(解析版)角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。

在几何学中,角平分线是一种重要且常见的构造,它具有许多有用的性质和应用。

本专题将介绍角平分线的四大模型,并对其进行解析。

1. 模型一:角内角平分线模型角内角平分线是指从一个角的内部点出发,将该角分成两个相等的内角的线段。

这种模型在解决一些与角相关的问题时非常有用。

例如,考虑一个三角形ABC,D点在角BAC的内部,且BD与CD分别是角BAC的内角平分线,我们可以推导出:∠BDC = 1/2 * ∠BAC。

这个模型在证明角内角平分线性质时发挥了关键作用。

2. 模型二:角外角平分线模型角外角平分线是指从一个角的外部点出发,将该角的外角分成两个相等的外角的线段。

这种模型在解决一些与外角相关的问题时也非常有用。

以正五边形ABCDE为例,点F在边AB延长线上,且∠BCD为角ACD的外角,则可以得出:∠BCD = 1/2 * ∠ACD。

这个模型在讨论外接角平分线性质时起到了重要作用。

3. 模型三:角平分线的垂直性模型角平分线的垂直性模型是指在一个三角形中,三条角平分线相交于一个点,且该点与三个三角形的顶点连线垂直。

以三角形ABC为例,如果AD、BE、CF为三个角平分线,且它们交于点O,则有AO ⊥BC,BO ⊥ AC,CO ⊥ AB。

这个模型在解决垂直关系问题时具有重要的应用价值。

4. 模型四:角平分线的外角关系模型角平分线的外角关系模型是指一个三角形的三个外角等于一个直角的两倍。

以三角形ABC为例,∠BAC的外角是∠ACD,∠ABC的外角是∠BCE,∠BCA的外角是∠CAD,则∠ACD + ∠BCE + ∠CAD = 2 * 90°。

这个模型在研究外角关系时起到重要的辅助作用。

综上所述,角平分线四大模型提供了解决各种与角有关问题的有力工具。

这些模型不仅在几何学中具有广泛的应用,而且在其他科学领域中也有其独特的价值。

角平分线三个定理-概述说明以及解释

角平分线三个定理-概述说明以及解释

角平分线三个定理-概述说明以及解释1.引言1.1 概述角平分线三个定理是解决与角度相关的几何问题时,非常重要且常用的定理。

它们分别应用于角的平分线问题,帮助我们更深入地理解角的性质与构造。

这三个定理不仅在数学学科中有广泛的应用,而且在实际生活中也具有重要的意义。

在解释这三个定理之前,我们先回顾一下角的基本概念。

在几何学中,角是由两条线段或射线共享一个公共端点而形成的图形。

以公共端点为中心,可以将角分为两个部分,分别称为角的两个腿。

角的大小通常用度或弧度来表示,这取决于所用的单位。

第一个定理是角的平分线定理,它指出:如果一条直线将一个角平分成两个相等的角,那么这条直线称为这个角的平分线。

换句话说,平分线将角分为两个相等的部分。

这个定理有广泛的应用,例如在三角形中,利用角平分线定理可以证明角的大小相等,从而推导出三角形的一些特殊性质。

第二个定理是外角平分线定理,它指出:如果一条直线通过一个三角形的外角的顶点,并将外角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的外角平分线。

这个定理在解决外角问题时非常有用,它保证了外角平分线的存在性,并简化了我们分析与推导相关问题的步骤。

第三个定理是内角平分线定理,它指出:如果一条直线通过一个三角形的内角的顶点,并将内角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的内角平分线。

这个定理与外角平分线定理类似,但是涉及的是三角形的内角。

利用内角平分线定理,我们可以简化三角形内角相关问题的分析过程。

角平分线三个定理在几何学中占据着重要的地位,是研究角度关系和解决几何问题的基础。

它们不仅具有理论意义,还具有广泛的应用价值。

通过深入理解和熟练运用这三个定理,我们能够提高问题解决的效率,并在实际生活中更好地应用几何知识。

1.2文章结构文章结构:本文主要介绍了角平分线的三个定理,分为引言、正文和结论三个部分。

引言部分首先概述了角平分线的意义和应用,以及本文的目的。

全等模型-角平分线模型-2023-2024学年八年级数学上册常见几何模型全归纳(浙教版)(解析版)

全等模型-角平分线模型-2023-2024学年八年级数学上册常见几何模型全归纳(浙教版)(解析版)

z全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直) 【模型解读与图示】条件:如图1,为的角平分线、于点A 时,过点C 作. 结论:、≌.图1 图2常见模型1(直角三角形型)条件:如图2,在中,,为的角平分线,过点D 作.结论:、≌.(当是等腰直角三角形时,还有.)图3 常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。

结论:①;②;③.OC AOB ÐCA OA ^CA OB ^CA CB =OAC D OBCD ABC D 90C Ð=°AD CAB ÐDE AB ^DC DE =DAC D DAE D ABC D AB AC CD =+180BOA ACB Ð+Ð=°AD BE =2OA OB AD =+z例1.(2023春·四川达州·八年级校考期中)如图,在中,,是的平分线,若,,则的长是( )A .4B .3C .2 D .1【答案】A【分析】如图,过D 作于E ,利用三角形的面积公式求出,再据角平分线的性质得出答案. 【详解】解:如图,过D 作于E ,∵,,∴,∴,∵,即,是的角平分线,∴,故选:A .【点睛】本题考查的是角平分线的性质,三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.例2.(2023·河北保定·八年级校考阶段练习)如图,已知、的角平分线、相交于点,Rt ABC △90C Ð=°BD ABC Ð10AB =20ABD S =!CD DE AB ^4DE =DE AB ^10AB =20ABD S =!11102022ABD S AB DE DE =×=´×=!4DE =90C Ð=°DC BC ^BD ABC Ð4CD DE ==ABC ÐEAC ÐBP AP Pz【答案】A【分析】作于点,根据角平分线的判定定理和性质定理,即可判断①结论;根据角平分线的定义和三角形外角的性质,即可判断②结论;先根据四边形内角和,得出,再证明,,得到,,即可判断③结论;根据全等三角形面积相等,即可判断④结论. 【详解】解:①作于点,平分,,,平分,,,, 点在的角平分线上,平分,①结论正确;②平分,平分,,,,,,,,,②结论正确;③,,,, ,,在和中,,,同理可证,,,, ,故③结论正确;④,,,,故④结论不正确;综上所述,正确的结论是①②③,故选:A .PD AC ^D 180MPN ABC Ð=°-Ð()Rt Rt HL AMP ADP !!≌()Rt Rt HL CDP CNP !!≌12APD MPD Ð=Ð12CPD NPDÐ=ÐPD AC ^D BP !ABC ÐPM BE ^PN BF ^PM PN \=AP !EAC ÐPM BE ^PD AC ^PM PD \=PN PD \=\P ACF ÐCP \ACF ÐBP !ABC ÐCP ACF Ð2ABC PBC \Ð=Ð2ACF PCF Ð=ÐACF ABC BAC Ð=Ð+Ð!PCF PBC BPC Ð=Ð+Ð()2ABC BAC PBC BPC \Ð+Ð=Ð+Ð222PBC BAC PBC BPC \Ð+Ð=Ð+Ð2BAC BPC \Ð=Ð12BPC BAC\Ð=ÐPM AB ^!PN BC ^90AMP CNP \Ð=Ð=°360ABC CNP MPN AMP Ð+Ð+Ð+Ð=°!3609090180MPN ABC ABC \Ð=°-°-°-Ð=°-ÐPM PN PD ==!Rt AMP !Rt ADP !AP APPM PD =ìí=î()Rt Rt HL AMP ADP \!!≌()Rt Rt HL CDP CNP !!≌12APD APM MPD \Ð=Ð=Ð12CPD CPN NPDÐ=Ð=Ð()()1111180902222APC APD CPD MPD NPD MPN ABC ABC \Ð=Ð+Ð=Ð+Ð=Ð=°-Ð=°-ÐRt Rt AMP ADP !""≌Rt Rt CDP CNP !!≌AMP ADP S S \=!!CDP CNP S S =!!AMP CNP ADP CDP APC S S S S S \+=+=!!!!!z【点睛】本题考查了角平分线的判定定理和性质定理,三角形外角的定义,四边形内角和,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题关键.例3.(2023·福建南平·八年级统考期中)如图所示,,是的中点,平分. (1)求证:是的平分线;(2)若,求的长.【答案】(1)详见解析;(2)8cm.【分析】(1)过点E 分别作于F ,由角平分线的性质就可以得出EF=EC ,根据HL 得,即可得出结论;(2)根据角平分线和平行线的性质求出 ,根据含30°角的直角三角形的性质即可求解.【详解】(1)证明:过点E 分别作于F ,∴∠DFE=∠AFE=90°.∵∠B=∠C=90°,∴∠B=∠AFE=∠DFE=∠C=90°.∴CB ⊥AB ,CB ⊥CD . ∵DE 平分∠ADC .∴∠EDC=∠EDF ,CE=EF . ∵E 是BC 的中点,∴CE=BE ,∴BE=EF .在Rt △AEB 和Rt △AEF 中, ,∴Rt △AEB ≌Rt △AEF (HL ),∴∠EAB=∠EAF ,∴AE 是∠DAB 的平分线;(2)解:∵∠B=∠C=90°,∴AB ∥CD ,∴∠BAD+∠ADC=180°, ∵∠BAD=60°,平分,AE 是∠DAB 的平分线, , ,,∵∠C=90° ∴ , ,90B C Ð=Ð=!E BC DE ADC ÐAE DAB Ð2cm,BAD=60CD =Ð!AD EF AD ^AEB AEF D D ≌30CED DAE Ð=Ð=°EF AD ^EB=EFAE=AE ìíîDE ADC Ð60ADE CDE Ð=Ð=°∴30DAE Ð=°A 90DE =°∠A 30D E =°∠C 30DE =°∠z.故答案为(1)详见解析;(2)8cm.【点睛】本题考查角平分线的性质,线段中点的定义,全等三角形的判定与性质的运用,含30°角的直角三角形,证明三角形全等是解(1)题的关键,掌握含30°角的直角三角形的性质是解(2)题的关键. 例4.(2022秋·辽宁葫芦岛·八年级校联考期中)已知,平分,点在射线上,点在射线上,点在直线上,连接,,且.(1)如图1,当时,与的数量关系是______.(2)如图2,当是钝角时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由; (3)当时,若,,请直接写出与的面积的比值. 【答案】(1)(2)成立;证明见解析(3)2或4(或也行)【分析】(1)过点作于,于,根据角平分线的性质得到,证明,根据全等三角形的性质得出结论;(2)过点作于,于,证明,得到;(3)分点在射线上,点在射线的反向延长线上两种情况,仿照(2)的方法解答即可.【详解】(1)如图1,过点作于,于,四边形为矩形,,, ,248AD DE CD cm \===OA MON ÐP OA B OM C ON PB PC 180MON BPC Ð+Ð=°90MON Ð=°PB PC MON Ð120MON Ð=°6OP =2OC =OBP !OCP △PB PC =2:14:1P PE OM ^E PF ON ^F PE PF =EPB FPC @!!P PE OM ^E PF ON ^F EPB FPC @!!PB PC =C ON C ON P PE OM ^E PF ON ^F 90MON \Ð=°\PEOF 90EPF \Ð=°90EPB BPF \Ð+Ð=°180MON BPC Ð+Ð=°!90MON Ð=°z,,, 平分,,,,在和中,,,,故答案为.(2)解:成立,理由如下:如图2,证明:过点分别作于点,作于点.∴ ∵平分,∴∵在四边形中, ∴ 又∵∴在和中,∴∴.(3)解:如图3,过点分别作于点,作于点.平分,,与的面积的比值为2。

专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题05三角形中的角平分线模型【模型1】如图,已知OP 平分AOB ∠,过点P 作OA PD ⊥,OB PE ⊥;可根据角平分线性质证得ODP ∆≌OEP ∆,从而可得OPE OPD ∠=∠,PE PD OE OD ==;。

【模型拓展】与角平分线有关的辅助线作法【辅助线作法一】如图,已知OP 平分AOB ∠,点C 是OA 上的一点,通常情况下,在OB 上取一点D,使得OC OD =,连接PD,结合OP OP =,POD POC ∠=∠,可证得OPC ∆≌OPD ∆。

从而可得PD PC =,PDO PCO ∠=∠,DPO CPO ∠=∠。

【辅助线作法二】如图,已知OP 平分AOB ∠,OP CP ⊥,通常情况下,延长CP 交OB 于点D,结合OP OP =,POD POC ∠=∠,︒=∠=∠90OPD OPC ,可证得OPC ∆≌OPD ∆。

从而可得PD PC =,PDO PCO ∠=∠,OD OC =。

【辅助线作法三】如图,已知OP 平分AOB ∠,通常情况下,过点P 作PC//OB,根据平行线性质:两直线平行内错角相等;结合POD POC ∠=∠,从而可得PC OC =,CPO COP ∠=∠。

【例1】如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ;③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】证明△ODP ≌△OEP (AAS ),由全等三角形的性质可推出OD =OE ,证明△DPF ≌△EPF (SAS ),由全等三角形的性质可推出DF =EF .∠DFP =∠EFP ,S △DFP =S △EFP ,则可得出答案.【解析】解:①∵OC 平分∠AOB ,∴∠DOP =∠EOP ,∵PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠ODP =∠OEP =90°,∵OP =OP ,∴△ODP ≌△OEP (AAS ),∴OD =OE .故①正确;②∵△ODP ≌△OEP ,∴PD =PE ,∠OPD =∠OPE ,∴∠DPF =∠EPF ,∵PF =PF ,∴△DPF ≌△EPF (SAS ),∴DF =EF .故②正确;③∵△DPF ≌△EPF ,∴∠DFO =∠EFO ,故③正确;④∵△DPF ≌△EPF ,∴S △DFP =S △EFP ,故④正确.故选:D .【例2】如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC.【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【解析】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).【例3】请阅读以下材料,并完成相应的问题:角平分线分线段成比例定理:如图1,在△ABC 中,AD 平分∠BAC ,则AB BD AC CD=,下面是这个定理的部分证明过程:证明:如图2,过C 作CE ∥DA ,交BA 的延长线于E .…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知Rt △ABC 中,AB =3,BC =4,∠ABC =90°,AD 平分∠BAC ,求BD 的长.(请按照本题题干的定理进行解决)【答案】(1)见解析;(2).【分析】(1)如图2:过C 作CE ∥DA .交BA 的延长线于E ,利用平行线分线段成比例定理得到BD CD =BA EA,利用平行线的性质得∠2=∠ACE ,∠1=∠E ,由∠1=∠2得∠ACE =∠E ,所以AE =AC 即可证明结论;(2)先利用勾股定理计算出AC =5,再利用(1)中的结论得到AC AB =CD BD ,即53=CD BD ,则可计算出BD =32,然后利用勾股定理计算出AD =2,从而可得到△ABD 的周长.【解析】(1)解:如图2:过C 作CE ∥DA .交BA 的延长线于E ,∵CE //AD ,∴BD CD =BA EA,∠2=∠ACE ,∠1=∠E ,∵AD 平分∠BAC∴∠1=∠2,∴∠ACE =∠E ,∴AE =AC ,∴AB AC =BD CD;(2)∵AB =3,BC =4,∠ABC =90°,∴AC =5,∵AD 平分∠BAC ,∴AC AB =CD BD ,即53=4BD BD -,∴BD =32,∴AD∴△ABD 的周长=32+3+2=92+.一、单选题1.如图,ABC 中,5AB =,6BC =,10CA =,点D ,E 分别在BC ,CA 上,DE AB ∥,F 为DE 中点,AF 平分BAC ∠,则BD 的长为()A .32B .65C .85D .2【答案】B【分析】根据角平分线和平行可得EA EF =,从而可得2DE AE =,然后证明EDC ABC △△∽,利用相似三角形的性质即可求出AE ,DE ,进而求出CD ,最后进行计算求出BD 即可解答.【解析】解:∵F 为DE 中点,∴2ED EF =,∵AF 平分BAC ∠,∴EAF FAB ∠=∠,∵DE AB ∥,∴FAB AFE ∠=∠,∴EAF AFE ∠=∠,∴EA EF =,∴2DE AE =,设AE x =,则2DE x =,∵DE AB ∥,∴EDC B ∠=∠,∵C C ∠=∠,∴EDC ABC △△∽,∴ED EC DC AB AC BC==,∵5AB =,6BC =,10CA =,∴210510x x -=,∴2x =,∴24DE x ==,∴456CD =,∴245CD =,∴246655BD BC CD =-=-=.故选:B .2.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,若AB =5,BC =3,则EC 的长为()A .1B .2C .2.5D .4【答案】B 【分析】根据平行四边形的性质可得AB =CD =5,AD =BC =3,AB ∥CD ,然后根据平行线的性质可得∠EAB =∠AED ,然后根据角平分线的定义可得∠EAB =∠EAD ,从而得出∠EAD =∠AED ,根据等角对等边可得DA =DE =3,即可求出EC 的长.【解析】解:∵四边形ABCD 是平行四边形,AB =5,BC =3,∴AB =CD =5,AD =BC =3,AB ∥CD∴∠EAB =∠AED∵AE 平分∠DAB∴∠EAB =∠EAD∴∠EAD =∠AED∴DA =DE =3∴EC =CD -DE =2故选B .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点,则下列结论正确的是()A .PA PQ=B .PA PQ <C .PA PQ >D .PA PQ≤【答案】D 【分析】连接PQ ,当PQ ⊥OM 时,根据角平分线的性质得出PQ =PA ,利用直线外一点到直线的垂线段最短即可得出结论.【解析】解:连接PQ ,当PQ ⊥OM 时,∵OP 平分∠MON ,PQ ⊥OM ,PA ⊥ON ,∴PQ =PA ,此时点P 到OM 的距离PQ 最小,∴PA ≤PQ ,故选:D .4.如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是()A.2AB BF=B.12ACE ACB∠=∠C.AE BE=D.CD BE⊥【答案】C【分析】从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解析】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥AB,∠ACE=12∠ACB,AB=2BF,无法确定AE=BE.故选:C.5.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解析】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE =60°,∴③DE 平分∠ADB 错误;∵BE +AE =AB ,AE =AC ,∴BE +AC =AB ,∴④BE +AC =AB 正确;∵∠BDE =90°-∠B ,∠BAC =90°-∠B ,∴∠BDE =∠BAC ,∴②∠BAC =∠BDE 正确.综上,正确的个数的3个,故选:C .6.如图,∠BAC =30°,AD 平分∠BAC ,DF ⊥AB 交AB 于F ,DE ⊥DF 交AC 于E ,若AE =8,则DF 等于()A .5B .4C .3D .2【答案】B 【分析】过点D 作DG AC ⊥,根据角平分线的性质可得DF DG =,根据角平分线的定义,平行线的性质以及等腰三角形的判定,可得AE ED =,进而根据含30度角的直角三角形的性质即可求解.【解析】如图,过点D 作DG AC ⊥ AD 平分∠BAC ,DF ⊥AB ,DG AC⊥∴DF DG =,CAD BAD∠=∠DE DF ⊥ ,DF ⊥AB ,AB DE∴∥BAD EDA∴∠=∠EAD EDA∴∠=∠EA ED∴=8AE = 8DE AE ∴== ∠BAC =30°,30DEG ∴∠=︒142DG DE ∴==4DF ∴=故选B二、填空题7.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,请你添加一个条件________,使四边形AEDF 是菱形.【答案】DF ∥AB【分析】添加DF ∥AB ,根据DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,可以判断四边形AEDF 是平行四边形,再根据角平分线的性质和平行线的性质即可证明结论成立.【解析】解:DF ∥AB ,理由如下:∵DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,∴四边形AEDF 是平行四边形,∠EAD =∠ADF ,∵AD 是△ABC 的角平分线,∴∠EAD =∠FAD ,∴∠ADF =∠FAD ,∴FA =FD ,∴平行四边形AEDF 是菱形(有一组邻边相等的平行四边形是菱形).8.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =8,BE =3,则AB 的长为________.【答案】5【分析】首先由在平行四边形ABCD 中,AD =8,BE =3,求得CE 的长,然后由DE 平分∠ADC ,可证CD =CE =5,即可求解.【解析】∵在平行四边ABCD 中,AD =8,∴BC =AD =8,AD //BC ,∴CE =BC -BE =8-3=5,∠ADE =∠CED ,∴DE 平分∠ADC ,∴∠ADE =∠CDE ,∴∠CDE =∠CED ,∴CD =CE =5=AB ,故答案为:5.9.如图,在ABC 中,ACB ∠的平分线交AB 于点D ,DE AC ⊥于点E .F 为BC 上一点,若DF AD =,6ACD CDF S S -=△△,则AED 的面积为______.【答案】3【分析】在CA 上截取CG =CF ,连接DG .根据题意易证()CDG CDF SAS ≅ ,得出DG DF =,CDG CDF S S = .即可求出AD DG =,6ADG S = .最后根据等腰三角形“三线合一”的性质即可求出ADE S .【解析】如图,在CA 上截取CG =CF ,连接DG,∵CD 平分ACB ∠,∴ACD BCD ∠=∠.在CDG 和CDF 中,CG CF GCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴()CDG CDF SAS ≅ ,∴DG DF =,CDG CDF S S = .∵6ACD CDF S S -=△△,∴6ACD CDG S S -= ,即6ADG S = .∵AD DF =,∴AD DG=.∴AE=EG,∴132ADE GDE ADGS S S===.故答案为:3.10.如图,AB=BE,∠DBC=12∠ABE,BD⊥AC,则下列结论正确的是:_____.(填序号)①BC平分∠DCE;②∠ABE+∠ECD=180°;③AC=2BE+CE;④AC=2CD﹣CE.【答案】①②④【分析】根据已知∠DBC=12∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【解析】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∴DF=DC,∠DBC=∠DBF=12∠FBC,∵∠DBC=12∠ABE,∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.11.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,BE=2,则DE的长是___.【答案】2【分析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,等量代换得到∠DBE=∠BDE,得到DE=BE,于是得到结论.【解析】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴DE=BE,∵BE=2,∴DE=2.故答案为:2.12.如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠CAE、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有____________.(填序号)【答案】①②④【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°12-∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【解析】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°12-∠ABC,∴∠ADC+12∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD =∠DBC ,BD =BD ,∠ADB =∠BDC ,∴△ABD ≌△BCD (ASA ),∴AB =CB ,与题目条件矛盾,故③错误,∵∠DCF =∠DBC +∠BDC ,∠ACF =∠ABC +∠BAC ,∴2∠DCF =2∠DBC +2∠BDC ,2∠DCF =2∠DBC +∠BAC ,∴2∠BDC =∠BAC ,故④正确,故答案为:①②④.三、解答题13.如图,AC =BC ,∠1=∠2,求证:OD 平分∠AOB .【答案】见详解【分析】证明△ACO ≌△BCO 即可求证.【解析】证明:∵∠1=∠2,∠1+∠ACO =180°,∠2+∠BCO =180°,∴∠ACO =∠BCO ,∵AC =BC ,CO =CO ,∴△ACO ≌△BCO ,∴∠AOC =∠BOC ,∴OD 平分∠AOB .14.如图,在ABC 中,AE 平分BAC BE AE ∠⊥,于点E ,延长BE 交AC 于点D ,点F 是BC 的中点.若35AB AC ==,,求EF 的长.【答案】1【分析】根据角平分线的定义结合题意,即可利用“ASA”证明BAE DAE ≅ ,即得出3AD AB ==,BE DE =,从而可得出2CD =,点E 为BD 中点,从而可判定EF 为BCD △的中位线,进而可求出EF 的长.【解析】∵AE 平分BAC BE AE∠⊥,∴BAE DAE ∠=∠,90AEB AED ∠=∠=︒.又∵AE =AE ,∴BAE DAE ≅ (ASA),∴3AD AB ==,BE DE =,∴2CD AC AD =-=,点E 为BD 中点.∵F 是BC 的中点,∴EF 为BCD △的中位线,∴112EF CD ==.15.已知:如图,在△ABC 中,AB =AC ,∠A =100°,BD 是∠ABC 的平分线,BD =BE .求证:(1)△CED 是等腰三角形;(2)BD +AD =BC .【答案】(1)见解析;(2)见解析【分析】(1)由AB =AC ,∠A =100°求出∠ABC =∠C =40°,再由BD 是∠ABC 的平分线求出∠DBC =12∠ABC =20°,根据BD =BE 求出∠BED =∠BDE =80°,再根据三角形的外角等于与它不相邻的两个内角的和求得∠EDC =40°,则∠EDC =∠C ,从而证明ED =EC ,即△CED 是等腰三角形;(2)在BE 上截取BF =BA ,连结DF ,先证明△FBD ≌△ABD ,则FD =AD ,∠BFD =∠A =100°,可证明∠EFD =∠FED =80°,则AD =FD =ED =EC ,即可证明BD +AD =BE +EC =BC .【解析】(1)∵AB =AC ,∠A =100°,∴∠ABC =∠C =12×(180°-100°)=40°,∵BD 是∠ABC 的平分线,∴∠DBC =12∠ABC =20°,∵BD =BE ,∴∠BED =∠BDE =12×(180°-20°)=80°,∴∠EDC =∠BED -∠C =80°-40°=40°,∴∠EDC =∠C ,∴ED =EC ,∴△CED 是等腰三角形.(2)如图,在边BC 上取点F ,使BF BA =,在ABD △和FBD 中∵AB FB ABD FBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴ABD FBD≌△△∴AD DF =,100BFD A ∠=∠=︒,∴18010080DFE ∠=︒-︒=︒,∴DFE DEF∠=∠∴DF DE=∴AD EC=∴BD AD BE EC BC +=+=.16.如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =_______.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3;(2)CD =a -b ;(3)ABC S =14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得AE =AC =5,得出答案;(2)利用ASA 证明△ADE ≌△ADC ,得∠C =∠AED ,DC =DE ,再证明∠B =∠BDE ,得出BE =DE ,即可得到结论;(3)利用ASA 证明△AGB ≌△AGH ,得出BG =HG ,即可得出△ABC 的面积.【解析】(1)∵AD 是△ABC 的平分线,∴∠BAD =∠CAD ,∵CE ⊥AD ,∴∠CFA =∠EFA ,∵在△AEF 和△ACF 中EAF CAF AF AF AFE AFC ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AEF ≌△ACF (ASA ),∴AE =AC =5,∵AB =8,∴BE =AB −AC =8−5=3,故答案为:3;(2)∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ADE 和△ADC 中AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC∴∠C =∠AED ,DC =DE又∵∠C =2∠B ,∠AED =∠B +∠BDE∴∠B =∠BDE∴DE =BE ,∴DC =DE =BE =AB -AE =AB -AC=a -b ;(3)如图,分别延长AC ,BG 交于点H ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵AG ⊥BH ,∴∠AGB =∠AGH =90°,∵在△AGB 和△AGH 中BAD CAD AG AG AGB AGH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGB ≌△AGH ,∴BG =HG ,∴22BCH BCG HCG S S S == ,又∵2ABC BCH ACG CGH S S S S +=+ ()∴ABC S =14.17.已知:如图1,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM AB ⊥,FN BC ⊥,垂足分别为M ,N .【思考说理】(1)求证:FE FD =.【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“90ACB ∠=︒”去掉,其他条件不变,观察发现(1)中结论(即FE FD =)仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.【答案】(1)证明见详解;(2)正确,证明见详解;【分析】(1)由角平分线的性质、三角形内角和定理证()Rt FDN Rt FEM AAS ∆≅∆∠即可求解;(2)在AB 上截取CP =CD ,分别证()CDF CPF SAS ∆≅∆、()AFE AFP ASA ∆≅∆即可求证;【解析】证明:(1)∵AD 平分∠BAC ,CE 平分∠ACB ,∴点F 是ABC ∆的内心,∵FM AB ⊥,FN BC ⊥,∴FM FN =,∵90ACB ∠=︒,60ABC ∠=︒,∴30CAB ∠=︒∴15CAD ∠=︒∴75ADC ∠=︒∵45ACE ∠=︒∴75CEB ∠=︒∴ADC CEB∠=∠∴()Rt FDN Rt FEM AAS ∆≅∆∠∴FE FD=(2)如图,在AB 上截取CP =CD ,在CDF ∆和CPF ∆中,∵CD CP DCF PCF CF CF =⎧⎪∠=∠⎨⎪=⎩∴()CDF CPF SAS ∆≅∆∴FD FP =,∠CFD =∠CFP ,∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠CAD =∠BAD ,∠ACE =∠BCE ,∵∠B =60°,∴∠ACB +∠BAC =120°,∴∠CAD +∠ACE =60°,∴∠AFC =120°,∵∠CFD =∠AFE =180°-∠AFC =60°,∵∠CFD =∠CFP ,∴∠AFP =∠CFP =∠CFD =∠AFE =60°,在AFE ∆和AFP ∆中,∵AFE AFP AF AF PAF EAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AFE AFP ASA ∆≅∆∴FP =EF∴FD =EF .18.如图,∠MAN 是一个钝角,AB 平分∠MAN ,点C 在射线AN 上,且AB =BC ,BD ⊥AC ,垂足为D.(1)求证:BAM BCA ∠=∠;(2)动点P ,Q 同时从A 点出发,其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5,设动点P ,Q 的运动时间为t 秒.①如图②,当点P 在射线AM 上运动时,若点Q 在线段AC 上,且52ABP BQC S S =△△,求此时t 的值;②如图③,当点P 在直线AM 上运动时,点Q 在射线AN 上运动的过程中,是否存在某个时刻,使得 APB 与 BQC 全等?若存在,请求出t 的值;若不存在,请说出理由.【答案】(1)见解析(2)①2517t =;②存在,54t =或52t =【分析】(1)①先证Rt △BDA ≌Rt △BDC (HL ),推出∠BAC =∠BCA .再由角平分线的定义得∠BAM =∠BAC ,等量代换即可证明BAM BCA ∠=∠;(2)①作BH ⊥AM ,垂足为M .先证△AHB ≌△ADB (AAS ),推出BH =BD ,再由S △ABP =52S △BQC ,推出52AP CQ =,结合P ,Q 运动方向及速度即可求解;②分“点P 沿射线AM 方向运动,点Q 在线段AC 上”,以及“点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上”两种情况讨论,利用三角形全等得出AP 与CQ 的关系即可求解.【解析】(1)证明:∵BD ⊥AC ,∴90BDA BDC ∠=∠=︒,在Rt △BDA 和Rt △BDC 中,BD BD AB CB=⎧⎨=⎩,∴Rt △BDA ≌Rt △BDC (HL ),∴∠BAC =∠BCA .∵AB 平分∠MAN ,∴∠BAM =∠BAC ,∴∠BAM =∠BCA .(2)解:①如下图所示,作BH ⊥AM ,垂足为M .∵BH ⊥AM ,BD ⊥AC ,∴∠AHB =∠ADB =90°,在△AHB 和△ADB 中,AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS ),∴BH =BD ,∵S △ABP =52S △BQC ,∴151222AP BH CQ BD =⨯ ,∴52AP CQ =,∴5(53)2t t =-,∴2517t =.②存在,理由如下:当点P 沿射线AM 方向运动,点Q 在线段AC上时,如下图所示,∵AB =BC ,又由(1)得∠BAM =∠BCA ,∴当AP =CQ 时,△APB ≌△CQB ,∴53t t =-,∴54t =;当点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上时,如下图所示,由(1)得∠BAM=∠BCA,∴∠BAP=∠BCQ,又∵AB=BC,∴当AP=CQ时,△APB≌△CQB,∴35t t=-,∴52 t=.综上所述,当54t=或52t=时,△APB和△CQB全等.。

角平分线和相似三角形的比例关系证明

角平分线和相似三角形的比例关系证明

角平分线和相似三角形的比例关系证明-概述说明以及解释1.引言1.1 概述概述角平分线和相似三角形的比例关系是几何学中一个重要的概念,它揭示了角平分线和相似三角形之间的密切联系。

在本文中,我们将深入研究角平分线和相似三角形的定义、性质以及它们之间的比例关系,并通过证明来进一步加深对这一关系的理解。

在几何学中,角平分线是指将一个角分成两个相等的角的直线。

它具有许多有趣的性质,如角平分线和角的边相互垂直、角平分线上的点到角的两个边的距离相等等。

相似三角形是指具有相等角度但边长比例不同的三角形。

它们在形状上相似,但大小可能不同。

本文的目的是探讨角平分线和相似三角形之间的比例关系,并通过严密的证明来验证这一关系。

我们将通过证明来论述角平分线将相似三角形的两个对应边分成相等比例的线段。

具体而言,我们将重点讨论证明角平分线将相似三角形的两个对应边之间的比例等于相似三角形其他两个边之间比例的定理。

为了证明这一结论,我们将分为以下几个证明要点来展开讨论。

首先,我们将证明角平分线的定义和性质,包括角平分线和角边垂直、角平分线上的点到角边的距离相等等。

其次,我们将介绍相似三角形的定义和性质,包括相似三角形的角度对应相等、边长比例等。

然后,我们将讨论角平分线和相似三角形之间的联系,如角平分线将相似三角形的两个对应边分成相等比例的线段。

最后,我们将通过严谨的证明来验证角平分线和相似三角形的比例关系。

通过本文的研究,我们将深入了解角平分线和相似三角形的定义、性质以及它们之间的比例关系,并能够准确地证明角平分线将相似三角形的两个对应边分成相等比例的线段的定理。

这一结论在几何学的应用中具有广泛的意义,可以用于解决诸如测量、设计、建模等问题。

最后,本文将总结证明过程,强调结论的重要性,并讨论可能的进一步研究方向和结论的应用。

通过深入研究角平分线和相似三角形的比例关系,我们将能够更好地应用这一概念解决实际问题,并为几何学领域的进一步研究提供一定的指导和参考。

中考数学常见几何模型专题07 角平分线的基本模型(一)全等类(解析版)

中考数学常见几何模型专题07 角平分线的基本模型(一)全等类(解析版)

专题07 角平分线的重要模型(一)全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的全等类模型作相应的总结,需学生反复掌握。

模型1.角平分线构造轴对称模型(角平分线+截线段等)【模型解读与图示】已知如图1,OP为AOB∠的角平分线、PM不具备特殊位置时,辅助线的作法大都为在OB上截取ON OM=,连结PN即可.即有OMP∆≌ONP∆,利用相关结论解决问题.图1 图21.(2022·湖北十堰·九年级期末)在△ABC中,△ACB=2△B,如图①,当△C=90°,AD为△BAC的角平分线时,在AB上截取AE=AC,连结DE,易证AB=AC+CD.(1)如图②,当△C≠90°,AD为△BAC的角平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【答案】(1)AB AC CD=+;证明见解析;(2)AB AC CD+=;证明见解析.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE△△ADC(SAS),则可得△AED=△C,ED=CD,又由△AED=△ACB,△ACB=2△B,所以△AED=2△B,即△B=△BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD△△CAD,可得ED=CD,△AED=△ACD,又由△ACBAB∥CD⇒AB+CD=BCFDEBAC=2△B ,易证DE =EB ,则可求得AC +AB =CD .【详解】(1)猜想:AB AC CD =+. 证明:如图②,在AB 上截取AE AC =,连结DE ,△AD 为ABC 的角平分线时,△BAD CAD ∠=∠,△AD AD =,△()SAS ADE ADC ≌△△, △AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠.△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE DE AC CD =+=+.(2)猜想:AB AC CD +=.证明:在BA 的延长线上截取AE AC =,连结ED .△AD 平分FAC ∠,△EAD CAD ∠=∠.在EAD 与CAD 中,AE AC =,EAD CAD ∠=∠,AD AD =,△EAD CAD ≌△△. △ED CD =,AED ACD ∠=∠.△FED ACB ∠=∠.又2ACB B ∠=∠,FED B EDB ∠=∠+∠,EDB B ∠=∠.△EB ED =.△EA AB EB ED CD +===.△AC AB CD +=.【点睛】此题考查三角形综合题、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.(2022·山东烟台·九年级期末)已知在ABC 中,满足2ACB B ∠=∠,(1)【问题解决】如图1,当90C ∠=︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,求证:AB AC CD =+.(2)【问题拓展】如图2,当90C ∠≠︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,(1)中的结论还成立吗?若成立,请你证明:若不成立,请说明理由.(3)【猜想证明】如图3,当AD 为ABC 的外角平分线时,在BA 的延长线上取一点E 使得AE AC =,连接DE ,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明. 【答案】(1)证明见解析(2)成立,证明见解析(3)猜想AB AC CD +=,证明见解析【分析】(1)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,再根据三角形的外角性质可得45B BDE ∠=∠=︒,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(2)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED C ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(3)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,从而可得FED ACB ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证.证明:△AD 为BAC ∠的角平分线,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△ED CD =,AED ACD ∠=∠,又△90ACB ∠=︒,2ACB B ∠=∠,△45B ∠=︒,90AED ∠=︒,△45AED BDE B ∠=∠=∠-︒,△B BDE ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.(2)解:(1)中的结论还成立,证明如下:△AD 为BAC ∠的角平分线时,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠,又△AED B EDB ∠=∠+∠,△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.解:猜想AB AC CD+=,证明如下:△AD平分EAC∠,△EAD CAD∠=∠,在AED与ACD△中,AE ACEAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS≅,△ED CD=,AED ACD∠=∠,如图,△180180AED ACD︒-∠=︒-∠,即FED ACB∠=∠,△2ACB B∠=∠,△2FED B∠=∠,又△FED B EDB∠=∠+∠,△EDB B∠=∠,△EB ED=,△AB AE EB ED CD+===,△AB AC CD+=.【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的判定,熟练掌握三角形全等的判定方法是解题关键.3.(2022·浙江·九年级期中)(1)如图1,在△ABC中,△ACB=2△B,△C=90°,AD为△BAC的平分线交BC 于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图2,当△C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图3,当△ACB≠90°,△ACB=2△B ,AD为△ABC的外角△CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.【答案】(1)见解析;(2)AB=AC+CD;(3)AB=CD﹣AC【分析】(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到△1=△2.推出△ACD△△AED(SAS).根据全等三角形的性质得到△AED=△C=90,CD=ED,根据已知条件得到△B=45°.求得△EDB=△B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;(2)在AC取一点E使AB=AE,连接DE,易证△ABD△△AED,所以△B=△AED,BD=DE,又因为△B=2△C,所以△AED=2△C,因为△AED是△EDC的外角,所以△EDC=△C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD△△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.【详解】(1)证明:在AB上取一点E,使AE=AC△AD为△BAC的平分线△△BAD=△CAD.在△ACD和△AED中,AE AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩△△ACD △△AED (SAS ).△△AED =△C =90°,CD =ED ,又△△ACB =2△B ,△C =90°,△△B =45°. △△EDB =△B =45°.△DE =BE , △CD =BE .△AB =AE +BE , △AB =AC +CD .(2)证明:在AB 取一点E 使AC=AE ,在△ACD 和△AED 中,AC AE BAD EAD AD AD ===⎧⎪∠∠⎨⎪⎩, △△ACD△△AED ,△△C=△AED ,CD=DE ,又△△C=2△B ,△△AED=2△B ,△△AED 是△EDC 的外角,△△EDB=△B ,△ED=EB ,△CD=EB ,△AB=AC+CD ;(3)猜想:AB =CD ﹣AC证明:在BA 的延长线上取一点E ,使得AE =AC ,连接DE ,在△ACD和△AED中,AC AECAD EADAD AD=⎧⎪∠=∠⎨⎪=⎩,△△ACD△△AED(SAS),△△ACD=△AED,CD=DE,△△ACB=△FED,又△△ACB=2△B△△FED=2△B,又△△FED=△B+△EDB,△△EDB=△B,△DE=BE,△BE=CD,△AB=BE-AE△AB=CD﹣AC.【点睛】本题考查全等三角形的判定和性质,关于线段和差关系的证明,通常采用截长补短法. 4.(2022·北京九年级专题练习)在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明.【答案】(1)AE=AB+DE;(2)AE=AB+DE+12BD,证明见解析.【分析】(1)在AE上取一点F,使AF=AB,由三角形全等的判定可证得△ACB≌△ACF,根据全等三角形的性质可得BC=FC,∠ACB=∠ACF,根据三角形全等的判定证得△CEF≌△CED,得到EF=ED,再由线段的和差可以得出结论;(2)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG,根据全等三角形的判定证得△ACB≌△ACF和△ECD≌△ECG,由全等三角形的性质证得CF=CG,进而证得△CFG是等边三角形,就有FG=CG=12BD,从而可证得结论.【详解】解:(1)如图(1),在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,AB AFBAC FACAC AC⎧⎪∠∠⎨⎪⎩===∴△ACB≌△ACF(SAS).∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点,∴BC=CD.∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°.∴∠ECF=∠ECD.在△CEF和△CED中,CF CDECF ECDCE CE⎧⎪∠∠⎨⎪⎩===∴△CEF≌△CED(SAS).∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.故答案为:AE=AB+DE;(2)AE=AB+DE+12BD.证明:如图(2),在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C 是BD 边的中点,∴CB =CD =12BD .∵AC 平分∠BAE ,∴∠BAC =∠FAC . 在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩===∴△ACB ≌△ACF (SAS ).∴CF =CB ,∠BCA =∠FCA .同理可证:△ECD ≌△ECG ∴CD =CG ,∠DCE =∠GCE .∵CB =CD ,∴CG =CF .∵∠ACE =120°,∴∠BCA +∠DCE =180°−120°=60°.∴∠FCA +∠GCE =60°.∴∠FCG =60°.∴△FGC 是等边三角形.∴FG =FC =12BD .∵AE =AF +EG +FG ,∴AE =AB +DE +12BD .【点睛】本题主要考查了全等三角形的判定与性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.模型2.角平分线垂两边(角平分线+外垂直)【模型解读与图示】已知如图1,OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.图1 图2 图3邻等对补模型:已知如图2,AP 是∠CAB 的角平分线,EP =DP辅助线:过点P 作PG ⊥AC 、PF ⊥AB结论:①︒=∠+∠180EPD BAC (D P E A 、、、四点共圆);②EG DF =;③DF AE AD 2+= 1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____. D B【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,△AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,△1DF DE ==, △1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1. 【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键. 2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC =∠ACD ﹣∠ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,∴∠CAF =100°,在Rt △PFA 和Rt △PMA 中,{PA PAPM PF ==,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP =∠PAC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.3.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积. 【答案】(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;(1)证明:在ABCD 中,△//AB CD ,△BAE DCG ∠=∠,△BE 、DG 分别平分ABC ADC ∠∠、,ABC ADC ∠=∠,△ABE CDG ∠=∠,在ABE ∆和CDG ∆中,△ABCD的周长为AB BC+=BE平分∠EQ EF=ABCS S∆∆=4.(2022·河北·九年级专题练习)已知OP平分△AOB,△DCE的顶点C在射线OP上,射线CD交射线OA 于点F,射线CE交射线OB于点G.(1)如图1,若CD△OA,CE△OB,请直接写出线段CF与CG的数量关系;(2)如图2,若△AOB=120°,△DCE=△AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF =CG ;(2)CF =CG ,见解析【分析】(1)结论CF =CG ,由角平分线性质定理即可判断.(2)结论:CF =CG ,作CM △OA 于M ,CN △OB 于N ,证明△CMF △△CNG ,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF =CG ;证明:△OP 平分△AOB ,CF △OA ,CG △OB ,△CF =CG (角平分线上的点到角两边的距离相等);(2)CF =CG .理由如下:如图,过点C 作CM △OA ,CN △OB ,△OP 平分△AOB ,CM △OA ,CN △OB ,△AOB =120°,△CM =CN (角平分线上的点到角两边的距离相等),△△AOC =△BOC =60°(角平分线的性质),△△DCE =△AOC ,△△AOC =△BOC =△DCE =60°,△△MCO =90°-60° =30°,△NCO =90°-60° =30°,△△MCN =30°+30°=60°,△△MCN =△DCE ,△△MCF =△MCN -△DCN ,△NCG =△DCE -△DCN ,△△MCF =△NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩△△MCF △△NCG (ASA ),△CF =CG (全等三角形对应边相等).【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.模型3.角平分线垂中间(角平分线+内垂直)【模型解读与图示】已知如图1,OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可。

全等模型-角平分线模型(学生版)-2024年中考数学常见几何模型

全等模型-角平分线模型(学生版)-2024年中考数学常见几何模型

全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC为∠AOB的角平分线、CA⊥OA于点A时,过点C作CA⊥OB.结论:CA=CB、ΔOAC≌ΔOBC.图1图2常见模型1(直角三角形型)条件:如图2,在ΔABC中,∠C=90°,AD为∠CAB的角平分线,过点D作DE⊥AB.结论:DC=DE、ΔDAC≌ΔDAE.(当ΔABC是等腰直角三角形时,还有AB=AC+CD.)图3常见模型2(邻等对补型)条件:如图3,OC是∠COB的角平分线,AC=BC,过点C作CD⊥OA、CE⊥OB。

结论:①∠BOA+∠ACB=180°;②AD=BE;③OA=OB+2AD.1(2022·北京·中考真题)如图,在ΔABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则SΔACD=.2(2022·山东泰安·中考真题)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°3(2023·广东中山·八年级校联考期中)如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB= 2∠APB;④S△PAC=S△MAP+S△NCP.上述结论中正确的是()A.①②B.①③C.②③④D.①②③④4(2023秋·浙江·八年级专题练习)如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA 平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.5(2022·河北·九年级专题练习)已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC为∠AOB的角平分线,AB⊥OC,结论:△AOC≌△BOC,ΔOAB是等腰三角形、OC是三线合一等。

几何证明练习题角平分线定理

几何证明练习题角平分线定理

几何证明练习题角平分线定理几何证明练习题:角平分线定理几何证明题常常令人头疼,但只要理解并掌握了一些定理和常用的证明方法,就能够应对不同的证明问题。

本文将讨论几何证明练习题中的角平分线定理。

角平分线定理是几何中的一个重要定理,它阐述了一个角的角平分线将把该角分成两个相等的角。

以下将介绍该定理以及其中一个相应的证明。

定理1:角平分线定理在平面几何中,若一条线段从一个角的顶点开始并与该角的两边相交于两个点,将该角分成两个相等的角,则这个线段被称为该角的角平分线。

证明:假设∠ABC是一个角,其中线段AD作为∠ABC的角平分线,交于点D。

我们要证明∠BAD ≡ ∠DAC。

首先,连接线段BD和CD。

根据角的定义,∠ABD + ∠DBC = ∠ABC (1)同理,∠CAD + ∠ADC = ∠ACB (2)又根据角的补角定义,∠ABC + ∠ACB = 180°将以上两式相加可得,∠ABD + ∠DBC + ∠CAD + ∠ADC = 180°(3)由于∠BAD和∠DAC构成∠BAC的角平分线,因此∠BAD =∠DAC。

代入(3)式可得,∠ABD + ∠DBC + ∠BAD + ∠ADC = 180°由于∠BAD = ∠DAC,上式可简化为∠ABD + ∠DBC + ∠DAC + ∠ADC = 180°根据(1)和(2)的关系可得∠ABC + ∠ACB + ∠DAC + ∠ADC = 180°由于∠ABC + ∠ACB = 180°,所以上式变为180° + ∠DAC + ∠ADC = 180°将180°约简可得∠DAC + ∠ADC = 0°根据角的定义可知∠DAC和∠ADC都是小于180°的角,而它们的和等于0°,所以∠DAC和∠ADC都是0°,即它们是一个点。

那么点D即是∠BAC的内部点。

2023年中考数学常见几何模型之角平分线非全等类模型

2023年中考数学常见几何模型之角平分线非全等类模型

专题08 角平分线的重要模型(二)非全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。

模型1.双角平分线模型(导角模型) 【模型解读】双角平分线模型(导角模型)指的是当三角形的内角(外角)的平分线相交时,可以导出平分线的夹角的度数。

【模型图示】条件:BD ,CD 是角平分线.结论:1902BDC A ∠=︒+∠1902BDC A ∠=︒−∠12BDC A ∠=∠1.(2022·广东·九年级专题练习)BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A.30°B.40°C.50°D.60°【答案】A【分析】据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.2.(2022·山东·济南中考模拟)如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+1∠ABC;2(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.3.(2022•蓬溪县九年级月考)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=°.【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的性质),∴∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠ECD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论∠BQC=90°−12∠A.∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠EQB=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB)=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4.(2022·辽宁沈阳·九年级期中)阅读下面的材料,并解决问题(1)已知在△ABC中,∠A=60°,图1-3的△ABC的内角平分线或外角平分线交于点O,请直接写出下列角度的度数,如图1,∠O=;如图2,∠O=;如图3,∠O=;(2)如图4,点O是△ABC的两条内角平分线的交点,求证:∠O=90°+12∠A(3)如图5,在△ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1O2,若∠1=115°,∠2=135°,求∠A的度数.【答案】(1)120°,30°,60°(2)见解析(3)70°【分析】(1)由∠A的度数,在△ABC中,可得∠ABC与∠ACB的和,又BO、CO是内角平分线或外角平分线,利用角平分线的定义及三角形内角和定理、三角形的外角性质进而可求得答案;(2)由∠A的度数,在△ABC中,可得∠ABC与∠ACB的和,又BO、CO是角平分线,∴∠ABC+∠ACB=3α+2β=60°+50°=110°,∴∠A=70°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,三角形外角的性质等知识,熟练掌握三角形内角和定理,以及基本图形是解题的关键.模型2.角平分线加平行线等腰现(角平分线+平行线)【模型解读】1)过角平分线上一点作角的一边的平行线,构造等腰三角形;2)有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边的直线于一点,也可构造等腰三角形。

初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)

初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)

初中数学经典几何模型专题04 角平分线模型在三角形中的应用在初中几何证明中,常会遇到与角平分线有关的问题。

不少同学遇到这类问题时,不清楚应该怎样去作辅助线。

实际上这类问题是有章可循的,其策略是:明确辅助线作用,记清相应模型辅助线作法,理解作辅助线以后的目的。

能做到这三点,就能在解题时得心应手。

【知识总结】【模型】一、角平分线垂两边 角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.【模型】二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.【模型】三、角平分线构造轴对称 角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.【模型】四、角平分线加平行线等腰现 角平分线+平行线当已知条件中出现OP 为AOB ∠的角平分线,点P 角平分线上任一点时,辅助线的作法大都为过点P 作PM //OB 或PM //OA 即可.即有OMP ∆是等腰三角形,利用相关结论解决问题.1、如图, ABN CBN ∠=∠, P 为BN 上的一点,并且PD BC ⊥于点D ,2AB BC BD +=,求证:180BAP BCP ∠+∠=︒.2、如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.3、已知:如图7,2,,AB AC BAD CAD DA DB =∠=∠=,求证:DC AC ⊥.4、如图,AB //CD ,AE 、DE 分别平分BAD ∠和ADC ∠.探究:在线段AD 上是否存在点M ,使得2AD EM =.【基础训练】1、如图所示,在四边形ABCD中,DC//AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线交AD,AC于点E、F,则BFEF的值是___________.2、如图,D是△ABC的BC边的中点,AE平分∠BAC,AE⊥CE于点E,且AB =10,AC =16,则DE的长度为______3、如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ =13CE时,EP+BP =________.【巩固提升】1、如图,F,G是OA上两点,M,N是OB上两点,且FG =MN,S△PFG=S△PMN,试问点P是否在∠AOB 的平分线上?2、已知:在△ABC中,∠B的平分线和外角∠ACE的平分线相交于D,DG//BC,交AC于F,交AB于G,求证:GF =BG CF.3、在四边形ABCD中,∠ABC是钝角,∠ABC+∠ADC =180°,对角线AC平分∠BAD.(1)求证:BC =CD;(2)若AB +AD =AC,求∠BCD的度数;4、如图,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC =a、AC =b、AB =c.(1)求线段BG的长(2)求证:DG平分∠EDF.5、如图,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(点P与点A不重合),∠B PC=∠BP A,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x.CD的长度是否随着x的变化而变化?若变化,请用含x的代数式表示CD的长度;若不变化,请求出线段CD的长度.6、已知:平面直角坐标系中,四边形OABC的顶点分别为0(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OP A=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.7、我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。

中考数学必考几何模型:角平分线四大模型

中考数学必考几何模型:角平分线四大模型

角平分线四大模型模型1 角平分线的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口模型实例(1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是解答:如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE.∵CB=6,BD=4,∴DE=CD=2,即点D到直线AB的距离是2.(2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC证明:如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F,∵∠1=∠2,∴PD=PE,∵∠3=∠4, ∴PE=PF,∴PD=PF又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定)练习1、如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC ,求证:∠BAD+∠BCD=180°证明:作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°,∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C∵∠FAD+∠BAD=180°,∴∠BAD+∠BCD=180°2.如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=.解答:如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP,PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质)∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80°∴∠CAF=180°-∠BAC=100°,∵PF=PM∴AP是∠FAC的角平分线,∴∠CAP=∠PAF=50°模型2 截取构造对称全等如图,P是∠MON的平分线上的一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≌△OPA模型分析利用角平分线图形的对称性,在铁的两边构造对称全等三角形,可以得到对应边,对应角相等,利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧模型实例(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由解题:PB+PC>AB+AC证明:在BA的延长线上取点E,使AE=AB,连接PE,∵AD平分∠CAE∴∠CAD=∠EAD,在△AEP与△ACP中,∵AE=AB,∠CAD=∠EAD,AP=AP,∴△AEP≌△ACP (SAS),∴PE=PC∵在△PBE中:PB+PE>BE,BE=AB+AE=AB+AC,∴PB+PC>AB+AC(2)如图②所示,AD是△ABC的内角平分线,其它条件不变,试比较PC-PB与AC-AB的大小,并说明理由解答:AC-AB>PC-PB证明:在△ABC中, 在AC上取一点E,使AE=AB ,∴AC-AE=AB-AC=BE ∵AD平分∠BAC ,∴∠EAP=∠BAP ,在△AEP和△ACP中∴△AEP≌△ABP (SAS) ,∴PE=PB ,∵在△CPE中CE>CP-PE ,∴AC-AB>PC-PB练习1.已知,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长解:如图在BC边上截取CE=AC,连结DE,在△ACD和△ECD中⎪⎩⎪⎨⎧=∠=∠=CDCDECDACDECAC∴△ACD≌△ECD(SAS)∴AD=DE ,∠A=∠1 ,∵∠A=2∠B,∴∠1=2∠B,∵∠1=∠B+∠EDB ,∴∠B=∠EDB,∴EBB=ED ,∴EB=DA=8,BC=EC+BE=AC+DA=16+8=242.在△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD证明:在BC上截取BE=BA,连结DE,∵BD平分∠ABC,BE=AB,BD=BD∴△ABD≌△EBD(SAS),∴∠DEB=∠A=108°,∴∠DEC=180°-108°=72°∵AB=AC,∴∠C=∠ABC=12(180°-108°)=36°,∴∠EDC=72°,∴∠DEC=∠EDC,∴CE=CD ,∴BE+CE=AB+CD,∴BC=AB+CD3.如图所示,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE =AD,求证:BC=AB+CE证明:在CB上取点F,使得BF=AB,连结DF,∵BD平分∠ABC,BD=BD∴△ABD≌△FBD,∴DF=AD=DE,∠ADB=∠FDB,∴BD平分∠ABC∴∠ABD=20°,则∠ADB=180°-20°-100°=60°=∠CDE∠CDF=180°-∠ADB-∠FDB=60°,∴∠CDF=∠CDE,在△CDE和△CDF中⎪⎩⎪⎨⎧=∠=∠=CDCDCDECDFDFDE∴△CDE≌CDF,∴CE=CF,∴BC=BF+FC=AB+CE模型3 角平分线+垂线构造等腰三角形如图,P是∠MON的平分线上一点,AP丄OP于P点,延长AP交ON于点.B,则△AOB是等腰三角形.模型分析构造此模型可以利用等腰三角形的"三线合一”,也可以得到两个全等的直角三角形.进而得到对应边.对应角相等.这个模型巧妙地把角平分线和三线合一联系了起来.模型实例如图.己知等腰直角三角形ABC中,∠A=90°, AB=AC, BD平分∠ABC, C£丄BD.垂足为E.求证:BD=2C£.解答:如图,延长CE、BA交于点F,∵CE丄BD于E, ∠BAC=90°,∴∠BAD=∠CED.∴∠ABD=∠ACF.又∵AB=AC, ∠BAD=∠CAF=90°, ∴△ABD≌△ACF.∴ BD=CF.∵BD平分∠ABC, ∴∠CBE=∠FBE. 又BE=BE,∴△BCE≌△BFE.∴CE=EF. ∴BD=2CE.练习1.如图.在△ABC中.BE是角平分线.AD丄BE.垂足为D.求证:∠2=∠1+∠C.证明:延长AD交BC于F,∵AD⊥BE, ∴∠ADB=∠BDF=90°, ∵∠ABD=∠FBD,∴∠2=∠BFD. ∵∠BFD=∠1+∠C,∴∠2=∠1+∠C.2.如图.在△ABC中. ∠ABC=3∠C,AD是∠BAC的平分线, BE丄AD于点E.求证:1()2BE AC AB =-.(2)证明:延长BE 交AC 于点F.∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD.∵AE=AE, ∴∠BAE=∠FAE,则△AEB ≌△AEF ,∴AB=AF, BE=EF, ∠ 2=∠3.∴AC-AB=AC-AF=FC. ∵∠ABC=3∠C,∴∠2+∠1=∠3+∠1=∠1+∠C+∠1=3∠C.∴2∠1=2∠C 即∠1=∠C ∴BF=FO=2BE.∴()1122BE FC AC AB ==-模型4 角平分线+平行线模型分析有角平分线时.常过角平分线上一点作角的一边的平行线. 构造等腰三角形.为证明结论提供更多的条件.体现了用平分线与等腰三角形之间的密切关系.模型实例 解答下列问题:(1)如图①.△ABC 中,EF ∥BC,点D 在EF 上,BD 、CD 分别平分∠ABC 、∠ACB.写出线段EF 与BE 、CF 有什么数量关系?(2)如图②,BD平分∠ABC,CD平分外角∠ACG. DE//BC交AB于点E,交AC于点F,线段EF与BE、CF有什么数量关系?并说明理由.(3)如图③,BD、CD为外角∠CBM、∠BCN的平分线,DE//BC交AB延长线于点E.交AC延长线于点F,直接写出线段EF与BE、CF有什么数关系?解答:(1) ∵EF//BC,∴∠EDB=∠DBC.∴BD平分∠EBC,∴∠EBD=∠DBC=EDB. ∴EB=ED.同理:DF=FC. ∴EF=ED+DF=BE+CF.(2)图②中有EF=BE=CF,BD平分∠BAC,∴∠ABD=∠DBC.又DE//BC、∴∠EDB=∠DBC.∴DE=EB.同理可证:CF=DF ∴EF=DE-DF=BE-CF.(3) EF=BE+CF.练习1.如图. 在△ABC中,∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC交AB于M点. 交AC 于N点.若BM+CN=9,则线段MN的长为.解答:∵∠ABC、∠ACB的平分线相交于点E,∴MBE=∠EBC,∠ECN=∠ECB.∵MN//BC,∴∠EBC=∠MEB, ∠NEC=∠ECB. ∴∠MBE-∠MEB, ∠NEO=∠ECN.∴BM=ME, EN=CN.∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9,∴MN=9.2. 如图. 在△ABC中,AD平分∠BAC.点E、F分別在BD,AD上,EF∥AB.且DE=CD,求证:EF=AC.证明:如图,过点C作CM∥AB交AD的延长线于点M,∵AB∥EF,∴CM∥EF.∴∠3=∠4.∵DE=CD, ∠5=∠6, ∴△DEF≌△DCM.∴EF=CM. ∵AB//CM,∴∠2=∠4. ∵∠1=∠2,∴∠1=∠4.∴CM=AC.∴EF=AC3.如图.梯形ABCD中,AD∥BC,点E在CD上,且AE平分∠BAD.BE平分∠ABC.求证:AD=AB-BC.证明:延长AD、BE交于点F.∵AD∥BC,∴∠2=∠F. ∵∠1=∠2,∴∠1=∠F.∴AB=AF.∵AE平分∠BAD∴BE=EF. ∵∠DEF=∠CEB, ∴△DEF≌△CEB.∴DF=BC.∴AD=AF-DF=AB-BC.。

几何证明平行线的判定角平分线的证明

几何证明平行线的判定角平分线的证明

几何证明平行线的判定角平分线的证明在几何学中,平行线的判定是一个重要的概念,它常常被用来解决线与线之间的交叉问题。

而其中一种判定方法就是角平分线的证明。

本文将针对这一证明展开讨论。

首先,我们来定义一下角平分线。

在平面几何中,如果一条直线将一个角分为两个相等的角,则这条直线被称为该角的角平分线。

要证明平行线的判定是基于角平分线的,我们需要运用一些几何性质和定理。

定理1:如果两条直线是平行的,则它们的任意角的的角平分线也是平行的。

现在我们假设有两条直线,记作AB和CD,我们要证明它们平行。

我们可以通过证明它们的任意角的角平分线是平行的来达到这个目的。

首先,选择两条直线上的一对相邻的角,记作∠BAC和∠CDA。

我们需要证明这两个角的角平分线是平行的。

选取∠BAC的角平分线。

假设这条角平分线为EF,且与线段AB和AC交于点E和F。

我们需要证明EF与CD平行。

由于EF是角∠BAC的角平分线,所以∠BAE = ∠EAC。

又因为∠BAC是由两条平行线AB和CD相交而成的内错角,根据内错角的性质我们可以得到∠BAC = ∠ADC。

由于∠BAE = ∠EAC和∠BAC = ∠ADC,我们可以推出∠BAE =∠ADC。

又因为这两个角相等,所以可以得出三角形ABE和DAC是相似的。

根据相似三角形的性质,我们可以得到AB/AD = AE/AC。

由于AB和AD是直线,AE和AC是线段,所以它们的比值是恒定的。

因此,我们可以得出AB/AD = AE/AC = BE/CD。

现在我们来看点E和F,根据割线定理,如果一条线段AB和AC在同一边被平行线CD切成相等部分,那么这两条线段的比值是恒定的。

由于AB/AD = BE/CD,所以我们可以推出BE/CD = AE/AC,即AE/AC = BE/CD。

因此,根据比值的传递性,我们可以得出AB/AD = AE/AC =BE/CD。

这意味着EF不仅是∠BAE的角平分线,也是∠ADC的角平分线。

角平分线定理高级结论

角平分线定理高级结论

角平分线定理高级结论角平分线定理是初中数学中十分重要的定理之一。

该定理指出:一个角的平分线把这个角分成两个相等的角。

这个定理可以通过几何证明来推导。

假设有一个角AOC,其顶点为O,平分线为OD,将角AOC分成两个角AOD和DOC。

要证明角AOD和DOC相等,我们可以使用竖角定理。

首先,我们可以通过作OD的垂线OE,将角AOC分为两个直角AOD和DOC。

由于OD是AO和OC的公共边,所以AO和OC互相垂直。

这意味着角AOD和角DOC是对内相对的,也就是说它们是竖角。

根据竖角定理,竖角相等。

因此,角AOD和角DOC相等,这证明了角平分线OD将角AOC分成两个相等的角。

这个定理有很多应用和重要的结论。

以下是角平分线定理的一些高级结论:1. 如果两条射线AB和AC以一个点A为端点,且角BAC的平分线AD与BC相交于点D,则BD/DC = AB/AC。

这个结论可以通过角平分线定理和相似三角形的性质得出。

具体的证明方法是利用相似三角形的对应边成比例的性质,可以证明BD/DC = AB/AC。

2. 如果一个角的平分线与角的两边相交于两个点,那么这两个点与角的顶点连成的边相等。

这个结论可以通过直角三角形的性质得出。

具体的证明方法是利用角平分线将角分成两个直角三角形,然后利用直角三角形的斜边等于直角边乘以根号2的性质,可以证明两个点与角的顶点连成的边相等。

3. 如果一个角的平分线与角的两边交于两个点,那么这两个点与角的顶点连成的线段等于彼此的长度。

这个结论可以通过等边三角形的性质得出。

具体的证明方法是利用平分线将角分成两个等边三角形,然后利用等边三角形的性质,可以证明这两个点与角的顶点连成的线段等于彼此的长度。

4. 如果两个角的平分线相交于一个点,那么这个点到两个角的顶点连成的线段等于彼此的长度。

这个结论可以通过等腰三角形的性质得出。

具体的证明方法是利用平分线将两个角分别分成两个等腰三角形,然后利用等腰三角形的性质,可以证明这个点到两个角的顶点连成的线段等于彼此的长度。

几何证明——角平分线模型(高级)

几何证明——角平分线模型(高级)

A
D
E
B
C
例 7、 已知: ABC 中, AB BC , AC 的中点为 M , MN AC 交 ABC 的角平分线于 N . ( 1)如图 1,若 ABC 60 ,求证: BA BC 3BN ; ( 2)如图 2,若 ABC 120 ,则 BA 、 BC 、 BN 之间满足什么关系式,并对你得出的结论给予证明.
AG CE ,垂足分别为 F 、 G ,连接 FG ,则线段 FG 与 ABC 三边又有怎样的数量关系?
BD ,
A
D F
E G
BC
(1)
A
E G
D F
B
(2)
CB
A D
F
( 3)
E G
C
6、如图,已知 BD , CE 为 ABC 的角平分钱, F 为 DE 的中点,点 F 到 AC , AB , BC 的距离分别为
精彩文档
实用标准文案
8.如图, BD 、 CE 为 △ ABC 的两条内角平分线, K 为 ED 的中点, KF ⊥ AB 于 F, KG ⊥ AC 于 G,KH ⊥ BC 于 H , 求证: KF+KG=KH .
9.已知 AC BC , ACB 90 , DCB 15 , BD CD , CE AD 于点 E ,求证: BC 2CE .
实用标准文案
几何证明——角平分线模型
( 高级 )
【经典例题】
例 1、 已知如图, ABC 中, BC AC , AD 平分 CAB ,若 C 100 ,求证: AB AD CD 。
例 2、如图,已知在 ABC 中, B 60 , ABC 的角平分线 AD, CE 相交于点 O ,求证: AE CD AC 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明——角平分线模型(高级)
【经典例题】
例1、已知如图,ABC ∆中,BC AC =,AD 平分CAB ∠,若ο
100=∠C ,求证:CD AD AB +=。

例2、如图,已知在ABC ∆中,ο
60=∠B ,ABC ∆的角平分线CE AD ,相交于点O ,求证:AC CD AE =+。

E
O
B
C
例3、如图,BD 平分ABC ∠,︒=∠45ADB ,BC AE ⊥,求AED ∠.
E
A
B
C
D
例4、已知,如图ABC ∆中,AD 为ABC ∆的角平分线,求证:BD AC DC AB ⋅=⋅.
例5、如图,已知P 为锐角△ABC 内一点,过P 分别作AB AC BC ,,的垂线,垂足分别为F E D ,,,BM
为ABC ∠的平分线,MP 的延长线交AB 于点N ;如果PF PE PD +=,求证:CN 是ACB ∠的平分线。

A
B
C
D
例6、如图,在梯形ABCD 中,BC AD //,DC AB =,︒=∠80ABC ,E 是腰CD 上一点,连接BE 、AC 、
AE ,若︒=∠60ACB ,︒=∠50EBC ,求EAC ∠的度数.
B
C
例7、已知:ABC ∆中,BC AB <,AC 的中点为M ,AC MN ⊥交ABC ∠的角平分线于N .
(1)如图1,若︒=∠60ABC ,求证:BN BC BA 3=
+;
(2)如图2,若︒=∠120ABC ,则BA 、BC 、BN 之间满足什么关系式,并对你得出的结论给予证明.
A
C
【提升训练】
1、在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.
B
2、如图,在ABC ∆中,A ∠等于ο
60,BE 平分CD ABC ,∠平分ACB ∠,求证:EH DH =。

3、如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证:2AB AC AM +=。

4、已知I 是ABC ∆内角平分线的交点,AI 交对应边于D 。

求证:
BC
AC AB ID AI +=。

B
5、(1)如图,BD 、CE 分别是ABC ∆的外角平分线,过点A 作BD AF ⊥,CE AG ⊥,垂足分别为F 、
G ,连接FG ,延长AF 、AG ,与直线BC 相交,求证:()AC BC AB FG ++=
2
1。

(2)若BD 、CE 分别是ABC ∆的内角平分线(如图(2)),过点A 作BD AF ⊥,CE AG ⊥,垂足
分别为F 、G ,连接FG ,线段FG 与ABC ∆三边有怎样的数量关系?;
(3)若BD 为ABC ∠的内角平分线,CE 为ABC ∆的外角平分线(如图(3)),过点A 作BD AF ⊥,CE AG ⊥,垂足分别为F 、G ,连接FG ,则线段FG 与ABC ∆三边又有怎样的数量关系?
(3)
(2)
(1)
A
B C
B
C
6、如图,已知BD ,CE 为ABC ∆的角平分钱,F 为DE 的中点,点F 到AC ,AB ,BC 的距离分别为
a FG =,
b FH =,
c FM =,若025
221222=+-+--m m ab c c 。

(1)求a ,b ,c ,
m 的值;(2)求证:)(4
1
CD BC DG -=。

A B
C
M
7.已知如图,CD 是ABC Rt ∆斜边上的高,A ∠的平分线交CD 于H ,交BCD ∠的平分线于G , 求证:BC HF //.
8.如图,BD 、CE 为△ABC 的两条内角平分线,K 为ED 的中点,KF ⊥AB 于F ,KG ⊥AC 于G ,KH ⊥BC 于H ,求证:KF+KG=KH .
9.已知BC AC =,︒=∠90ACB ,︒=∠15DCB ,CD BD =,AD CE ⊥
于点E ,求证:CE BC 2=.
10.(1)如图1,BP 为△ABC 的角平分线,PM ⊥AB 于M ,PN ⊥BC 于N ,AB=30,BC=23,请补全图形,并求△ABP 与△BPC 的面积的比值;
(2)如图2,分别以△ABC 的边AB 、AC 为边向外作等边三角形ABD 和等边三角形ACE ,CD 与BE 相交于点O ,判断∠AOD 与∠AOE 的数量关系,并证明;
(3)在四边形ABCD 中,已知BC=DC ,且AB ≠AD ,对角线AC 平分∠BAD ,请直接写出∠B 和∠D 的数量关系.
11.(1)已知:如图1,Rt △ABC 中,∠ACB=90°,∠BAC=60°,CD 平分∠ACB ,点E 为AB 中点,PE ⊥AB 交CD 的延长线于P ,猜想:∠PAC+∠PBC= °(直接写出结论,不需证明).
(2)已知:如图2,Rt △ABC 中,∠ACB=90°,∠BAC ≠45°,CD 平分∠ACB ,点E 为AB 中点,PE ⊥AB 交CD 的延长线于P ,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.
12.如图1,分别过线段AB 的端点A 、B 作直线AM 、BN ,且AM ∥BN ,∠MAB 、∠NBA 的角平分线交于点C ,过点C 的直线l 分别交AM 、BN 于点D 、E . (1)求证:△ABC 是直角三角形;
(2)在图1中,当直线l ⊥AM 时,线段AD 、BE 、AB 之间有怎样的数量关系?证明你的猜想;
(3)当直线l 绕点C 旋转到与AM 不垂直时,在如图2、3两种情况下,(2)中的三条线段之间又有怎样的数量关系?请写出你的猜想,并选择一种情况给予证明.
13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AE 平分∠BAC ,交CD 于K ,交BC 于E ,F 是BE 上一点,且BF=CE ,求证:FK ∥AB .
14.在ABC ∆中,AD 是∠BAC 的平分线. (1)如图①,求证:
AC
AB
S S ACD ABD =∆∆; (2)如图②,若BD=CD ,求证:AB=AC ;
(3)如图③,若AB=5,AC=4,BC=6.求BD的长.
中,∠ABC=90°,D为BC上一点,在△ADE中,∠E=∠C,∠1=90°﹣∠EDC.求证:15.如图,在ABC
(1)∠1=∠2;
(2)ED=BC+BD.
16.如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.
(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.
(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并说明以A、D、F、E为顶点的四边形是怎样特殊的四边形?
(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,只写出结果即可.不用证明.
17.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.
(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.()
②任意凸四边形一定只有一个准内点.()
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()
18.如图,已知平行四边形ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC 的垂线,分别交AE、AB于点M、N.
(1)若M为AG中点,且DM=2,求DE的长;
(2)求证:AB=CF+DM.
19.如图,在平行四边形ABCD 中,∠BAD 、∠ABC 的平分线AF 、BG 分别与线段CD 交于点F 、G , AF 与BG 交于点E .
(1)求证:AF ⊥BG ,DF=CG ;
(2)若AB=10,AD=6,AF=8,求FG 和BG 的长度.
20、平行四边形ABCD 中,
4
3
=BC AB ,ABC ∠的平分线交AD 于点E ,BCD ∠ 的平分线交AD 于点F ,BE 、CF 交于点G ,若BC FG 4
1
=。

求证:223CF BE =。

G
B
21、如图,在ABC ∆中,D 是BAC ∠外角平分线上一点,求证:DC DB AC AB +<+。

D
A
B C
22.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.。

相关文档
最新文档