反比例函数 可编辑.ppt
合集下载
(完整版)反比例函数ppt课件
y
=
3 2x
思考
1、一个矩形的面积为200 cm2 ,相邻的两
条边长分别为x cm和y cm,那么变量y是变 量x 的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人口数量n逐年 发生变化,那么该村人均有耕地面积m(公 顷/人)是全村人口数n的函数吗?是反比例 函数吗?为什么?
2020/4/13
9
随堂练 习
1、 在下列函数中,y是x的反比例函数的是( C )
(A)y
=
8
X+5
(B) y =
3 x
+7
(C)xy = 5
(D) y =
2 x2
2、已知函数 y = xm -7 是x正-1 比= 1x例函数,则 m = _8__ ;
已知函数 y = 3xm -7是反比例函数,则 m = __6_ 。
工效 x
10 20 30 40 50 60
时间 y
60 30 20 15 12 10
x y 60
y 60 x
每每本本的页页数数x 15 20 25 30 40 60 …
装装订订的本本数数y 40 30 24 20 15 10 …
x y 600
y 600 x
2020/4/13
5
⑴ 写出下列函数关系式。
2020/4/13
10
3、在下列函数表达式中,x均表示自变量,那么
哪些是反比例函数?每一个反比例函数相应的k值
是多少?
(1) y 5 x
(2) y 0.4 x
(3) y x 2
(4) xy 2
(5)
y
5 x2
大家注意看这两个函数。
(6)
《反比例函数》PPT课件 图文
(1) 求I与R之间的函数关系式。
(2) 当电流I=0.5安时,求电阻R的值。
互动的课堂
问题1:关系式xy+4=0中y是x的反比例 函数吗?若是,相应的k值等于 多少?若不是,请说明理由。
问题2:
若
y
=
m- x
1
是反比例函数,则m应
满足的条是
.
问题3:
函数关系式 y
=
100
x
可以表示许多
生活中变量之间的关系,你能举出一
些这样的实际例子吗?
问题4:
若y =(m + 1)xm 2-2 是关于x的反比例
函数,确定m的值,并求其函数关系式。
说说收获
1.通过本节课的学习,你有哪些收获? 2.你还存在什么疑问?
课后作业
1.课本:习题1,2,3,4 2.举两个生活中有关反比例函数
的例子。
谢谢欣赏 一、鲁迅是一个非常勤奋的人 鲁迅的勤奋,我想不用我细说大家都是 很明白 的。在 鲁迅的 散文《 百草园 和三味 书屋》 中,鲁 迅讲过 关于上 学迟到 的故事 ,后来 他在桌 子上刻 了个“ 早”字 ,当作 了他一 生的座 右铭。 鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人 小时候的鲁迅就十分的要强,事事总想 走在别 人的前 面。鲁 迅成年 后,他 的性格 变得更 加刚强 ,从他 的文章 中,从 他面对 敌人的 迫害不 惧怕中 ,从他 与批评 他的人 的针锋 相对中 ,我们 都可以 看出他 的性格 。 在鲁迅病重期间,他写个一篇关于自己 身后事 的文章 ,其中 有一句 话说, “让他 们记恨 去,我 一个都 不原谅 !”这 句话就 是鲁迅 刚强性 格的绝 好体现 。 三、鲁迅是一个正义的、富有民族气节 的、忧 国忧民 的人 鲁迅的一生是处在乱世中的一生,国家 的动荡 ,民族 的败落 。深深 的影响 着鲁迅 。为了 追寻人 生的价 值,鲁 迅到日 本去留 学,民 族的耻 辱改变 了他的 人生观 ,他决 定弃医 从文, 也许是 上天注 定,也 许是性 格使然 。从文 的鲁迅 找到了 改变人 们灵魂 的武器 ,也使 自己的 才华和 思想得 到了淋 漓尽致 的发挥 。 弃医从文,鲁迅的忧国忧民的思想在他 的文章 中得到 了充分 的体现 。无论 是《阿Q 正传》 还是《 祝福》 、还是 《伤逝 》无不 充满了 对普通 劳苦大 众的爱 与关怀 。 试问,如果一个写作者,心中没有爱与 关怀, 没有对 劳苦大 众的一 种赤诚 的心。 又怎么 能够写 出感人 至深的 文章呢 ? 四、鲁迅是一个寂寞的、孤独的、哀伤 的、富 有才情 的文人 鲁迅的故乡是在绍兴,自古以来,绍兴 就是出 文人才 子的地 方。可 能是和 江南的 环境有 关系吧 。 这里的文人多情敏感、才思敏捷。鲁迅 在绍兴 鲁镇, 那里的 文化气 息也十 分的浓 厚。鲁 迅从小 就在这 里生活 ,自然 耳濡目 染,身 上的文 人气质 不招自 来。 在鲁迅的《故乡》中,我能时时刻刻感 受到一 个失意 忧伤的 文人的 存在。 作者说 要找一 种全新 的生活 ,要走 一条没 有路的 路。这 是多么 忧伤的 希冀啊 ! 鲁迅的寂寞、孤独、哀伤、在他的散文 、杂文 中都有 充分的 体现。 五、鲁迅是一个甘于清贫、不贪图荣华 富贵的 有气节 的人 纵观鲁迅的一生,是孤独寂寞的一生。 鲁迅的 辉煌从1 919年 算起, 到1936 年去世 总共就 十几年 的时间 。 鲁迅的大半生是在漂泊、孤独中渡过的 。另外 ,鲁迅 的婚姻 也不是 很幸福 。有时 候他就 是一个 苦行僧 ,肉体 在精神 的支配 下默默 的服着 苦役。 鲁迅在物质生活上实在没法与胡适相比 。其实 ,鲁迅 并不是 没有享 受荣华 富贵的 能力。 只是, 鲁迅是 一个精 神独立 的文人 。不愿 为了荣 华富贵 向人卑 躬屈膝 。这一 点,鲁 迅就像 陶渊明 。中国 古代文 人的气 节在鲁 迅身上 得到了 很好的 体现。 上面,我们说了鲁迅的许多优点,当然 人无完 人,鲁 迅也有 一定的 缺点: 一是鲁 迅的性 格过于 刚烈, 心肠较 硬。二 是鲁迅 过于敏 感、常 常为了 一些琐 碎的事 情而小 题大做 。 对于鲁迅的缺点,笔者只是举出了一二 ,也许 鲁迅还 有其他 的缺点 ,限于 作者的 水平有 限只能 举这么 多了。 总而言之,鲁迅的优点是多于缺点的, 而且, 最让笔 者敬佩 鲁迅的 是他有 一颗永 远和劳 苦大众 在一起 的赤子 之心。 他的一 生付出 的多, 索取的 少,这 就是他 的可贵 之处, 也是他 不朽崇 高的地 方。
(2) 当电流I=0.5安时,求电阻R的值。
互动的课堂
问题1:关系式xy+4=0中y是x的反比例 函数吗?若是,相应的k值等于 多少?若不是,请说明理由。
问题2:
若
y
=
m- x
1
是反比例函数,则m应
满足的条是
.
问题3:
函数关系式 y
=
100
x
可以表示许多
生活中变量之间的关系,你能举出一
些这样的实际例子吗?
问题4:
若y =(m + 1)xm 2-2 是关于x的反比例
函数,确定m的值,并求其函数关系式。
说说收获
1.通过本节课的学习,你有哪些收获? 2.你还存在什么疑问?
课后作业
1.课本:习题1,2,3,4 2.举两个生活中有关反比例函数
的例子。
谢谢欣赏 一、鲁迅是一个非常勤奋的人 鲁迅的勤奋,我想不用我细说大家都是 很明白 的。在 鲁迅的 散文《 百草园 和三味 书屋》 中,鲁 迅讲过 关于上 学迟到 的故事 ,后来 他在桌 子上刻 了个“ 早”字 ,当作 了他一 生的座 右铭。 鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人 小时候的鲁迅就十分的要强,事事总想 走在别 人的前 面。鲁 迅成年 后,他 的性格 变得更 加刚强 ,从他 的文章 中,从 他面对 敌人的 迫害不 惧怕中 ,从他 与批评 他的人 的针锋 相对中 ,我们 都可以 看出他 的性格 。 在鲁迅病重期间,他写个一篇关于自己 身后事 的文章 ,其中 有一句 话说, “让他 们记恨 去,我 一个都 不原谅 !”这 句话就 是鲁迅 刚强性 格的绝 好体现 。 三、鲁迅是一个正义的、富有民族气节 的、忧 国忧民 的人 鲁迅的一生是处在乱世中的一生,国家 的动荡 ,民族 的败落 。深深 的影响 着鲁迅 。为了 追寻人 生的价 值,鲁 迅到日 本去留 学,民 族的耻 辱改变 了他的 人生观 ,他决 定弃医 从文, 也许是 上天注 定,也 许是性 格使然 。从文 的鲁迅 找到了 改变人 们灵魂 的武器 ,也使 自己的 才华和 思想得 到了淋 漓尽致 的发挥 。 弃医从文,鲁迅的忧国忧民的思想在他 的文章 中得到 了充分 的体现 。无论 是《阿Q 正传》 还是《 祝福》 、还是 《伤逝 》无不 充满了 对普通 劳苦大 众的爱 与关怀 。 试问,如果一个写作者,心中没有爱与 关怀, 没有对 劳苦大 众的一 种赤诚 的心。 又怎么 能够写 出感人 至深的 文章呢 ? 四、鲁迅是一个寂寞的、孤独的、哀伤 的、富 有才情 的文人 鲁迅的故乡是在绍兴,自古以来,绍兴 就是出 文人才 子的地 方。可 能是和 江南的 环境有 关系吧 。 这里的文人多情敏感、才思敏捷。鲁迅 在绍兴 鲁镇, 那里的 文化气 息也十 分的浓 厚。鲁 迅从小 就在这 里生活 ,自然 耳濡目 染,身 上的文 人气质 不招自 来。 在鲁迅的《故乡》中,我能时时刻刻感 受到一 个失意 忧伤的 文人的 存在。 作者说 要找一 种全新 的生活 ,要走 一条没 有路的 路。这 是多么 忧伤的 希冀啊 ! 鲁迅的寂寞、孤独、哀伤、在他的散文 、杂文 中都有 充分的 体现。 五、鲁迅是一个甘于清贫、不贪图荣华 富贵的 有气节 的人 纵观鲁迅的一生,是孤独寂寞的一生。 鲁迅的 辉煌从1 919年 算起, 到1936 年去世 总共就 十几年 的时间 。 鲁迅的大半生是在漂泊、孤独中渡过的 。另外 ,鲁迅 的婚姻 也不是 很幸福 。有时 候他就 是一个 苦行僧 ,肉体 在精神 的支配 下默默 的服着 苦役。 鲁迅在物质生活上实在没法与胡适相比 。其实 ,鲁迅 并不是 没有享 受荣华 富贵的 能力。 只是, 鲁迅是 一个精 神独立 的文人 。不愿 为了荣 华富贵 向人卑 躬屈膝 。这一 点,鲁 迅就像 陶渊明 。中国 古代文 人的气 节在鲁 迅身上 得到了 很好的 体现。 上面,我们说了鲁迅的许多优点,当然 人无完 人,鲁 迅也有 一定的 缺点: 一是鲁 迅的性 格过于 刚烈, 心肠较 硬。二 是鲁迅 过于敏 感、常 常为了 一些琐 碎的事 情而小 题大做 。 对于鲁迅的缺点,笔者只是举出了一二 ,也许 鲁迅还 有其他 的缺点 ,限于 作者的 水平有 限只能 举这么 多了。 总而言之,鲁迅的优点是多于缺点的, 而且, 最让笔 者敬佩 鲁迅的 是他有 一颗永 远和劳 苦大众 在一起 的赤子 之心。 他的一 生付出 的多, 索取的 少,这 就是他 的可贵 之处, 也是他 不朽崇 高的地 方。
六年级数学下册《反比例》PPT课件人教版
题目1
一个直角三角形,两 多少厘米?
题目2
题目3
一个长方形的周长是20厘米,长是a厘米, 宽是b厘米。求a和b的关系式,并求出当 a=5厘米时,b是多少厘米?
一个圆柱体和一个圆锥体的底面积相等、 体积也相等。已知圆锥的高是18厘米,求 圆柱的高是多少厘米。
疑问3
反比例在生活中有哪些应用?
答
反比例关系在现实生活中有着广泛的应用。例如,汽车行 驶时,如果速度一定,那么行驶的距离和所需的时间成反 比;一定体积的气体,如果压力一定,那么气体的温度和 体积成反比。
下节课预告
• 下节课我们将学习《圆柱与圆锥》,圆柱和圆锥是常见的几何 图形,它们在生活和数学中有着广泛的应用。通过学习圆柱和 圆锥的特性、面积和体积的计算方法,我们将更好地理解这两 种几何图形在现实世界中的作用。请大家做好预习工作。
杠杆原理
在杠杆两端挂上不同质量的物体,一端质量大,一端质量小,当杠杆平衡时,两端的距离相等,质量与距离成反 比关系。
数学问题中的反比例解析
面积固定时,长与宽的关系
当一个矩形的面积固定时,长与宽的乘积为定值,即长增大时,宽必须减小,反之亦然,这体现了反 比例关系。
速度固定时,距离与时间的关系
当一个物体的速度固定时,距离与时间的乘积为定值,即距离增大时,时间必须增大,反之亦然,这 体现了反比例关系。
02 反比例的图像表示
反比例图像的绘制
确定x和y的取值范围
在绘制反比例图像前,需要确定x和y的取值 范围,以便在坐标系中正确表示。
标出原点
在坐标系的中心位置标出原点。
绘制坐标轴
根据需要选择适当的坐标轴比例,并绘制坐 标轴线。
绘制双曲线
根据反比例函数的性质,在第一象限和第三 象限内绘制双曲线。
关于反比例函数的ppt课件
05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件
《反比例函数》ppt完美课件1
第26章 反比例函数
26.1 反比例函数
26.1.2 反比例函数的图象和性质
第1课时 反比例函数的图象和性质的认识
情境层,请君入内
1. 我们学习一次函数和二次函数时,研究了函 数的哪些内容?是如何进行研究的?
我们研究了函数的解析式、图象、性质,根 据解析式,通过列表、描点、连线画出函数图象, 从图象的形状、位置、增减性等多个方面分析归 纳函数的性质.
yLeabharlann k(xx0)
的图象是双曲线,它
x
具有以下性质:
当 k 0 时,双曲线的两支分别位于第一、第三象限,在
每一个象限内, y 随 x 的增大而减小;
当 k 0 时,双曲线的两支分别位于第二、第四象限,在
每一个象限内, y 随 x 的增大而增大.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
象限,在每一个象限内, y 随 x 的增大而减小.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
探究园,任你驰骋
活动2:类比探究
回顾以上研究过程,你能用类似的方法研究函
数 y k (k 0) 的图象和性质吗?
x
结论2:一般地,当 k 0 时,反比例函数
2.实践性作业:教材第10页“信息技术的应用: 探索反比例函数的性质”.
要求:(1)探究反比例函数图象的对称性,并 找出对称轴或对称点;
(2)探究 k 值对函数图象的影响,以及随着 k 的变化,函数图象相对于坐标原点的变化;
(3)把你的探究过程和探究结果写成数学小论 文,供全班交流、学习.
《反比例函数》完美实用课件1(PPT 优秀课 件)
26.1 反比例函数
26.1.2 反比例函数的图象和性质
第1课时 反比例函数的图象和性质的认识
情境层,请君入内
1. 我们学习一次函数和二次函数时,研究了函 数的哪些内容?是如何进行研究的?
我们研究了函数的解析式、图象、性质,根 据解析式,通过列表、描点、连线画出函数图象, 从图象的形状、位置、增减性等多个方面分析归 纳函数的性质.
yLeabharlann k(xx0)
的图象是双曲线,它
x
具有以下性质:
当 k 0 时,双曲线的两支分别位于第一、第三象限,在
每一个象限内, y 随 x 的增大而减小;
当 k 0 时,双曲线的两支分别位于第二、第四象限,在
每一个象限内, y 随 x 的增大而增大.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
象限,在每一个象限内, y 随 x 的增大而减小.
《反比例函数》完美实用课件1(PPT 优秀课 件)
《反比例函数》完美实用课件1(PPT 优秀课 件)
探究园,任你驰骋
活动2:类比探究
回顾以上研究过程,你能用类似的方法研究函
数 y k (k 0) 的图象和性质吗?
x
结论2:一般地,当 k 0 时,反比例函数
2.实践性作业:教材第10页“信息技术的应用: 探索反比例函数的性质”.
要求:(1)探究反比例函数图象的对称性,并 找出对称轴或对称点;
(2)探究 k 值对函数图象的影响,以及随着 k 的变化,函数图象相对于坐标原点的变化;
(3)把你的探究过程和探究结果写成数学小论 文,供全班交流、学习.
《反比例函数》完美实用课件1(PPT 优秀课 件)
反比例函数应用ppt课件ppt课件ppt
检验解
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
《反比例函数》PPT课件
(来自《点拨》)
1 列说法不正确的是( )
1
A.在y= x -1中,y+11与x成反比例
x
B.在xy=-12中,y与 成正比例
2x2
C.在y=
中,y与x成反比例
知2-练
(来自《典中点》)
知识点 2 确定反比例函数的表达式
知2-讲
1. 求反比k例函数的表达式,就是确定反比例函数表达式
y = x (k≠0)中常数k的值,它一般需经历:
知3-练
(来自《典中点》)
知3-练
2 一司机驾驶汽车从甲地去乙地,他以80 千米/小
时的平均速度用了4个小时到达乙地,当他按原
路匀速返回时,汽车的速度v千米/小时与时间t小
时的函数关系是( )
A.v=320t C.v=20t
B.v=
320 t
D.v=
20 t
(来自《典中点》)
一般地形如y= (k为k常数, ⑴“反比例关系”与“反比例函数”:成反 x
(来自《点拨》)
总结
知3-讲
建立反比例函数的模型,首先要找出题目中的
等量关系,然后把未知量用未知数表示,列出等式,
转化为反比例函数的一般式即可.同时注意未知数的
取值范围.
(来自《点拨》)
1 在下列选项中,是反比例函数关系的是( ) A.多边形的内角和与边数的关系 B.正三角形的面积与边长的关系 C.直角三角形的面积与边长的关系 D.三角形的面积一定时,它的底边长a与这边上 的高h之间的关系
速地求出反比例函数解析式中的k.从而得到反比例函数的 解析式.两个变量的积均是一个常数(或定值).这也是识别两 个量是否成反比例函数关系的关键.
用待定系数法确定反比例函数表达的“四步骤”:
《反比例函数》精品ppt课件
《反比例函数》精品实用课件(PPT优 秀课件 ) 《反比例函数》精品实用课件(PPT优 秀课件 )
《反比例函数》精品实用课件(PPT优 秀课件 )
《反比例函数》精品实用课件(PPT优 秀课件 )
九年级数学下册(RJ)
《反比例函数》精品实用课件(PPT优 秀课件 ) 《反比例函数》精品实用课件(PPT优 秀课件 )
《反比例函数》精品实用课件(PPT优 秀课件 ) 《反比例函数》精品实用课件(PPT优 秀课件 )
《反比例函数》精品实用课件(PPT优 秀课件 ) 《反比例函数》精品实用课件(PPT优 秀课件 )
Байду номын сангаас
《反比例函数》精品实用课件(PPT优 秀课件 ) 《反比例函数》精品实用课件(PPT优 秀课件 )
《反比例函数》精品实用课件(PPT优 秀课件 ) 《反比例函数》精品实用课件(PPT优 秀课件 )
反比例函数反比例函数ppt
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应物的活化能成反比。当 反应物的浓度一定时,反应速率与活化能成反比。
分子间作用力
分子间作用力与分子间的距离成反比,当分子间距离减小时,作用力增强;反之 ,作用力减弱。
反比例函数在生物中的应用
酶促反应
在生物化学中,酶促反应的速率与底物的浓度成正比,与酶 的浓度成正比,与酶与底物之间的距离成反比。
02
反比例函数的性质
反比例函数的单调性
严格单调
对于$y=k/x$,当$k>0$时,函数在 $(0,+\infty)$上严格单调递减,在$(\infty,0)$上严格单调递增;当$k<0$时 ,函数在$(0,+\infty)$上严格单调递增, 在$(-\infty,0)$上严格单调递减。
VS
单调性与$k$值的关系
解决距离和时间问题
解决角度和时间问题
反比例函数在物理化学中的应用
1
描述物质的性质:如密度、折射率、介电常数 等
2
描述物理量之间的关系:如速度和时间、距离 和时间等
3
描述化学反应速率和反应物浓度之间的关系等
THANK YOU.
反比例函数与对数函数的区别与联系
01
表达式差异
反比例函数的一般表达式为$y=k/x$,其中$k$为常数,而对数函数
的表达式为$y=log_{a}x$,其中$a$$\neq$$1$且$a$$\neq$$0$。
02
图像差异
反比例函数的图像在第一、三象限,而对数函数的图像根据底数的不
同而有所差异。
03
取值差异
表达式差异
图像差异
变化规律差异
反比例函数的一般表达式为$y=k/x$ ,其中$k$为常数,而正比例函数的 表达式为$y=kx$,其中$k$为比例系 数。
在化学反应中,反应速率与反应物的浓度成正比,与反应物的活化能成反比。当 反应物的浓度一定时,反应速率与活化能成反比。
分子间作用力
分子间作用力与分子间的距离成反比,当分子间距离减小时,作用力增强;反之 ,作用力减弱。
反比例函数在生物中的应用
酶促反应
在生物化学中,酶促反应的速率与底物的浓度成正比,与酶 的浓度成正比,与酶与底物之间的距离成反比。
02
反比例函数的性质
反比例函数的单调性
严格单调
对于$y=k/x$,当$k>0$时,函数在 $(0,+\infty)$上严格单调递减,在$(\infty,0)$上严格单调递增;当$k<0$时 ,函数在$(0,+\infty)$上严格单调递增, 在$(-\infty,0)$上严格单调递减。
VS
单调性与$k$值的关系
解决距离和时间问题
解决角度和时间问题
反比例函数在物理化学中的应用
1
描述物质的性质:如密度、折射率、介电常数 等
2
描述物理量之间的关系:如速度和时间、距离 和时间等
3
描述化学反应速率和反应物浓度之间的关系等
THANK YOU.
反比例函数与对数函数的区别与联系
01
表达式差异
反比例函数的一般表达式为$y=k/x$,其中$k$为常数,而对数函数
的表达式为$y=log_{a}x$,其中$a$$\neq$$1$且$a$$\neq$$0$。
02
图像差异
反比例函数的图像在第一、三象限,而对数函数的图像根据底数的不
同而有所差异。
03
取值差异
表达式差异
图像差异
变化规律差异
反比例函数的一般表达式为$y=k/x$ ,其中$k$为常数,而正比例函数的 表达式为$y=kx$,其中$k$为比例系 数。
反比例函数数学PPT课件
第9题图
重难点精讲优练
类型 1 反比例函数图象与性质
m 练习1 已知函数y= x 的图象如图所示,以下结论:① m<0;②在每个分支 上,y随x的增大而增大;③若点A(-1,a)、点B(2,b)在图象上,则a<b;④ 若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确的个数是( )
x
基础点巧练妙记
2.在具体问题中间根据k的几何意义通过求出相应三角形或四边形的面积求出 k的值,从而求得表达式.
提分必练
8.已知点P(-4,-3)在反比例函数y= k (k≠0)的图象上,
则k=__1__2____.
x
提分必练
k 例如函图数,的反解比析例式函为数__y_=___yx_=__的_-.图4x象经过点M,矩形OAMB的面积为4,则此反比
A. 4个 B. 3个 C. 2个 D. 1个
重难点精讲优练
【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,
可得m<0,故正确;②在每个分支上y随x的增大而增大,故正确; ③若点A(-1,a)、点B(2,b)在图象上,结合图象可知a>b,故错 误;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上,故正 确.故选B.
提分必练
3.如果反比例函数y= m+1 在各自象限内,y随x的增大而减小,那么m
的取值范围是( D ) x
A. m<0 B. m>0 C. m<-1 D. m>-1
失分点
反比例函数值的大小比较
4.在函数y=- a2+1 (a为常数)的图象上有三点(-3,y1),(-1,y2),(2,
x
y3),则函数值y1,y2,y3的大小关系是
y
-2 0
3
重难点精讲优练
类型 1 反比例函数图象与性质
m 练习1 已知函数y= x 的图象如图所示,以下结论:① m<0;②在每个分支 上,y随x的增大而增大;③若点A(-1,a)、点B(2,b)在图象上,则a<b;④ 若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确的个数是( )
x
基础点巧练妙记
2.在具体问题中间根据k的几何意义通过求出相应三角形或四边形的面积求出 k的值,从而求得表达式.
提分必练
8.已知点P(-4,-3)在反比例函数y= k (k≠0)的图象上,
则k=__1__2____.
x
提分必练
k 例如函图数,的反解比析例式函为数__y_=___yx_=__的_-.图4x象经过点M,矩形OAMB的面积为4,则此反比
A. 4个 B. 3个 C. 2个 D. 1个
重难点精讲优练
【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,
可得m<0,故正确;②在每个分支上y随x的增大而增大,故正确; ③若点A(-1,a)、点B(2,b)在图象上,结合图象可知a>b,故错 误;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上,故正 确.故选B.
提分必练
3.如果反比例函数y= m+1 在各自象限内,y随x的增大而减小,那么m
的取值范围是( D ) x
A. m<0 B. m>0 C. m<-1 D. m>-1
失分点
反比例函数值的大小比较
4.在函数y=- a2+1 (a为常数)的图象上有三点(-3,y1),(-1,y2),(2,
x
y3),则函数值y1,y2,y3的大小关系是
y
-2 0
3
《反比例函数》PPT优秀课件
1、 xy = k 1 2、 y = kx -
k 3、 y = (k为常数,k ≠0) x
检测练习
下列函数中,x均为自变量,那么哪些y是x的 反比例函数?k值是多少?
( 1) y = - 3 x;
(4)y = x + 1
5
3x (3)xy=0.4;
2)y = (
2
(5)y =
n
x
例: y是x的反比例函数,下图给出了x与 y的一些值: x -3 -2 1 -1 2
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。
k 3、 y = (k为常数,k ≠0) x
检测练习
下列函数中,x均为自变量,那么哪些y是x的 反比例函数?k值是多少?
( 1) y = - 3 x;
(4)y = x + 1
5
3x (3)xy=0.4;
2)y = (
2
(5)y =
n
x
例: y是x的反比例函数,下图给出了x与 y的一些值: x -3 -2 1 -1 2
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。
反比例函数ppt课件
1.人均占有面积s与全市总人口 n 存在什么数量关系? 2.这两个变量间有函数关系吗?试说明理由.
观察思考
这四个函数解析式有什么共同点?能否用一个一般的形 式表示?
判断对错
1.下列函数表达式中,哪些是反比例函数? 若是,请指出相应的k值。
2.已知函数 y=2xk-2 是反比例函数,则k=__1___.
例题解析
已知y是x的反比例函数,当x=2时,y=6。
(1)求y与x的函数关系式;
待定系数法
(2)求当x=4时y的值.
设
代
求
写
变式 已知y与x+1成反比例,并且当x=3时,y=4。 (1)写出y关于x的函数解析式;(2)当x=7时,求y的值。
拓展提升
请同学们在小组内合作完成以下两个任务, 并讨论交流你发现了什么?
人教版九年级下册
复习回顾1
负指数幂运算法则:去负号,取倒数。
复习回顾2
1、什么是函数?
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就 说x是自变量,y是x的函数。
2.已学过的函数有哪几种?分别写出对应的解析式。
情境引入
问题1. 2021年 8月1日,苏炳添在东京奥运会男子100米半决赛 中以9.83秒刷新亚洲纪录.
问题3 小明想要在家门前草原上围一个面积约为15平方米的矩 形羊圈。
15m2
当面积为15m2 时,长y(m)与宽x(m)的数量关系是: 长y(m)是宽x(m)的函数吗?
问题4 已知北京市的总面积为 1.68×104 km2 ,人均占有面 积s(单位:km2 /人)随全市总人口 n (单位:人) 的变化而变 化.
观察思考
这四个函数解析式有什么共同点?能否用一个一般的形 式表示?
判断对错
1.下列函数表达式中,哪些是反比例函数? 若是,请指出相应的k值。
2.已知函数 y=2xk-2 是反比例函数,则k=__1___.
例题解析
已知y是x的反比例函数,当x=2时,y=6。
(1)求y与x的函数关系式;
待定系数法
(2)求当x=4时y的值.
设
代
求
写
变式 已知y与x+1成反比例,并且当x=3时,y=4。 (1)写出y关于x的函数解析式;(2)当x=7时,求y的值。
拓展提升
请同学们在小组内合作完成以下两个任务, 并讨论交流你发现了什么?
人教版九年级下册
复习回顾1
负指数幂运算法则:去负号,取倒数。
复习回顾2
1、什么是函数?
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就 说x是自变量,y是x的函数。
2.已学过的函数有哪几种?分别写出对应的解析式。
情境引入
问题1. 2021年 8月1日,苏炳添在东京奥运会男子100米半决赛 中以9.83秒刷新亚洲纪录.
问题3 小明想要在家门前草原上围一个面积约为15平方米的矩 形羊圈。
15m2
当面积为15m2 时,长y(m)与宽x(m)的数量关系是: 长y(m)是宽x(m)的函数吗?
问题4 已知北京市的总面积为 1.68×104 km2 ,人均占有面 积s(单位:km2 /人)随全市总人口 n (单位:人) 的变化而变 化.
《反比例函数》PPT课件3 (共16张PPT)
X
作业布置:
数学书52页习题
2、3题
•
1.天行健,君子以自强不息。 ——《周易》 译:作为君子,应该有坚强的意志,永不止息的奋斗精神,努力加强自我修养,完成并发展自己的学业或事业,能这样做才体现了天的意志,不辜负宇宙给予君子的职 责和才能。 2.勿以恶小而为之,勿以善小而不为。 ——《三国志》刘备语 译:对任何一件事,不要因为它是很小的、不显眼的坏事就去做;相反,对于一些微小的。却有益于别人的好事,不要因为它意义不大就不去做它。 3.见善如不及,见不善如探汤。 ——《论语》 译:见到好的人,生怕来不及向他学习,见到好的事,生怕迟了就做不了。看到了恶人、坏事,就像是接触到热得发烫的水一样,要立刻离开,避得远远的。 4.躬自厚而薄责于人,则远怨矣。 ——《论语》 译:干活抢重的,有过失主动承担主要责任是“躬自厚”,对别人多谅解多宽容,是“薄责于人”,这样的话,就不会互相怨恨。 5.君子成人之美,不成人之恶。小人反是。 ——《论语》 译:君子总是从善良的或有利于他人的愿望出发,全心全意促使别人实现良好的意愿和正当的要求,不会用冷酷的眼光看世界。或是唯恐天下不乱,不会在别人有失败、 错误或痛苦时推波助澜。小人却相反,总是“成人之恶,不成人之美”。 6.见贤思齐焉,见不贤而内自省也。 ——《论语》 译:见到有人在某一方面有超过自己的长处和优点,就虚心请教,认真学习,想办法赶上他,和他达到同一水平;见有人存在某种缺点或不足,就要冷静反省,看自己 是不是也有他那样的缺点或不足。 7.己所不欲,勿施于人。 ——《论语》 译:自己不想要的(痛苦、灾难、祸事……),就不要把它强加到别人身上去。 8.当仁,不让于师。 ——《论语》 译:遇到应该做的好事,不能犹豫不决,即使老师在一旁,也应该抢着去做。后发展为成语“当仁不让”。 9.君子欲讷于言而敏于行。 ——《论语》 译:君子不会夸夸其谈,做起事来却敏捷灵巧。 10.二人同心,其利断金;同心之言,其臭如兰。 ——《周易》 译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。 11.君子藏器于身,待时而动。 ——《周易》 译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。 12.满招损,谦受益。 ——《尚书》 译:自满于已获得的成绩,将会招来损失和灾害;谦逊并时时感到了自己的不足,就能因此而得益。 13.人不知而不愠,不亦君子乎? ——《论语》 译:如果我有了某些成就,别人并不理解,可我决不会感到气愤、委屈。这不也是一种君子风度的表现吗?知缘斋主人 14.言必信 ,行必果。 ——《论语》 译:说了的话,一定要守信用;确定了要干的事,就一定要坚决果敢地干下去。 15.毋意,毋必,毋固,毋我。 ——《论语》 译:讲事实,不凭空猜测;遇事不专断,不任性,可行则行;行事要灵活,不死板;凡事不以“我”为中心,不自以为是,与周围的人群策群力,共同完成任务。 16.三人行,必有我师焉,择其善者而从之,其不善者而改之。——《论语》 译:三个人在一起,其中必有某人在某方面是值得我学习的,那他就可当我的老师。我选取他的优点来学习,对他的缺点和不足,我会引以为戒,有则改之。 17.君子求诸己,小人求诸人。 ——《论语》 译:君子总是责备自己,从自身找缺点,找问题。小人常常把目光射向别人,找别人的缺点和不足。 18.君子坦荡荡,小人长戚戚。 ——《论语》 译:君子心胸开朗,思想上坦率洁净,外貌动作也显得十分舒畅安定。小人心里欲念太多,心理负担很重,就常忧虑、担心,外貌、动作也显得忐忑不安,常是坐不定, 站不稳的样子。
反比例函数全章ppt16628
是 _x_<_-_2_或__x_>_0 .
本节收获
1、进一步稳固复习了作函数图象的一般方法和步骤 2、亲手画出函数的图象,用类比的方法,数形结合的思想, 有了对图形进展观察、分析和归纳的体验,掌握了反比例 函数的图象和性质 3、反比例函数 y k (k为常数,k≠0)的图象是双曲线
x 当k>0时,双曲线的两支分别位于第一、第三象限, 在每个 象限内y值随x值的增大而减小。
17.1.1反比例函数
t 1463 v
1000
1.68 10 4
y
S
x
n
函数关系式
v14,6y310,s001.68140 t14,6y310,s001.68140 tx n vx n v14,6y310,s001.68140 tx n
具有什么共同特征? 具有 y k 的形
x
式,其中k≠0,k为常数
1、什么是反比例函数?
一般地,形如 y k 的函数〔k是常数,k≠0〕 叫做反比例函数. x
2、反比例函数的定义中还需要注意什么?
◆自变量x的次数为 -1 ◆自变量x的取值范围 x≠0 ◆假设函数y=〔m-2)xm2-5是反比例函数,那么-2m= ,
3、请回忆:正比例函数的图象和性质
解析式
y=kx (k≠0)
◆只要k取正值,图 象都位于第一、三象 限内
◆K的值还可以取 其他一些什么值? 说说看
y
6
5
6
4
y
3
x
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
怎 样k 画 0时 出 yk的 当图k 象 2、 ? 3 如
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
待定系数法求函数的解析式
1.下列等式中,哪些是反比例函数? 并指出常数
k的值.
(1)y
x 3
(4)y 5
x2
(2)y
2 x
(5) y 3
2x
(3)xy=21 (6) y 1 3
x
(7)y=x-4 (8)y=3x-1
展
2、已知y是x的反比例函数,当x=2时,y=6. (1)写出y与x的函数关系式; (2)求当x=4时,y的值.
(3)已知北京市的总面积为1.68×104平方千米,人均 占有的土地面积S(单位:平方千米/人)随全市总人口 n(单位:人)的变化而变化。
ห้องสมุดไป่ตู้
导
函数关系式:
v 1463 t
y 1000 S 1.68104
x
n
它们具有什么共同特征?
具有 y k 的形式,其中k≠0,k为常数. x
形如
y
k
x (k为常数,k≠0)的函数称为反
导
在下列实际问题中,变量间的对应关系可用怎样的函 数关系式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v (单位:km/h)随此次列车的全程运行时间t(单位: h)的变化而变化。
(2)某住宅小区要种植一个面积为1000m2的矩形草 坪,草坪的长y(单位:m )随宽x(单位:m )的 变化而变化。
比例函数,其中x是自变量,y是函数。
三种形式:
y= _K__
X
y=kx-1
Xy=k
思
请大家结合课本39页到40页的内容, 自主完成学案上【合作探究】、【深入 学习】的问题。
议
1、两个人互相核对答案,交流自己的 做题思路和方法(对议); 2、对议解决不了的问题可以小组内互 相交流、讨论(组议)。
展
1.下列等式中,哪些是反比例函数? 并指出常数
k的值.
(1)y
x 3
(4)y 5
x2
(2)y
2 x
(5) y 3
2x
(3)xy=21 (6) y 1 3
x
(7)y=x-4 (8)y=3x-1
展
2、已知y是x的反比例函数,当x=2时,y=6. (1)写出y与x的函数关系式; (2)求当x=4时,y的值.
(3)已知北京市的总面积为1.68×104平方千米,人均 占有的土地面积S(单位:平方千米/人)随全市总人口 n(单位:人)的变化而变化。
ห้องสมุดไป่ตู้
导
函数关系式:
v 1463 t
y 1000 S 1.68104
x
n
它们具有什么共同特征?
具有 y k 的形式,其中k≠0,k为常数. x
形如
y
k
x (k为常数,k≠0)的函数称为反
导
在下列实际问题中,变量间的对应关系可用怎样的函 数关系式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v (单位:km/h)随此次列车的全程运行时间t(单位: h)的变化而变化。
(2)某住宅小区要种植一个面积为1000m2的矩形草 坪,草坪的长y(单位:m )随宽x(单位:m )的 变化而变化。
比例函数,其中x是自变量,y是函数。
三种形式:
y= _K__
X
y=kx-1
Xy=k
思
请大家结合课本39页到40页的内容, 自主完成学案上【合作探究】、【深入 学习】的问题。
议
1、两个人互相核对答案,交流自己的 做题思路和方法(对议); 2、对议解决不了的问题可以小组内互 相交流、讨论(组议)。
展