初二下反比例函数段位测试(错题总结20130405)

合集下载

(word完整版)初二数学反比例函数测试题

(word完整版)初二数学反比例函数测试题

反比例函数测试题一、选择题1.反比例函数y =-4x 的图象在 ()A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限2.已知关于x 的函数y =k (x +1)和y =-k x (k ≠0)它们在同一坐标系中的大致图象是(• )3.已知反比例函数y =xk 的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限4.函数x k y =的图象经过点(-4,6),则下列各点中在xk y =图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 5.正比例函数kx y =和反比例函数x k y =在同一坐标系内的图象为( )B 6.在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是( ) A 、1k <0,2k >0 B 、1k >0,2k <0 C 、1k 、2k 同号 D 、1k 、2k 异号7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数xkb y =的图像在( )A 第一二象限B 第三 四象限C 第一三象限D 第二三象限y o y o y o yo二、填空题:(3分×10=30分)1、y 与x 成反比例,且当y =6时,31=x ,这个函数解析式为 ;2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型)3、函数2x y -=和函数xy 2=的图象有 个交点; 4、反比例函数xk y =的图象经过(-23,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ; 5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;7、右图3是反比例函数x k y 2-=的图象,则k 的取值范围是 . 8、函数xy 2-=的图象,在每一个象限内,y 随x 的增大而 ; 9、反比例函数xy 2=在第一象限内的图象如图,点M 是图象上 一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ; 10、()522--=m x m y 是y 关于x 的反比例函数,则m 值为 ;(三)解答题1、已知一次函数b kx y +=与反比例函数xm y =的图像交于A (—2 ,1) B (1 ,n )俩点。

(word版)初二数学反比例函数测试题

(word版)初二数学反比例函数测试题

反比例函数测试题一、选择题4〔〕1.反比例函数y=-的图象在xA.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.关于x的函数y=k〔x+1〕和y=-k〔k≠0〕它们在同一坐标系中的大致图象是x〔?〕3.反比例函数y=k的图象经过点〔m,3m〕,那么此反比例函数的图象在〔〕xA.第一、二象限 B .第一、三象限C.第二、四象限 D .第三、四象限4.函数y k4,6〕,那么以下各点中在yk〕的图象经过点〔-图象上的是〔x xA、〔3,8〕B、〔3,-8〕C、〔-8,-3〕D、〔-4,-6〕5.正比例函数y kx和反比例函数k在同一坐标系内的图象为〔〕yy y x y yo x ox o x o xA B C D6.在同一直角坐标平面内,如果直线y k1x与双曲线y k2没有交点,那么k1和k2的x关系一定是〔〕A、k1<0,k2>0B、k1>0,k2<0C、k1、k2同号D、k1、k2异号7.一次函数y=kx+b的图像经过第一二四象限那么反比例函数kby的图像在x〔〕A 第一二象限B第三四象限C第一三象限D第二三象限二、填空题:〔3分×10=30分〕1、y 与x 成反比例,且当 y =6时,x1;,这个函数解析式为32、当路程s 一定时,速度 v 与时间t 之间的函数关系是;〔填函数类型〕3、函数yx2的图象有 个交点;和函数y x24、反比例函数 yk的图象经过〔- 3,5〕点、〔a ,-3〕及〔10,b 〕点,那么k =x,b = 2,a =;5y 4m 1xm 4是正比例函数,那么m,图象经过象、假设函数限;6、y 与x-2成反比例,当 x=3时,y=1,那么y 与x 间的函数关系式为;7、右图3是反比例函数y k 2的图象,那么k 的取值范围是.x28、函数y的图象,在每一个象限内,y 随x 的增大x而;9、反比例函y 2M 是图象数x 在第一象限内的图象如图,点上一点,MP垂直x轴于点P,那么△MOP的面积为;y10、y m2x m25是y关于x的反比例函数,那么m值为;MO P x 〔三〕解答题1、一次函数y kxb与反比例函数y m的图像交于A〔—2,1〕B〔1,n〕x俩点。

八年级下《反比例函数》单元测试含答案

八年级下《反比例函数》单元测试含答案

八年级下《反比例函数》单元测试含答案反比例函数单元测试一、选择题(本大题共9小题,共27.0分)1.已知函数f(x)=(x−a)(x−b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的大致图象是()A. AB. BC. CD. D2.函数f(x)=x|x−2|的单调减区间是()A. [1,2]B. [−1,0]C. [0,2]D. [2,+∞)3. 4.下列关系式中,表示y是x的反比例函数的是…………………………………………()A. y=13x B. y=3x2C. y=13xD. y=12x−54.已知变量x、y满足下面的关系:则x,y之间用关系式表示为( )A. y=3x B. y=−x3C. y=−3xD. y=x35.在反比例函数y=1−kx的图象的任一支上,y都随x的增大而增大,则k的值可以是( )A. −1B. 0C. 1D. 26.如果x与y满足xy+1=0,则y是x的( )A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数7.如图所示,正比例函数y1=k1x(k1≠0)的图象与反比例函数y2=k2x(k2≠0)的图象相交于A、B两点,其中A的横坐标为2,当y1>y2时,x的取值范围是( )A. x<−2或x>2B. x<−2或0<x<2C. −2<x<0或0<x<2D. −2<x<0或x>28.若反比例函数y=kx的图象经过点(−1,2),则这个反比例函数的图象还经过点( )A. (2,−1)B. (−12,1) C. (−2,−1) D. (12,2)9.在平面直角坐标系中,有反比例函数y=1x 与y=−1x的图象和正方形ABCD,原点O与对角线AC,BD的交点重合,且如图所示的阴影部分面积为8,则AB的长是( )A. 2B. 4C. 6D. 8二、填空题10.若正比例函数y=2x与反比例函数y=kx(k不为0)的图象有一个交点为(2,m),则m=______ ,k=______ ,它们的另一个交点为______ .11.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是______ .12.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l//x轴,l分别与反比例函数y=kx 和y=4x的图象交于A、B两点,若S△AOB=3,则k的值为______ .13.已知函数y=kx的图象经过(−1,3)点,如果点(2,m)也在这个函数图象上,则m=______ .14.已知点A是函数y=−4x的图象上的一点,过A点作AM⊥x轴,垂足为M,连接OA,则△OAM的面积为______ .三、解答题15.已知极坐标系的极点在平面直角坐标系的原点处,极轴与x轴的正半轴重合.直线l的参数方程为x=−1+32ty=12t(t为参数),曲线C的极坐标方程为ρ=4cosθ.(Ⅰ)写出曲线C的直角坐标方程,并指明C是什么曲线;(Ⅱ)设直线l与曲线C相交于P,Q两点,求|PQ|的值.16.已知函数f(x)=3x−13|x|.(Ⅰ)若f(x)=2,求x的值;(Ⅱ)判断x>0时,函数f(x)的单调性;15.(III)若3t f(2t)+mf(t)≥0对于t∈[12,1]恒成立,求m的取值范围.17.如图,已知反比例函数y1=kx和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为−1.过点A作AB⊥x轴于点B,△AOB的面积为1.⑴求反比例函数和一次函数的解析式.⑵若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.⑶结合图象直接写出:当y1>y2时,x的取值范围.18.在双曲线y=1−k的任一支上,y都随x的增大而增大,则k的取值范围.x上的点,点A的坐标是19.如图,A、B是双曲线y=kx(1,4),B是线段AC的中点.(1)求k的值;(2)求点B的坐标;(3)求△OAC的面积.【答案】1. B2. B3. C4. C5. D6. B7. D8. A9. B10. 4;8;(−2,−4)11. 25212. −213. −3214. 215. 略16. 略17. 略18. 解:∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1−k<0,∴k>1.19. 解:(1)把A(1,4)代入y=kx 得4=k1,解得k=4;(2)由B是AC的中点可得B点的纵坐标是A点纵坐标的一半,即y=2,把y=2代入y=4x求得x=2,故B点的坐标为(2,2);(3)由A、B点的坐标求得直线AB的解析式为y=−2x+6,令y=0,求得x=3,∴C点的坐标为(3,0)∴△OAC的面积为12×3×4=6..。

(易错题精选)初中数学反比例函数知识点训练及答案

(易错题精选)初中数学反比例函数知识点训练及答案

(易错题精选)初中数学反比例函数知识点训练及答案一、选择题1.已知1122(,),,)A x y Bx y (均在反比例函数2y x =的图像上,若120x x <<,则12,y y 的大小关系是( )A .120y y <<B .210y y <<C .120y y <<D .210y y << 【答案】D【解析】【分析】先根据反比例函数的性质判断出函数图象所在的象限,再根据反比例函数的性质即可作出判断.【详解】解:∵反比例函数2y x=中k=2>0, ∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小,∵0<x l <x 2,∴点A (x 1,y 1),B (x 2,y 2)均在第一象限,∴0<y 2<y l .故选:D .【点睛】此题考查反比例函数图象上点的坐标特点,熟知反比例函数图象的增减性是解题的关键.2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【分析】根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A、B的坐标,表示出k1、k2,进而得出k2与k1的比值.【详解】如图,设AB交x轴于点C,又设AC=a.∵AB⊥x轴∴∠ACO=90°在Rt△AOC中,OC=AC·tan∠OAB=a·tan60°=3a∴点A的坐标是(3a,a)同理可得点B的坐标是(3a,-3a)∴k1=3a×a=3a2, k2=3a×(-3a)=-33a∴213333k ak a-==-.故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k,是解决问题的方法.3.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.32【答案】D【分析】【详解】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.4.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x =, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.5.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x=的图象上,∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.6.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】 【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k的几何意义,作出辅助线,构建矩形是解题的关键.7.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴反比例函数y=a b x - 的图象过一、三象限, 所以此选项不正确; B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【分析】过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x =的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( )A .010<x <4 B .011<x <43 C .011<x <32 D .01<x <12 【答案】C【解析】【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围.【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方;当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C 【解析】 【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】 由题意得:S 1=S 2=12|k|=12. 故选:C . 【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3, ∴S △ABC = S △AOC +S △COB =6. 故答案选C. 【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.13.已知反比例函数ky x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( )A .0B .1C .2D .3【答案】D 【解析】 【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数ky x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上,∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k=-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.14.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14-【答案】B 【解析】 【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫- ⎪⎝⎭,然后由点的坐标即可求得答案. 【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x=上∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x= ∵90AOB ∠=︒∴90AOD BOD ∠+∠=︒ ∴90BOE AOF ∠+∠=︒ ∵BE x ⊥,AF x ⊥ ∴90BEO OFA ∠=∠=︒ ∴90OAF AOF ∠+∠=︒ ∴BOE OAF ∠=∠ ∴BOE OAF V V ∽ ∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫-⎪⎝⎭∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B 【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.15.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C 【解析】 【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解. 【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<, 故选C . 【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.16.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D 【解析】 【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论. 【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形 ∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同 由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a )∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D . 【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.17.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=kx在同一坐标系内的大致图象是( ) A . B . C . D .【答案】D 【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=kx的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点, ∴△=4﹣4(k+1)>0, 解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限, 反比例函数y=kx的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.18.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x=-的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2【答案】C【解析】 【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论. 【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x=-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2, 故选C. 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.19.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0 【答案】B 【解析】 【分析】根据反比例函数的性质,逐一进行判断即可得答案. 【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4); ②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B . 【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.20.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x=<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个C .1个D .没有【答案】D 【解析】 【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择. 【详解】 ∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D. 【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.。

八年级数学下17章反比例函数单元测试题

八年级数学下17章反比例函数单元测试题

第17章《反比例函数》测试题一、选择题:1.下列函数中,不属于y 与x 反比例函数的是( ) A.1xy = B.11y x =+ C.1y x -=- D.13y x= 2.有以下判断:①圆面积公式2S r π=中,面积S 与半径r 成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式213V r h π=中,当体积V 不变时,圆柱的高h 与底面半径r 的平方成反比例,其中错误的有( )A.1个B.2个C.3个D.4个3.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( ) A. 正比例函数 B. 反比例函数 C. 一次函数 D. 不能确定4.如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6B 、3C 、+3或-3D 、+6或-65.(2009年娄底)市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )6.在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )A.1k <0,2k >0B.1k >0,2k <0C.1k 、2k 同号D.1k 、2k 异号7.(09河池)如图5,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >8.(2009丽水市)如图,点P 在反比例函数1y x =(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .)0(5>-=x xy B .)0(5>=x x yC . )0(6>-=x x yD . )0(6>=x xy9.(09恩施市)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是( )10.在同一坐标系中,函数ky x=和3y kx =+的图象大致是二、填空题: 11.如果函数122--=m xm y 是反比例函数,那么=m ____________.12.已知y 与x 成反比例,且当2-=x 时,3=y ,则y 与x 的函数关系是_________,当3-=x 时,=y _____________。

八年级数学下册《反比例函数》单元检测练习试卷及答案有详细解析

八年级数学下册《反比例函数》单元检测练习试卷及答案有详细解析

八年级数学下册《反比例函数》单元检测练习试卷一、选择题1、如图,已知函数,点A 在正y 轴上,过点A 作轴,交两个函数的图象于点B 和C ,若,则k 的值是( )A .6B .3C .-3D .-62、直线l 与双曲线C 在第一象限相交于点A 、B 两点,其图像信息如图4所示,则阴影阴部分(包括边界)横纵坐标都是整数的点(俗称格点)有( ) A. 4个 B. 5个 C. 6个 D. 8个(第1题图) (第2题图) (第3题图)3、如图,已知双曲线y =(k>0)经过Rt △OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为6,则k 的值为( ) A. 1 B. 2 C. 3 D. 44、若A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)是反比例函数y =图象上的点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系正确的是( )A .y 3>y 1>y 2B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 3>y 2>y 1 5、若反比例函数y =(m -2)x的图象经过第二、四象限,则m 的值为( )A .3B .-3C .±3D .±1 6、如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =-和y =的图象交于点A 和点B ,若点c 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A. 3B. 4C. 5D. 67、若某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A .(-3,2)B .(3,2)C .(2,3)D .(6,1)8、如图,直线l 和双曲线y =(k>0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP .设△AOC 面积是S 1、△BOD 面积是S 2、△POE 面积是S 3,则( ) A. S 1<S 2<S 3 B. S 1>S 2>S 3 C. S 1=S 2>S 3 D. S 1=S 2<S 39、关于反比例函数的图象,下列说法正确的是()A .必经过点(2,-2)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称10、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它们的另一个交点的坐标为( )A .(2,1)B .(-1,-2)C .(-2,1)D .(2,-1)二、填空题11、如图,在反比例函数y = (x>0)的图象上,有点P 1、P 2、P 3、P 4,它们的横坐标依次为1、2、3、4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1、S 2、S 3,则S 1+S 2+S 3=_______。

八年级下册反比例函数测试题

八年级下册反比例函数测试题

反比例函数练习1、下列函数中,反比例函数是( ) A 、y=x+1 B 、21x y =C 、1=xyD 、3xy=12、函数y 1=kx 和xky =2的图象如图,自变量x 的取值范围相同的是( )3、函数xm y =与)0(≠-=m m mx y 在同一平面直角坐标系中的图像可能是( )。

4、反比例函数xk y 2=(k ≠0)的图象的两个分支分别位于( )象限。

A 、一、二 B 、一、三 C 、二、四 D 、一、四5、当三角形的面积一定时,三角形的底和底边上的高成( )A 、正比例函数 B 、反比例函数 C 、一次函数 D 、二次函数6、若点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线xy 1-=上,则( ) A 、x 1>x 2>x 3 B 、x 1>x 3>x 2 C 、x 3>x 2>x 1 D 、x 3>x 1>x 27、如图1:是三个反比例函数xk y 1=,xk y 2=,xk y 3=在x 轴上的图像,由此观察得到k 1、k 2、k 3的大小关系为( ) A 、k 1>k 2>k 3 B 、k 1>k 3>k 2 C 、k 3>k 2>k 1 D 、k 3>k 1>k 28、如图2,正比例函数y=x 与反比例xy 1=的图象相交于A 、C 两点,AB ⊥x 轴B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( )A 、1B 、23C 、2D 、259、如图3,已知点A 是一次函数y =x 的图象与反比例函数xy 2=的图象在 第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么△AOB 的面积为A 、2B 、22 C 、 D 、1、已知y 与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________2、如果反比例函数xky =的图象经过点(3,1),那么k=_______。

(易错题精选)初中数学反比例函数易错题汇编附答案解析

(易错题精选)初中数学反比例函数易错题汇编附答案解析

(易错题精选)初中数学反比例函数易错题汇编附答案解析一、选择题1.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.2.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.3.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.4.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( ) A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.5.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B【解析】【分析】 作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.7.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A .B .C .D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.8.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3∴点A 3a ,a )同理可得 点B 3,-3a )∴k 1332 , k 23a×(-3a )3a∴213333k a k a==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.11.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】 解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0∴. y 2<y 1<y 3故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.12.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA ,∴251522BODOACSOBS OA⎛⎫==÷=⎪⎝⎭△△,∴5OBOA=,∴tan∠BAO=5OBOA=.故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.13.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数1(0)ky xx=>和2(0)ky xx=>的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.12PMQMkk=C.这两个函数的图象一定关于x轴对称D.△POQ的面积是()1212k k+【答案】D【解析】【分析】【详解】解:根据反比例函数的性质逐一作出判断:A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D .∵|1k |=PM•MO ,|2k |=MQ•MO ,∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO•MQ=()1212k k +. 故此选项正确.故选D .14.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.15.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴25424CD OD==,∴CD85=,OD45=,∴4585),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.17.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a =+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.18.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【解析】【分析】设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a 根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.19.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【分析】过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V ∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.20.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.。

八年级下《反比例函数》检测题含答案

八年级下《反比例函数》检测题含答案

y
的一支. (1)这个反比例函数图象的另一支在第几象限?常数 m 的取值范围 是什么? (2)若该函数的图象与正比例函数 y 2 x 的图象在第一象内限的交 点为 A ,过点 A 作 x 轴的垂线,垂足为 B ,当 △ AOB 的面积为 4 时, 求点 A 的坐标及反比例函数的解析式.
O
第 22 题图
8 x
D. y
8 x2

3.在同一坐标系中,函数 y

4.当 k >0, x <0 时,反比例函数 y
A.第一象限 B.第二象限 D.第四象限 k 5.若函数 y 的图象经过点(3,-7),则它一定还经过点( ) x A.(3,7) B.(-3,-7) C.(-3,7) D.(2,-7) 6.如图,菱形 OABC 的顶点 C 的坐标为(3,4).顶点 A 在 x 轴的正半轴上,反比例函数 k ) y ( x 0) 的图象经过顶点 B ,则 k 的值为( x A.12 B.20 C.24 D.32
x
23.(8 分)如图,在平面直角坐标系中, O 为坐标原点.已知反比例函 k 数 y (k 0) 的图象经过点 A(2,m) ,过点 A 作 AB x 轴于点 x 1 B ,且 △ AOB 的面积为 . 2 (1)求 k 和 m 的值; k (2)点 C ( x, y ) 在反比例函数 y 的图象上,求当 1 ≤ x ≤ 3 时 x 函数值 y 的取值范围; (3)过原点 O 的直线 l 与反比例函数 y
八年级下《反比例函数》检测题含答案
反比例函数 检测题
(满分:100 分,时间:90 分钟) 一、选择题(每小题 3 分,共 30 分) 1.下列函数是反比例函数的是( A. y x 2.若反比例函数 y A. B. y kx 1 ) C. y

初中数学八年级下册反比例函数同步测试题及参考答案

初中数学八年级下册反比例函数同步测试题及参考答案

初中数学八年级下册反比例函数同步测试题及参考答案选择题1. 对于反比例函数y =x5,下列结论中正确的是( ) A.y 取正值 B.y 随x 的增大而增大 C.y 随x 的增大而减小 D.y 取负值 2.下列各点中,在双曲线xy 2=上的是( ) A.(1,2) B.(2,2) C.(4,2) D.(0,2) 3. 下列函数中,图象经过点(11)-,的反比例函数解析式是( )A .1y x =B .1y x -=C .2y x =D .2y x -= 4.函数x k y =的图象经过点(-4,6),则下列个点中在xky =图象上的是( )A.(3,8 )B.(-3,8)C.(-8,-3)D.(-4,-6)5. 在下图中,反比例函数xk y 12+=的图象大致是( )6. 已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。

A 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定7.函数y =mx 922--m m 的图象是双曲线,且在每个象限内函数值y 随x 的增大而减小,则m 的值是( )A.-2B.4C.4或-2D.-18. 若反比例函数y =xk的图象经过点(-2, 4),那么这个函数是( ) A.y =x 8 B.y =8x C.y =-x 8 D.y =-8x9.反比例函数xm y 5-=的图象的两个分支分别在二、四象限内,那么m 的取值范围是( )A.0<mB.0>mC.5>mD.5<m10. 如图,反比例函数ky x=的图象经过点A ,则k 的值 是( )A.2B. 1.5C.3-D. 32-11. 如图,P P P 123、、是双曲线上的三点,过这三点分别作yP A OP A OP A O 112233、、,设它们的面积分别是S S S 123、、,则()A . S S S 123<<B . SS S 213<< C . S S S 132<<D . S S S 123==12. 反比例函数ky x=与正比例函数2y x =图像的一个交点的横坐标为1,则反比例函数的图像大致为( )13. 函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )14. 如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.A.4B.5C.10D.20 二、填空题15. 如果点(a ,-3a )在双曲线y =xk上,那么k _________0.xA .xB .xC . xD .16. y 与x +1成反比例,当x =2时,y =1,则当y =-1时,x =_________. 17. 函数y =xk(k >0)的图象上两点A (x 1, y 1)和B (x 2, y 2),且x 1>x 2>0,分别过A 、B 向x 轴作AA 1⊥x 轴于A 1,BB 1⊥x 轴于B 1,则O AA S 1∆_________O BB S 1∆ (填“>”“=”或“<”),若O AA S 1∆=2,则函数解析式为_________.18. (08四川省资阳市)若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足_______________时,1y >2y . 19. 已知12y y y =+,其中1y 与1x成反比例且比例系数为1k ,2y 与2x 成正比例且比例系数为2k ,若1-=x 时,0=y ,则1k 与2k 的关系为 20. 已知(11,y x )、(22,y x )为反比例函数xky =图象上的点,当2121,0y y x x <<<时,则k 的一个值为 (只符合条件的一个即可).21. 近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 . 三、解答题(本大题24分)22.甲、乙两地相距100km ,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间)(h t 表示为汽车速度)/(h km v 的函数,并画出函数图象.23已知函数y = y 1-y 2,y 1与x 成反比例,y 2与x -2成正比例,且当x = 1时,y =-1;当x = 3时,y = 5.求当x =5时y 的值。

苏教版八年级数学下册第九章_反比例函数单元复习题含答案

苏教版八年级数学下册第九章_反比例函数单元复习题含答案

《反比例函数》复习检测试题一、填空题:(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 1、反比例函数y=xk的图象经过(2,﹣1)点,则k 的值为____。

2、如图1,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________. 3、若反比例函数)0k (xky <=的函数图像过点P (2,m )、Q (1,n ), 则m 与n 的大小关系是:m n (选择填“>” 、“=”、“<”=.) 4、过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.5、已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是____;6、两个反比例函数k y x =和1y x =在第一象限内的图象如图2所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x =的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 。

(把你认为正确结论的序号都填上,少填或错填不给分)7、如图3,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +与2y 的值为 。

浙教版八年级下册数学第六章 反比例函数含答案(易错题)

浙教版八年级下册数学第六章 反比例函数含答案(易错题)

浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、若函数的图象过点(3,-7),那么它一定还经过点( ).A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)2、若点在反比例函数的图象上,则的大小关系是()A. B. C. D.3、若A(,b)、B(-1,c)是函数的图象上的两点,且<0,则b与c的大小关系为()A.b<cB.b>cC.b=cD.无法判断4、若反比例函数的图象在一、三象限,正比例函数y=(2k-9)x在二、四象限,则k的整数值是()A.2B.3C.4D.55、已知反比例函数的图象如图,则一元二次方程x2-(2k-1)x+k2-1=0根的情况是()A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。

6、如图,矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A. B. C. D.7、如图,直线y1= x+2与双曲线y2= 交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()A.x>﹣6或0<x<2B.﹣6<x<0或x>2C.x<﹣6或0<x<2D.﹣6<x<28、如图,在平面直角坐标系中,正方形ABCD的顶点A、D分别在x轴、y轴上,反比例函数的图象经过正方形对角线的交点E,若点A(2,0)、D(0,4),则k=()A.6B.8C.9D.129、如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,…,与函数y=(x>0)的图象分别交于点A1、A2、A3、A4、…;与函数y=(x>0)的图象分别交于点B1、B2、B3、B4、….如果四边形A1A2B2B1的面积记为S1,四边形A2A3B3B2的面积记为S2,四边形A3A4B4B3的面积记为S3,…,以此类推.则S10的值是()A. B. C. D.10、如图,已知直线与双曲线相交于和两点,则不等式的解集是()A. 或B.C. 或D.11、反比例函数图象上三个点的坐标为、、,若,则的大小关系是()A. B. C. D.12、如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=(x>0)经过线段DC的中点E,若BD=4,则AG的长为()A. B. +2 C.2 +1 D. +113、下列函数中,反比例函数是()A.y=x+1B.y=C. =1D.3xy=214、如图,已知点P为反比例函数上一点,过点P向坐标轴引垂线,垂足分别为M,N,那么四边形MONP的面积为()A.-6B.3C.6D.1215、函数和函数y2=x,则关于函数y=y1+y2的结论正确的是()A.函数的图象关于原点中心对称B.当x>0时,y随x的增大而减小C.当x>0时,函数的图象最低点的坐标是(1,6)D.函数恒过点(2,4)二、填空题(共10题,共计30分)16、如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积等于________(结果保留π).17、若函数的图象在其象限内随的增大而减小,则的取值范围是 ________18、某户家庭用购电卡购买了2 000度电,若此户家庭平均每天的用电量为x(单位:度),这2 000度电能够使用的天数为y(单位:天),则y与x的函数关系式为y=________.19、如图,点A在双曲线y= 的第一象限的那一支上,AB⊥y轴于点B,点C 在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为________.20、已知A(2,y1),(3,y2)是反比列函数y=(k<0)的两点,则y 1________y2.21、如图,点A再反比例函数的图象上,点B在x轴的负半轴上,直线AB交y轴于点C,若,△AOB的面积为9,则k的值为________.22、已知反比例函数y=﹣,若y≤1,则自变量x的取值范围是________.23、如图,在▱ABCD中,AB⊥BD,= ,将▱ABCD放置在平面直角坐标系中,且AD⊥x轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线(k>0)同时经过B、D两点,则点B的坐标是________24、已知y=(a-1) 是反比例函数,则a=________.25、若函数是y关于x的反比例函数,则m的值为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、水池内有水40m3,经过排水管的时间y(h)与每小时流出的水量xm3之间的关系是反比例函数吗?28、如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.29、在平面直角坐标系内,点为坐标原点,一次函数的图象与反比例函数的图象交于,两点,若,点的横坐标为,求反比例函数及一次函数的解析式.30、有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是;(2)下表是y与x的几组对应值.求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可)参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、C5、C6、C7、C8、C9、D10、A11、B12、A13、D14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、。

八年级数学下册反比例函数测试题10

八年级数学下册反比例函数测试题10

的图象经过点
A (2,3
)
.
(1)求这个函数的解析式;
(2)在平面直角坐标系中画出图象
21.(9分)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交
m 于A、B两点,且与反比例函数y= x (m≠0)的图象在第一象限交于C点,CD垂
直于x轴,垂足为D,若OA=OB=OD=1. (1)求点A、B、D的坐标;(2)求直线AB的解析式.(3)反比例函数的解析
得分_______
一、精心选一选,想信你一定能选对!(每题2分,共20分) 1.下列函数中,y是x的反比例函数的为( )
2
1
(A) y 2x 1
(B)
y x2
(C)
y 5x
(D) 2 y x
2 2.反比例函数y= x 的图象位于( )
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、 四象限

22.(10分) 一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时 到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时) 之间的函数关系式;(2)如果该司机匀速返回时,用了48小时,求返回时的速度.
8 23.(12分)如图,已知一次函数y=kx+b的图象与反比例函数y=- x 的图象交
k 11.一个反比例函数y= x (k≠0)的图象经过点P(-2,-1),则该反比例函数的
解析式是________.
6 12.已知关于x的一次函数y=kx+1和反比例函数y= x 的图象都经过点(2,m),则
一次函数的解析式是________. 13.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所

(易错题精选)初中数学反比例函数易错题汇编及答案解析

(易错题精选)初中数学反比例函数易错题汇编及答案解析
(易错题精选)初中数学反比例函数易错题汇编及答案解析 一、选择题
1.使关于 x 的分式方程 =2 的解为非负数,且使反比例函数 y= 限时满足条件的所有整数 k 的和为( ). A.0 B.1 C.2 D.3 【答案】B 【解析】
图象过第一、三象
试题分析:分别根据题意确定 k 的值,然后相加即可.∵关于 x 的分式方程 =2 的解为
y1 )

B(1,
y2
)

C(2,
y3 )
三个点,
1 y1 k , 1 y2 k , 2 y3 k ,
y1
k

y2
k

y3
1k 2

而k 0,
y1 y3 y2 . 故选: B . 【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数 y k ( k 为常数,且 k 0 ) x
∴反比例函数 y= a b 的图象过一、三象限, x
所以此选项正确; D. 由一次函数图象过二、四象限,得 a<0,交 y 轴负半轴,则 b<0, 满足 ab>0,与已知相矛盾 所以此选项不正确; 故选 C. 【点睛】 此题考查反比例函数的图象,一次函数的图象,解题关键在于确定 a、b 的大小
9.如图,点 P 是反比例函数 y k (x0)图象上一点,过 P 向 x 轴作垂线,垂足为 M,连 x
x
A. 3,1
B. 1, 3
C. 1,3
D. 3,1
【答案】A 【解析】 【分析】
先求出 k=-3,再依次判断各点的横纵坐标乘积,等于-3 即是在该双曲线上,否则不在. 【详解】
∵点 M 1,3 在双曲线 y k 上,
x ∴ k 13 3 ,

八年级数学下册 第六章 反比例函数 反比例函数易错题(新版)浙教版

八年级数学下册 第六章 反比例函数 反比例函数易错题(新版)浙教版

反比例函数易错题 1、假设函数()2m 3m 1y m 1x ++=+是反比例函数,那么m 的值为〔 〕
〔A 〕m =-2 〔B 〕m =1 〔C 〕m =2或m =1 〔D 〕m =-2或m =-1
2、如果反比例函数y=〔m-3〕x m 2−6m +4的图象在第二、四象限,那么m= .
3、点P 是反比例函数k y x
=第四象限的图象上一点,过点P 分别作x 轴、y 轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是〔 〕 〔A 〕2y x =- 〔B 〕2y x = 〔C 〕4y x =- 〔D 〕4y x
= 4、点P 是反比列函数k y x =
,〔k ≠0〕的图象上任一点,过P 点分别做x 轴,y 轴的平行线,假设两平行线与坐标轴围成矩形的面积为2,那么k 的值
为 .
5、甲、乙两地相距100千米,一辆汽车从甲地开往乙地,把汽车到达乙地的时间〔小时〕表示成汽车平均速度
〔千米/小时〕的函数为 ,自变量的取值范
围 . 6、在函数2a 1y x
--=〔a 为常数〕的图象上有三点:()11,y -、21,y 4⎛⎫- ⎪⎝⎭、31,y 2⎛⎫ ⎪⎝⎭
,那么函数值y 1、y 2、y 3的大小关系是〔 〕〔A 〕y 2<y 3<y 1 〔B 〕y 3<y 2<y 1
〔C 〕y 1<y 2<y 3 〔D 〕y 3<y 1<y 2
7、如图,直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x =〔x

的图象分别交于点C 、 D ,且C 点的坐标为〔1-,2〕.
⑴分别求出直线AB 及反比例函数的解析式;
⑵求出点D 的坐标;
⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数
6、一条直线与双曲线y=1/x的交点A(a,4),B(-1,b),则这条直线的关系式为:( C ) 。

A. y=4x-3
B. y=(1/2)x+3
C. y=4x+3
D. y=-4x-3
( 已知双曲线解析式,知道Xa(或Ya),就可以求出Ya(或Xa);
知道直线(一次函数)的两个点的坐标,就能求出这个一次函数)
7、点A、C是反比例函数y=k/x(k>0)的图像上两点,AB⊥X轴于B,CD⊥X轴于D。

记Rt ∆AOB和Rt∆COD的面积分别为S1、S2,则( C )
A. S1>S2
B. S1<S2
C. S1=S2
D.不能确定
(反比例函数上任何点与原点O形成的三角形的面积都相等;
反比例函数上任何点与X轴、Y轴形成的矩形的面积都相等;)
12、双曲线y=(2m+1)X m 的两个分支分别位于第二、四象限。

(先根据双曲线,确定m=-1,
再计算出(2m+1),即得出k值,这样就可以知道分支所在的象限了。


16、在函数y=(-k2-2)/x (k为常数)的图像上有三个点(-2,y1),(-1,y2),(1/2,y3),函数值y1,y2,y3的大小为______________________.
(先确定(-k2-2)的正负性是负,所以双曲线在二、四象限;
然后画出大致的双曲线图及这三个点的相互位置,就可以正确判断了。


17、反比例函数y=k/x与一次函数y=kx+m的图像有一个交点是(-2,1),则它们的另一个交点的坐标是:_________________ 。

(1/2,-4)
(根据已知点的坐标,求出反比例函数的k,求出k=(-2).1=-2 ;
因为点(-2,1)也在一次函数上,所以,m=y-kx=1-(-2).(-2) = -3; 一次函数为y=-2x-3.
解方程组:
Y=(-2)/x
Y=-2x-3
去掉y,得:2x2+3x-2=0,即(2x-1)(x+2)=0; 解得x=1/2或x=-2;
(解一元二次方程的方法:十字分解法,因式分解法,注意方程的一边必须为0)
所以另外一点的横坐标是1/2,代入反比例函数可得,纵坐标是:-2/(1/2)=-4
20、如图所示,已知一次函数y=kx+b 与反比例函数y=m/X的图像交于点A(-3,1),
B(1,n),
(1)求反比例函数及一次函数的解析式;
(2)根据图像写出一次函数的值大于反比例函数值的x的取值范围。

注意点:第(2)问容易漏掉一部分答案。

先确定y1>y2的函数部分,再对应到X轴上。

21、如图所示,已知一次函数y=kx+b(k ≠0)的图像与反比例函数y=8/x 的图像交于A 、B 两点,且点A 的横坐标和B 点的纵坐标都是-2,求∆AOB 的面积。

(S=6)
(先求出A,B
再求出一次函数与Y 轴、X 轴的交点C 、D ; S=S ∆
AOC+ S ∆COD+ S ∆BOD.)
23、已知反比例函数y=k/2x 和一次函数y=2x-1,其中一次函数图像经过(a,b ),(a+1,b+k)两点。

(1)求反比例函数的解析式
(2)如图已知点A 在第一象限,且同时在上述两函数的图像上,求A 点坐标;
(3)利用(2)的结果,请问:在X 轴上是否存在点P,使∆A OP 为等腰三角形?若存在,求P 点坐标,若不存在,说明理由。

((1) k=2;
注意:是一次函数经过2 (2) A(1,1)
(3) 分别以O 点、A 点、P 点为顶点 则可以初步判断出共有4个等腰三角形;
注意:因为A(1,1), 所以:∠AOP=45°,这样可以很快计算出P 点的坐标。

O 顶点:X=-√2,或x=√2; A 顶点:x=2; P 顶点:x=1;。

相关文档
最新文档