旋转对称和中心对称
旋转对称和中心对称
问题与讨论
下列图形是中心对称图形吗?
(1)
(2)
(3)
旋转图形(2) 旋转图形(4)
(4)
旋转图形(1) 旋转图形(3)
点击跳转
返回
旋转
返回
旋转返回Biblioteka 旋转返回旋转
都是中心对称图形
观察图形,并回答下面的问题: (1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形?(1)
(2)(5) (3)哪些既是轴对称图形,又是中心对称图形?
(1)
(2)
(3)
(4)
(5)
(6)
B
2.在①线段、 ②角、 ③等腰三角形、 ④等腰梯 形、⑤平行四边形、 ⑥矩形、 ⑦菱形、 ⑧正方形 ①②③④⑥⑦⑧⑨ 和⑨圆中,是轴对称图形的有 ______________,是 中心对称图形的有①⑤⑥⑦⑧⑨ ____________, 既是轴对称图形 又是中心对称图形的有____________. ①⑥⑦⑧⑨
中心对称图形: 如果把一个图形绕着一个定点旋转1800后, 与初始图形重合,那么这个图形叫做中心对称图形. 这个定点叫做对称中心。
边数为偶数的正多边形都是中心对称图形。
中心对称图形是特殊的旋转对称图形,它的旋转角只能是 180 而旋转对称图形的旋转角在00<
<360之间均可。
探究1:在一次游戏当中,小明将下面左图的四张扑克牌中的一 张旋转180O后,得到右图,小亮看完很快知道小明旋转了哪一张 扑克,你知道为什么吗?
旋转一定的角度可以和自身重合 (1)这些图形有什么共同的特征?
(2)这些图形的不同点在哪?分别绕旋转中心旋转多少度可以 和原图形重合? 第一个图形的旋转角度为120°或240 °,第二个图形 的旋转角度为72°或144°或216°或288°。后三个图形 的旋转角度都为180°,第二,三个是轴对称图形。
旋转对称图形与中心对称图形
初二数学讲义第三讲 旋转对称图形与中心对称图形一、主要知识点1.把—个图形绕旋转中心旋转一定(小于周角)角度后,所得图形能够与自身重合,这种图形称为旋转对称图形。
2.中心对称图形是绕某一中心点旋转180°后能与自身重合的旋转对称图形,这个中心点叫做对称中心;3.中心对称图形是旋转对称图形的特例。
4.中心对称的特征:如果两个图形成中心对称,那么对称中心在对应点的连线上且平分这条线段.两个图形的对应角相等,对应线段平行且相等,两个图形的形状和大小都一样。
5.中心对称与中心对称图形:中心对称与中心对称图形是两个不同的概念,它们既有区别又有联系。
区别:(1)中心对称是指两个图形的关系,中心对称图形是指一个具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称,若把中心对称的两个图形看成—个整体,则成为中心对称图形。
6.常见的中心对称图形有:①线段;②相交直线;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦圆。
既是轴对称图形,又是中心对称图形的有:①线段;②相交直线;④矩形;⑤菱形;⑥正方形;⑦圆。
二、例题与练习例1.下列旋转对称图形中绕哪一个点旋转多少度与自身重合?答:例2.如图所示,该图按顺时针绕旋转中心旋转,可与自身重合的度数是 ( ) (A )60°; (B )180°; (C )120°; (D )320°。
答:(1)(3) (4) (5)例3.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACE 的位置。
(1)旋转中心是点 ;(2)旋转角度是 ;(3)△ADE 是 三角形。
例4、如图,已知△ABC 和点O ,画出△A ’B ’C ’,使△A ’B ’C ’和△ABC 关于点O 成中心对称。
解:(1)连结 并延长 到 ,使 = ,于是得到点 的对称点 ;(2)同样画出点 和点 的对称点 和 ; (3)顺次连结 、 、 。
对称图形的鉴别方法
对称图形的鉴别方法对称图形是指具有一种特定的对称性质的图形,它们在某个轴线、中心点或对角线等方向上具有镜像翻转的关系。
对称图形在我们生活中随处可见,例如蝴蝶的翅膀、人类的面孔、建筑物的立面等。
鉴别对称图形的方法主要包括几何分析法和观察法。
一、几何分析法几何分析法是通过几何性质来判断图形是否具有对称性。
下面介绍几种常见的几何分析方法:1. 轴对称法:轴对称是指图形在某条直线上两侧完全对称,具有镜像关系。
通过观察图形是否可以找到某条直线,使得这条直线能够将图形分成两个完全对称的部分。
如果能够找到这样的直线,则说明图形具有轴对称性。
2. 中心对称法:中心对称是指图形以一个点为中心,对称图形的每一点与该中心点关于一条直线镜像对称。
通过观察图形是否可以找到一个点,使得该点与图形上的每一点都存在镜像关系。
如果能够找到这样的点,则说明图形具有中心对称性。
3. 对角线对称法:对角线对称是指图形以一条对角线为轴线,对称图形的每一点与该对称图形的对应点关于对角线镜像对称。
通过观察图形是否可以找到一条对角线,使得图形上的每一点与该对称图形的对应点关于对角线镜像对称。
如果能够找到这样的对角线,则说明图形具有对角线对称性。
二、观察法观察法是通过直接观察图形的形状、线条和图案等特征来判断图形是否具有对称性。
下面介绍几种常见的观察法:1. 观察对称轴:通过观察图形的形状,可以发现对称轴上的点在图形上对称分布。
对称轴通常是直线,可以通过观察图形的线条、边框和对称现象等来判断。
2. 观察重心:重心是指图形的质量均匀分布的中心点,对称图形的重心通常位于对称轴上。
通过观察图形的形状、线条和质量分布等特征,可以判断图形是否具有对称性。
3. 观察图案:一些图案具有对称性,例如花纹、图形和几何图案等。
通过观察图案的形状和对称分布等特征,可以判断图案是否具有对称性。
除了以上两种方法外,还有一些特殊情况需要特别注意鉴别:1. 镜像对称与旋转对称的区别:镜像对称是指图形在某条轴线上完全对称,而旋转对称是指图形绕着一个点旋转一定角度后与原图形重合。
中心对称与旋转对称
中心对称与旋转对称中心对称和旋转对称是几何学中常见的概念,它们在我们日常生活和各个领域中的应用非常广泛。
本文将从定义、特点以及实际应用等方面对中心对称和旋转对称进行探讨。
一、中心对称中心对称是指平面上的一个图形围绕一个点进行旋转180度后,仍能够与原来的图形完全重合。
中心对称具有如下特点:1. 对称中心:对于一个中心对称的图形,存在一个称为对称中心的点,该点与图形的每一个点都保持相等的距离。
图形中的任意一对对称点均位于对称中心的同一个直径上。
2. 对称轴:对称轴是通过对称中心和图形中任意一对对称点的直线。
对称轴上的任意一点到对称中心的距离与这个点的对称点到对称中心的距离相等。
3. 对称图形:中心对称图形是指具有中心对称性的图形,在进行180度旋转后能够与原来的图形完全重合。
中心对称在我们的日常生活中随处可见。
例如,花朵、雪花、蝴蝶等自然界中的许多图案都具有中心对称性。
此外,在建筑设计、艺术创作等领域中,中心对称也被广泛运用,以达到美观和平衡的效果。
二、旋转对称旋转对称是指平面上的一个图形按照某个点进行旋转一定角度后,可以与原来的图形完全重合。
旋转对称具有如下特点:1. 旋转中心:旋转对称图形的旋转中心是图形中心的一个点,通过该点进行旋转,使图形能够与原来的图形完全重合。
2. 旋转角度:旋转角度是指图形按照旋转中心进行旋转的角度,通常是90度、180度、270度等整数倍的角度。
3. 对称图形:具有旋转对称性的图形,在经过一次或多次旋转后,能够与原来的图形完全重合。
旋转对称在许多领域中都有广泛的应用。
例如,在几何学中,正多边形具有旋转对称性,同时也是中心对称的。
在艺术创作、标志设计等领域,旋转对称常被用于打造简洁而富有美感的图案。
总结:中心对称和旋转对称是几何学中非常重要的概念。
通过中心对称,我们可以实现图形的对称分布和平衡美感;通过旋转对称,我们可以创造出简洁而富有艺术感的图案。
在实际生活和各个领域中,中心对称和旋转对称都有着广泛的应用,丰富了我们的视觉体验。
专题23.3 中心对称(知识讲解)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)
专题23.3 中心对称(知识讲解)【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.特别说明:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.特别说明:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:特别说明:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称求线段、角、面积1.如图所示的两个图形成中心对称,请找出它的对称中点.【答案】见解析.【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.【点拨】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.举一反三:【变式1】如图,在△ABC中,点D是AB边上的中点.已知AC=4,BC=6.(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.【答案】(1)所画图形如图所示见解析;(2) 1<CD<5.【分析】(1)根据中心对称图形的性质找出各顶点的对应点,然后顺次连接即可;(2)根据三角形的三边关系求解即可.解:(1)所画图形如下所示:ΔADE就是所作的图形.(2)由(1)知:△ADE≌△BDC,则CD=DE,AE=BC∴AE-AC<2CD<AE+AC,即BC-AC<2CD<BC+AC∴2<2CD<10解得:1<CD<5.【点拨】本题考查了中心对称图形及三角形三边关系的知识,难度适中,解答第(2)问的关键是通过△ADE△△BDC ,将2CD 放在△ACE 中求解.【变式2】如图,在ABC 中,D 为BC 上任一点,//DE AC 交AB 于点//E DF AB ,交AC 于点F ,求证:点E F ,关于AD 的中点对称.【答案】证明见解析【解析】试题分析:根据题意推知四边形AEDF 是平行四边形,则该四边形关于点O 对称. 证明:如图,连接EF 交于点O .//DE AC 交AB 与//E DF AB ,交AC 于F ,∴四边形AEDF 是平行四边形,∴点E F ,关于AD 的中点对称.类型二、中心对称图形2.如图,在边长均为1个单位长度的小正方形组成的网格中,点A ,点B ,点O 均为格点(每个小正方形的顶点叫做格点).(1)作点A 关于点O 的对称点1A ;(2)连接1A B ,将线段1A B 绕点1A 顺时针旋转90°得点B 对应点1B ,画出旋转后的线段11A B ;(3)连接1AB ,求出四边形11ABA B 的面积.【答案】作图见解析;(2)作图见解析;(3)24.【分析】(1)连接AO 并延长一倍即可得到1A ;(2)由于1A B 是一个44⨯正方形对角线,再找一个以1A 为顶点的44⨯正方形,与1A 相对的点即为1B ,连接线段11A B ;(3)连接1BB ,由11111ABB A BB ABA B S SS =+四边形求出四边形面积. 解:如图所示(1)作出点A 关于点O 的对称点1A ;(2)连接1A B ,画出线段11A B ;(3)连接1BB ,过点A 作1AE BB ⊥于点E ,过点1A 作11A F BB ⊥于点F ;11111ABB A BB ABA B S SS =+四边形 1111122BB AE BB A F =⋅+⋅ 11828422=⨯⨯+⨯⨯ 24=.△四边形11ABA B 的面积是24.【点拨】此题主要考查了图象的旋转以及中心对称,同时考查在网格中的面积计算问题,熟练掌握旋转变换和中心对称变换的定义作出变换后的对应点是解题的关键.举一反三:【变式1】已知:如图,三角形ABM 与三角形ACM 关于直线AF 成轴对称,三角形ABE 与三角形DCE 关于点E 成中心对称,点E 、D 、M 都在线段AF 上,BM 的延长线交CF 于点P .(1)求证:AC=CD ;(2)若△BAC=2△MPC ,请你判断△F 与△MCD 的数量关系,并说明理由.【答案】见解析【分析】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.(1)证明:△△ABM 与△ACM 关于直线AF 成轴对称,∴△ABM ≌△ACM ,∴AB=AC ,又∵△ABE 与△DCE 关于点E 成中心对称,∴△ABE ≌△DCE ,∴AB=CD ,∴AC=CD ;(2)∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE ,∠CMA=∠BMA ,∵∠BAC=2∠MPC ,∠BMA=∠PMF ,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM −∠PMF=α−β,∠MCD=∠CDE −∠DMC=α−β,∴∠F=∠MCD.【点拨】本题主要考查轴对称、中心对称性质和全等三角形的判定及性质.通过轴对称与中心对称的性质得出全等三角形的判定条件是解题的关键.【变式2】 如果一条抛物线2y ax bx c =++(0a ≠)与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;若抛物线2y x bx =-+(0b >)的“抛物线三角形”是等腰直角三角形,则b = .(2)如图,△OAB 是抛物线2'y x b x =-+('0b >)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O 、C 、D 三点的抛物线的表达式;若不存在,说明理由.(3)若抛物线2484y x mx m =-+-+与直线3y =交点的横坐标均为整数,是否存在整数m 的值使这条抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长?若存在,直接写出m 的值;若不存在,说明理由.【答案】(1)等腰,2;(2)存在,y =x 2+;(3)抛物线与直线y =3交点的横坐标均为整数时m =2或m =0【分析】(1)抛物线的顶点必在抛物线与x 轴两交点连线的垂直平分线上,因此这个“抛物线三角形”一定 是等腰三角形。
《中心对称图形》旋转中心对称图形
特点
中心对称图形有一个特点,就是 围绕一个点旋转180度后,能够与 原来的图形重合。这个点通常被 称为“对称中心”。
实例
常见的中心对称图形有圆形、矩形 、菱形等。
中心对称图形的性质
旋转性质
对于中心对称图形,如果我们 将其围绕对称中心旋转180度, 那么它所对应的点也会旋转180
度。
对称性质
中心对称图形的两个部分是关 于对称中心对称的,也就是说 ,如果我们将图形的两部分沿 着对称中心对折,它们会重合
04
中心对称图形和旋转中心对 称图形的实例
中心对称图形的实例
圆
圆是一种典型的中心对称图形,圆的直径是它的对称轴,圆心是 它的对称中心。
蝴蝶
蝴蝶的身体结构呈现出中心对称的特性,当它停在花朵上时,翅 膀上的花纹左右对称,给人以美的享受。
雪花
雪花是一种美丽的晶体,其结构呈现出中心对称的特性,即从中 心向各个方向扩展的形状都是相同的。
中心对称图形与旋转中心对称图形的区别
中心对称图形是对称中心两侧的图形 关于对称中心进行对称,而旋转中心 对称图形是图形围绕某一点旋转180
度后与原图形重合。
中心对称图形是一种静态的对称形式 ,而旋转中心对称图形是一种动态的
对称形式。
中心对称图形强调的是两侧图形的对 称性,而旋转中心对称图形强调的是
THANK YOU.
图形的旋转和重合。
中心对称图形与旋转中心对称图形的转化
旋转中心对称图形可以通过将中心对称图形绕其对称中心旋转180度得 到。
中心对称图形可以通过平移和翻转得到旋转中心对称图形。
在某些情况下,可以将中心对称图形转化为旋转中心对称图形,例如将 一个平行四边形绕其对角线的交点旋转180度后可以得到一个菱形,这 个菱形就是一个旋转中心对称图形。
中心对称与旋转对称性
中心对称与旋转对称性中心对称和旋转对称性是数学中的重要概念,在几何学和代数学中都有广泛的应用。
本文将详细介绍中心对称和旋转对称性的概念、性质以及它们在各个领域的应用。
一、中心对称性中心对称是指图形相对于一个点对称,该点称为中心对称的中心。
可以用镜子来形象地理解中心对称性,当一个图形能够通过镜子对称地折叠在一起,那么这个图形就具有中心对称性。
中心对称的图形在平面上具有以下几个性质:1. 所有的中心对称图形都具有轴对称性。
2. 中心对称图形的任意两个对称点之间的线段都相等。
3. 中心对称图形具有封闭性,即将中心对称图形绕中心旋转180°后依然得到原来的图形。
4. 在平面上,图形的每一点和中心对称图形上的对称点的连线都会经过中心点。
中心对称性在几何学中有广泛的应用,例如建筑设计中的对称结构、艺术创作中的对称图案等。
二、旋转对称性旋转对称是指图形相对于一个点旋转180°后仍然能重合,这个点称为旋转对称的中心。
旋转对称的图形在平面上具有以下几个性质:1. 旋转对称图形的中心是对称图形的一个顶点。
2. 对于旋转对称图形上的任意两个对称点,中心到这两个点的距离相等,并且与旋转角度有关。
3. 旋转对称图形的旋转角度可以是90°、180°、270°和360°。
旋转对称性在自然界和科学中都有广泛的应用。
例如,在生物学中,一些动植物的结构具有旋转对称性,如蝴蝶的图案和植物的花瓣排列;在物理学中,旋转对称性被广泛应用于分子结构的研究和晶体的对称性分析。
三、中心对称与旋转对称的关系中心对称和旋转对称是密切相关的概念,事实上,中心对称图形可以看作是一个旋转对称中心位于无穷远处的特殊情况。
具体来说,中心对称的图形经过180°旋转后可以得到自身,也就是说,中心对称图形具有旋转对称性。
中心对称和旋转对称的关系可以通过以下几个例子来理解:1. 正方形是具有中心对称性的图形,它的中心对称中心位于图形的中心,同时也是它的一个旋转对称中心。
初三数学重点知识点归纳
初三数学重点知识点归纳初三年级数学知识点归纳旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。
初三数学复习知识点轴对称知识点1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
§11.3旋转对称图形和中心对称图形
§11.3旋转对称图形和中心对称图形§11.3旋转对称图形与中心对称图形教学目标:1.在探究旋转对称图形和中心对称图形的概念过程中,感受从一般到特殊的研究问题方法.2.理解旋转对称图形和中心对称图形的区别和联系.3.感受旋转对称图形和中心对称图形在生活中的应用,体会数学的价值.教学重点和难点:探究旋转对称图形和中心对称图形的概念形成过程.教学过程:这些图形有什么特征?二、新知探索师:我们把具有这个特征的图形叫做旋转对称图形.问:你能说出什么是旋转对称图形吗?师生共同总结:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角能与初始图形重合.答:一个图形绕着任意一点旋转360 o后都能与初始图形重合.答:电风试着归纳它们的共同特征,为旋转对称图形概念的引入做好铺垫.引导师:在这些旋转图形中,有些图形的旋转角是最特殊的,它是周角的一半,我们把具有这个特征的图形叫做中心对称图形.问:你能说出什么是中心对称图形吗?师生共同总结:如果把一个图形绕着一个定点旋转180o 后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.着中心旋转180度与初始图形重合;图(5)的图形绕着中心O旋转180度与初始图形重合;答:旋转对称图形是等边三角形、正方形、圆、正五边形、角概念的理解.这个探究过程中要给学生充分的时间去考虑,让学生用规范的数学语言表达.通过探究在一思考:下列图形是不是旋转对称图形和中心对称图形?归纳:请比较旋转对称图形和中心对称图形的异同.练习:课本P102 第2、3题三、拓展应用1.在一次游戏当中,小明将下面图(1)的四张扑克牌中的一张正六边形;中心对称图形是正方形、圆、正六边形.答:都是指一个图形,中心对称图形是旋转对称图形的特例.般中发现特殊性,从而引入中心对称图形的相关概念.通过这个问题的思考与讨论,加深学生对旋转对称图形和中心对称图形的感性认识.这里也可以试旋转180o后,得到图(2),小亮看完,很快知道小明旋转了哪一张扑克,你知道为什么吗?图(1)图(2) 2.如图是由两个等边三角形拼成的图形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若答:旋转了“J”这张牌,因为它是中心对称图形.答:(1)是旋转对称图形,也是中心对称图形,对称中心是O.(2) 旋转中心的点一共有3个,分别是点O、A、C.着让学生说一说旋转角是多少.引导学生进一步理解旋转对称图形和中心对称图形的区别与联系.是指出对称中心.(2)若三角形ACD旋转后能与三角形ABC 重合.那么图形所在的平面上可以作为旋转中心的点一共有几个?请指出.四、课堂练习A组 1.一个四叶风车,它的旋转角是多少度?每叶最少旋转多少度可以与其它叶重合?1.它的旋转角是90 o、180 o、270 o,每个叶片最少旋转90 o可以与其它叶片重合.指导学生观察叶片上OA绕着点O旋转到OB时的夹角即为最小的旋转角.加深学生对旋转对称图形和旋转角概念的理解.强调旋转对称图形的旋转角要小于360o.2.如图,哪些是旋转对称图形,哪些是中心对称图形?2.图形(1)是旋转对称图形,也是中心对称图形.它的旋转中心是直线AB、CD加深学生对旋转对称图形和中心对称图形的交点O图形(2)是旋转对称图形,也是中心对称图形.它的旋转中心是对角线的交点O图形(3)是旋转对称图形,也是中心对称图形.它的旋转中心是对角线的交点O概念的理解.(4)图形(4)是旋转对称图形,但不是中心对称图形.它的旋转中心是点OOB组1.画出一个旋转角为120°的旋转对称图形,它是否为中心对称图形?1.等边三角形是旋转角为120°的旋转对称图形,它不是中心对称图形旋转角为120 o的旋转对称图形不一定是中心对称图形,什么收获?思想方法:从一般到特殊的研究问题的方法.形2.中心对称图形3.它们的区别与联系,中心对称图形是旋转对称图形的特例.知识点,培养学生归纳反思的能力.课后作业试题解答设计意图A组1.下图是不是一个旋转对称图形?如果是,请说出最小的旋转角的大小.答:这个图形是旋转对称图形,最小的旋转角是120 .进一步加深学生对旋转对称图形和旋转角概念的理解.感受旋转对称图形在生活中的应用.2.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、B、C、D、2.答案(D)进一步加深学生对中心对称图形概念的理解.感受中心对称图形的美.3.如图,如果四边形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面MFEBDAC可以作为旋转中心的点有3进一步加深学生对旋转对称图形和中心对称图形概念1.如图,4张扑克牌放在桌上,现将其中的某一张在原地旋转180︒,发现旋转后在桌上看到的牌中的图形和原先的一模一样.请问旋转的是哪一张牌?1.旋转的是第一张牌,其它三张牌中间的图形不是中心对称图形,所以旋转后在桌上看到的牌中的图形不能和原先的一模一样.生进一步理解旋转对称图形和中心对称图形的区别与联系.感受旋转对称图形在生活中的应用.2.画一个旋转角是0︒9的旋转对称图形.2.正方形是旋转角为90°的旋转对称图形,它是中心对称图形,正八边形也是旋转角为90°的旋转对引导学生进一步理解旋转对称图形和中心对称图形的区别与联系.21。
旋转对称图形与中心对称图形zhjy
旋转对称图形与中心对称图形【知识要点】1.旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转中心。
旋转的较多叫做旋转角。
2.中心对称图形:如果把一个图形绕着一个定点旋转后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
3.中心对称图形是特殊旋转图形,它的旋转角只能是,而选择对称图形的旋转角在之间均可。
4.旋转对称图形和中心对称图形研究的是一个图形,是指一个图形的两个部分之间的关系。
【典型例题】1. 旋转对称图形【例1】如图所示,下列图形中是旋转对称图形的是( )。
() () () () 图【分析】本题考查的是旋转对称图形的识别。
在分析时,注意所给图形是否存在一点,将该图形绕该点旋转一定角度后,旋转后的图形能否与原图形重合,分析这四个选项中只有、选项所示图形能与绕起中心旋转后的图形重合。
【解答】选()、()。
【例2】下列四幅图形都是旋转对称图形,其中一个与其他三个不同的是( )(A ) (B ) (C (D )【分析】既然以上四个图形都是旋转对称图形,并从中找出不同的一个,那么我们只能从旋转角度上去寻找,、、可以绕一点旋转后能与自身重合。
而可以围绕一点旋转也能与其自身重合,因此可见旋转角度不同。
【解答】选()。
2. 中心对称图形【例3】线段、角、三角形平行四边形、长方形、正方形、圆是中心对称图形吗?如果是,那么对称中心在哪里? 【分析】中心对称图形的对一个图形而言的,是指一个图形的两个部分之间的关系,中心对称图形的对称点在一个图形上。
如果能找到一个点,经过旋转后能与原图形重合,那么这个图形就是中心对称图形。
【解答】角、三角形不是中心对称图形,线段、平行四边形、长方形、正方形、圆都是中心对称图形。
线段的中心是它的对称中心,平行四边形、长方形、正方形的对角线的交点是它的对称中心,圆的圆心是它的对称中心。
【例4】如图所示的风车叶片中,是中心对称图形的有( )图()个 ()个 ()个 ()【分析】旋转对称图形与中心对称图形容易混淆。
第14讲 旋转与中心对称
旋转与中心对称知识要点梳理:一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P ,那么这两个点叫做这个旋转的对应点。
2、旋转的性质(1)对应点到旋转中心的距离相等。
(旋转中心就是各对应点所连线段的垂直平分线的交点。
)(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全等。
3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。
4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。
二、中心对称1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2、中心对称的性质(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平所平分。
(2)关于中心对称的两个图形是全等形。
3、作中心对称和图形的一般步骤(1)确定“代表性的点”;(2)作出每个代表性的点的对应点;(3)顺次连结。
三、中心对称图形1、中心对称图形的定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,过对称中心的直线,可以把图形分成完全重合的两部分。
2、中心对称图形的识别常见的几何图形,如:线段、等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形、圆,26个大写英文字母(7个),正多边等要会识别,并指出对称中心。
3、两个图形成中心对称和中心对称图形的区别与联系区别:(1)中心对称是指两个图形的位置关系,而中心对称图形是指一个具有特殊形状的图形。
11.3旋转对称图形与中心对称图形
11.3旋转对称图形与中心对称图形班级学号姓名知识点归纳:(1)在平面内,把一个图形绕着______________后,与___________________图形重合,这种图形叫做_______________________.这个定点叫做_____________. 旋转的角度叫做_______________________.(旋转角______________________). (2)如果把一个图形绕着____________________后,与___________________图形重合,这种图形叫做__________________________.这个点叫做___________. 即:中心对称图形是特殊的旋转对称图形,旋转角是_________度的旋转对称图形是中心对称图形.注意:旋转对称图形与中心对称图形都是指一个图形内部因素之间的关系.预习下列图形旋转一定角度后能与自身重合吗?分别指出相应的旋转角度是多少?旋转度数:______________________________________________________旋转度数:______________________________________________________旋转度数:______________________________________________________旋转度数:______________________________________________________上述图形中是中心对称图形的请打 “√ ”号练习1、观察下列图形,其中不是旋转对称图形的有( )(1) (2)(3)C(4)X2、如下图,它们绕哪一个点至少旋转多少度能与自身重合?(右图考虑颜色)3、请尝试设计一个至少旋转720后能与自身重合的图形。
练习1、下列图形不是旋转图形的是()A、线段B、等腰三角形C、等边三角形D、圆2、四边形ABCD是旋转对称图形,点_______是旋转中心,•旋转了_____度后能与自身重合,则AD=_____,DC=_____,AO=_____,BO=_____.3、三叶电风扇叶片是一个旋转对称图形,其最小旋转角度的度数是()A.60B.120C.180D.2404、下列图不是旋转对称图形的是_______。
旋转对称图形、中心对称图形及中心对称C(学生)
学科教师辅导讲义区别①两个图形的关系②对称点在两个图形上①具有某种性质的一个图形②对称点在一个图形上联系若把中心对称图形的两部分分别看作两个图形,则它们成中心对称,若把中心对称的两个图形看作一个整体,则成为中心对称图形。
典型例题:题型一:旋转对称图形与中心对称图形【例1】下列图形中,哪些是旋转对称图形,哪些不是旋转对称图形?如果是旋转对称图形,请在图中标出旋转中心,并在括号内填入“是”,以及所有的旋转角和最小旋转角;如果不是旋转对称图形,请在括号内填入“不是”.(1)等边的三角形ABC,且AO=BO=OC.(2)正方形ABCD,且AC与BD相交于点0.()()(3)由圆的五等分点画出的五角星图形.(4)由六个相同的平行四边形及圆拼成的图形.()()(5)直角三角形.(6)梯形.()()【例2】(1)在第1题中,哪些图形是中心对称图形?中心对称图形与旋转对称图形的主要区别是什么?【例3】(1)画出下列中心对称图形的对称中心.红十字会标2002年国际数学家大会会标的一部分图案【借题发挥】1.下列图形中哪些是中心对称图形?哪些不是中心对称图形?如果是,请在图中标明对称中心.(1) (2) (3)(4) (5) (6)2.(1)在第1题中,哪些图形既是中心对称图形又是旋转对称图形?(2)如果一个旋转对称图形的最小旋转角为οn,那么n满足怎样的条件时,这个图形一定是中心对称图形?题型二:中心对称【例4】(1)在下图中,画出五边形ABCDE关于点0的中心对称图形EDCBA'''''.(2)五边形ABCDE是不是旋转对称图形?为什么?【例5】已知下列两个图形关于某点中心对称,画出对称中心.【借题发挥】1.请你画出“箭头”关于点O中心对称的图形.2.△ABC与△A′B′C′关于点O中心对称,请你描出对称中心O.ABCA'B'C'【随堂练习】1.下列图形中,是旋转对称图形的,在图下的括号内写出旋转角的最小度数,是中心对称图形的,在括号内画“√”号.o()()()()2.描出下列旋转对称图形的旋转中心,并在下面的括号内,写出旋转角的最小度数,是中心对称图形的,在括号内画“√”号.()()()()3.描出下列旋转对称图形的旋转中心,并在下面的括号内,写出旋转角的最小度数,是中心对称图形的,在括号内画“√”号.()()4.下列旋转对称图形中,旋转角为任意度数的是().A B C D5.下列图形中哪些是旋转对称图形,哪些是中心对称图形?请在图中标明旋转中心,是旋转对称图形的指出最小旋转角.6.下列图形中哪些是旋转对称图形,哪些是中心对称图形?请在图中标明旋转中心,是旋转对称图形的指出最小旋转角.7.下列图形中哪些是旋转对称图形,对称图形的指出最小旋转角.8.标明下列哪些图形饶其中心旋转90°,可以与原来的图形重合?9.下列英文字母哪些是中心对称图形?在字母下面画“√”.10.将下列这组旋转对称图形中每格图形的的旋转角写在图形的右边,如果是中心对称图形的,在旁边画“√”11.下列图形哪些是中心对称图形?在图形下面画“√”.【课堂总结】【课后练习】1.下列这些电子屏上显示的数字,哪些是中心对称图形?如果是,请在括号内填人“√”;如果不是,请填人“×”.2.下列扑克牌的花色图形中有没有旋转对称图形?如果有,那么它是中心对称图形吗?3.(1)在下左图中,画出三角形ABC 绕点0旋转180°后,所得到的三角形C B A ''' (2)在上右图中,画出三角形ABC 关于顶点C 的中心对称图形.4.如右图,画出△ABC 关于点O 中心对称的△A ′B ′C ′.5.如右图,在直角三角形ABC 中,C ∠ = 90°,AC= 4cm ,BC=3cm ,点M 是斜边AB 的中点.画出三角形ABC 关于点M 的中心对称图形.这两个图形组成一个怎样的图形?求出这个组合图形的面积.二、综合提高训练1.(1)自行车的两个轮胎的外径(直径)是0.66米.如果自行车每分钟行66米,那么自行车的车轮每分钟转多少周?(丌取3. 14,精确到1周)(2)第(1)小题是变转动为平移的一个例子,请举出另一个日常生活中变转动为平移的例子.2.(1)在右图中,三角形ABC 是等边三角形,点0是三角形内一点,且A 、B 、C 与点0的距离相等.画出三角形ABC 关于点0的中心对称图形C B A '''.(2)这两个等边三角形组成的图形是不是旋转对称图形?如果是,求出它的最小旋转角.3.如图,在三角形ABC 中,C ∠ = 90°,AC= 4cm ,BC= 3cm ,点M 、N 、P 分别是AB 、BC 、AC 的中点,三角AB C OBA 关于点M中心对称.形BAC'与三角形C(1)分别画出直角三角形ABC关于点N、P的中心对称图形.(2)观察第(1)题画出的图形,怎样运动三角形ABC'可以得到第(1)题画出的两个对称图形呢?4.下左图由一个圆被以它的两条半径为直径的半圆弧分割而成,请分别在下面的两个圆中,用这样由半圆弧组成的弧线三等分、四等分这个圆,并指出这两个画出的图形是否是旋转对称图形及是否是中心对称图形.5.(1)已知右图所示的图形是一个中心对称图形.在组成这个图形的六个三角形中,哪两个三角形成中心对称?(2)中心对称与中心对称图形这两个概念的主要区别在哪里?。
第一讲图形的旋转、中心对称与中心对称图形.doc
第一讲图形的旋转、中心对称与中心对称图形1.1 图形的旋转一、知识点1.旋转的概念:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
2.旋转的性质:(1)旋转前后图形的大小和形状没有改变,旋转前后的图形全等;(2)对应点到旋转中心的距离相等;(3)对应线段的长度、对应角的大小相等3.旋转作图:旋转三要素:旋转中心、旋转方向、旋转角。
二、典型例题例1.下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是()例2.如图,△ABC为等边三角形,D是△ABC内一点,若将△ABD经过一次逆时针旋转后到△ACP的位置,则旋转中心是______,旋转角等于______△ADP是______三角形。
例3.如图,将△ ABC 绕点 C 顺时针方向旋转 40 °得△ A ′ B ′ C ,若 AC ⊥ A ′ B ′,则∠ BAC等于()A. 50 °B. 60 °C. 70 °D. 80 °例4.△ABC在方格中的位置如图所示.(1)请在方格纸上建立平面直角坐标系,使得A 、B 两点的坐标分别为A (2,﹣1)、B (1,﹣4).并求出C 点的坐标。
(2)作出△ABC 关于横轴对称的△A 1 B 1 C 1 ,再作出△ABC 以坐标原点为旋转中心、旋转180°后△A 2 B 2 C 2 ,并写出C 1 ,C 2 两点的坐标。
例5.如图,在直角坐标系中,已知点A(−3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形①,②,③, ④…,则三角形⑩的直角顶点的坐标为_________________.三、课堂练习1.下列现象属于旋转的有( )个.(1)方向盘的转动;(2)钟摆的运动;(3)荡秋千运动;(4)传送带的移动. A.1 B.2 C.3 D.42.如图,这是一个正面为黑,反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘并使其颜色一致,请问应选择的拼木是( )A .B .C .D .3.一个图形无论经过平移还是旋转,有以下说法( )①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化. A.①②③ B.①②④ C.①③④ D.②③④4.如图,该图形绕点O 按下列角度旋转后,不能与其自身重合的是( ) A.72° B.108° C.144° D.216°5.如图,将正方形图案绕中心O 旋转180°后,得到的图案是( )第(4)题图6.正方形绕中心至少旋转________度后能与自身重合.7.如图,在等边三角形ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为________.8.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过________次旋转而得到,每一次旋转_______度.9.如图,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB ′C ′,点C ′恰好落在边AB上,连接BB ′,则∠BB ′C ′=________度.10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=________. 四、课堂小结五、课后作业1.如图,△ABC 以点A 旋转中心,按逆时针方向旋转60∘得到△AB ′C ′,则△ABB ′是( )三角形。
《中心对称》旋转
汇报人: 日期:
contents
目录
• 中心对称旋转的定义 • 中心对称旋转的性质 • 中心对称旋转的应用 • 中心对称旋转的实例 • 中心对称旋转的意义 • 中心对称旋转的挑战与未来发展
01 中心对称旋转的 定义
中心对称的定义
定义
对于一个平面图形,如果存在一个点,使得图形围绕这个点旋转180度后与原 图重合,那么这个点称为图形的中心对称点,这种图形称为中心对称图形。
圆形、球体和轮胎
01 02
圆形
一个圆形的物体绕其中心旋转时,不论从哪个角度看,它都是相同的形 状和方向。例如,一个车轮在行驶时,不论从哪个角度看,它都是向前 滚动的。
球体
球体也是中心对称的,当它绕其中心旋转时,不论从哪个角度看,它都 是相同的形状和方向。例如,地球的自转就是绕其中心旋转的。
03
轮胎
数学中有很多关于对称性的研究,如代数几何、拓扑 学等。中心对称旋转在数学领域的研究对于解决一些 数学难题有着重要的意义。
对称与量子力学的研究
量子力学中的对称性
量子力学是研究物质和能量基本组成的理论,而对称性 是量子力学中一个非常关键的概念。对对称性的研究有 助于深入理解量子现象和量子力学的基本原理。
雪花是自然界中最著名的中心对称物体之一 。每一片雪花的形状都是独特的,但是它们 都呈现出中心对称的结构。这种结构使得雪 花在各种不同的温度和湿度条件下都能够保
持其美丽和完整的形态。
DNA结构和病毒
DNA结构
DNA(脱氧核糖核酸)是生物体的遗传物质,它的双 螺旋结构也是中心对称的。这种结构保证了DNALeabharlann 细 胞内能够稳定地存在并传递遗传信息。
轮胎的设计也是中心对称的,当轮胎在路面上滚动时,不论从哪个角度
轴对称及中心对称变换平移及旋转变换
轴对称及中心对称变换、平移及旋转变换变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。
一、轴对称变换把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。
两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。
轴对称图形有以下两条性质:1.对应点的连线被对称轴垂直平分;2.对应点到对称轴上任一点的距离相等。
例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。
分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。
证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。
连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。
∴ BE+AE>AB ①EC'+ED'>C'D' ②①+②,得BC'+AD'>AB+C'D'。
∴BC+AD>AB+CD。
注:(1)本题的结论对于凹四边形仍然成立;(2)还可将四边形推广成2n边形,也有类似结论。
其证明思路也完全相同,读者试自证。
二、中心对称变换如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。
旋转对称和中心对称
乐学教育学员个性化教学辅导教案学科:数学任课教师:韩老师授课时间:年月日(星期)本次课授课内容旋转对称一.课前准备1、如果一个图形绕着某一定点旋转一定的角度后能与自身,那么这个图形就叫做。
2、请说出数学中你熟悉的三个旋转对称图形(1)、(2)、(3),并回答分别至少旋转多少度后能与自身重合。
3、旋转任意角度都能与自身重合的图形是。
例1、观察下列图形,其中不是旋转对称图形的有()X(1)(2)(3)C(4)例2、如下图,它们绕哪一个点至少旋转多少度能与自身重合?(右图考虑颜色)例3、如下图(1)、(2),请问:(l)它们是不是旋转对称图形?(2)若是,旋转中心在何处,需要旋转多少度后,能与自身重合?(3)它们是轴对称图形吗?(1)(2)例4、如右图,画△ABC和过点P的两条直线PQ、PR。
画出△ABC关于PQ对称的三角形△A′B′C,再画出△A′B′C 关于PR对称的三角形△A′′B′′C′′。
观察△ABC和△A′′B′′C′′,你能发现这两个三角形有什么关系吗?中心对称1、中心对称的定义:一个图形绕着某一点旋转后能与另一图形重合,那么,我们就说这两图形成中心对称图形。
这个点就是它们的对称中心。
定义中的三个要点:(l)有一个对称中心——点;(2)图形绕中心旋转180度;(3)旋转后与另一图形重合。
2.中心对称的性质:中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形;(2)关于中心对称的两个图形,对称点的连线都过,并且被平分.3.中心对称图形???把一个图形绕某一点旋转后,如果旋转后的图形能够和原来的图形,那么这个图形叫做中心对称图形,这个点就是它的.中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
4.中心对称与中心对称图形之间的关系:区别:(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
初中数学九年级旋转知识点总结
初中数学九年级旋转知识点总结1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
如下列图所示:2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角〔旋转角小于0°,大于360°〕。
3.旋转的性质〔1〕对应点到旋转中心的距离相等。
〔2〕对应点与旋转中心所连线段的夹角等于旋转角。
4.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
5.中心对称和中心对称图形的区别区别:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称.成中心对称的两个图形中,其中一个上全部点关于对称中心的对称点都在另一个图形上,反之,另一个图形上全部点的对称点,又都在这个图形上;而中心对称图形是指一个图形本身成中心对称.中心对称图形上全部点关于对称中心的对称点都在这个图形本身上。
如果将中心对称的两个图形看成一个整体〔一个图形〕,那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的局部看成是两个图形,那么它们又是关于中心对称。
6.中心对称图形的判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
7.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
九年级数学图形的旋转和中心对称
旋转及其组合)
二、知识概要
1.概念:
① 旋转:如果一个图形绕某一个定点沿某一个
方向转动一个角度,这样的图形运动称为旋 转.这个定点称为旋转中心,转动的角度称为 旋转角.
② 中心对称图形:图形绕着中心旋转180°后
与自身重合称中心对称图形(如:平行四边形、 圆等)。
一点,△ABD经过旋转后到达△ACE的 位置。
① 旋转中心是哪一点 ② 旋转了多少度?
③ 如果M是AB的中点,那么经过上述旋转后, 点M转到了什么位置?
四、范例精析
2. 下图是某设计师设计的方桌边图案的一部分。
请你运用旋转变换的方法,在坐标纸上将该 图形绕原点顺时针依次旋转 90°, 180°, 270°,并画出它在各象限内的图形。
④ 将一个图形绕对称中心旋转 180°必定与另一个图 C
形重合。
其中正确的是( )。
(A) ①② ④ (B) ①③ (C) ①②③
B B 2. 如图,如果正方形CDEF旋转后能与正 C F A D E (D) ①②③
方形ABCD重合,那么图形所在的平面
四、范例精析
1. 如图,△ABC是等边三角形。D是BC上
① 点P2的坐标; ② 点P2003的坐标.
四、范例精析
6. (1)操作与说明:如图,O是边长为a的
正方形ABCD的中心,将一块半径足够长, 圆心角为直角的扇形纸板的圆心放在O点 处,并将纸板绕O点旋转。则ABCD的边被 纸板覆盖部分的总长度为定值a.试说明理 由;
四、范例精析
6. ( 接上页)
旋转中心 旋转中心
二、知识概要
2.性质:
① 旋转不改变图形的形状和大小(即旋转前后的两
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
O
C
O ·
B C
A
B
旋转对称图形
图形的旋转
一个图形绕着一个定点旋转一定角度后,能 与自身重合的图形称为旋转对称图形.
这个角度必须小于周角
1.下列英文字母中属于旋转对称图形的是(
)
C
(A)
S
(B)
L
(C)
K
(D)
2.下列图形中,绕旋转中心旋转60°后能与自身重合 的是( )
(A)
(B)
重合
重合
名称
中心对称
中心对称图形 一个图形绕着中 心旋转180o 后 能与自身重合, 我们把这样图形 叫做中心对称图 形
把一个图形绕着某一 个点旋转180,如果他 能够与另一个图形重 定义 合,那么就说这两个 图形成中心对称,两个 图形关于点对称也称 中心对称
若把中心对称图形的两部分分别看作两个图形 联系 则它们成中心对称,若把中心对称的两 个图形看作一个整体,则成为中心对称图形。
议一议
(1)在一次游戏当中,小明将下面左图的四张扑克 牌中的一张旋转180O后,得到右图,小亮看完很 快知道小明旋转了哪一张扑克,你知道为什么吗?
随堂练习
图形 线段 角 平行四边形 矩形 菱形 正方形 等腰三角形 是否是中心 是否是轴对 指出对称中 对称图形 称图形 心或对称轴
(C)
(D)
3.下列说法中正确的是(
)
(A)是旋转对称图形,肯定不是轴对称图形; (B) 是轴对称图形,肯定是旋转对称图形; (C)一些图形可能既是旋转对称图形,又是轴对称 图形; (D)既不是旋转对称图形,又不是轴对称图形的图 形不存在. 5.在梯形、正三角形、等腰三角形、正方形、线段、 正六边形、圆中是旋转对称图形的是
_______________________________________.
(1) 这些图形有什么共同的特征? 在平面内,一个图形绕着中心旋转 180o 后能与自身重合,我们把这样图形叫做 (2)这些图形都可以绕某个点旋 中心对称图形,这个中心叫做对称中心。 转哪个角度后与原来的图形重合?
注意:中心对称图形是旋转角 为180度的旋转对称图形.
1.下面哪个图形是中心对称图形?
2.下列图形不是中心对称图形的是--(
)
①
(A)①
② (B)②
③ 案绕点O旋转180°,你有什么发现? (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你有什么发现?
O
B (2) C