实验一固体废物的粒度分析实验
颗粒分析实验报告

颗粒分析实验报告前言颗粒分析是一项重要的实验技术,广泛应用于材料科学、化学、生物学、环境科学等领域。
本文将介绍一项针对微米级颗粒样品的颗粒分析实验,包括实验方法、数据处理和结果分析等。
通过本实验,我们得以了解样品中颗粒大小、分布情况等参数,为后续研究提供了重要的基础数据。
实验方法本实验选用了激光粒度分析仪对样品进行测试。
具体的实验操作如下:首先,我们准备测试样品。
本实验使用的是一种基于聚合物的微米级颗粒样品,样品需要经过均质处理并分散于水中,使其保持均匀分布。
其次,我们将样品注入至激光粒度分析仪的测试池中,进行测试。
在测试的过程中,仪器会通过激光束照射样品,然后通过探测器捕捉样品反射或散射的光线,从而得到颗粒的散射光模式。
通过基于光学理论的算法,我们可以计算出颗粒的粒径分布、平均粒径等参数。
同时,该仪器还可用于检测颗粒的耗散能力、稳定性等特性。
最后,我们通过数据处理软件对实验结果进行分析和展示。
根据具体实验参数和测试结果,我们可以生成颗粒粒径分布直方图、累积粒径分布图等数据图表,以更好地了解样品的物理和化学性质。
数据处理和结果分析通过激光粒度分析仪,我们获取了样品的粒径分布情况。
根据实验结果,我们得到样品的平均粒径为2.5μm,颗粒所占体积分数约为30%,颗粒浓度为0.05mg/mL左右。
同时,我们也绘制了颗粒粒径分布图和累积粒径分布图,如下图所示:(图片在此不可展示)从图中可以看出,样品颗粒的大小在0.5μm至4μm之间,分布范围较为均匀。
同时,我们还可以得到颗粒分布的三个重要参数,即模数D50、分散度D43和峰高度Hmax。
其中,D50表示颗粒直径中位数,D43表示颗粒平均粒径,Hmax代表颗粒分布的峰值大小。
总结通过这次颗粒分析实验,我们深入了解了颗粒分析技术和实验方法。
通过数据处理和结果分析,我们更好地理解了颗粒分布和特征参数的含义,并为后续材料性质研究提供了基础数据。
同时,我们也发现颗粒分析技术在材料科学、生物学和化学等领域有着广泛的应用和重要的意义,对于研究微米级颗粒的物理和化学性质有着重要的支持作用。
固体废物的破碎实验

实验一固体废物的破碎实验一、实验目的本实验为验证型实验。
通过学习设计固体废物的破碎实验,使学生初步了解破碎技术的原理和特点,掌握固体废物破碎设备和流程的相关知识。
二、实验原理固体废物破碎是利用外力克服固体废物质点间的内聚力而使大块固体废物分裂成小块的过程。
磨碎是使小块固体废物颗粒分裂成细粉的过程。
固体废物经破碎和磨碎后,粒度变得小而均匀,其目的如下:(1)原来不均匀的固体废物经破碎和粉磨之后容易均匀一致,可提高焚烧、热解、熔烧、压缩等作业的稳定性和处理效率。
(2)固体废物粉碎后堆积密度减少,体积减少,便于压缩、运输、贮存和高密度填埋和加速复土还原。
(3)固体废物粉碎后,原来联生在一起的矿物或联结在一起的异种材料等单体分离,便于从中分选、拣选回收有价物质和材料。
(4)防止粗大、锋利废物损坏分选、焚烧、热解等设备或炉腔。
(5)为固体废物的下一步加工和资源化做准备。
在工程设计中,破碎比常采用废物破碎前的最大粒度(D max)与破碎后的最大粒度(d max)之比来计算。
这一破碎比称为极限破碎比。
在科研理论研究中破碎比常采用废物破碎前的平均粒度(D cp)与破碎后的平均粒度(d cp)之比来计算。
这一破碎比称为真实破碎比,能较真实的反映废物的破碎程度。
通常,根据最大物料直径来选择破碎机给料口的宽度。
三、破碎设备与原理破碎固体废物常用的破碎机类型有颚式破碎机、冲击式破碎机、辊式破碎机、剪切式破碎机、球磨机及特殊破碎等。
本实验采用的是颚式破碎机。
颚式破碎机出现于1858年。
它虽然是一种古老的破碎设备,但是由于具有构造简单、工作可靠、制造容易、维修方便等优点,所以至今仍获得广泛应用。
颚式破碎机通常都是按照可动颚板(动颚)的运动特性来进行分类的,工业中应用最广的主要有以下两种类型:动颚作简单摆动的双肘板机构(简摆式)的颚式破碎机、动颚做复杂摆动的单肘板机构(复摆式)的颚式破碎机。
近年来,液压技术在破碎设备上得到应用,出现了液压颚式破碎机。
固体废物的破碎和筛分实验

破碎的目的:
(1)减容。便于运输 和储存。 (2)为分选提供所要 求的入选粒度。 (3)增加比表面积, 提高焚烧、热分解、熔 融等作业的稳定性和热 效率。 (4)若下一步需进行 填埋处置时,破碎后压 实密度高而均匀,可加 快复土还原。 (5)防止粗大、锋利 的固体废物损坏分选等 其他设备。
鄂式破碎的原理
构成:机架、工作机构、 传动机构、保险装置组成。 工作原理:皮带轮带动偏 心轴转动时,偏心顶点牵 动连杆上下运动,随即牵 动前后推力板作舒张及收 缩运动,从而使动鄂时而 靠近固定鄂,时而又离开 固定鄂。动鄂靠近固定鄂 时就对破碎腔内的物料进 行压碎、劈碎及折断。破 碎后的物料在动鄂后退时 靠自重从破碎腔内落下。
封闭式粉碎机工作原理:通过钢圈的撞击作用,使得 大颗粒固体被挤压、撞碎成小颗粒固体,乃至粉尘
球磨机原理
球磨机是由水平的简体,进出料空心轴及磨头等部分组成,简体为长的圆筒, 筒内装有研磨体,筒体为钢板制造,有钢制衬板与简体固定,研磨体一般为 钢制圆球,并按不同直径和一定比例装入筒中,研磨体也可用钢段, 根据研磨物料的粒度加以选择,物料由磨机进料端空心轴装入筒体内,当球 磨机简体转动时候,研磨体由于惯性和离心力作用,摩擦力的作用,使它帖 附近筒体衬板上被筒体带走,当被带到一定的高度时候,由于其本身的重力 作用而被抛落,下落的研磨体像抛射体一样将筒体内的物料给击碎。球磨机 所用钢球 物料由进料装置经入料中空轴螺旋均匀地进入磨机第一仓,该 仓内有阶梯衬板或波纹衬板,内装不同规格钢球,筒体转动产生离心力将钢 球带到一定高度后落下,对物料产生重击和研磨作用。 筒体在回转的过程中,研磨体也有滑落现象,在滑落过程中给物料以研磨作 用,为了有效的利用研磨作用,对物料粒度教大的一般二十目磨细时候,把 磨体筒体用隔仓板分隔为二段,即成为双仓,物料进入第一仓时候被钢球击 碎,物料进入第二仓时候,钢端对物料进行研磨,磨细合格的物料从出料端 空心轴排出,对进料颗粒小的物料进行磨细时候,如砂二号矿渣,粗粉煤灰, 磨机筒体可不设隔板,成为一个单仓筒磨,研磨体积也可之用钢段。
粒径分析实验报告

粒径分析实验报告引言粒径分析是指对颗粒物料进行粒度分布的研究和分析。
粒度分布是指不同粒径颗粒在物料中所占的比例关系。
粒度分布的分析可以帮助我们了解颗粒物料的性质和特点,对于工业生产和科研都有重要的意义。
本次实验旨在通过粒径分析仪器对样品进行测试,获得样品的粒径分布数据。
实验设备和样品本次实验所使用的设备是粒径分析仪器,该仪器采用激光散射原理进行粒径分析。
样品是粒状物料,由实验室提供,其具体成分和特性不得知。
实验步骤1.将样品取出并进行预处理。
首先,使用超声波清洗样品,以去除表面附着的杂质。
然后,将样品放入试样盒中,并确保盒内无空隙。
2.将试样盒放入粒径分析仪器中,并按照仪器操作手册进行操作。
首先,调整激光器的功率和位置,以确保激光能够穿过样品并产生散射现象。
然后,设置合适的散射角度和检测系统参数。
3.启动粒径分析仪器,开始测试样品。
仪器将通过激光散射现象收集样品的散射光信号,并根据散射光信号的特性进行粒径分析。
4.等待仪器完成测试,并记录得到的数据。
数据包括不同粒径颗粒的数量和所占比例等信息。
5.对得到的数据进行处理和分析。
可以绘制粒径分布曲线,以直观地展示不同粒径颗粒的分布情况。
也可以计算出粒径的平均值、标准差等统计数据。
实验结果与讨论根据本次实验的结果,我们得到了样品的粒径分布数据。
通过绘制粒径分布曲线,可以观察到样品中不同粒径颗粒的比例关系。
根据曲线的形状和特点,我们可以初步判断样品的颗粒分布是否均匀、是否存在聚集现象等。
通过对数据的进一步分析,我们可以计算出样品的平均粒径、标准差等统计数据。
这些数据可以进一步揭示样品的特性和性质。
例如,平均粒径的大小可以反映样品的颗粒大小,标准差的大小可以反映样品颗粒分布的均匀程度。
值得注意的是,本次实验的样品具体成分和特性不得知,因此对结果的分析和讨论有一定的限制。
进一步的研究可以通过对不同样品进行比较和对照实验,以获得更加准确和全面的结论。
结论本次实验通过粒径分析仪器对样品进行测试,并得到了样品的粒径分布数据。
离心沉降法 粒度及粒度分布的测定实验报告

离心沉降法粒度及粒度分布的测定实验报告粒度是颗粒或颗粒聚集物理性质之一,它描述了颗粒或颗粒聚集的大小和分布情况。
在很多领域,如土壤力学、粉体工程、环境科学等领域,颗粒的粒度及其分布是非常重要的参数。
因此,对颗粒粒度及粒度分布进行准确的测定是很有必要的。
离心沉降法是一种常用的测定粒度及粒度分布的方法之一。
离心沉降法利用颗粒在液体中的沉降速度与其粒度大小有关的原理,通过实验测定颗粒在离心场中的沉降速度,从而推算颗粒的粒度及其分布情况。
本实验旨在通过离心沉降法对一组颗粒样品进行粒度及粒度分布的测定,探究该方法的适用性和准确性。
一、实验方法1. 实验样品准备在实验开始前,首先需要准备一组具有不同粒径的颗粒样品。
这些颗粒样品可以是天然颗粒,也可以是人工合成的颗粒。
在选择颗粒样品时,需要注意样品之间的粒度差异不能太大,以便实验结果的准确性。
2. 实验仪器准备实验中需要使用离心机、离心管、搅拌器等实验仪器。
离心机的转速需要提前校准,并保持稳定。
离心管需要清洁干净,并在实验开始前校准标尺。
搅拌器用于搅拌颗粒与液体,以确保颗粒均匀悬浮在液体中。
3. 实验步骤(1) 将预先称量好的颗粒样品均匀悬浮在一定体积的液体中,液体的选择需要考虑与颗粒的相容性,并且需要具有足够的离心分离能力。
(2) 将悬浮好的颗粒液体样品倒入离心管中,离心管需放置在离心机内,设定好离心机的转速和离心时间。
(3) 启动离心机,使得颗粒样品在离心场中沉降,通过观察离心管中颗粒的沉积情况,记录沉降时间和沉积高度。
(4) 根据颗粒的沉降速度和沉降高度,运用Stokes公式等相关理论计算颗粒的粒度及其分布情况。
二、实验结果与分析通过离心沉降法对一组颗粒样品进行了粒度及粒度分布的测定,得到如下实验数据,根据实验数据,可以计算出各个样品的平均沉降速度,并进一步推算出各个样品的粒度及粒度分布情况。
通过对实验结果的分析,可以发现样品1的颗粒粒度最小,样品4的颗粒粒度最大,颗粒的粒度分布呈现出明显的变化趋势。
颗粒粒度分析实验一

颗粒粒度分析实验一、实验目的和意义颗粒污染物的粒径分布式选择颗粒物控制工艺和设备重要依据,通过本实验,使学生能够掌握颗粒物粒径分布测定的基本方法,绘制颗粒分布曲线。
.颗粒分析的试验方法很多,本实验采用比重计法进行测定。
比重计法适合用于分析粒径小于0.1mm的颗粒,对于粒径大于0.1mm的颗粒,可采用筛析法进行分析,当颗粒群中兼有上述两种粒组时,则应联合使用筛析法和比重计法。
.本实验只作比重计法。
二、实验原理对于粒径小于0.1mm的颗粒物样品经化学和物理方法处理成悬浮液定容后,根据斯托克斯(Stokes)定律及比重计浮泡在悬浮液中所处的平均有效深度,静置不同时间后,用比重计直接读出每升悬浮液中所含各级颗粒的质量,计算其百分含量。
三、仪器设备1. 比重计(1)甲种比重计刻度单位以20℃时1L悬液内以g表示所含颗粒质量。
(2)乙种比重计刻度单位以20℃时悬液的比重表示。
2.量筒两个,容积为1L。
3.天平,感量0.01g。
4.温度计。
5.搅拌器。
6.秒表。
7.煮沸设备:电热器,三角烧瓶及回流冷凝管。
8.化学药瓶:4%六偏磷酸钠(作分散剂)。
9.蒸馏水。
10.其他:烘箱、时钟、烧杯等。
四、实验方法和步骤1.称取由试验室按备样要求准备好的小于0.1mm的烘干试样30g,称重准至0.01g,装入三角烧瓶中(装烧瓶时切勿使土粒散失)。
2.在盛有试样的三角烧瓶中注入约200mL蒸馏水,然后加入浓度为4%六偏磷酸钠(分散剂)10mL,将瓶稍摇荡后,放在电热器上,用冷凝管下端的橡皮塞塞紧瓶口,进行煮沸。
煮沸进间从沸腾开始算起,不易分散的颗粒样一般需1h左右,其他可酌量减少,但不是少于0.5h。
3.待悬浊液冷却后,却其倒入指定号码的量筒内,并应将烧瓶中剩留的悬液,分次用少量蒸馏水完全洗倒入量筒内。
注水入量筒,使筒内悬液恰达1000mL,如在分析过程中发现仍有絮状下沉现象,可再加4%浓度的六偏磷酸钠约10mL 于悬液中加以分散。
粉末物料粒径分析报告

粉末物料粒径分析报告
报告内容:
一、实验目的
本次实验的目的是对粉末物料的粒径进行分析,通过测量和分析粘度,得出粉末物料的粒径分布情况。
二、实验仪器与试剂
1. 实验仪器:
- 粒度分析仪
- 雷诺粘度计
2. 试剂:
- 待测粉末物料样品
三、实验步骤
1. 样品的制备:
- 取适量的粉末物料样品,并通过适当的方法将样品制备成均匀的悬浮液。
2. 粘度测量:
- 使用雷诺粘度计对样品进行粘度测量,记录测量结果。
3. 粒度分析:
- 将制备好的悬浮液倒入粒度分析仪中。
- 调整粒度分析仪的相关参数,如激光强度、旋转速度等。
- 开始测量,并记录测量结果。
四、实验结果与讨论
根据粒度分析仪的测量结果,我们得到了粉末物料在不同粒径范围内的粒子数量分布情况。
通过对测量结果的分析,我们可以得出以下结论:
1. 样品的粒径分布主要集中在某个特定的范围内,说明样品中的粉末物料具有一定的粒径选别性。
2. 样品中的粒径分布可以被表示为高斯分布、均匀分布等等。
3. 样品中存在一些异常的颗粒,比如过大或过小的颗粒,可能是由于样品制备过程中的不完善导致的。
五、结论
通过粘度测量和粒度分析,我们得到了粉末物料的粒径分布情况,并对结果进行了讨论。
这些实验结果对于了解粉末物料的物理性质、优化产品工艺具有重要的参考价值。
实验一 粒度测定

实验一 粒度测定——沉降分析法一、实验目的学习沉降分析法的基本原理,测定CaCO 3粉末粒子的大小及分布。
二、实验内容 1、原理悬浮粒子在分散介质中一方面受到重力的作用,作加速运动而下沉,另一方面受到介质的阻力。
当此二力相等时,粒子将匀速下沉。
设粒子为球形,则有6ππηr )g ρ(ρπr 3403=-因而29ρρην-⋅=g r (1)上式即为stokes 沉降公式。
式中:r 为粒子半径,η为介质粘度,v 为沉降速度,ρ为粒子密度,ρ0为介质密度,g 为重力加速度。
若H 表示t 时间内粒子沉降的距离则 ()gt HH r 00121.2)gt-2(9ρρηρρη-==(2)或gtHd )0(42.4ρρη-= (3) d 为粒子的直径。
若粒子不是球形,由上式求得之r 为等效半径。
实际的悬浮粒子往往是多分散的,粒子大小有一分布。
用沉降分析法测定粒子大小分布,是在离开液面一定高度处测定沉降量(P)随时间(t)的变化,作P~t 曲线(沉降曲线),再用此曲线进行处理,得到粒子大小的积分和微分分布曲线。
常用的处理方法是将每一时间t 的沉降量P 分为两部分;半径大于用(2)式计算得的粒子的重量S 和半径小于按(2)式计算之粒子的部分沉降量q ,在图26-1所示的P~t 曲线上作与t 1相应之C 1点的切线,交P 轴于A 1、C 1A 1线的斜率为(dP/dt)t-t 1,q =t 1(dP/dt) t-t 1=A 1B 1,与t 1相对应的已完全沉降的粒子重量为S ,因为S + q = P所以S=OA 1。
若P c 表示悬浮粒子的极限沉降量,半径大于某r(相当于在时间t 1内完全沉降)的粒子的百分含量(用Q 表示)可用下式表示%1001⨯=cP OA Q (4)沉降分析法用普通扭力天平即可进行实验,也可用其它的类似装置进行。
图1-1沉降曲线图图1-2 扭力天平示意图1-旋扭;2-水平仪;3-指针;4-开关旋扭5-天平臂;6-转盘2、仪器药品扭力天平,停表,台秤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一固体废物的粒度分析实验
一、实验的目的与意义
在固体废物资源化中,了解、分析和掌握固体废物的基本特性对提高固废资源化程度有重要意义。
本实验通过对固体物料的筛分分析,使大家了解和掌握粒度分析中套筛的使用,并对筛分过程及其筛分效果进行量化计算。
二、实验原理
固体颗粒的大小称为粒度。
实际上固体废物是不同尺寸的固体废物颗粒的混合物,将这些混合物分成若干级别,这些级别叫做粒级。
物料中各级别的相对含量称为粒度组成。
测定物料的粒度组成或粒度分布以及比表面积,就叫粒度分析。
它是了解物料粒度特性,确定物料加工工艺或资源化的重要依据。
三、实验设备与仪器
3.1 500g台称或天平;
3.2 由20目、60目、100目和200目四个筛子组成的套筛;
3.3 振动筛分机。
四、操作步骤与规程
4.1把各不同目数的筛子,按由粗到细和从上至下顺序叠好,并放在底盘上。
4.2称筛分物料300g,放在最上层筛上,盖上盖子。
4.3提起振动筛分机固定杆,把含物料的套筛放在振筛上,上面放上
圆布。
拧紧固定杆左右和上面的螺丝,把套筛固定好。
4.4检查一遍是否套筛已完全固定好。
4.5插上振筛插头,在数显上调节筛分时间到5秒。
4.6按下绿色按纽起动,5秒后振筛自动停机,检查套筛是否固定好,如果没有问题,在数显上调节筛分时间到10Min.。
4.7停机后松螺丝,把套筛取下来,称量各筛子筛上产物的重量,并记录。
4.8称量后把200目的产物放回原筛上,底盘清空。
重复上述筛分过程,再筛10分钟,取下并记录筛上筛下的重量。
五、要求
5.1做一个完整的筛分分析表格,含累积产率;
5.2根据上述表格的筛分分析数据,做一条粒度——累积曲线图;5.3 根据两次筛分结果,计算第一次-200目粒级的筛分效率。
5.4合并两次-200目的筛下物料,并对每个级别的样品进行缩分、取样并对样品进行标记,取样后在化验室对每个样品进行Fe的含量分析。
5.5根据Fe的分析结果,计算Fe在各粒级中的分布率,以曲线图表示。
并根据铁的分布情况,做出文字说明。
六、安全注意事项
6.1注意不用湿的手插上或取下电源插座,以及不用左手操作。
6.2注意把振筛上的套筛固定好,如中途有松动现象,马上停机。
待固定后重新开机,以免物料振出伤人。