两数比较大小法则
实数大小比较的常用方法
用作差法比较实数的大小的依据是:对任意实数a、b有:
例6比较 与 的大小。
析解:设 ,
则
所以
七、作商法
用作商法比较实数的大小的依据是:对任意正数a、b有:
例7比较 与 的大小。
析解:设 ,
,则
即
八、放缩法
用放缩法比较实数的大小的基本思想方法是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的。
A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d
分析 可以分别求出a、b、c、d的具体值,从而可以比较大小.
解 因为a=20=1,b=(-3)2=9,c= =- ,d= =2,而- <1<2<9,所以c<a<d<b.故应选A.
除以上七种方法外,还有利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法。对于不同的问题要灵活用简便合理的方法来解题。能快速地取得令人满意的结果。
解 ∵1-(-2)
=1-+2
=3-﹥0。(3=,﹥)
∴1﹥-2,
∴﹥。
说明:若a、b为实数, a-b﹥0则a﹥b;a-b=0则a=b; a-b﹤0则a﹤b。以后做题时遇到同分母或同分子的问题时可用上面的方法。
二、求商法
例2 :有两个数A=、 B=比较A、B的大小。
分析:本题在不用计算器的前提下对于初中生来说并不容易。通过观察可以发现分子、分母都可以分解因数。分子含有公因数:111,分母含有公因数:1111。因此可采用两数相除的方法,问题就迎刃而解了。
十一、法则比较法
正数大于0,0大于负数,正数大于负数。两个正数,绝对值大的数较大;两个负数,绝对值大的数反而较小。
高中数学知识点精讲精析 比较大小
3.1.2 比较大小1. 实数的运算性质与大小顺序之间的关系。
设、为任意两个实数,如果是整数,那么;如果等于零,那么;如果是负数,那么,反过来也成立,即注:①上面的“”表示“等价于”,即可以互相推出;②上面的“”左边的式子反应了实数的运算性质,右边的式子反应的是数的大小,而这结合起来即是实数的运算性质与大小顺序之间的关系。
③这一关系是不等式的理论基础,是比较两个实数大小的依据,也是不等式性质的证明、证明不等式和解不等式的主要依据。
2. 实数比较大小的方法。
(1)作差比较:“作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论. 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用的结论有等.(2) 作商比较:“作商法”的一般步骤是:①作商;②变形;③判断商值与1的大小关系;④得出结论.用“作商法”比较两个实数大小的关键是判断商值与1的大小关系,常采用约分、分解等变形方法。
注:利用作商法比较两个实数的大小时,作为比较大小的两个数必须同号切不为零;关键是正确变形和判断商的值与1的大小。
在数(式)的结构中含有幂、根式或绝对值时,常采用作商法。
3. 不等式的性质及证明。
性质1:(对称性);证:∵ ∴由正数的相反数是负数性质2:(传递性),证:∵, ∴,∵两个正数的和仍是正数 ∴即 ∴由对称性、性质2可以表示为:如果且那么性质3:(加法单调性),证:∵ ∴从而可得移项法则:推论①:(相加法则) a b b a -b a >b a -b a =b a -b a <⎪⎩⎪⎨⎧<⇔<-=⇔=->⇔>-.0;0;0b a b a b a b a b a b a ⇔⇔2200x x ≥-≤≥≤,,|x|0,-|x|0b a >⇔a b <b a >0>-b a 0)(<--b a 0<-a b a b <b a >c b >⇒c a >b a >c b >0>-b a 0>-c b +-)(b a 0)(>-c b 0>-c a c a >b c <a b <a c <b a >R c ∈⇔c b c a +>+0)()(>-=+-+b a c b c a c b c a +>+b c a b c b b a c b a ->⇒-+>-++⇒>+)()(d b c a d c b a +>+⇒>>,证: 推论②:(相减法则)如果且,那么 证:∵ ∴ 或证:上式>0 ……… 性质4:(乘法单调性),;,证: ∵ ∴根据同号相乘得正,异号相乘得负,得:时即:时即:推论①:(相乘法则)且 证: 推论②:(乘方法则)推论③:(相除法则)且,那么证:∵ ∴ 性质5:(开方法则)如果,那么证:(反证法)假设则:若这都与矛盾 ∴d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>b a >d c <d b c a ->-d c <d c ->-d b c a d c b a ->-⇒⎩⎨⎧->->)()()()(d c b a d b c a ---=---d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a b a >0>c ⇒bc ac >b a >0<c ⇒bc ac <c b a bc ac )(-=-b a >0>-b a 0>c 0)(>-c b a bc ac >0<c 0)(<-c b a bc ac <0>>b a 0>>d c ⇒bd ac >bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,0>>b a ⇒n n b a >)1(>∈n N n 且0>>b a d c <<0d b c a >0>>c d ⇒⎪⎭⎪⎬⎫>>>>0011b a d c d b c a >0>>b a n n b a >)1(>∈n N n 且n n b a ≤ba b a b a b a n n n n =⇒=<⇒<b a >n n b a >例1:有三个条件:(1)ac 2>bc 2;(2)>;(3)a 2>b 2,其中能分别成为a>b 的充分条件的个数有( )A .0B .1C .2D .3【解析】(1)由ac 2>bc 2可知c 2>0,即a >b ,故ac 2>bc 2是a >b 的充分条件,(2)c <0时,a <b ,(3)a <0时,a <b ,故(2)、(3)不是a >b 的充分必要条件,故答案选B 。
一年级数学《10以内的加减法》知识点导览
一年级数学《10以内的加减法》知识点导览一、认识数字十以内的数字是我们学习加减法的基础,首先我们需要认识数字0到9。
这些数字代表了不同的数量,我们可以通过它们来表示物品的多少。
二、数的大小比较在进行加减法时,我们需要比较数字的大小。
比较数的大小可以通过数字的数值大小来判断,数值较大的数字代表较大的数量。
三、加法的概念和运算法则加法是指将两个或多个数字合并在一起,得到它们的总数。
在进行加法运算时,我们按照下面的法则进行计算:1. 将被加数和加数对齐,从个位数开始逐位相加。
2. 如果相加的结果大于9,就在个位数上保留个位数部分,并将十位数部分向前进位。
3. 重复以上步骤,直到所有位数都相加完毕。
四、减法的概念和运算法则减法是指将一个较小的数字从一个较大的数字中减去,得到它们的差。
在进行减法运算时,我们按照下面的法则进行计算:1. 将被减数和减数对齐,从个位数开始逐位相减。
2. 如果被减数的某一位小于减数的对应位,就需要向前一位借位。
3. 当进行借位时,需要保证被减数的前一位数字大于等于借位数,并且向前的位数也要进行相应的调整。
4. 重复以上步骤,直到所有位数都相减完毕。
五、加减法的运算顺序在进行多个加减法运算时,需要按照一定的顺序进行计算。
一般情况下,我们先计算加法,再计算减法。
如果有括号的话,需要先计算括号内的运算。
六、进位和退位在加法和减法运算中,我们常常遇到进位和退位的情况。
进位是指在相加时,个位数相加结果大于9,需要向前一位进位;退位是指在相减时,某一位的减数大于被减数,需要向前一位退位。
七、加减法的应用我们可以通过加减法解决一些实际问题,比如计算购物的总价、求解物品剩余数量等等。
加减法运算在日常生活和学习中都有着广泛的应用。
总结:一年级的数学学习中,认识并掌握10以内的加减法是非常重要的基础知识。
通过本文的导览,我们了解了数字的基本概念、加法和减法的运算法则以及运算顺序。
在实际应用中,我们也需要注意进位和退位的情况。
怎样比较有理数的大小
数学篇比较有理数的大小,是学习有理数时经常遇到的问题.由于负数、相反数、绝对值等概念的引入,增加了解答此类问题的难度.现介绍几种比较有理数大小的方法.一、利用绝对值比较大小借助绝对值可以比较两个负数的大小:“两个负数,绝对值大的反而小”.其步骤如下:(1)分别求出两个负数的绝对值;(2)比较两个绝对值的大小;(3)根据“两个负数,绝对值大的反而小”确定两个负数的大小.例1比较-89和-910的大小.解:因为||||||-89=89,||||||-910=910,而89<910,所以-89>-910.评注:比较负数的大小,一定要先比较其绝对值的大小,然后根据“绝对值大的反而小”得出最终结果.二、分类比较大小对于几个正负数一起比较大小的问题,可采用分组比较的方法,即先将需比较大小的各数按正数、零、负数进行分类,接着在各个“类”内进行大小比较,最后按正负数的比较法则写出结果.例2用“>”号将13,-12,-13,0连接起来.解:∵13>0,-12<0,-13<0,||||||-12=12,||||||-13=13,12>13,1213∴13>0>-13>-12.评注:把一组数分成正数、0、负数再分类比较:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.三、利用数轴比较大小在数轴上表示的两个数,右边的数总比左边的数大.根据这个特点可把需要比较的数表示在数轴上,通过数轴比较两数的大小.这种方法特别适用于同时比较多个有理数的大小.例3有理数a 、b 在数轴上的位置如图1所示,将a ,-a ,b ,-b ,1,-1用“<”号排列出来.1a0-1b 图1分析:由图1看出,a >1,-1<b <0,∣b ∣<1<∣a ∣.-a ,-b 分别是a 和b 的相反数,数轴上表示a 和-a ,b 和-b 的点都关于原点对称,他们到原点的距离分别相等,用这个性质在数轴上画出表示-a ,-b 的点,如图2,他们的大小也就排列出来了1a-ab-1-b图2解:在数轴上画出表示-a ,-b 的点,由图2可以得出,-a <-1<b <-b <1<a .评注:对用字母表示的有理数进行大小比较时,常常画出数轴,利用数轴进行大小比较,把“数”与“形”结合进行解题非常直观.四、作差值比较大小数苑纵横怎样比较有理数的大小甘肃武威田梦数学篇为任意两个有理数,先求出a 与b 的差,再根据当a -b >0时,得到a >b ;当a -b <0时,得到a <b ;当a -b =0,得到a =b .例4当0<x <1时,x 2,x ,1x的大小顺序是().A.1x <x <x 2B.1x<x 2<x C.x 2<x <1x D.x <x 2<1x解:因为0<x <1,所以1-x >0,x -1<0,x +1>0.所以x -x 2=x (1-x )>0.所以x >x 2.又x -1x =x 2-1x =(x +1)(x -1)x<0.所以x <1x ,即x 2<x <1x,故选C 项.评注:当要比较的两个数的大小非常接近,无法直接比较大小时,差值比较法是常采用的方法.五、作商值比较大小作商值比较大小就是求出两个数的商,然后将商与1进行大小比较.设a ,b 是任意两正数,则a b >1⇔a >b ;a b =1⇔a =b ;ab<1⇔a <b .例5比较5251与2627的大小.解:因为5251÷2627=5251×2726=5451>1,所以5251>2627.评注:当比较大小的两个正分数作商易约分时,商值比较法往往能起到事半功倍的效果.六、取倒数比较大小倒数法的基本思路是设a ,b 为任意两个正有理数,分别求出a 、b 的倒数1a ,1b,如果1a <1b ,那么有a >b ;1a >1b ,那么有a <b .例6比较1111111和111111111的大小.解:1111111的倒数是101111,111111111的倒数是1011111,因为101111>1011111,所以1111111<111111111.评注:有些分数通分母和通分子都不方便,而分子分母之间的差相等,或是分子分母之间的整数倍数相同,就可以比较倒数.倒数越大,原分数就越小;倒数越小,原分数就越大.七、分类讨论比较大小用字母表示的两个有理数,随着字母取值的变化,它们的大小关系也随之变化.因此,当用字母代替数时,比较大小必须对字母的取值情况进行分类讨论,分类后字母的取值不能重复、遗漏.例7比较a 与1a的大小.解:⑴当a >1时,a >1a.⑵当a =1时,a =1a.⑶当0<a <1时,a <1a.⑷当-1<a <0时,a >1a.⑸当a =-1时,a =1a.⑹当a <-1时,a <1a.综上所述,当a >1或-1<a <0时,a >1a;当a =±1时,a =1a ;当0<a <1或a <-1时,a <1a.评注:比较含有字母的数,要对字母的取值范围进行讨论,尤其还要考虑两个数取何值时相等.此外,还可以把各数在数轴上表示出来,作为分类的依据.总之,正确熟练地比较有理数的大小,对后面的学习非常重要.比较有理数大小的方法较多,应根据数的特征灵活选择比较的方法,做到具体问题具体分析,准确快速解答.数苑纵横22。
有理数及其大小比较的知识点
有理数及其大小比较的知识点
一、有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
- 整数包括正整数、0、负整数。
例如:3,0,-5都是整数。
- 分数包括有限小数和无限循环小数。
像0.25=(1)/(4)是有限小数属于分数,0.3̇=(1)/(3)是无限循环小数也属于分数。
2. 有理数的分类。
- 按定义分类:
- 有理数整数正整数 0 负整数分数正分数负分数
- 按性质符号分类:
- 有理数正有理数正整数正分数 0 负有理数负整数负分数
二、有理数的大小比较。
1. 数轴比较法。
- 数轴的三要素:原点、正方向、单位长度。
- 在数轴上表示的两个数,右边的数总比左边的数大。
- 例如:在数轴上表示2和-3,2在-3的右边,所以2 > - 3。
2. 法则比较法。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数比较大小,绝对值大的反而小。
- 例如:比较-2和-5,| - 2|=2,| - 5| = 5,因为2<5,所以-2 > - 5。
3. 作差比较法(拓展)
- 设a、b是两个有理数,则a - b>0Leftrightarrow a > b;a - b = 0Leftrightarrow a=b;a - b<0Leftrightarrow a < b。
- 例如:比较3和2,3-2 = 1>0,所以3>2。
比较有理数大小的类型和方法
比较有理数大小的类型与方法一、两个有理数比较大小,可以归纳为五种情况:(1)两个正数,如3和310; 分析:1、一个分数和一个小数比较大小时,要统一成分数或者小数,一般统一成小数;2、异分母的两个分数比较大小时,先通分再比较。
(2)正数和0,如3和0;分析:由“比较大小的法则:正数大于零”,直接可得出3>0(3)负数和0,如-2和0;分析:由“比较大小的法则:负数小于零”,直接可得出-2<0(4)一个负数和一个正数,如-2和3;分析:由“比较大小的法则:负数小于正数”,直接可得出-2<3(5)两个负数,如-2和-3。
分析:因为33,22=-=-,2<3,由“两个负数比较大小,绝对值大的反而小”,可得-2>-3二、比较有理数大小的方法方法一:利用数轴比较有理数的大小数轴上的点表示的数,右边的总比左边的大。
例1:在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514. 解:如图所示.-6<-514<-35<0<1.5<2. 例2:如图,有理数a 在数轴上的位置如图所示,则( )A.a>2B.a>-2C.a<0D.-1>a解:选B例3:大于-2.5而小于3.5的整数共有个。
解:6个例4:已知a>0,b<0,且b>a,试比较a、a-、b、b-的大小。
解:根据题意画出数轴,如图在数轴上表示a-、b-的点。
根据“数轴上的点表示的数,右边的总比左边的大”,可得b<-a<a<-b方法二:利用比较大小的法则比较有理数大小。
正数大于0,负数小于0,正数大于负数。
两个负数比较大小,绝对值大的反而小。
例5:在3,-9,412,-2四个有理数中,最大的是()A.3B.-9C.412 D.-2解:选C方法三:利用特殊值比较有理数的大小。
例6:比较2a与3a的大小。
解:当0<a时,aa32>当0=a时,aa32=当0>a时,aa32<。
数的大小顺序和比较方法
数的大小顺序和比较方法在我们的日常生活中,数的大小和比较是非常常见的。
无论是购物时比较价格,还是评估项目的重要性,我们都需要进行数的大小顺序和比较。
本文将探讨数的大小顺序和比较的不同方法和策略。
一、数的大小顺序1. 从小到大顺序当我们需要将一组数字按照从小到大的顺序排列时,可以使用冒泡排序、选择排序或插入排序等常见排序算法。
这些算法的基本原理是通过比较不同数字的大小,并根据结果进行交换或移动,以最终达到按照从小到大排列的目的。
2. 从大到小顺序与从小到大顺序相反,当我们需要将一组数字按照从大到小的顺序排列时,可以应用相同的排序算法,只是在比较过程中交换数字的条件相反。
除此之外,还可以通过自定义比较函数,调整排序算法的参数以实现从大到小的顺序。
二、数的比较方法1. 大于(>)大于是最基本的数的比较方法之一。
当我们需要确定一个数字是否大于另一个数字时,可以使用大于符号(>)进行比较。
例如,如果数(False)。
2. 小于(<)与大于相反,小于是另一种基本的数的比较方法。
当我们需要确定一个数字是否小于另一个数字时,可以使用小于符号(<)进行比较。
例如,如果数字A小于数字B,则表达式A < B的结果为真(True),否则为假(False)。
3. 等于(=)等于是用于确定两个数字是否相等的比较方法。
当我们需要确认两个数字是否相等时,可以使用等于符号(=)进行比较。
例如,如果数字A等于数字B,则表达式A = B的结果为真(True),否则为假(False)。
4. 不等于(≠)不等于是另一种常用的比较方法,用于确定两个数字是否不相等。
当我们需要确认两个数字是否不相等时,可以使用不等于符号(≠)进行比较。
例如,如果数字A不等于数字B,则表达式A ≠ B的结果为真(True),否则为假(False)。
5. 大于等于(≥)和小于等于(≤)除了大于、小于、等于和不等于之外,还有大于等于和小于等于这两种比较方法。
有理数的大小比较法则
有理数的大小比较法则有理数是可以表示为两个整数的比值的数。
它们可以用来表示数字、长度、质量等等,是数学中非常常见和重要的一类数。
在比较有理数的大小时,有以下几种情况和规则:1.相同分母的分数比较:如果两个有理数的分母相同,那么它们的大小取决于分子的大小。
分子大的有理数大,分子小的有理数小。
例如:比较3/5和4/5、这两个有理数的分母都是5,所以我们只需比较它们的分子。
显然4>3,所以4/5>3/52.相同分子的分数比较:如果两个有理数的分子相同,那么它们的大小取决于分母的大小。
分母小的有理数大,分母大的有理数小。
例如:比较2/3和2/5、这两个有理数的分子都是2,所以我们只需比较它们的分母。
显然3>5,所以2/3>2/53.分数与整数的比较:当比较一个分数和一个整数时,可以将整数写成分母为1的分数,然后按照相同分母的比较规则进行比较。
例如:比较2/3和4、我们可以将4写成4/1,然后按照相同分母的比较规则比较。
显然3>1,所以2/3>44.分数的化简比较:为了方便比较,我们可以将两个分数化简为最简形式,然后比较它们的分子和分母。
例如:比较8/12和5/6、我们可以将这两个分数都化简为最简形式。
8/12=2/3,5/6=5/6、然后按照相同分母的比较规则比较。
显然2/3<5/6,所以8/12<5/65.使用通分法比较:如果两个分数的分母不同,我们可以使用找到它们的最小公倍数来进行通分,然后按照通分后的分子大小进行比较。
例如:比较2/3和3/4、这两个分数的分母不同,我们可以找到它们的最小公倍数是12、然后将它们通分为8/12和9/12,再按照相同分母的比较规则比较。
显然9>8,所以3/4>2/3需要注意的是,在进行比较时,我们只比较了分子和分母的大小,并没有计算实际的数值大小。
比较的结果只是说明了它们在数轴上的位置关系,哪个数较大或者较小。
数的长短比较
数的长短比较在数学中,我们常常需要比较不同数之间的大小关系。
而在比较这些数的长短时,我们可以通过几种方法来进行判断和比较。
以下将介绍几种基本的数的比较方法。
1. 绝对值比较法绝对值比较法适用于比较任意实数的大小关系。
通过计算数的绝对值大小,可以判断数的长短。
比如,对于两个实数a和b,如果|a| > |b|,那么a的长度就大于b的长度。
2. 整数比较法整数比较法适用于只包含整数的比较。
对于两个整数a和b,可以直接比较它们的数值大小。
如果a大于b,则认为a的长度较长;如果a小于b,则认为b的长度较长。
当a等于b时,它们的长度相等。
3. 分数比较法分数比较法适用于比较两个分数的大小。
对于两个分数a/b和c/d,首先通过通分将它们转化为相同分母,然后比较它们的分子大小。
如果a/b > c/d,那么a/b的长度就大于c/d的长度。
4. 小数比较法小数比较法适用于比较两个小数的大小。
对于两个小数a和b,可以将它们转化为分数形式,然后再进行分数比较。
另外,还可以通过小数的位数来判断它们的大小。
位数多的小数长度较长。
5. 科学计数法比较法科学计数法比较法适用于比较两个较大或较小数的大小。
当数较大或较小时,可以使用科学计数法来表示。
比较时,可以将数转化为科学计数法形式,然后比较它们的指数大小,指数大的数长度较长。
综上所述,通过绝对值比较法、整数比较法、分数比较法、小数比较法和科学计数法比较法等方法,可以准确判断和比较数的长短。
不同情况下可选择不同的比较方法,以便有效地进行数的大小关系的判断。
有理数的大小比较法则
有理数的大小比较法则
有理数大小比较
(1)有理数的大小比较:
比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。
(2).有理数大小比较的法则:
①正数都大于0;
②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小。
规律方法:有理数大小比较的三种方法:
(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.
(3)作差比较:
若a﹣b>0,则a>b;
若a﹣b<0,则a
若a﹣b=0,则a=b.
扩展资料:
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数。
不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数集可以用大写黑正体符号Q代表。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。
有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数的大小比较的方法与技巧
有理数的大小比较的方法与技巧数的大小比较,是数学中经常遇到的问题,现介绍几种数的大小比较的方法和技巧.1.作差法比较两个数的大小,可以先求出两数的差,看差大于零、等于零或小于零,从而确定两个数的大小.即若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.例1已知A=1×4,B= 3×2,试比较A和B的大小.解:设1=m,则A=m(m+3),B=(m+1)(m+2)∵A-B=m(m+3)-(m+1)(m+2)=m2+3m-m2-3m-2=-2<0。
∴A<B。
2.作商法比较两个正数的大小,可以先求出这两个数的商,看商大于1、等于1或小于1,从而确定两个数的大小.3.倒数法比较两个数的大小,可以先求出其倒数,视其倒数的大小,从而确定这两个数的大小.4.变形法比较大小,有时可以通过把这些数适当地变形,再进行比较.分析:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.例6比较355、444、533的大小.解∵ 355=(35)11=24311444=(44)11=25611533=(53)11=12511∴ 444>355>5335、利用有理数大小的比较法则有理数大小的比较法则为:正数都大于零,负数都小于零;正数大于一切负数;两个负数,绝对值大的反而小.例7特别需注意的一点,就是关于两个负数大小的比较,其一般步骤如下:(1)分别求出两个已知负数的绝对值;(2)比较两个绝对值的大小;(3)根据两个负数比较大小的法则得出结果.例8解:6、利用数轴比较法在数轴上表示的两个数,右边的数总比左边的数大.根据这一点可把须比较的有理数在数轴上表示出来,通过数轴判断两数的大小.例9已知:a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.解:∵a>0,b<0,说明表示a、b的点分别在原点的右边和左边,又由|b|<a知表示a的点到原点的距离大于表示b的点到原点的距离,则四个数在数轴上表示如图:故-a<b<-b<a.7、注意对字母的分类讨论法例10比较a与2a的大小.解:a表示的数可分为正数、零、负数三种情况:当a>0时,a<2a;当a=0时,a=2a;当a<0时,a>2a.。
高三数学精品讲义:比较大小的方法总结
高考命题中,常常在选择题或填空题中出现一类比较大小的问题,往往将幂函数、指数函数、对数函数、三角函数等混在一起,进行排序.这类问题的解法往往可以从代数和几何两方面加以探寻,即利用函数的性质及图象解答.本专题以一些典型例题来说明此类问题的方法与技巧.【方法归纳】(一)常用技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为和(1)如果底数和真数均在中,或者均在中,那么对数的值为正数 (2)如果底数和真数一个在中,一个在中,那么对数的值为负数 例如:等2、要善于利用指对数图象观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“-1,0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分()0,1()1,+∞()0,1()1,+∞()0,1()1,+∞30.52log 0.50,log 0.30,log 30<>>1113423,4,5()()()11111143634212121233,44,55===割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如,可知,进而可估计是一个1点几的数,从而便于比较 4、常用的指对数变换公式:(1)(2) (3)(4)换底公式: 进而有两个推论: (令) (二)利用函数单调性比较大小1、函数单调性的作用:在单调递增,则(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁) 2、导数运算法则:(1)(2) 3、常见描述单调性的形式 (1)导数形式:单调递增;单调递减2log 32221log 2log 3log 42=<<=2log 3nm m na a ⎛⎫= ⎪⎝⎭log log log a a a M N MN +=log log log a a aM M N N-=()log log 0,1,0na a N n N a a N =>≠>log log log c a c bb a=1log log a b b a =c b =log log m n a a nN N m=()f x [],a b []()()121212,,,x x a b x x f x f x ∀∈<⇔<()()()()()()()'''f x g x f x g x f x g x =+()()()()()()()'''2f x f xg x f x g x g x g x ⎛⎫-= ⎪⎝⎭()()'0f x f x >⇒()()'0f x f x <⇒(2)定义形式:或: 表示函数值的差与对应自变量的差同号,则说明函数单调递增,若异号则说明函数单调递减 4、技巧与方法:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)在比较大小时,通常可利用函数性质(对称性,周期性)将自变量放入至同一单调区间中进行比较 (三)数形结合比较大小1、对称性与单调性:若已知单调性与对称性,则可通过作出草图观察得到诸如“距轴越近,函数值越……”的结论,从而只需比较自变量与坐标轴的距离,即可得到函数值的大小关系(1)若关于轴对称,且单调增,则图象可能以下三种情况,可发现一个共同点:自变量距离轴越近,其函数值越小(2)若关于轴对称,且单调减,则图象可能以下三种情况,可发现一个共同点:自变量距离轴越近,其函数值越大2、函数的交点:如果所比较的自变量是一些方程的解,则可将方程的根视为两个函数的交点.抓住共同的函数作为突破口,将其余函数的图象作在同一坐标系()()12120f x f x x x ->-()()()12120x x f x f x -->⎡⎤⎣⎦()f x x a =(),a +∞()f x x a =(),a +∞下,观察交点的位置即可判断出自变量的大小.【经典例题】例1.【2019全国Ⅰ卷理数】已知,则( ) A . B . C .D .【答案】B【解析】即则. 故选B .例2.【2019全国Ⅱ卷理数】若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取,满足,但,则A 错,排除A ; 由,知B 错,排除B ;取,满足,但,则D 错,排除D ;因为幂函数是增函数,,所以,即a 3−b 3>0,C 正确.故选C .例3.【2019全国Ⅲ卷理数】设是定义域为R 的偶函数,且在单调递减,则0.20.32log 0.220.2a b c ===,,a b c <<a c b <<c a b <<b c a <<22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=01,c <<a c b <<2,1a b ==a b >ln()0a b -=219333=>=1,2a b ==-a b >|1||2|<-3y x =a b >33a b >()f x ()0,+∞A .(log 3)>()>()B .(log 3)>()>()C .()>()>(log 3)D .()>()>(log 3)【答案】C 【解析】是定义域为的偶函数,.,又在(0,+∞)上单调递减,∴,即.故选C .例4.【2017天津】已知奇函数在R 上是增函数,.若,,,则a ,b ,c 的大小关系为( )(A ) (B ) (C )(D )【答案】【解析】因为是奇函数且在上是增函数,所以在时,, 从而是上的偶函数,且在上是增函数,,,又,则,所以即,,所以,故选C .f 14f 322-f 232-f 14f 232-f 322-f 322-f 232-f 14f 232-f 322-f 14()f x R 331(log )(log 4)4f f ∴=223303322333log 4log 31,1222,log 422---->==>>∴>>()f x 23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()f x ()()g x xf x =2(log 5.1)a g =-0.8(2)b g =(3)c g =a b c <<c b a <<b a c <<b c a <<C ()f x R 0x >()0f x >()()g x xf x =R [0,)+∞22(log 5.1)(log 5.1)a g g =-=0.822<4 5.18<<22log 5.13<<0.8202log 5.13<<<0.82(2)(log 5.1)(3)g g g <<b a c <<例5.【2017山东】若a>b>0,且ab=1,则下列不等式成立的是A. B. C. D.【答案】B【解析】因为,且,,所以选B. 例6.【2019天津理数】已知,,,则的大小关系为( ) A . B . C .D .【答案】A【解析】因为, , ,即, 所以. 故选A.【最新模拟】1.(2020·福建高三(理))设12a e -=,24b e -=,12c e -=,323d e -=,则a b c d,,,的大小关系为()()21log 2a b a a b b +<<+()21log 2a b a b a b <+<+()21log 2a b a a b b +<+<()21log 2a ba b a b +<+<0a b >>1ab =()12112log a ba ab a a b b b+>+>+⇒+>+5log 2a =0.5og 2.l 0b =0.20.5c =,,a b c a c b <<a b c <<b c a <<c a b <<551log 2log 2a =<=0.50.5log 0.2log 0.252b =>=10.200.50.50.5c <=<112c <<a c b <<A .c b d a >>>B .c d a b >>>C .c b a d >>>D .c d b a >>>.【答案】B 【解析】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B【解析】1(15171410151717161412)14.710a =+++++++++=, 中位数为1(1515)152b =+=,众数为=17c .故选:B.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C【解析】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =2019log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b =<=102019201820181c =>=,故本题选C.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >> 【答案】C【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C .7.(2020·河南高三月考(文))己知a =544log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则( ) A .a b c >> B .a c b >>C .b c a >>D .c a b >> 【答案】B【解析】因为104661a ==>=, 2.95544411log log 10,012133b c ⎛⎫⎛⎫=<=<=<= ⎪ ⎪⎝⎭⎝⎭, 所以a c b >>,故选:B.8. (2020·广东高三月考(文))已知3log 8a =,0.80.25b -=,c =则( )A .a b c <<B .b a c <<C .b c a <<D . a c b << 【答案】D【解析】3log 82<,0.80.8 1.6 1.50.254222-==>=>,∴a c b <<. 故选:D.9. (2020·新兴县第一中学高三期末(理))函数()()2x bf x x c -+=+的图象如图所示,则下列结论成立的是( )A .0,0b c <>B .0,0b c >>C .0,0b c ><D .0,0b c <<【答案】C 【解析】∵()()2x bf x x c -+=+的图象与y 轴交于M ,且点M 的纵坐标为正,∴20by c =>,故0b >, ()()2x bf x x c -+=+定义域为{}|x x c ≠-其函数图象间断的横坐标为正,∴0c ->,故0c <.故选:C10.(2020·云南高三(理))已知1t >,235=log ,log ,=log x t y t z t =,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<【答案】D【解析】由题意222log x t t ==,333log y t ==,555log z t t ==, 116228==113639==,易知113223<,11510525=,11102232=,即115252<, ∴1115321523<<<,又1t >,∴325y x z <<,故选D .11.(2020·天水市第一中学高三月考(理))定义在R 上的函数()f x 的图象是连续不断的曲线,且()()2xf x f x e =-,当0x >时,()()f x f x '>恒成立,则下列判断一定正确的是( )A .()()523e f f <- B .()()523f e f <- C .()()523e f f ->D .()()523f e f -<【答案】B【解析】构造函数()()x f x g x e=,因为()()2x f x f x e =-, 所以()()2x f x f x e -=,则()()()()()2x x x xf x f x f x eg x g x e e e ----====, 所以()g x 为偶数,当0x >时,()()()0xf x f xg x e '-'=>, 所以()g x 在()0,∞+上单调递增,所以有()()32g g >,则()()32g g ->,即()()3232f f e e-->,即()()532e f f ->. 12. .(2020·海南中学高三月考)已知函数())ln f x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >> 【答案】D【解析】∵())ln f x x =∴()ln()f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <<,∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =-,∴函数()f x 是偶函数,∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=,∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>,∴c a b >>,故选D.13. (2020·黑龙江实验中学高三开学考试(文))若2log 3a =,4log 8b =,5log 8c =,则,,a b c 的从大到小顺序为 .【答案】a b c >>【解析】由于42221log 8log 8log log 2b a ===<=,即a b >. 由于48811log 8log 4log 8b c ==>=,即b c >.所以a b c >>. 14、(2020·山东高三月考)已设,a b 都是正数,则“33a b log log <”是“333a b >>”的 条件 .(填“充分不必要”、 “必要不充分”、“充要”、“既不充分也不必要”)【答案】必要不充分【解析】由33a b log log <,得01b a <<<或01a b <<<或1a b >>,由333a b >>,得1a b >>,∴“33a b log log <”是“333a b >>”的必要不充分条件.15. (2020·四川省泸县第四中学高三月考(理))已知||()2x f x x =,3(log a f =,31(log )2b f =,(3)c f ln =,则,,a b c 的从大到小顺序为 . 【答案】c a b >>【解析】由函数的解析式可知函数为奇函数,当0x ≥时,()2x f x x =⋅,此时函数为增函数,结合奇函数的性质可知函数()f x 是定义在R 上的单调递增函数,由于331ln 31log 0log 2>>>>,故()(3132f ln f log f log ⎛⎫>> ⎪⎝⎭.即c a b >>. 16. (2020·河北工业大学附属红桥中学高三月考)已知函数()32cos f x x x =+,若a f =(2),b f =2(log 7),c f =则,,a b c 的从小到大顺序为 .【答案】b c a <<【解析】因为函数()32cos f x x x =+,所以导数函数()'32f x sinx =-,可得()'320f x sinx =->在R 上恒成立,所以()f x 在R 上为增函数, 又因为222log 4log 73=<<<b c a <<,故选D.。
数字的大小与大小比较法则
数字的大小与大小比较法则数字在我们日常生活和各个领域都扮演着重要的角色,了解数字的大小以及大小比较法则对我们正确理解和运用数字至关重要。
本文将介绍数字的大小概念和大小比较法则,帮助读者更好地掌握数字的运用。
一、数字的大小概念数字的大小是指数值的相对大小,可以通过比较数字的大小来确定数字的大小关系。
在比较数字大小时,一般采用以下几种方法。
1. 整数的大小比较整数的大小比较遵循数轴的原则,数轴从左到右逐渐递增,从右到左逐渐递减。
在数轴上,数字越往右越大,数字越往左越小。
例如,在数轴上,数字-3表示比-2小,-2比0小,0比1小,1比2小,等等。
因此,当比较两个整数大小时,只需比较它们在数轴上的位置即可。
2. 小数的大小比较小数的大小比较可以通过比较小数点后面的数字,从左到右逐位比较。
首先比较小数点前面的整数部分,整数部分越大的小数较大;当整数部分相等时,再比较小数点后面的小数位,小数位数越多的小数较大。
例如,比较0.28和0.195,先比较整数部分0和0,相等;再比较小数部分28和195,因为28比195小,所以0.28比0.195大。
3. 分数的大小比较分数的大小比较需要先将分数转化为通分分数,然后比较分子的大小。
通分分数指分母相同的分数。
将分数转化为通分分数后,可以直接比较分子的大小。
如果分母越大,分数越小,反之越大。
例如,比较1/4和3/8,首先通分为2/8和3/8,因为2比3小,所以1/4比3/8小。
二、大小比较法则在日常生活和学习中,数字的大小比较与大小比较法则密切相关。
下面将介绍数字的大小比较法则。
1. 相同数值的比较当两个数字的值相同,比较它们的整数部分(如整数、小数或分数)。
如果整数部分相等,再比较小数位数或分子大小,以确定数字的大小关系。
2. 正数与负数的比较正数与负数的大小比较可以根据数轴的原则进行判断。
在数轴上,正数比负数大。
但要注意,绝对值较小的负数比绝对值较大的负数大。
例如,-2比-5大,但-2比-1小。
数的顺序比较大小
数的顺序比较大小数字是我们生活中不可或缺的一部分,我们经常使用数字来计数、度量和比较。
在数学中,我们学习了不同的数的性质和比较大小的方法。
本文将介绍数的顺序比较大小的方法和规则。
1. 自然数的比较自然数是最基本的数,从1开始无限往上数。
当比较两个自然数时,大的数肯定比小的数更大。
例如,3比2大,4比3大。
这符合我们的日常生活经验。
2. 整数的比较整数包括正整数、负整数和0。
当比较两个整数时,我们首先比较它们的绝对值大小,绝对值大的数更大。
如果两个整数绝对值相同,那么正整数比负整数大,0是最小的整数。
例如,-5比-3小,3比-3大,0比任何负整数都大。
3. 分数的比较分数是整数和整数的比值,它们可以大于1、等于1或小于1。
当比较两个分数时,我们可以通过求得它们的公共分母,然后比较其分子的大小。
分子大的分数更大。
例如,1/2比1/3大,3/4比2/3大。
4. 小数的比较小数是数的小数部分,它们可以大于1、等于1或小于1。
当比较两个小数时,我们可以比较它们的整数部分和小数部分。
先比较整数部分的大小,再比较小数部分的大小。
例如,1.5比1.3大,2.34比2.33大。
5. 百分数的比较百分数是以百分号表示的分数,它们也可以大于100、等于100或小于100。
当比较两个百分数时,我们可以将其转换为分数进行比较。
例如,75%可以转换为75/100,而60%可以转换为60/100。
然后按照分数的比较规则来判断大小。
6. 科学计数法的比较科学计数法用于表示非常大或非常小的数。
当比较两个科学计数法表示的数时,我们首先比较它们的指数部分,指数大的数更大。
如果两个数的指数相同,那么比较它们的基数部分,基数大的数更大。
例如,2.5 x 10^3比1.5 x 10^3大,3.2 x 10^-5比2.5 x 10^-5小。
通过以上几个例子可以看出,不同类型的数比较大小有不同的规则。
在比较时,我们需要根据数的类型来选择相应的方法。
数的大小比较
数的大小比较在数学中,数的大小比较是一个基本概念。
通过比较数的大小,我们可以确定它们在数轴上的位置关系,并进行进一步的计算和推理。
在本文中,我们将探讨数的大小比较的四种基本方法:绝对值比较、整数比较、小数比较和分数比较,以及如何在实际问题中应用这些方法。
一、绝对值比较绝对值是一个数的非负值。
在绝对值比较中,我们将两个数的绝对值进行比较,而不考虑其正负号。
若两个数的绝对值相等,则它们的大小相等;若一个数的绝对值大于另一个数的绝对值,则它的大小也较大。
例如,|-5| < |2|,即-5的绝对值小于2的绝对值,因此-5较小。
二、整数比较在整数比较中,我们直接比较整数的大小。
比较的规则很简单,正整数大于零、零大于负整数、正整数大于负整数。
例如,5 > 2,-3 < 0,-5 < -2。
三、小数比较小数比较可以通过整数比较来进行。
我们可以将小数转化为分数,然后比较分数的大小。
例如,将0.5转化为1/2,将0.25转化为1/4,然后进行分数比较。
另外,还可以利用小数点后的数字大小比较来判断小数的大小。
例如,0.5 > 0.3,0.25 < 0.3。
四、分数比较分数比较是数的大小比较中的一种相对复杂的情况。
在比较分数大小时,我们可以通过找到它们的公共分母,然后比较分子的大小来进行。
若分子较大的分数相对应的分母较小,则该分数较大。
例如,比较1/3和2/5,我们可以将它们转化为相同分母的分数:5/15和6/15。
显然,6/15 > 5/15,因此2/5 > 1/3。
在实际生活中,数的大小比较十分常见和重要。
以下是一些常见的应用场景:1. 金融领域:在利率比较中,我们需要比较不同银行提供的利率大小,以进行最优选择。
2. 商品购买:在购物过程中,我们常常需要比较不同商品的价格,以确定哪个商品更划算。
3. 长度比较:当我们需要选择不同长度的物体时,比如购买衣物时,我们往往需要比较尺寸的大小。
数学数字的大小比较
数学数字的大小比较在数学中,数字的大小比较是一个基础而重要的概念。
通过比较数字的大小,我们可以确定数值的相对大小关系,帮助我们进行计算和推理。
在本文中,我们将探讨数学数字的大小比较,并介绍一些常见的比较方法和符号。
一、基本的数值比较方法在数学中,我们常用的比较方法有三种,分别是大于、小于和等于。
这三种比较方法可以用不同的符号表示。
1. 大于:大于比较表示一个数字是否比另一个更大。
在数学中,我们用大于号“>”表示大于的关系。
例如,对于两个数字a和b,如果a大于b,我们可以表示为a > b。
2. 小于:小于比较表示一个数字是否比另一个更小。
在数学中,我们用小于号“<”表示小于的关系。
例如,对于两个数字a和b,如果a小于b,我们可以表示为a < b。
3. 等于:等于比较表示两个数字是否相等。
在数学中,我们用等号“=”表示等于的关系。
例如,对于两个数字a和b,如果a等于b,我们可以表示为a = b。
以上三种比较方法是最基本的数值比较方法,在解决数学问题的过程中经常用到。
接下来,让我们来看一些应用实例,加深对这些比较方法的理解。
例如,比较数字5和数字8的大小关系,我们可以写作5 < 8,表示数字5小于数字8。
同样地,我们可以写作8 > 5,表示数字8大于数字5。
如果我们要判断5和8是否相等,可以写作5 = 8,表示数字5等于数字8。
二、比较多个数字的大小关系在数学中,我们不仅需要比较两个数字的大小关系,还需要比较多个数字的大小关系。
为了方便比较,我们可以使用不等号来连接多个数字的比较。
1. 大于等于:大于等于比较表示一个数字是否大于或等于另一个数字。
在数学中,我们用大于等于号“≥”表示大于等于的关系。
例如,对于三个数字a、b和c,如果a大于等于b且a大于等于c,我们可以表示为a ≥ b ≥ c。
2. 小于等于:小于等于比较表示一个数字是否小于或等于另一个数字。
在数学中,我们用小于等于号“≤”表示小于等于的关系。
数轴运算法则
数轴运算法则数轴是一种用于表示和比较数值大小的工具,它能够帮助我们更好地理解数值之间的关系和进行数值运算。
在数轴上,我们可以使用不同的法则来进行数值的加法、减法、乘法和除法运算。
本文将介绍数轴运算法则,帮助读者深入了解如何在数轴上进行正确的数值运算。
一、数轴的基本概念在开始介绍数轴运算法则之前,我们先来了解一下数轴的基本概念。
数轴是一条直线,上面的点与数值一一对应。
通常我们将数轴分为一个负半轴和一个正半轴,中间用0标记。
负半轴上的数比0小,正半轴上的数比0大。
通过数轴,我们可以直观地表示数值的大小和关系。
二、加法运算法则在数轴上进行加法运算时,我们可以使用以下法则:1.若要在数轴上求一个数的相反数,即加上该数的绝对值;2.从起点开始,根据第一个数的正负向右或向左移动,移动的距离为该数的绝对值;3.在第一个数的终点基础上,根据第二个数的正负向右或向左移动,移动的距离为第二个数的绝对值;4.最终的终点即为两个数的和。
例如,要计算-3 + 5,首先,在数轴上从起点出发,向左移动3个单位,到达-3的位置;然后,在-3的位置基础上,向右移动5个单位,最终终点为2,所以-3 + 5 = 2。
三、减法运算法则在数轴上进行减法运算时,我们可以使用以下法则:1.若要在数轴上求一个数的相反数,即加上该数的绝对值;2.从起点开始,根据第一个数的正负向右或向左移动,移动的距离为该数的绝对值;3.在第一个数的终点基础上,根据第二个数的正负向左或向右移动,移动的距离为第二个数的绝对值;4.最终的终点即为两个数的差。
例如,要计算8 - 4,首先,在数轴上从起点出发,向右移动8个单位,到达8的位置;然后,在8的位置基础上,向左移动4个单位,最终终点为4,所以8 - 4 = 4。
四、乘法运算法则在数轴上进行乘法运算时,我们可以使用以下法则:1.根据第一个数的正负,确定向右(正)或向左(负)移动的方向;2.从起点开始,根据第一个数的绝对值向右或向左移动,移动的距离为第一个数的绝对值;3.在第一个数的终点基础上,根据第二个数的正负向右或向左移动,移动的距离为第二个数的绝对值;4.最终的终点即为两个数的乘积。
初中数学素材 有理数大小比较四法
有理数大小比较四法
一、依据有理数大小的比较法则
有理数大小的比较法则为:正数都大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.
特别需要注意的一点,就是关于两个负数大小的比较,其一般步骤如下:(1)分别求出两个已知负数的绝对值;(2)比较两个绝对值的大小;(3)根据两个负数比较大小的法则得出结果.
二、利用数轴比较大小
在数轴上表示的两个数,右边的数总比左边的数大.根据这一点可把需要比较的有理数在数轴上表示出来,通过它们在数轴上对应点的位置来判断大小.
例3已知:a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.
解:∵a>0,b<0,说明表示a、b的点分别在原点的右边和左边,又由|b|<a知,表示a的点到原点的距离大于表示b的点到原点的距离,则四个数在数轴上示意图如下:
故-a<b<-b<a.
三、利用求差法比较大小
求出两数的差,根据差的符号来判断两数的大小关系,即若a-b>0,则a>b;若a-b =0,则a=b;若a-b<0,则a<b.
四、注意对字母的分类讨论
例5比较a与2a的大小.
解:a表示的数可分为正数、零、负数三种情况:
当 a>0时,a<2a;
当 a=0时,a=2a;
当 a<0时,a>2a.。
绝对值及有理数的大小比较知识点解读与提高
绝对值及有理数的大小比较(基础)要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|.(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是 正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立. 4. 求商法:设a 、b 为任意正数,若,则;若,则;若,则;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.类型一、绝对值的概念1.求下列各数的绝对值.,-0.3,0, 1ab>a b >1a b =a b =1a b<a b <112-132⎛⎫-- ⎪⎝⎭两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号 正数大于负数 -数为0 正数与0:正数大于0 负数与0:负数小于01.借助数轴理解绝对值的概念,知道|a|的绝对值的含义;2.会求一个数的绝对值,并会用绝对值比较有理数的大小;3.通过应用绝对值解决实际问题,体会,-0.3,0,在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.解:方法1:因为到原点距离是个单位长度,所以.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为到原点的距离是个单位长度,所以.方法2:因为,所以.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为,所以.已知一个数的绝对值等于2009,则这个数是________.若一个数的绝对值是正数,则此数有两个,且互为相反数.2009或-2009.根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【变式1】已知一个数的绝对值是4,则这个数是.±4.【变式2】如果|x|=2,那么x=______ ;如果|-x|=2,那么x=______.如果|x-2|=1,那么x=;如果|x|>3,那么x的范围是.;;1或3;或.类型二、绝对值非负性的应用. 若|x﹣2|与|y+3|互为相反数,则x+y= .112132⎛⎫-- ⎪⎝⎭112-112111122-=132⎛⎫-- ⎪⎝⎭132113322⎛⎫--=⎪⎝⎭1102-<111111222⎛⎫-=--=⎪⎝⎭1302⎛⎫-->⎪⎝⎭113322⎛⎫--=⎪⎝⎭2-2+或2-2+或x>3x<-3求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.由|a|≥0即绝对值的非负性可知,|x﹣2|≥0,|y+3|≥0,而它们的和为0.所以|x﹣2|=0,|y+3|=0.由此算出结果.-1.∵|x﹣2|与|y+3|互为相反数,∴|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.类型三、有理数的大小比较.比较大小:﹣(﹣1.8)(填“>”、“<”或“=”).先化简,再比较大小,即可解答.<.解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8,∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<.【变式】比大小:______; -|-3.2|______-(+3.2);0.0001______-1000; -1.38______-1.384;-π______-3.14.>;=;>;>;<.【巩固练习】一、选择题1.-3的绝对值是().A. 3 B.-3 C. D.2.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数.3.下列各式错误的是( ).A.B.C. D.653-763-1313-115533+=|8.1|8.1-=2233-=-1122--=-若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则:a=b=…=m=0.本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.4.已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q5.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a|>|b|C .-a <-bD .-a <|b|6.若|a | + a =0,则a 是( ).A. 正数B. 负数C.正数或0D.负数或0二、填空题7.若m ,n 互为相反数,则| m |________| n |;| m |=| n |,则m ,n 的关系是________. 8.已知| x |=2,| y |=5,且x >y ,则x =________,y =________. 9.满足3.5≤| x | <6的x 的整数值是___________.10.在﹣2.1,﹣2,0,1这四个数中,最小的数是 .11.数a 在数轴上的位置如图所示.则|a-2|= .12.已知,则x 的取值范围是________.三、解答题13.若有理数x 、y 满足|x|=5,|y|=2,且|x+y|=x+y ,求x ﹣y 的值.14.若|a+1.2|+|b ﹣1|=0,那么a+(﹣1)+(﹣1.8)+b 等于多少?15.比较3a-2与2a+1的大小.【答案与解析】 一、选择题 1.【答案】A2.【答案】B【解析】A 错误,因为两个数的绝对值相等,这两个数可能互为相反数;B 正确;C 错误,因为0的绝对值是0,而0不是正数;D 错误,因为一个数的绝对值是它本身的数除了正数还有0.3.【答案】C【解析】因为一个数的绝对值是非负数,不可能是负数.所以C 是错误的.4.【答案】D【解析】解:∵点Q 到原点的距离最远,∴点Q 的绝对值最大. 故选:D .5.【答案】B【解析】离原点越远的数的绝对值越大.6. 【答案】D【解析】若a 为正数,则不满足|a| + a =0;若a 为负数,则满足|a| + a =0;若a 为0,也满足|a| + a =0. 所以a ≤0,即a 为负数或0.二、填空题7. 【答案】=;m=±n【解析】若m ,n 互为相反数,则它们到原点的距离相等,即绝对值相等;但反过来m ,n 绝对值相等,则它们相等或互为相反数.8. 【答案】 ±2,-54334x x -=-【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x >y ,所以x=±2,y=-59. 【答案】±4, ±5【解析】画出数轴,从数轴上可以看出:在原点右侧,有4,5满足到原点的距离大于等于3.5,且小于6;在原点左侧有-4,-5满足到原点的距离大于等于3.5,且小于6.10.【答案】﹣2.1.【解析】根据有理数比较大小的方法,可得﹣2.1<﹣2<0<1. 11.【答案】a-2【解析】由图可知:a≥2,所以|a-2|=a-2. 12.【答案】≤【解析】将看成整体,即,则≤0,故≤0,≤. 三、解答题 13.【解析】 ∵|x|=5, ∴x=±5, 又|y|=2, ∴y=±2,又∵|x+y|=x+y , ∴x+y≥0, ∴x=5,y=±2,当x=5,y=2时,x ﹣y=5﹣2=3,当x=5,y=﹣2时,x ﹣y=5﹣(﹣2)=7.14.【解析】解:∵|a+1.2|+|b ﹣1|=0,∴a+1.2=0,b ﹣1=0, ∴a=﹣1.2,b=1,∴a+(﹣1)+(﹣1.8)+b=﹣3.15.【解析】解:(3a-2)-(2a+1)=3a-2-2a-1=a-3 当a>3时,3a-2>2a+1; 当a=3时,3a-2=2a+1; 当a<3时,3a-2<2a+1.绝对值及有理数的大小比较(提高)要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|.(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是x 3443x -a a a =-a 43x -x 341.借助数轴理解绝对值的概念,知道|a|的绝对值的含义;2.会求一个数的绝对值,并会用绝对值比较有理数的大小;3.理解并会熟练运用绝对值的非负性进正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小.如:a与b在数轴上的位置如图所示,则a<b.2.2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3.作差法:设a、b为任意数,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,a<b;反之成立.4.求商法:设a、b为任意正数,若,则;若,则;若,则;反之也成立.若a、b为任意负数,则与上述结论相反.5.倒数比较法:如果两个数都大于零,那么倒数大的反而小.类型一、绝对值的概念. 如果|x|=6,|y|=4,且x<y.试求x、y的值.6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.解:因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【变式】下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1D.类型二、含有字母的绝对值的化简.若﹣1<x<4,则|x+1|﹣|x﹣4|= .根据绝对值的性质:当a是正有理数时,a的绝对值是1ab>a b>1ab=a b=1ab<a b<两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号正数大于负数-数为0正数与0:正数大于0负数与0:负数小于0已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a,可得|x+1|=x+1,|x﹣4|=﹣x+4,然后再合并同类项即可.2x﹣3.解:原式=x+1﹣(﹣x+4),=x+1+x﹣4,=2x﹣3.【变式】已知有理数a,b,c在数轴上对应的点的位置如图所示:化简:解:由图所示,可得.∴ ,,,∵.∴ 原式.类型三、绝对值非负性的应用.已知a、b为有理数,且满足:,则a=_______,b=________.由,,,可得∴【变式】已知b为正整数,且a、b满足,求的值.【答案】解:由题意得∴所以,类型四、有理数的大小比较.比较下列每组数的大小:(1)-(-5)与-|-5|; (2)-(+3)与0;(2)与; (4)与.(3)30a c->122ba=45-34--π-| 3.14|--此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x﹣4的正负性.由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.解:(1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:.这是两个负数比较大小,因为,,且.所以.(4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【巩固练习】一、选择题1.以下选项中比|﹣|小的数是()A.1 B.2 C. D.2.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是().A.①② B.②③ C.③④ D.②④3.满足|x|=-x的数有( ).A.1个 B.2个 C.3个 D.无数个4.若|x﹣5|=5﹣x,下列不等式成立的是()A. x﹣5>0B. x﹣5<0C. x﹣5≥0D. x﹣5≤06.a、b为有理数,且a>0、b<0,|b|>a,则a、b、-a、-b的大小顺序是( ).A.b<-a<a<-b B.-a<b<a<-bB. C.-b<a<-a<b D.-a<a<-b<b6.下列推理:①若a=b,则|a|=|b|;②若|a|=|b|,则a=b;③若a≠b,则|a|≠|b|;④若|a|≠|b|,则a≠b.其中正确的个数为( ).A.4个 B.3个 C.2个 D.1个二、填空题7.数轴上离原点的距离小于3.5的整数点的个数为,距离原点等于3.5的点的个数为,则.7.如果|a﹣2|+|b+1|=0,那么a+b等于.9.若a>3,则|6﹣2a|= (用含a的代数式表示).10.绝对值不大于11的整数有个.11.式子|2x-1|+2取最小值时,x等于.12.若,则 0;若≥,则.3344--=-44165520-==33154420-==16152020>4354-<--mn3____m n-=1aa=-a a a a 在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的三、解答题13.若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.14.如图,数轴上的三点A、B、C分别表示有理数a、b、c.则:a﹣b 0,a+c 0,b﹣c 0.(用<或>或=号填空)你能把|a﹣b|﹣|a+c|+|b﹣c|化简吗?能的话,求出最后结果.15.阅读下面的材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1-1-1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时:①如图1-1-2,点A、B都在原点的右边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;②如图1-1-3,点A、B都在原点的左边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;③如图1-1-4,点A、B在原点的两边:∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.回答下列问题:①数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;②数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为__________.③当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是______________.【答案与解析】一、选择题1.【答案】D【解析】解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选D.2.【答案】C【解析】先化简在判断,①+(+1)=1,-(-1)=1,不是相反数的关系;②-(+1)=-1,+(-1)=-1,不是相反数的关系;③+(+1)=1,-(+1)=-1,是相反数的关系;④+(-1)=-1,-(-1)=1,是相反数的关系,所以③④中的两个数是相反数的关系,所以答案为:C3.【答案】D【解析】x为负数或零时都能满足|x|=-x,故有无数个.4.【答案】D.5.【答案】A【解析】画数轴,数形结合.6.【答案】C【解析】①正确;②错误,如|-2|=|2|,但是-2≠2;③错误,如-2≠2,但是|-2|=|2|;④正确.故选C.二、填空题7.【答案】1【解析】由题意可知:,所以8.【答案】1【解析】解:由题意得,a﹣2=0,b+1=0,解得,a=2,b=﹣1,则a+b=1,故答案为:1.9.【答案】2a-610.【答案】23【解析】要注意考虑负数.绝对值不大于11的数有:-11 、-10……0 、1 ……11共23个.11.【答案】【解析】因为|2x-1|≥0,所以当2x-1=0,即x=时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值2.12.【答案】<;任意数三、解答题13.【解析】解:因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.14.【解析】解:由数轴得,a﹣b<0,a+c<0,b﹣c<0,∴|a﹣b|﹣|a+c|+|b﹣c|=﹣(a﹣b)﹣[﹣(a+c)]+[﹣(b﹣c)]=﹣a+b+a+c﹣b+c=2c.15.【解析】解:①∣2-5∣=3,∣-2-(-5)∣=3,∣1-(-3)∣=4.②∣AB∣=∣x-(-1)∣=∣x+1∣.∵∣AB∣=2,∴∣x+1∣=2,∴x+1=2或-2,∴x=1或-3.③令x+1=0,x-2=0,则x=-1,x=2.将-1、2在数轴上表示出来,如图1-1-5,则-1、2将数轴分为三部分x<-1、-1≤x≤2、x>2.当x<-1时,∣x+1∣+∣x-2∣=-(x+1)+〔-(x-2)〕=-2x+1>3;当-1≤x≤2时,∣x+1∣+∣x-2∣=x+1+2-x=3;当x>2时,∣x+1∣+∣x-2∣=x+1+x-2=2x-1>3.∴∣x+1∣+∣x-2∣的最小值是3,相应的x 的取值范围是-1≤x≤2.7,2m n==27321m n-=-⨯=1212。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两数比较大小法则是指比较两个数的大小关系,以确定它们之间的相对大小。
常见的比较大小法则有以下几种:
1. **大小比较法则**:这是最基本的比较方法,通过直接比较两个数的值来确定它们的大小关系。
2. **绝对值比较法则**:如果两个数的绝对值相等,那么它们的相对大小是相等的。
3. **加减法比较法则**:通过将两个数相加或相减,可以将它们转化为一个较小的数和一个较大的数或相反数。
这样就可以比较它们的和或差的大小。
4. **乘除法比较法则**:乘法和除法是常用的转换方法,也可以用来比较两个数的大小。
以下是一些具体的例子来说明这些法则的应用:
假设我们有两个数a=3.4和b=5.6,我们可以按照以下步骤进行比较:
1. **大小比较法则**:直接比较3.4和5.6,根据实际情况得到其中一个数是另一个数的较小值,这样我们就知道哪个数更小。
在这个例子中,5.6更大,因为5.6-3.4=
2.2>0。
2. **绝对值比较法则**:这两个数的绝对值分别为
3.4和5.6,由于它们绝对值的大小不同,因此无法确定它们的大小关系。
但如果两个数的绝对值相等,那么它们的相对大小就相等。
3. **加减法比较法则**:由于3.4和5.6中,5.6比较大,我们可以通过减去一个较小的数(例如-2.2)来将其转化为一个较小的数和一个较大的数。
现在a=3.4+(-2.2)=1.2<b=5.6,所以b>a。
此外,还有一种“越小越大”或“越来越小”的比较方法,通常适用于数字序列的比较。
这种方法涉及到观察数字序列的增幅或降幅,如果增幅或降幅逐渐减小或趋于零,那么这个序列就是收敛的,也就是说它最终会收敛到一个确定的数值上。
例如,序列(n^2)就满足这种条件。
最后需要注意的是,这些比较方法并不是绝对的或普遍适用的,它们的应用取决于具体的情况和问题。
在某些情况下,可能需要使用其他的比较方法或技巧。
以上就是两数比较大小的一些基本法则和例子,希望能对你有所帮助。