第一章:整式的运算概念

合集下载

七年级数学整式的运算

七年级数学整式的运算
练习:指出下列单项式的系数与指数各是多少。 a,
2x y
3
4 ,
2 mn
3
2 , Π , 3
4、多项式:几个单项式的和叫多项式。
a b 3
2
5、多项式的项及次数:组成多项式中的单项式叫 多项式的项,多项式中次数最高项的次数叫多项 式的次数。特别注意,多项式的次数不是组成多 项式的所有字母指数和!!!
6、单项式乘以多项式
8、平方差公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
知你 识回 忆 起 了 吗 ? 就 这 些
一、整式的有关概念
数与字母乘积,这样的代数式叫单项式。 1、单项式: 单独一个数或字母也是单项式。
2、单项式的系数: 单项式中的数字因数。 3、单项式的次数:单项式中所有的字母的指数和。
9、完全平方公式
法则:两数和(或差)的平方,等于这两数的平 方和再加上(或减去)这两数积的2倍。 数学符号表示:
(a b) a 2ab b ;
2 2 2
(a b) a 2ab b
2 2
2
其中a, b既可以是数, 也可以是代数式 .
即: (a b) a 2ab b
2 2 2
1 1 2 2 (3)( x 1) x x 1, 2 4 (4)无论是平方差公式 , 还是完全 平方公式, a, b只能表示一切有理数 .
2、计算下列式。
(1)(6 x y )(6 x y ) (2)(x 4 y )(x 9 y ) (3)(3x 7 y )(3x 7 y )
2
(3)如果(m n) z m 2m n n ,
2 2 2
则z应为多少?

初中数学知识归纳整式的概念与运算法则

初中数学知识归纳整式的概念与运算法则

初中数学知识归纳整式的概念与运算法则在初中数学中,整式是一个重要的概念,我们经常会遇到它,并且需要了解整式的运算法则。

本文将对整式的概念及其运算法则进行归纳总结,以帮助初中生更好地理解和应用相关知识。

一、整式的概念整式是由常数和变量相乘并加减得到的表达式,其中常数可以是整数、零或有理数,变量表示未知数,通常用字母表示。

整式的例子包括:5x、3x²+2xy、-4a³+7ab-1等。

整式的含义可以通过具体的例子来说明,比如一个多项式P(x)=3x²+2xy-7表示了一个以x为变量的整式,其中3x²表示x的平方项,2xy表示x与y的乘积项,-7表示常数项。

整式可以用来描述各种数学问题,并且在代数、方程解等领域有广泛的应用。

二、整式的运算法则1. 加减运算法则对于整式的加减运算,我们主要使用以下两个法则:- 同类项相加减法则:将同类项(具有相同的变量和相同的指数)的系数相加减,保持变量和指数不变。

例如:对于整式3x²+2xy-7和4x²-3xy+5,可以将同类项相加得到7x²-y-2。

- 去括号法则:对于整式中的括号,可以通过分配律去括号,将整式化简成一个更简单的形式。

例如:对于整式3(x+2)-2(2x-1),可以应用分配律将其化简为3x+6-4x+2,再进行合并同类项。

2. 乘法运算法则对于整式的乘法运算,我们需要掌握以下两个法则:- 基本乘法法则:将每个项前面的系数相乘,变量相乘的时候,将其指数相加。

例如:对于整式2x²(3x-1),可以将每一项都乘以2x²,得到6x³-2x²。

- 同类项乘法法则:将同类项的系数相乘,将变量相乘时,保持变量和指数不变。

例如:对于整式(3x-1)(2x+5),可以将每个项都乘以3x-1,得到6x²+13x-5。

3. 除法运算法则除法运算是整式最复杂的一种运算,通常需要应用因式分解等技巧来进行求解。

整式的概念与运算

整式的概念与运算

整式的概念与运算整式是代数中的重要概念,广泛应用于数学和科学领域。

本文将介绍整式的概念和运算规则,并且通过实例进行详细说明,以便读者更好地理解整式的特点和运算方法。

一、整式的概念整式是由常数、变量及它们的乘积和积的和构成的代数式。

整式可以包含一个或多个变量,并且可以对变量进行加、减、乘、除等运算。

一般来说,整式是多项式的一种特殊形式。

1.1 单项式当整式中只包含一个变量的乘积时,称为单项式。

例如:2x,-3xy,4a^2b等都是单项式。

其中,x、y、a、b是变量,2、-3、4是系数。

1.2 多项式当整式中包含多个单项式时,称为多项式。

例如:3x^2 - 2xy + 5是一个多项式。

其中,3x^2、-2xy、5都是单项式。

二、整式的运算整式的运算包括加法、减法、乘法和除法。

下面将分别介绍各种运算规则,并通过实例进行说明。

2.1 加法和减法整式的加法和减法运算规则与数的加法和减法类似。

只需将同类项(具有相同的变量和相同的指数)的系数相加或相减即可。

例如:3x^2 + 2xy - 5 和 -2x^2 - 3xy + 4 是两个整式,它们可以进行相加运算:(3x^2 + 2xy - 5) + (-2x^2 - 3xy + 4) = (3x^2 - 2x^2) + (2xy - 3xy) + (-5+ 4) = x^2 - xy - 12.2 乘法整式的乘法运算规则是将每一项的系数相乘,并将变量和指数相乘。

例如:(2x + 3)(4x - 5)是一个整式乘法运算,可以按照分配律展开运算:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 152.3 除法整式的除法运算需要借助长除法的方法进行求解。

例如:将12x^2 + 8x + 4除以4x,可以进行如下的除法运算:3x + 1--------------4x | 12x^2 + 8x + 412x^2 + 4x----------4x + 44x + 1-------3所以,商为3x + 1,余数为3。

数学天地

数学天地

第一章整式的运算1)整式。

①单项式:1.由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

2.单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。

3.一个单项式中,所有字母的指数和叫做这个单项式的次数。

②多项式:1.几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项。

其中,不含字母的项叫做常数项。

一个多项式中,次数最高项的次数,叫做这个多项式的次数。

2.单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。

多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。

多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。

③整式单项式和多项式统称为整式。

2)整式的加减。

①整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。

③括号前面是“-”号,去括号时,括号内各项要变号。

3)同底数幂的乘法。

同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)4)幂的乘方与积的乘方。

①幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

②底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底。

③底数有时形式不同,但可以化成相同。

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。

2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。

3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。

4.整式是单项式和多项式的统称。

二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

逆用:a的m+n次方等于a的m次方乘以a的n次方。

2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。

逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。

3.幂的乘方法则:a的m次方的n次方等于a的mn次方。

逆用:a的mn次方等于a的m次方的n次方。

4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。

逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。

5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。

6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。

7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。

8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。

9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。

推广:有一项完全相同,另一项只有符号不同,结果等于相同。

连用变化。

10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。

a-b)的平方等于a的平方减去2ab加上b的平方。

逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。

a的平方减去2ab加上b的平方等于(a-b)的平方。

完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。

2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。

第一章 整式

第一章 整式

第一章:整式知识要求:1、理解、掌握整式的有关概念2、牢固地掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;3、加强运算能力,以及分析问题、解决问题的能力知识重点:整式的乘法及乘法公式,幂的相关运算性质。

知识难点:熟练掌握整式的有关计算及相关运用:幂的运算,整式乘法,整式除法。

知识点:一、整式的有关概念1、整式:可以看成是分母不含有字母的代数式,要注意两点:一是字母不含有字母但可以是数字,二要是代数式不能含有等号等表示数量关系的符号。

2、整式:分为单项式和多项式。

3、单项式:只含有数字与字母的乘积的整式叫单项式,单独的一个数字和单独的一个字母也可以看成是单项式。

一个单项式中所有字母的指数和叫这个单项式的次数。

一个单项式中的数字因数叫做这个单项式的系数。

4、多项式:几个单项式的和叫做多项式。

一个多项式中,次数最高的项的次数叫这个多项式的次数。

注意:单项式的系数是单项式中的数字因数,不要忘记符号和分母的数字。

不要把多项式的次数与单项式的次数搞混。

二、整式的有关基本计算1、整式的加减:整式的加减实质上就是合并同类项,基本步骤为:(1)去括号;(2)合并同类项。

要注意去括号法则、乘法分配律和合并同类项的法则。

若要求代数式的值要先代简再代入求值。

2、同底数幂的乘法:两个同底数幂相乘,底数不变,指数相加。

n m n m aa a +=⋅,计算时要注意符号和与整式加法的区别。

3、幂的乘法与积的乘方:幂的乘方,底数不变,指数相乘,n m n m aa ∙=)(。

积的乘方,等于各个因式的乘方的积,()n n nb a ab =。

计算时要注意符号以及与同底数幂乘法、去括号的区别,切记法则的条件不要把计算法则乱串。

4、同底数幂的除法:同底数幂相除,底数不变,指数相减,n m n m a a a -=÷。

负指数和零指数的意义:10=a ,)0(≠a ;p p aa 1=-,)0(≠a 。

要注意底数不能为0。

整式运算笔记知识点总结

整式运算笔记知识点总结

整式运算笔记知识点总结一、整式的基本概念1. 整式的定义整式是由常数和变量按照代数运算法则所组成的式子,包括单项式、多项式和零项式。

例如,3x² + 2xy - 5、a²b + 4ab - 7ab²等都是整式。

2. 单项式和多项式单项式是由常数与变量的乘积所构成的代数式,例如3x²、-4ab、5cd等都是单项式。

而多项式是由多个单项式经过加减运算所得的代数式,例如3x² + 2xy - 5、a²b + 4ab - 7ab²等都是多项式。

3. 同类项同类项是指具有相同字母及其指数的代数式,可以通过合并同类项简化整式的表示形式。

例如,3x²和-5x²就是同类项,可以合并为-2x²。

4. 零项式零项式是不含有任何非零项的多项式,也称为零多项式,通常用0来表示。

5. 整式的次数整式的次数是指整式中变量的最高次幂,如3x² + 2xy - 5的次数是2,a²b + 4ab - 7ab²的次数是3。

二、整式运算的基本法则1. 加法和减法整式的加法和减法遵循交换律和结合律,可以对同类项进行合并,最终得到一个简化的整式。

例如:3x² + 2xy - 5 + 4x² - 3xy + 7 = 7x² - xy + 22. 乘法整式的乘法遵循分配律和结合律,可以通过展开式子,找到各项之间的关系,然后合并同类项。

例如:(3x + 2)(4x - 5) = 12x² - 15x + 8x - 10 = 12x² - 7x - 103. 除法整式的除法通常通过因式分解或长除法来进行,目的是将整式分解成乘法的形式,进而进行简化或化简。

例如:(12x² - 7x - 10) ÷ (3x + 2) = 4x - 5三、整式运算的应用整式运算在代数学中有着广泛的应用,尤其是在解决代数方程、不等式、函数等问题时起着至关重要的作用。

整式的运算知识点

整式的运算知识点

整式的运算知识点整式是指由字母和数字之间用加减乘除的运算符连接而成的算式。

它是代数学中最基本的表达式形式,运算过程中涉及到多种知识点和规则。

本文将从整式的基本概念、加法运算、减法运算、乘法运算和除法运算等几个方面介绍整式的运算知识点。

一、整式的基本概念整式由常数项和各种字母的乘积项通过加减运算符连接而成。

其中,常数项可以是正数、负数或零,字母的乘积项由字母和指数两部分构成,指数为正整数。

整式的字母部分可以包含一个或多个字母,字母间的乘积可以是相同字母的乘积项,也可以是不同字母的乘积项。

二、加法运算整式的加法运算遵循交换律和结合律。

将同类项进行合并,即将字母部分相同、指数相同的项合并为一项。

例如,将3x^2 +2x^2合并为5x^2。

同时,将常数项相加得到最终的结果。

三、减法运算整式的减法运算可以通过转化为加法运算来进行。

对于减法式子a - b,可以将其改写为a + (-b)的形式,然后按照加法运算的规则进行计算。

四、乘法运算整式的乘法运算遵循乘法分配律和乘法结合律。

将每一个乘积项中的字母部分相乘,同时将指数相加得到新的指数。

不同乘积项之间通过加法运算符连接。

五、除法运算整式的除法运算可以通过乘法的逆运算来实现,即将除法转化为乘法。

例如,将a/b转化为a * (1/b)的形式,然后按照乘法运算的规则进行计算。

需要注意的是,除法运算中,被除数和除数都必须是整式,除数不能为0。

六、展开与提取公因式展开是指将一个整式按照乘法运算的规则进行计算,化简为最简整式的过程。

提取公因式是指将多个整式中的公共部分提取出来,得到最简整式的过程。

七、综合运算整式的运算可以综合应用前面所述的加法、减法、乘法和除法运算进行。

先进行括号内的运算,然后按照加法、减法、乘法和除法的顺序进行,最后合并同类项和化简得到最终结果。

结语整式的运算是代数学中的基础知识,掌握整式的运算方法对于理解和解决代数问题具有重要意义。

通过本文的介绍,希望能够对整式的运算知识点有一个更加清晰和全面的了解,从而在学习和应用中能够更加得心应手。

数与代数复习 第一章 数与式 第2课 整式及其运算

数与代数复习 第一章 数与式 第2课   整式及其运算
海宁名师云课堂
课前准备:调音量、草稿本、笔等
请计算: 6 6 6 6 6 =3
解:设 : x 6 6 6 6 6
两边都平方得:x2 6 6 6 6 6
x2 6 x
即x2 x 6 0
解得:x 3, x 2(舍去)
1
2
字母的引入帮我们解决了一些复杂的问题. 代数式是传统数上的一种质的飞跃,你还知道 它的其他作用么?
并的结果是 2a 2b3 .
海宁名师云课堂
知识点二:整式的运算
2.整式的乘除运算
(1)幂的运算法则(m,n均为常数,a,b不为零)
①am an amn 请计算:4m 2n 请计算:2x2 (3xy2 )
②(am )n amn
22m 2n
6x3 y2
③(ab)m ambm
22mn 请计算:2x2 (3xy2 1)
了如图所示的三种方案:
ab
ab
b a
ab a
a
b
b
方案一
方案二
方案三
小明发现这三种方案都能验证公式: a2+2ab+b2=(a+b)2 , 对于方案一,小明是这样验证的: a2+ab+ab+b2=a2+2ab+b2=(a+b)2 请你根据方案二,方案三,写出公式的验证过程。
海宁名师云课堂
整式及其运算中考热点四:乘法公式的几何背景
a 2a3 2 x2 y 6 3
海宁名师云课堂
知识点二:整式的运算
1.整式的加减运算 整式的加减实质上就是合并同类项,遇到括号要先去括号
a 2a 3a
a2 (2a2 b2 ) a2 2a2 b2 3a2 b2 (x2 3x 4) (2x 4) x2 3x 4 2x 4 x2 5x

数学初一下册第一章整式的概念与运算教学方案

数学初一下册第一章整式的概念与运算教学方案

数学初一下册第一章整式的概念与运算教学方案一、教学目标本章的教学目标主要包括以下几个方面:1. 理解整式的概念,能够区分整式和非整式;2. 掌握整式的基本运算法则,包括加减乘除;3. 能够应用整式的运算法则解决实际问题;4. 培养学生的逻辑思维能力、推理能力和运算能力。

二、教学重点与难点1. 教学重点:掌握整式的概念与特点,熟练运用整式的加减乘除法则;2. 教学难点:培养学生运用整式解决实际问题的能力。

三、教学内容与活动安排1. 教学内容:(1)整式的概念与特点;(2)整式的加减法;(3)整式的乘法;(4)整式的除法。

2. 活动安排:(1)导入与自主探究:通过展示一些具体的数学表达式,引导学生们讨论它们是否为整式,并分析整式的特点。

(2)概念讲解与示范演练:通过PPT的讲解,向学生详细介绍整式的定义与特点,并进行示范演练。

(3)练习与拓展:让学生们自主完成一些练习题,以巩固所学内容,并在此基础上设计一些思考题,培养他们的逻辑推理能力与解决问题的能力。

(4)合作与交流:学生们分成小组,相互交流答案,并共同解决问题。

(5)总结与归纳:教师对本节课的重点知识进行总结,并给出习题作为课后作业。

四、教学资源与评估方式1. 教学资源:(1)多媒体设备:PPT教学课件;(2)课堂练习题;(3)评估手段:课堂表现、课后作业和小组合作设计的项目评价。

2. 评估方式:(1)课堂表现评价:根据学生在课堂上的积极性、合作意识、回答问题的准确性和深度等方面进行评价;(2)课后作业评价:通过检查课后作业的完成情况和正确率来评价学生是否掌握了课堂内容;(3)小组合作设计的项目评价:根据小组合作完成的课堂活动或项目设计,评价学生的合作能力和综合应用能力。

五、教学反思与改进教学反思是教学中的必要环节,通过对本节课的反思,我认为可以在以下几个方面进行改进和提高:1. 教学设计更注重启发性教学,适当减少直接讲解,增加学生自主探究和合作交流的环节,提高学生的参与度和主动学习的能力;2. 将新的整式概念和运算法则与生活实例结合,引导学生发现数学在现实生活中的应用,增强学习的趣味性和实用性;3. 多形式的评价方式,注重对学生综合能力的评价,鼓励学生动手实践和实际解决问题的能力。

第一单元 整式及相关概念-学而思培优

第一单元 整式及相关概念-学而思培优

第一单元整式及相关概念-学而思培优
本文档旨在介绍学而思培优教学内容中的第一单元——整式及相关概念。

本单元主要涵盖整式的定义、运算规则以及相关概念的理解。

1. 整式的定义
整式是由常数、变量及其乘积、幂次方和各项之和所构成的代数式。

其中,常数是指具体的数字,变量是未知数。

整式的形式可以是单项式、多项式或零多项式。

2. 整式的运算规则
整式的运算规则包括加法、减法、乘法和化简等。

具体规则如下:
- 加法:将同类项相加,保留系数,合并同类项。

- 减法:将减数取相反数,再按照加法规则进行运算。

- 乘法:将每一项与乘数相乘,保留系数,将指数相加。

- 化简:合并同类项,将多项式中的括号展开。

3. 相关概念的理解
本单元还涉及到一些与整式相关的概念,如单项式、多项式、最高次项和整式的次数等。

这些概念的理解对于求解整式的值、约束和判断整式性质十分重要。

- 单项式是只含有一个项的整式,例如3x、-2y²等。

- 多项式是含有两个或多个项的整式,例如x²-2xy+3、4ab²-5ac 等。

- 最高次项是多项式中次数最高的项,例如在x²-2xy+3中,x²是最高次项。

- 整式的次数是最高次项的次数,例如在4ab²-5ac中,整式的次数为2。

以上就是第一单元整式及相关概念的基本内容介绍。

整式的运算知识点

整式的运算知识点

整式的运算知识点在数学的学习中,整式的运算可是一个重要的板块。

掌握整式运算的知识点,对于我们解决各种数学问题都有着至关重要的作用。

首先,咱们来聊聊整式的概念。

整式包括单项式和多项式。

单项式呢,就是由数字和字母的积组成的代数式,单独的一个数或一个字母也叫做单项式。

比如说,5、x、3xy 这些都是单项式。

而多项式则是由几个单项式相加组成的代数式。

像 2x + 3y、a² 2ab + b²等就是多项式。

接下来,咱们说一说整式的加减运算。

整式的加减本质上就是合并同类项。

那什么是同类项呢?所含字母相同,并且相同字母的指数也相同的项叫做同类项。

比如说 3x²y 和-5x²y 就是同类项。

在进行整式加减时,我们只需要把同类项的系数相加,字母和字母的指数不变。

举个例子,计算 3x + 2x,因为 3x 和 2x 是同类项,所以 3x + 2x =(3 + 2)x = 5x。

再讲讲整式的乘法运算。

单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

比如2x²y × 3xy³= 6x³y⁴。

单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加。

例如 3x(2x + y) = 6x²+ 3xy。

多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

比如说(x + 2)(x 3) ,我们就可以这样计算:x × x = x²,x ×(-3) =-3x,2 × x = 2x,2 ×(-3) =-6,然后把这些结果相加,得到 x² 3x + 2x 6 = x² x 6 。

整式的除法运算也不能落下。

单项式除以单项式,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

北师大数学七年级下册第一章知识点及习题

北师大数学七年级下册第一章知识点及习题

第一章:整式的运算一, 概念1, 整式:单项式和多项式统称为整式.2, 单项式: 由数字与字母或字母与字母的相乘组成的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

(单独的字母;单独的数字;数字与字母的乘积) 3, 多项式:几个单项式的和叫做多项式。

多项式含加减运算。

代数式:用运算符导(指加, 减, 乘, 除, 乘方, 开方)把数或表示数的字母连接而成的式子叫做代数式。

数的一切运算规律也适用于代数式。

单独的一个数或者一个字母也是代数式乘方:求n 个相同因数乘积的运算叫做乘方幂:假如把a^n 看作乘方的结果,则读作a 的n 次幂二, 公式, 法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(留意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a a a a-==≠(底倒,指反) (7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):例如:229x +mxy+4y 是一个完全平方和公式,则m =;是一个完全平方差公式,则m =;是一个完全平方公式,则m =;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第一单元习题一, 填空1, 代数式4xy 3是__项式,次数是__2, 代数式x x a x a 5154323+-是__项式,次数是__ 3, (2x 2y+3xy 2)-(6x 2y -3xy 2)=________________4, 43)()(b a b a -⋅-=__________________5, (3x+7y)·(3x -7y)=________________6, (x+2)2-(x+1)(x -1)=______________7, ⑴, 251010-⨯=; ⑵, =⋅32a a ; ⑶, ()=535;二, 选择题(2×4=8)1, 下列计算正确的是 () A, 2a-a=2 B, x 3+x 3=x 6 C, 3m 2+2n=5m 2n D, 2t 2+t 2=3t 22, 下列语句中错误的是 ( ) A, 数字 0 也是单项式 B, 单项式 a 的系数与次数都是 1 C, 21x 2 y 2是二次单项式 C, -32ab 的系数是 -32 3, 下列计算正确的是 ()A, (-a 5)5=-a 25 B, (4x 2)3=4x 6 C, y 2·y 3-y 6=0 D, (ab 2c)3=ab 2c 3 4, (x+5)(x-3)等于 ( )A, x 2 -15 B, x 2 + 15 C, x 2 + 2x -15 D, x 2 - 2x - 15 5, 下列计算正确的是( )A, 422a a a =+ B, 632a a a =⋅ C, ()532a a = D, ()()123223a a a =⋅ 6, 下列计算正确的是( )A, ()623mn mn =;B, ()24222n m m n =;C, ()422293n m mn =-;D, ()51052n m n m =- 7, 8m 可以写成( )A, 42m m ⋅ B, 44m m + C, ()42m D, ()44m8, 计算()()1 52+--x x x 的结果,正确的是( ) A, 54+x B, 542+-x x C, 54--x D, 542+-x x 三, 计算 2, xy y xy y x 322122⋅⎪⎭⎫ ⎝⎛+- 3, (3a+2b )2-b 2 4, 用完全平方公式计算20012 5, 用平方差公式计算2004×19966, (3x+9)(6x+8) 7, (a-b+2)(a-b-2) 8, ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+5353b a b a 9, (3mn+1)(3mn-1)-8m 2n 2 10, (2x 2)3-6x 3(x 3+2x 2+x)11, 已知8b a =+,5ab -=,求下列各式的值。

第一章 整式

第一章 整式

第一章整式的运算●课时安排18课时第一课时●课题§1.1 整式●教学目标(一)教学知识点1.在现实情景中进一步理解用字母表示数的意义,发展符号感.2.了解整式产生的背景和整式的概念,能求出整式的次数.(二)能力训练要求1.能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.2.进一步培养学生认识特殊与一般的辩证关系.(三)情感与价值观通过丰富有趣的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心.●教学重点单项式的系数、次数,多项式的项数、次数等概念.●教学难点对整式有关概念的理解.●教学方法讲授——自主探索相结合.通过学生自主探索现实情景中用字母表示数的问题,认识代数式的作用.在此基础上,通过教师讲解,掌握整式的有关概念.●教具准备1.教师所用三角板. 小黑板●教学过程Ⅰ.创设问题情景,引入新课[师]在七年级上册中,我们已经学习了用字母表示数,代数式等内容,这节课我们进一步认识代数式的表示作用.例如:很多小城镇里都有水塔,水塔可以用来储水,维持水压,每天水都不停地流进和流出水塔.一般地,白天,当人们从事生产活动时,流出水塔的水比流进水塔的水多;夜晚,当人们休息时,流进水塔的水比流出的水多.(1)如果水以每小时a升的速度流进水塔,那么4小时后,流进水塔多少升水,若a=20000升,计算一下结果;(2)如果水以每小时a升的速度流进水塔,同时又以每小时b升的速度流出水塔,那么4小时后,水塔里的储水量变化了多少?[生](1)4小时后,流进水塔的水为4a升;当a=20000升时,4小时后,流进水塔的水为:4a=4×20000=80000升;第三章生活中的数据●课时安排6课时第一课时●课题§3.1 百万分之一有多小●教学目标(一)教学知识点1.借助自己熟悉的事情,从不同角度对百万分之一进行感受.2.能用科学记数法表示百万分之一等较小的数据.3.能借助科学计算器进行有关科学记数法的计算(二)能力训练要求1.通过自己熟悉的事物体会百万分之一,发展数感,培养从较小数据中获取信息的能力.2.提高运用现代工具处理数学问题的能力.(三)情感与价值观要求1.培养学生合作交流的意识,在合作交流的过程中体验学习数学的兴趣.2.鼓励学生积极参与各种教学环节,并从中获得成就感,获得数学活动的经验.●教学重点1.用熟悉的事物理解较小的数;2.用科学记数法表示较小的数.●教学难点通过测量、计算,能对含有较小数字的信息作出适当的估计.●教学方法探索—交流法教师引导学生试着用身边熟悉的事物去认识百万分之一,并通过小组活动,合作交流大家对较小的数的感受,从而学会用计算器和科学记数法表示比较小的数.●教具准备(一)演示文稿:幻灯片一:猜一猜幻灯片二:议一议幻灯片三:做一做幻灯片四:读一读(二)同桌的两位同学要有一台科学计算器●教学过程Ⅰ.提出问题,引入新课[师]我们在上学期曾感受过比较大的数100万有多大.但在我们生活中还存在有比较小的数.例如:(1)存在于生物体内的某种细胞的直径约为百万分之一米,即1微米.(2)某原子的直径约为一百亿分之二米.(3)计算机的存储器完成一次存储的时间一般以百万分之一秒或十亿分之一秒的单位.(5)为迎“五一”,一商场特设特等奖为100万的抽奖活动.凡在本商场购满100元都有抽奖机会,中特等奖的概率为百万分之一,即0.000001!!第七章生活中的轴对称●课时安排8课时第一课时●课题§7.1 轴对称现象●教学目标(一)教学知识点1.在生活实例中认识轴对称图形.2.了解轴对称图形及对称的概念.(二)能力训练要求1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.2.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛运用和它的丰富文化价值.(三)情感与价值观要求在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展学生的空间观念.●教学重点轴对称图形的概念.●教学难点能够在现实生活中识别轴对称图形.●教学方法启发诱导法.●教具准备师:建筑物、柳叶、蝴蝶、窗花、风筝、飞机、剪刀等图片.学生用具:针、纸,较软的且吸水性能好的纸或报纸.●教学过程Ⅰ.巧设现实情景,引入新课[师]我们生活在图形的世界中,许多美丽的事物往往与图形的对称联系在一起,(一边播放图片一边叙述).无论是随风起舞的风筝,凌空翱翔的飞机,还是中外各式风格的典型建筑;无论是艺术家的创造,还是日常生活中的图案的设计,甚至是照镜子,都和对称密不可分.正如20世纪著名数学家赫尔曼•外尔(H•weyl,1885~1955)所说的,“对称是一种思想,通过它,人们毕生追求,并创造次序、美丽和完善……”初步掌握对称的奥妙,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐,并能够根据自己的设想创造出对称的作品,装点生活.让我们走进轴对称的世界吧!感受它的奇妙和美丽!从这节课开始,来学习第七章:生活中的轴对称.今天我们先来研究第一节:轴对称现象.Ⅱ.讲授新课[师]下面我们来看几幅图片.大家观察后回答下列问题:(先出示建筑物、柳叶、蝴蝶、窗花等图片,然后出示投影片§7.1 A)。

整式的知识点总结

整式的知识点总结

七年级数学整式的知识点总结1、整式的概念(1)单项式:由数和字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

(2)多项式:几个单项式的和叫做多项式。

每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。

(3)整式:单项式和多项式统称整式。

2、整式的运算(1)整式的加减法同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的概念:把同类项合并成一项就叫做合并同类项。

(2)整式的乘除法单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

(3)整式的乘方乘方的意义:求n个相同因数的积的简便运算叫做乘方。

幂:乘方运算的结果叫做幂。

在an中,运算指数n叫做底数,a 叫做底数,在an中n可以省略不写。

正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。

重难点精析1、重点(1)整式的加减法:掌握同类项的概念以及合并同类项的方法。

(2)整式的乘除法:掌握单项式与单项式、单项式与多项式的乘除运算法则。

(3)整式的乘方:掌握幂的概念以及乘方的运算法则。

2、难点(1)整式的加减法:正确判断同类项,以及正确合并同类项是难点。

(2)整式的乘除法:在多项式的乘法中,如何避免出现漏项和错位是难点。

(3)整式的乘方:掌握乘方的意义和运算法则是难点。

典型例题例1. 合并同类项解:3x2y - 5xy2 - 2yx2 + 4xy2= (3x2y - 2yx2) + ( - 5xy2 + 4xy2)= 3x2y - 2yx2 - xy2.例2. 单项式与单项式相乘解:(3x + y) ×(x + 4y)= 3x ×x + 3x ×4y + y ×x + y ×4y= 3x2 + 12xy + xy + 4y2= 3x2 + 13xy + 4y2.例3. 单项式与多项式相乘解:(3x + y) ×(x + 4y - 2x)= 3x ×(x + 4y - 2x) + y ×(x + 4y - 2x) = 3x2 + 12xy - 6x2 + x + 4y + 4y2 - 2xy - 2y2 = - 3x2 + (12xy - 2xy) + (x + 4y) + (4y2 - 2y2) = - 3x2 + 10xy + x + 4y + 2y2.。

第一章:整式的乘除(1)

第一章:整式的乘除(1)

第一章:整式的乘除知识要求:1、理解、掌握整式的有关概念2、牢固地掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;3、加强运算能力,以及分析问题、解决问题的能力知识重点:整式的乘法及乘法公式,幂的相关运算性质。

知识难点:熟练掌握整式的有关计算及相关运用:幂的运算,整式乘法,整式除法。

知识点:一、整式的有关概念整式:可以看成是分母不含有字母的代数式,注意:一是分母不含有字母但可以是数字,二要是代数式不能含有等号或表示数量关系的符号。

单项式与多项式统称为整式。

(1)定义:表示数与字母的积的代数式。

单独的一个数是单项式。

1、 单独字母也是单项式。

单 (2)系数:单项式中的数字因数叫做单项式的系数。

项 注意系数包括前面的符号,式 系数是1时通常省略,π是系数,72xyz -的系数是72- 单独字母的系数是1。

a=1×a单独数字的系数是本身。

3=3×a 0(3)次数:单项式的次数是指所有字母的指数的和。

单独字母的次数是1.单独一个非零数字的次数是0.2、多项式:(1)几个单项式的和叫做多项式。

(几次几项式)(2)每一个单项式叫做多项式的项, 注意项包括前面的符号。

(3)多项式的次数:多项式中次数最高的项的次数。

项的次数是几就叫做几次项,(4)不含字母的项叫做常数项。

2、多项式二、整式的加减:实质是合并同类项①先去括号; (注意括号前有数字因数)②再合并同类项。

(系数相加,字母与字母指数不变)三、幂的运算性质1、同底数幂相乘:底数不变,指数相加。

m n m n a a a +=• ⇔ m n a a •=+m n a (m,n 都是正整数)2、幂的乘方:底数不变,指数相乘。

nm m n a a =)( ⇔ m n a )(a nm =(m,n 都是正整数)3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。

n n n b a ab =)( ⇔ n ab)(=n n b a (n 为正整数)4、零指数幂:任何一个不等于0的数的0次幂等于1。

整式的概念和运算

整式的概念和运算

整式的概念和运算整式是代数学中的一个重要概念,它是由字母和常数按照一定的规则组合而成的代数表达式。

整式的运算是代数学中的基础知识之一,它包括了整式的加法、减法、乘法以及整式的因式分解等内容。

下面我们将分别介绍整式的概念以及它的运算规则。

一、整式的概念整式是由字母和常数按照加法、减法的规则组合而成的代数表达式。

字母表示未知数或变量,常数则表示具体的数值。

整式的组成部分可以是单个字母或常数,也可以是字母或常数的组合。

整式的例子包括:3x^2 - 5xy + 2y^2、4a + 7b、-2xyz等。

其中,3x^2 - 5xy + 2y^2是一个二次整式,4a + 7b是一个一次整式,-2xyz是一个三次整式。

整式的次数是指整式中各个项次数的最大值。

例如,3x^2 - 5xy +2y^2的次数为2,4a + 7b的次数为1,-2xyz的次数为3。

二、整式的运算1. 整式的加法和减法整式的加法和减法遵循一般代数表达式的运算规则,即按照同类项相加或相减。

同类项是指具有相同字母部分,并且各个字母的指数也相同的项。

例如,3x^2和2x^2是同类项,因为它们具有相同的字母x和指数2;但是3x^2和2xy^2就不是同类项。

在整式的加法和减法中,我们只需要按照同类项的规则,将各个项的系数相加或相减,同时保持字母和指数不变即可。

例如,对于整式3x^2 - 5xy + 2y^2 和 2x^2 + 3xy - y^2来说,我们可以将它们的同类项相加得到:(3x^2 + 2x^2) + (-5xy + 3xy) + (2y^2 - y^2) = 5x^2 - 2xy + y^2。

2. 整式的乘法整式的乘法是指将两个整式相乘的运算。

在整式的乘法中,需要注意以下几点:(1)对于整式的乘法,一般使用分配律进行计算。

即将一个整式的每一项与另一个整式中的每一项分别相乘,然后将所得的各个乘积相加得到最终结果。

例如,将整式3x^2 - 5xy + 2y^2与2x - y进行乘法运算,我们可以将这两个整式中的每一项分别相乘,并将结果相加:(3x^2)(2x) +(3x^2)(-y) + (-5xy)(2x) + (-5xy)(-y) + (2y^2)(2x) + (2y^2)(-y) = 6x^3 -3x^2y - 10x^2y + 5xy^2 + 4xy^2 - 2y^3 = 6x^3 - 13x^2y + 9xy^2 - 2y^3。

第一章整式的运算(教师版)

第一章整式的运算(教师版)

第一章 整式的运算1 整式新知识记 1.整式及有关知识(1)定义:单项式和多项式统称整式. (2)单项式①定义:数字与字母的乘积.②次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.③系数:单项式中的数字因数即为单项式的系数. (3)多项式①定义:几个单项式的和叫做多项式. ②次数:一个多项式中,次数最高的项的次数叫做这个多项式的次数. ③项数:一个多项式中有几个单项式就有几项. 典例精析例1:下列整式中,次数与项数相同的有哪些?①7 ②-x ③1-s 2+3t ④πx +1 ⑤53a 2b -2bc +3 ⑥6xy【点拨】先分别找出每小题的次数与项数,再判断它们是否一致.①单项式,次数是0. ②单项式,次数是1(一致.) ③多项式,二次三项式. ④多项式,一次二项式.注意:πx 是第一项,是一次的.π只能出现在某一个单项式或项的系数中. ⑤多项式,三次三项式(一致). ⑥单项式,次数是2. 解:次数与项数相同的②⑤. 例2 :若12n axy+-是关于x 、y 的单项式, 且系数为-6,次数为3, 则a =________,m =________.【点拨】 “关于x 、y 的单项式”说明只有课前热身 前课之鉴1.某校学生总数为x,其中女生人数占总数的25,女生人数为25x ; 2.一个长方体的底面是边长为a 的正方形,高是h ,表面积是 224a ah +课内过关 练习精选3. 下列说法正确的是( D )A.单项式A 的系数是0B.单项式a 的次数是0C.a1是单项式 D.1是单项式 4. 下列代数式中整式有( B )x1, 2x +y ,31a 2b , πy x -,xy45, 0.5, a A.4个B.5个C.6D.7个5.多项式a 2-21ab 2-b 2有__3___项,其中-21ab 2的次数是___3__.6.小明家去年结余6000元,估计今年可结余10000元,并且今年收入比去年高15%,支出比去年低10%.(1)若去年支出x 元,求去年收入多少元?今年的收入和支出各多少? (2)若今年支出x 元,则今年收入多少元,去年的收入和支出各多少? 解:(1)去年收入(6000+x)元,今年收入(1+15%)(6000+x)元,今年支出0.9x 元; (2) 今年收入(10000+x)元, 去年的收入10000+x 115%+元,去年支出110%x -元课外闯关 能力拓展7.下面说法中正确的是( B )A.一个代数式不是单项式,就是多项式B.单项式是整式C.整式是单项式D.以上说法都不对8. 下列说法错误的是( D )A .单项式a 的系数和次数都是1 B.数字0也是单项式 C .23xy-是系数为23-的二次单项式 D.2x x+是多项式 9.若-3axy m 是关于x 、y 的单项式,且系数为-6,次数为4,则a =___2_____,m =__3_ .10.有一个多项式876253...x x y x y x y -+-+,按照此规律些写下去,则这个多项式的第八项是 7xy - .11.已知多项式222312akab b a +-+-不含ab 的项,求113k -()的值。

整式计算知识点

整式计算知识点

第一章:整式的运算一、单项式:都是数字与字母的乘积的代数式叫做单项式。

二、多项式:几个单项式的和叫做多项式。

三、整式:单项式和多项式统称为整式。

四、整式的加减:整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

五、同底数幂的乘法:同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m ﹒a n =a m+n 。

六、幂的乘方:幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

(a m )n =a mn 。

七、积的乘方:1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab )n =a n b n 。

3、此法则也可以逆用,即:a n b n =(ab )n 。

八、同底数幂的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n (a ≠0)。

九、零指数幂:零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a 0=1(a ≠0)。

十、负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:1(0)p p a a a -=≠(一)单项式与单项式相乘:单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

(二)单项式与多项式相乘:单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。

即:m(a+b+c)=ma+mb+mc 。

(三)多项式与多项式相乘:多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb 。

十一、平方差公式:(a+b )(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。

十二、完全平方公式222222()2,()2,a b a ab b a b a ab b +=++-=-+即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:整式的运算
单项式
整 式
多项式
同底数幂的乘法
幂的乘方
积的乘方
幂运算 同底数幂的除法
零指数幂
负指数幂
整式的加减
单项式与单项式相乘
单项式与多项式相乘
整式的乘法 多项式与多项式相乘
整式运算 平方差公式
完全平方公式
单项式除以单项式
整式的除法
多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式
1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式
1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

整 式 的
运 算
4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:
(1)代数式化简。

(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法
1、n 个相同因式(或因数)a 相乘,记作a n ,读作a 的n 次方(幂),其中a 为底数,n 为指数,a n 的结果
叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m ﹒a n =a m+n 。

4、此法则也可以逆用,即:a m+n = a m ﹒a n 。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。

(a m )n 表示n 个a m 相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

(a m )n =a mn 。

3、此法则也可以逆用,即:a mn =(a m )n =(a n )m 。

七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab )n =a n b n 。

3、此法则也可以逆用,即:a n b n =(ab )n 。

八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:
(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n (a ≠0)。

2、此法则也可以逆用,即:a m-n = a m ÷a n (a ≠0)。

十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a 0=1(a ≠0)。

十一、负指数幂
1、任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:
1(0)p p a a a -=≠
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。

即:m(a+b+c)=ma+mb+mc 。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb 。

2、多项式与多项式相乘,必须做到不重不漏。

相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。

在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:
(x+a)(x+b)=x 2+(a+b)x+ab 。

十三、平方差公式
1、(a+b )(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a 、b 可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b )•(a-b)的形式,然后看a 2与b 2是否容易计算。

十四、完全平方公式
1、222222()2,()2,a b a ab b a b a ab b +=++-=-+即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

2、公式中的a ,b 可以是单项式,也可以是多项式。

3、掌握理解完全平方公式的变形公式:
(1)22222212()2()2[()()]
a b a b ab a b ab a b a b +=+-=-+=++- (2)22()()4a b a b ab +=-+
(3)2214[()()]
ab a b a b =+-- 4、完全平方式:我们把形如:22222,2,a ab b a ab b ++-+的二次三项式称作完全平方式。

5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。

6、完全平方公式可以逆用,即:2222222(),2().a ab b a b a ab b a b ++=+-+=-
十五、整式的除法
(一)单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。

(二)多项式除以单项式的法则
1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

用字母表示为:().a b c m a m b m c m ++÷=÷+÷+÷
2、多项式除以单项式,注意多项式各项都包括前面的符号。

相关文档
最新文档