(江苏专用)202x版高考数学大一轮复习 第七章 立体几何 1 第1讲 平面的基本性质、空间两条直线
【三维设计】(新课标)高考数学大一轮复习精品讲义 第七章 立体几何(含解析) (2)
第七章立体几何第一节空间几何体的结构特征及三视图与直观图对应学生用书P99基础盘查一空间几何体的结构特征(一)循纲忆知认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(二)小题查验1.判断正误(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱( )(2) 有一个面是多边形,其余各面都是三角形的几何体是棱锥( )(3)用一个平面去截一个球,截面是一个圆面( )答案:(1)×(2)×(3)√2.(人教A版教材习题改编)如图,长方体ABCDA′B′C′D′被截去一部分,其中EH ∥A′D′,则剩下的几何体是________,截去的几何体是________.答案:五棱柱三棱柱基础盘查二空间几何体的三视图(一)循纲忆知1.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型.2.会用平行投影与中心投影两种方法画出简单空间图形的三视图,了解空间图形的不同表示形式.3.会画出某些建筑物的三视图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)正方体、球、圆锥各自的三视图中,三视图均相同( )(2)圆锥的俯视图是一个圆( )(3)圆台的正视图和侧视图是两个全等的等腰梯形( )答案:(1)×(2)√(3)√2.(北师大版教材例题改编)已知空间几何体的三视图如图,则该几何体是由__________________组合而成.答案:圆柱和正四棱柱3.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是________.答案:②③基础盘查三空间几何体的直观图(一)循纲忆知1.会用斜二测画法画出几何体的直观图.2.会用平行投影与中心投影画出简单空间图形的直观图.了解空间图形的不同表示形式.3.会画某些建筑物的直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°()(2)斜二测画法中,平行于x轴y轴的线段平行性不变,且长度也不变( )(3)斜二测画法中,原图形中的平行垂直关系在直观图中不变( )答案:(1)×(2)×(3)×2.(2015·东北三校第一次联考)利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是________.答案:①②对应学生用书P100考点一 空间几何体的结构特征(基础送分型考点——自主练透)[必备知识]1.多面体的结构特征(1)棱柱⎩⎪⎨⎪⎧ 底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等(2)棱锥⎩⎪⎨⎪⎧ 底面:是多边形侧面:都是有一个公共顶点的三角形(3)棱台 棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分.2.旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到.(2)圆锥可以由直角三角形绕其一条直角边旋转得到.(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(4)球可以由半圆面或圆面绕直径旋转得到.[提醒](1)认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.(2)台体可以看成是由锥体截得的,但一定强调截面与底面平行.[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A .圆柱B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A 错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.图1易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图23.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③四棱锥的四个侧面都可以是直角三角形;④棱台的相对侧棱延长后必交于一点;⑤直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;③正确,如图1,PD⊥平面ABCD,其中底面ABCD为矩形,可证明∠PAB,∠PCB为直角,这样四个侧面都是直角三角形;命题④由棱台的定义知是正确的;⑤错误,当以斜边为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图2所示,它是由两个同底圆锥形成的.答案:①③④[类题通法]解决与空间几何体结构特征有关问题的技巧(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.考点二空间几何体的三视图(重点保分型考点——师生共研)[必备知识](1)空间几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;③看不到的线画虚线.[提醒] 若相邻两物体的表面相交,则表面的交线是它们的分界线,在三视图中,要注意实、虚线的区别.[典题例析]1.(2014·江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.2.(2014·新课标全国卷Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B 将三视图还原为几何体即可.如图,几何体为三棱柱.[类题通法]1.对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图.2.由三视图还原几何体时,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.[演练冲关]1.(2015·南阳三模)已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.2.如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的侧视图为( )解析:选C 由俯视图知侧视图从左到右能看到的小立方体个数分别为2,3,1.考点三空间几何体的直观图(重点保分型考点——师生共研)[必备知识]1.在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.[典题例析](2015·福州模拟)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[类题通法]用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.[演练冲关]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )A.4 cm2B.4 2 cm2C.8 cm2 D.8 2 cm2解析:选C 依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.对应B本课时跟踪检测四十一、选择题1.(2014·福建高考)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱B.圆锥C.四面体 D.三棱柱解析:选A 圆柱的正视图是矩形,则该几何体不可能是圆柱.2.(2015·青岛模拟)将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为( )解析:选C 长方体的侧面与底面垂直,所以俯视图是C.3.(2015·烟台一模)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选D 观察三视图,可得直观图如图所示.该三棱锥A BCD 的底面BCD 是直角三角形,AB ⊥平面BCD ,CD ⊥BC ,侧面ABC ,ABD 是直角三角形;由CD ⊥BC ,CD ⊥AB ,知CD ⊥平面ABC ,CD ⊥AC ,侧面ACD 也是直角三角形,故选D.4.(2015·淄博一模)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A BCD 的正视图与俯视图如图所示,则其侧视图的面积为( )A.22 B.12 C.24 D.14解析:选D 由正视图与俯视图可得三棱锥A BCD 的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为22,所以侧视图的面积为S =12×22×22=14,选D. 5.(2015·武昌调研)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是( )解析:选D 易知该三棱锥的底面是直角边分别为1和2的直角三角形,注意到侧视图是从左往右看得到的图形,结合B 、D 选项知,D 选项中侧视图方向错误,故选D.6.如图,在正方体ABCD A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P ABC 的正(主)视图与侧(左)视图的面积的比值为( )A.12B .1C .2D .不确定,与点P 的位置有关解析:选B 如题图所示,设正方体的棱长为a ,则三棱锥P ABC 的正(主)视图与侧(左)视图都是三角形,且面积都是12a 2,故选B. 二、填空题7.(2015·西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.答案:2 38.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.解析:由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC 的高为OE ,则OE ×12×22=O ′C ′, ∵O ′C ′=2,∴OE =42,∴S ▱OABC =6×42=24 2. 答案:24 29.(2015·昆明、玉溪统考)如图,三棱锥V ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正(主)视图的面积为23,则其侧(左)视图的面积为________.解析:设三棱锥V ABC 的底面边长为a ,侧面VAC 边AC 上的高为h ,则ah =43,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33. 答案:3310.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCDA1B1C1D1中的四面体ACB1D1;②错误,反例如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.答案:①三、解答题11.已知:图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.解:图①几何体的三视图为:图②所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.12.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA =PD2+AD2=22+62=6 3 cm.第二节空间几何体的表面积与体积对应学生用书P101基础盘查一柱体、锥体、台体的表面积(一)循纲忆知了解柱体、锥体、台体的表面积的计算公式.(二)小题查验1.判断正误(1)几何体的表面积就是其侧面积与底面积的和( )(2)几何体的侧面积是指各个侧面积之和( )答案:(1)√(2)√2.(人教A版教材例题改编)已知棱长为a,各面均为等边三角形的四面体SABC,它的表面积为________.解析:过S作SD⊥BC,∵BC=a,∴SD=3 2 a∴S△SBC=34a2,∴表面积S=4×34a2=3a2.答案:3a23.(2015·北京石景山一模)正三棱柱的侧(左)视图如图所示,则该正三棱柱的侧面积为________.解析:由侧(左)视图知:正三棱柱的高(侧棱长)为2,底边上的高为3,所以底边边长为2,侧面积为3×2×2=12.答案:12基础盘查二 柱体、锥体、台体的体积 (一)循纲忆知了解柱体、锥体、台体的体积的计算公式. (二)小题查验 1.判断正误(1)等底面面积且等高的两个同类几何体的体积相等( ) (2)在三棱锥P ABC 中,V P ABC =V A PBC =V B PAC =V C PAB ( ) 答案:(1)√ (2)√2.(人教B 版教材例题改编)如图,在长方体ABCD A ′B ′C ′D ′中,用截面截下一个棱锥C A ′DD ′,则棱锥C A ′DD ′的体积与剩余部分的体积之比为________.答案:1∶53.(2015·海淀高三练习)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:43基础盘查三 球的表面积与体积 (一)循纲忆知了解球的表面积与体积的计算公式. (二)小题查验 1.判断正误(1)球的表面是曲面,不能展开在一平面上,故没有展开图( ) (2)正方体的内切球中其直径与棱长相等( )答案:(1)√ (2)√2.(人教A 版教材例题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶13.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为2.设该球的直径为2R ,则2R =22+22+22=23,所以该几何体的表面积为4πR 2=4π(3)2=12π.答案:12π对应学生用书P102考点一 空间几何体的表面积(基础送分型考点——自主练透)[必备知识]当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl =r r'←−−−S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl[提醒] 组合体的表面积应注意重合部分的处理.[题组练透]1.(2014·陕西高考)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.2.(2014·安徽高考)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18解析:选A 由三视图可知该几何体的直观图如图所示,其是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分,其表面积为S =6×4-12×6+2×34×(2)2=21+ 3.3.已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析:由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的表面积S =π×1+π×9+π×(1+3)×32+22=26π.答案:26π[类题通法]求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.考点二 空间几何体的体积(重点保分型考点——师生共研)[必备知识]1.柱体V 柱体=Sh ;V 圆柱=πr 2h .2.锥体V 锥体=13Sh ;V 圆锥=13πr 2h .3.台体V 台体=13(S +SS ′+S ′)h ; V 圆台=13πh (r 2+rr ′+r ′2).[提醒](1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题需注意几何体还原的准确性及数据的准确性.[典题例析]1.(2014·辽宁高考)某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4解析:选B 直观图为棱长为2的正方体割去两个底面半径为1的14圆柱,所以该几何体的体积为23-2×π×12×2×14=8-π.2.(2014·山东高考)三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.解析:如图,设点C 到平面PAB 的距离为h ,三角形PAB 的面积为S ,则V 2=13Sh ,V 1=V E -ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.答案:14[类题通法]1.计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.[演练冲关]1.(2015·唐山统考)某几何体的三视图如图所示,则该几何体的体积为( )A .8π+16B .8π-16C .8π+8D .16π-8解析:选B 由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.2.(2015·苏州测试)如图,在直四棱柱ABCD A 1B 1C 1D 1中,点E ,F 分别在AA 1,CC 1上,且AE =34AA 1,CF =13CC 1,点A ,C 到BD 的距离之比为3∶2,则三棱锥E BCD 和F ABD 的体积比V E BCDV F ABD=________. 解析:由题意可知点A ,C 到BD 的距离之比为3∶2,所以S △BCD S △ABD =23,又直四棱柱ABCD A 1B 1C 1D 1中,AE =34AA 1,CF =13CC 1,所以AE CF =94,于是V E BCD V F ABD =13S △BCD ·AE13S △ABD ·CF =23×94=32. 答案:32考点三 与球有关的切、接问题(常考常新型考点——多角探明)[必备知识]1.球的表面积公式:S =4πR 2; 球的体积公式V =43πR 32.与球有关的切、接问题中常见的组合:(1)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE =23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a . (2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a . ③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a . (3)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1AB 1D 1的外接球的球心和正方体ABCD A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a .②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长). [多角探明]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:(1)正四面体的内切球; (2)直三棱柱的外接球; (3)正(长)方体的外接球; (4)四棱锥的外接球.角度一:正四面体的内切球1.(2015·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度二:直三棱柱的外接球2.(2015·唐山统考)如图,直三棱柱ABC A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1 C. 2D.22解析:选C 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x2,MC 1=x 2,OC 1=R =1(R 为球的半径),∴⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.角度三:正方体的外接球3.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π.答案:43π角度四:四棱锥的外接球4.(2014·大纲卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4解析:选A 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4,故选A.[类题通法]“切”“接”问题的处理规律 1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.对应A 本课时跟踪检测四十一一、选择题1.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A .100π B.100π3 C .25πD.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π. 2.(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+22=1,所以V 球=4π3×13=4π3.故选D.3.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B. 3 C .2 6D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3.4.(2015·遵义模拟)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5。
最新-2021年高考数学理一轮复习课件 第七章 立体几何 第1讲 课件 精品
知识点
考纲下载
1.认识柱、锥、台、球及其简单组合体的结构特征,
并能运用这些特征描述现实生活中简单物体的结 空间几何 构. 体的结构 2.能画出简单空间图形(长方体、球、圆柱、圆锥、 及三视图 棱柱等的简易组合)的三视图,能识别上述三视图 和直观图 所表示的立体模型,会用斜二测法画出它们的直
角度三 由空间几何体的部分视图画出剩余部分视图 3.(2016·高考天津卷)将一个长方体沿相邻三个面的 对角线截去一个棱锥,得到的几何体的正视图与俯视 图如图所示,则该几何体的侧(左)视图为( B )
[解析] 由几何体的正视图和俯视图可知该几何体为图①,故 其侧(左)视图为图②.
空间几何体的直观图 [典例引领] 如图,矩形 O′A′B′C′是水平放置的一个 平面图形的直观图,其中 O′A′=6 cm, O′C′=2 cm,则原图形是( C ) A.正方形 B.矩形 C.菱形 D.一般的平行四边形
3.若某几何体的三视图如图所示,则这个几何体的直观图可 以是( B )
[解析] 根据选项 A、B、C、D 中的直观图,画出其三视图, 只有 B 项正确.
4.教材习题改编 若某几何体的三视图如图所示,则该几何体 为___四__的__简__单__组__合__体_____.
向量的数量积判断向量的共线与垂直.
第七章 立体几何
知识点
考纲下载
1.理解直线的方向向量与平面的法向量.
2.能用向量语言表述直线与直线、直线与平面、
平面与平面的垂直、平行关系. 立体几何
3.能用向量方法证明有关直线和平面位置关系的 中的向量
一些定理(包括三垂线定理). 方法
4.能用向量方法解决直线与直线、直线与平面、
1.用任意一个平面截一个几何体,各个截面都是圆面,则这 个几何体一定是( C ) A.圆柱 B.圆锥 C.球 D.圆柱、圆锥、球的组合体 [解析] 当用过高线的平面截圆柱和圆锥时,截面分别为矩形 和三角形,只有球满足任意截面都是圆面.
高考江苏数学大一轮精准复习课件平面及其基本性质
观的图形来帮助理解和解决数学问题。
利用图形进行推理
02
在解题过程中,可以通过画出相关的图形来帮助理解和推理,
如画出两平面的交线、画出过某点的直线等。
结合代数方法进行求解
03
在利用图形进行推理的同时,可以结合代数方法进行求解,如
利用向量的运算、利用方程的求解等。
06
高考中平面及其基本性质的备考建议
建议一:熟练掌握平面的基本性质
加强平面与直线交点的求 解
掌握求解平面与直线交点的方法和步骤,能 够运用相关定理和性质进行求解和分析。
建议三:注重数形结合思想在解题中的应用
强化数形结合意识
在解题过程中,注重将数与形结合起来,通过图形的直观性来辅助理解和分析题目,提 高解题的效率和准确性。
熟练掌握数形结合的方法
了解数形结合的基本方法和技巧,如利用图形的性质、构造图形、利用向量的几何意义 等,能够灵活运用这些方法来解决实际问题。
直线在平面内
如果一条直线上的所有点都位 于平面上,则该直线属于该平 面。
直线在平面外
如果一条直线上至少有一个点 不属于该平面,则该直线不属 于该平面。
05
高考中平面及其基本性质的解题技巧
技巧一:利用平面的基本性质解题
掌握平面的基本性质
了解并掌握平面的基本性质,如平面的无限延展性、平面内任意 两点确定一条直线等。
03
平面的性质与应用
平面的平行性质
01
02
03
平行公理
过直线外一点,有且仅有 一条直线与已知直线平行 。
平行线的性质
两条平行线被第三条直线 所截,同位角相等,内错 角相等,同旁内角互补。
平行面的性质
两个平行平面被第三个平 面所截,截得的两条交线 平行。
高考数学一轮总复习第七章立体几何第一节空间几何体的结构及其三视图和直观图练习理
高考数学一轮总复习第七章立体几何第一节空间几何体的结构及其三视图和直观图练习理【最新考纲】 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.1.多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )答案:(1)×(2)×(3)×(4)×2.如图,长方体ABCD A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.简单组合体解析:由几何体的结构特征,剩下的几何体为五棱柱.答案:C3.(2016·邯郸调研)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是( )解析:由于组合体的上部分(五面体)与下部分(长方体)有相同的底面,则几何体在下底面的投影为图形B.答案:B4.(2015·课标全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:如图所示,由条件知,截去部分是正三棱锥D ABC.设正方体的棱长为a ,则V DABC =a 36,因此剩余部分的体积V 剩=56a 3,故它们的体积之比为15.答案:D5.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于________.解析:由题意得圆柱的底面半径r =1,母线l =1. 所以圆柱的侧面积S =2πrl =2π. 答案:2π一种思想棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.两点注意1.注意空间几何体的不同放置对三视图的影响. 2.画直观图注意平行性、长度两个要素.(1)平行性不变;(2)平行于y 轴的线段长度减半,平行于x 轴、z 轴的线段长度不变. 三条规则——画三视图应遵循的三条规则 1.画法规则:“长对正,宽相等,高平齐”.2.摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.3.实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.A级基础巩固一、选择题1.(2014·福建卷)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱B.圆锥C.四面体D.三棱柱解析:由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.答案:A2.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )解析:注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C中,其宽度为32,与题中所给的侧视图的宽度1不相等,因此选C.答案:C3.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32B.1 C.2+12D. 2解析:由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.答案:D4.(2014·北京卷)在空间直角坐标系Oxyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1解析:如右图所示。
高考数学大一轮复习第七章立体几何
高考数学大一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图1.简单几何体(1)简单旋转体的结构特征:①圆柱可以由矩形绕其任一边旋转得到;②圆锥可以由直角三角形绕其直角边旋转得到;③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;④球可以由半圆或圆绕直径旋转得到.(2)简单多面体的结构特征:①棱柱的侧棱都平行且相等,上下底面是全等的多边形;②棱锥的底面是任意多边形,侧面是有一个公共点的三角形;③棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形.2.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.说明:正视图也称主视图,侧视图也称左视图.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[小题体验]1.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 B.2,2C.4,2 D.2,4解析:选D 由三视图可知,正三棱柱的高为2,底面正三角形的高为2,故底面边长为4,故选D.2.(教材习题改编)如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是______.答案:五棱柱三棱柱1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.[小题纠偏]1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选 B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.2.(教材习题改编)利用斜二测画法得到的①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B ①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④[谨记通法]解决与空间几何体结构特征有关问题3个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型;(3)通过反例对结构特征进行辨析.[典例引领]1.(2017·东北四市联考)如图,在正方体ABCDA1B1C1D1中,P 是线段CD的中点,则三棱锥PA1B1A的侧视图为( )解析:选 D 如图,画出原正方体的侧视图,显然对于三棱锥PA1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.2.(2015·高考)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1 B. 2C.D.2解析:选 C 根据三视图,可知几何体的直观图为如图所示的四棱锥VABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=,在Rt△VBD中,VD==.[由题悟法]1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.[提醒] 对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.[即时应用]1.(2016·××市教学质量监测)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.2.一个几何体的三视图如图所示,则该几何体的直观图可以是( )解析:选D 由俯视图是圆环可排除A、B、C,进一步将已知三视图还原为几何体,可得选项D.[典例引领]有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.解析:如图,在直观图中,过点A作AE⊥BC,垂足为E.在Rt△ABE中,AB=1,∠ABE=45°,∴BE =.而四边形AECD 为矩形,AD =1,∴EC =AD =1,∴BC =BE +EC =+1.由此可还原原图形如图在原图形中,A′D′=1,A′B′=2,B′C′=+1,且A′D′∥B′C′,A′B′⊥B′C′,∴这块菜地的面积S =(A ′D ′+B ′C ′)·A ′B ′=××2=2+. 答案:2+22[由题悟法]原图与直观图中的“三变”与“三不变”(1)“三变”⎩⎪⎨⎪⎧ 坐标轴的夹角改变与y 轴平行的线段的长度改变减半图形改变(2)“三不变”⎩⎪⎨⎪⎧ 平行性不变与x 轴平行的线段长度不变相对位置不变[即时应用]如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm ,O′C′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形解析:选C 如图,在原图形OABC 中,应有OD=2O′D′=2×2=4 cm ,CD =C′D′=2 cm .∴OC ===6 cm ,∴OA =OC ,故四边形OABC 是菱形.1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是( )解析:选D 几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是( )A.棱柱的两个底面是全等的正多边形B.平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D 因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台解析:选 A 因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.4.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为 2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为 4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形85.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图,ABCDA1B1C1D1,如图,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②1.已知底面为正方形的四棱锥,其中一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )解析:选C 根据三视图的定义可知A、B、D均不可能,故选C.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选 B 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2016·××市教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥解析:选 B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2016·淄博一模)把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥ABCD的正视图与俯视图如图所示,则其侧视图的面积为( )A.B.12C.D.14解析:选D 由正视图与俯视图可得三棱锥ABCD的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为,所以侧视图的面积为S=××=.5.已知四棱锥PABCD的三视图如图所示,则四棱锥PABCD的四个侧面中面积最大的是( )A.3 B.2 5C.6 D.8解析:选C 四棱锥如图所示,取AD的中点N,BC的中点M,连接PM,PN,则PM=3,PN=,S△PAD=×4×=2,S△PAB=S△PDC=×2×3=3,S△PBC=×4×3=6.所以四个侧面中面积最大的是6.6.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④7.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5 (cm).∴AB==13(cm).答案:138.已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为2,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连结VO,AO,则VO就是正四棱锥VABCD的高.因为底面面积为16,所以AO=2.因为一条侧棱长为2.所以VO===6.所以正四棱锥VABCD的高为6.答案:69.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.解析:如图,图①、图②所示的分别是实际图形和直观图.从图②可知,A′B′=AB=2,O′C′=OC=,C′D′=O′C′sin 45°=×=.所以S△A′B′C′=A′B′·C′D′=×2×=.答案:6410.已知正三棱锥V ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC=2,∴侧视图中VA==2,∴S△VBC=×2×2=6.阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( ) A.8 B.7C.6 D.5解析:选C 画出直观图,共六块.2.(2017·东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A.4 B.8 3C.4 D.8解析:选C 设该三棱锥为PABC,其中PA⊥平面ABC,PA=4,则由三视图可知△ABC是边长为4的等边三角形,故PB=PC=4,所以S△ABC=×4×2=4,S△PAB=S△PAC=×4×4=8,S△PBC=×4×=4,故四个面中面积最大的为S△PBC=4,选C.3.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为 6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD===6.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA===6 cm.第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式S圆柱侧=2πrl 圆锥侧=πrl =π(r+r .空间几何体的表面积与体积公式[1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h.由图得r=2,c=2πr=4π,h=4,由勾股定理得:l==4,S表=πr2+ch+cl=4π+16π+8π=28π.2.(教材习题改编)某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为的三角形,正视图的长为三棱柱的高,故h=3,所以该几何体的体积V=S·h=×3=3.答案:3 33.正三棱柱ABCA1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥AB1DC1的体积为________.解析:在正三棱柱ABCA1B1C1中,∵AD⊥BC,AD⊥BB1,BB1∩BC=B,∴AD⊥平面B1DC1.∴VAB1DC1=S△B1DC1·AD=××2××=1.答案:11.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念.[小题纠偏]1.(教材习题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶31∶12.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S=3×4×2+2×2×2+4×2×2+4×6+×(2+6)×2×2=72+16.答案:72+16 2[题组练透]1.(易错题)(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1 B.2C.4 D.8解析:选 B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.2.(2015·福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )A.8+2 2B.11+2 2C.14+2 2D.15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为=,所以底面周长为4+,侧面积为2×(4+)=8+2,两底面的面积和为2××1×(1+2)=3,所以该几何体的表面积为8+2+3=11+2.3.某几何体的三视图如图所示,则它的侧面积为( )A.12 B.24 2C.24 D.12 3解析:选A 由三视图得,这是一个正四棱台,由条件知斜高h==,侧面积S=×4=12.[谨记通法]几何体的表面积的求法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.注意衔接部分的处理,如“题组练透”第1题.[典例引领]1.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.+πB.+πC.+πD.1+π解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为,从而该几何体的体积为×12×1+××3=+π.2.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( ) A.B.17C.D.15解析:选 D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V1=××1×1×1=,剩余部分的体积V2=13-=.所以==.[由题悟法]有关几何体体积的类型及解题策略1.(2016·西安质检)某几何体的三视图如图所示,该几何体的体积为( )A.B.C.D.3解析:选A 根据几何体的三视图,得该几何体是下部为直三棱柱,上部为三棱锥的组合体,如图所示.则该几何体的体积是V几何体=V三棱柱+V三棱锥=×2×1×1+××2×1×1=.2.(2017·统检)如图是底面半径为1,高为2的圆柱被削掉一部分后剩下的几何体的三视图,则被削掉的那部分的体积为( ) A.B.5π-23C.-2 D.2π-23解析:选B 由三视图可知,剩下部分的几何体由半个圆锥和一个三棱锥组成,其体积V=××π×12×2+××2×1×2=+,∴被削掉的那部分的体积为π×12×2-=.3.(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.解析:由三视图知该几何体是一个组合体,左边是一个长方体,交于一点的三条棱的长分别为 2 cm,4cm,2 cm,右边也是一个长方体,交于一点的三条棱的长分别为2 cm,2 cm,4 cm.几何体的表面积为(2×2+2×4+2×4)×2×2-2×2×2=72(cm2),体积为2×2×4×2=32(cm3).答案:72 32[锁定考向]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变.常见的命题角度有:(1)正四面体的内切球与四棱锥的外接球;(2)直三棱柱的外接球;(3)正方体(长方体)的内切、外接球.[题点全练]角度一:正四面体的内切球与四棱锥的外接球1.(2017·长春模拟)若一个正四面体的表面积为S1,其内切球的表面积为S2,则=________.解析:设正四面体棱长为a,则正四面体表面积为S1=4··a2=a2,其内切球半径为正四面体高的,即r=·a=a,因此内切球表面积为S2=4πr2=,则==.答案:63π角度二:直三棱柱的外接球2.已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( ) A.B.210C.D.310解析:选C 如图,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.角度三:正方体(长方体)的内切、外接球3.如图,已知球O是棱长为1的正方体ABCDA1B1C1D1的内切球,则平面ACD1截球O的截面面积为( )A.πB.π3C.D.π解析:选C 平面ACD1截球O的截面为△ACD1的内切圆.因为正方体的棱长为1,所以AC=CD1=AD1=,所以内切圆的半径r=×tan 30°=,所以S=πr2=π×=π.[通法在握]“切”“接”问题处理的注意事项(1)“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[演练冲关]1.(2017·××市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A.20πB.205π3C.5πD.55π6解析:选 D 由题意知六棱柱的底面正六边形的外接圆半径r=1,其高h=1,∴球半径为R===,∴该球的体积V=πR3=×3π=.2.(2016·六市第一次联考)三棱锥PABC中,AB=BC=,AC=6,PC⊥平面ABC,PC=2,则该三棱锥的外接球表面积为( ) A.πB.πC.πD.π解析:选D 由题可知,△ABC中AC边上的高为=,球心O在底面ABC的投影即为△ABC的外心D,设DA=DB=DC=x,∴x2=32+(-x)2,解得x=,∴R2=x2+2=+1=(其中R为三棱锥外接球的半径),∴外接球的表面积S=4πR2=π,故选D.1.一个球的表面积是16π,那么这个球的体积为( )A.πB.πC.16πD.24π解析:选B 设球的半径为R,因为表面积是16π,所以4πR2=16π,解得R=2.所以体积为πR3=.2.(2016·××市质量检测(二))几何体的三视图如图所示,则该几何体的体积为( )A.B.16-2π3C.D.16-8π3解析:选C 该几何体可视为长方体挖去一个四棱锥所得,所以其体积为2×2×4-×2×2×2=.故选C.3.(2016·全国乙卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π解析:选 A 由几何体的三视图可知,该几何体是一个球体去掉上半球的,得到的几何体如图.设球的半径为R,则πR3-×πR3=π,解得R=2.因此它的表面积为×4πR2+πR2=17π.故选A.4.(2016·高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V=×1=.答案:325.(2015·天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.解析:由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V=π×12×1×2+π×12×2=π.答案:π1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A.7 B.6C.5 D.3解析:选A 设圆台较小底面半径为r,则另一底面半径为3r.由S=π(r+3r)·3=84π,解得r=7.2.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为( )A.6 B.8C.12 D.24解析:选 C 由题意可知该六棱锥为正六棱锥,正六棱锥的高为h,侧面的斜高为h′.由题意,得×6××22×h=2,∴h=1,∴斜高h′==2,∴S侧=6××2×2=12.故选C.3.(2015·重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A.+2πB.13π6C.D.5π2解析:选B 由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+×π×12×1=π.4.(2017·××市实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A.πB.32C.3πD.3解析:选A 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为,故体积为π3=π,故选A.5.(2016·高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为3,则侧视图中线段的长度x的值是( ) A.B.27C.4 D.5解析:选C 分析题意可知,该几何体为如图所示的四棱锥PABCD,故其体积V=××4×CP=3,∴CP=,∴x==4,故选C.6.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1,直径为4的球的体积为V2,则V1∶V2=________.解析:由三视图知,该几何体为圆柱内挖去一个底面相同的圆锥,因此V1=8π-=,V2=×23=,V1∶V2=1∶2.答案:1∶27.(2016·××市第二次质量检测)已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为________.解析:由题意可得,球心在轴截面正方形的中心,则外接球的半径R==,该球的表面积为4πR2=8π.答案:8π8.(2016·四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析:由正视图知三棱锥的形状如图所示,且AB=AD=BC=CD=2,BD=2,设O为BD的中点,连接OA,OC,则OA⊥BD,OC⊥BD,结合正视图可知AO⊥平面BCD.又OC==1,∴V三棱锥ABCD=××1=.答案:339.(2017·武汉调研)已知正四棱锥的顶点都在同一球面上,且该棱锥的高为4,底面边长为2,则该球的表面积为________.解析:如图,正四棱锥PABCD的外接球的球心O在它的高PO1上,设球的半径为R,因为底面边长为2,所以AC=4.在Rt△AOO1中,R2=(4-R)2+22,所以R=,所以球的表面积S=4πR2=25π.答案:25π10.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.解:由已知得:CE=2,DE=2,CB=5,S表面=S圆台侧+S圆台下底+S圆锥侧=π(2+5)×5+π×25+π×2×2=(60+4)π,V=V 圆台-V圆锥=(π·22+π·52+)×4-π×22×2=π.1.(2017·广西质检)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积与原直三棱柱的体积的比值为( )A.B.14C.D.38解析:选 C 由侧视图、俯视图知该几何体是高为2、底面积为×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则。
2022版高考数学一轮复习 第七章 立体几何 第一讲 空间几何体的结构及其三视图和直观图学案(含解
学习资料2022版高考数学一轮复习第七章立体几何第一讲空间几何体的结构及其三视图和直观图学案(含解析)新人教版班级:科目:第七章立体几何第一讲空间几何体的结构及其三视图和直观图知识梳理·双基自测错误!错误!错误!错误!知识点一多面体的结构特征名称棱柱棱锥棱台图形结构特征①有两个面互相__平行且全等__,其余各面都是__四边形__.②每相邻两个四边形的公共边都互相__平行__有一个面是__多边形__,其余各面都是有一个公共顶点的__三角形__的多面体用一个平行于棱锥底面的平面去截棱锥,__截面__和__底面__之间的部分侧棱__平行且相等__相交于__一点__但不一定相等延长线交于__一点__侧面形状__平行四边形____三角形____梯形__ 名称圆柱圆锥圆台球图形母线互相平行且相等,__垂直__于底面相交于__一点__延长线交于__一点__轴截面全等的__矩形__全等的__等腰三角形__全等的__等腰梯形____圆__侧面展开图__矩形____扇形____扇环__三视图三视图包括__正(主)视图__、__侧(左)视图__、__俯视图__ 画法规则:长对正、高平齐、宽相等直观图斜二测面法:(1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为__45°或135°__,z′轴与x′轴和y′轴所在平面__垂直__.归纳错误!错误!1.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度;由此得到:主俯长对正,主左高平齐,俯左宽相等.2.一个平面图形在斜二测画法下的直观图与原图形相比,有“三变、三不变”.三变:坐标轴的夹角改变,与y轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x轴平行的线段长度不变,相对位置不变.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×")(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.(√)(4)正方体、球、圆锥各自的三视图中,三视图均相同.(×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.(×)(6)菱形的直观图仍是菱形.(×)题组二走进教材2.(必修2P19T2)下列说法正确的是(D)A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行[解析]由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变.题组三走向高考3.(2020·新课标Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为(C)A.错误!B.错误!C.错误!D.错误![解析]如图,设CD=a,PE=b,则PO=PE2-OE2=错误!,由题意PO2=错误! ab,即b2-错误!=错误!ab,化简得4错误!2-2·错误!-1=0,解得错误!=错误!(负值舍去).故选C.4.(2017·北京,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(B)A.3错误!B.2错误!C.2错误!D.2[解析]根据三视图可得该四棱锥的直观图(四棱锥P-ABCD)如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD,PD=错误!=2错误!。
高考数学(理科)大一轮复习第七章立体几何【精编教师学生用书】
第七章立体几何第一节空间几何体及其体积、表面积教材细梳理知识点1空间几何体的结构特征(1)多面体的结构特征的关系如何?提示:A B D E C思考2:设A={棱锥},B={正棱锥},C={正四面体},D={正三棱锥},它们之间的关系如何?提示:A B D C知识点2三视图与直观图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)画三视图应遵循的原则和注意事项①务必做到“长对正(正视图与俯视图一样长)高平齐(正视图与侧视图一样高)、宽相等(侧视图与俯视图一样宽)”.②在三视图中,看不见的线用虚线,看得见的线用实线.③确定正视、侧视、俯视的方向,同一物体放置的位置不同,所画的三视图就可能不同.(3)斜二测画法规则①夹角:原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴(或y′轴)垂直.②方向:原图形中与x轴、y轴、z轴平行的,在直观图中与x′轴,y′轴,z′轴平行.③长度:原图形中与x轴、z轴平行的,在直观图中长度不变,原图形中与y轴平行的,长度变成原来的12.知识点3圆柱、圆锥、圆台、球的表面积和侧面积名称表面积侧面积圆柱S=2πr2+2πrl=2πr(r+l)S侧=2πrl圆锥S=πr2+πrl=πr(r+l)S侧=πrl圆台S=π(r′2+r2+r′l+rl)S侧=π(r+r′)l球 S =4πR 2知识点4名称 体积 柱体 V =Sh 锥体 V =13Sh台体 V =13(S +S ′+SS ′)h球体V =43πR 3[拓展]1.平面化:求空间几何体的表面积,就是求其展开图的面积. 圆柱、圆锥、圆台的侧面展开图如下表(1)棱长为a 的正四面体,其高为63a .其内切球和外接球的球心重合,是正四面体的中心.其外接球和内切球的半径分别为64a 和612a .其正四面体体积为212a 3. (2)棱锥的体积是等底、等高的棱柱体积的13.四基精演练1.思考辨析(在括号内打“√”或“×”)(1)斜二测画法中,原图形中的平行、垂直关系在直观图中不变.( ) (2)斜二测画法中,三角形的直观图应是三角形.( ) (3)斜二测画法中,正方形的直观图应是正方形.( ) (4)一个几何体的三视图完全相同,这个几何体只能是球.( ) (5)已知球O 的半径R ,其内接正方体的边长为a ,则R =32a .( ) (6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( ) 答案:(1)× (2)√ (3)× (4)× (5)√ (6)×2.(知识点1)如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH ∥A ′D ′.剩下的几何体是( ) ⇐源自必修二P 10B 组T 1A .棱台B .四棱柱C .五棱柱D .简单组合体答案:C3.(知识点4)正六棱柱的高为6,底面边长为4,则它的表面积为( ) ⇐源自必修二P 27练习T 1 A .48(3+3) B .48(3+23) C .24(6+2) D .144 答案:A4.(知识点2、3)(2018·全国卷Ⅰ改编)某圆柱的高为2,底面周长为16,其三视图如图,则圆柱的表面积为________. 答案:32+128π5.(知识点3、4)(2018·全国卷Ⅲ改编)设A 、B 、C 、D 是同一个半径为4的球的球面上四点,则正四面体ABCD 的体积为________.答案:512327考点一 几何体的三视图与直观图[基础练通][例1] (1)(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成正方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:两木构件咬合成长方体时,榫头完全进入卯眼,易知咬合时带卯眼的木构件的俯视图为 A.故选A.答案:A(2)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.解析:如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E .图①在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 而四边形AECD 为矩形,AD =1, ∴EC =AD =1. ∴BC =BE +EC =22+1. 由此可得原图形如图②所示.图②在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′ =12×⎝⎛⎭⎫1+1+22×2=2+22. 答案:2+22[母题变式]1.若本例(1)改为:将正方体(如图①所示)截去两个三棱锥,得到如图②所示的几何体,则该几何体的侧视图为( )解析:选B.正方体截去两个三棱锥后的几何体的侧视图可以看见的实线段为AD 1、AD 、DD 1、D 1B 1、AB 1,而线段B 1C 被遮住,在侧视图中为虚线,所以侧视图为选项B 中的图形.故选B.2.若本例(2)改为:正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.解析:画出平面直角坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点)=12×32a =34a .∴S △O ′A ′B ′=12O ′A ′22D ′B ′=24×a ×34a =24×34a 2=616a 2. 答案:616a 21.由直观图还原为平面图的关键是找与x ′轴,y ′轴平行的直线或线段,且平行于x ′轴的线段还原时长度不变,平行于y ′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.2.对于直观图,除了了解斜二测画法的规则外,还要了解原图形面积S 与其直观图面积S ′之间的关系S ′=24S ,能进行相关问题的计算. 3.识别几何体的三视图,首先确定正视、侧视、俯视的方向,从几何体的边界想象平行投影的结果,从而得到各个视图.考点二 几何体的三视图与表面积、体积[探究变通][例2] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.2 5C.3 D.2解析:由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=14×16=4,则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.答案:B(2)(2018·安徽皖南八校二联,8)榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城,山西悬空寺,福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积与表面积分别为()A.24+52π,34+52πB.24+52π,36+54πC.24+54π,36+54πD.24+54π,34+52π解析:由三视图可知,这个榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V=4×2×3+π×32×6=24+54π,表面积S=2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.故选C.答案:C[母题变式]1.将本例(1)中的“圆柱”改为“底面边长为4,高为2的正四棱柱”,且M、N都在正四棱柱顶点上,其余条件不变,则从M到N的最短路径是多少?解:如图①,MN=AB=2.如图②,MN=AB=22+42=2 5.如图③,将正四棱柱沿AC 侧面展开,如图④, 则MN =AB =22+82 =217.综上,从M 到N 的最短路径可为2或25或217.2.将本例(2)中榫卯构件的凹凸部分改为圆柱形.如图,网格纸上正方形小格的边长为1,图中粗线画出的是该构件的三视图,该构件是一个底面半径为3,高为6的圆柱切削得到,则切削掉的部分的体积与原来圆柱的体积的比值为( )A.1727 B .59C.1027D .13解析:选C.由三视图可知该零件是一个底面半径为2、高为4的圆柱和一个底面半径为3、高为2的圆柱的组合体,所以该组合体的体积V 1=π·22·4+π·32·2=34π,原来的圆柱体的体积为V =π·32·6=54π,则切削掉部分的体积为V 2=54π-34π=20π,所以切削掉部分的体积与原来的圆柱体体积的比值为20π54π=1027.故选C.已知三视图求几何体表面积或体积时,首先根据几何体的三视图还原出直观体,此时需要利用线与线、线与面的关系分析各面相对位置关系,并根据三视图中数据确定对应线段的长度,再利用几何体的特征,结合公式求解.考点三 单独规则几何体或组合体的体积与表面积[创新贯通]命题点1规则几何体的表面积与体积[例3] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12π解析:因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.答案:B(2)(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.解析:由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是得12l 2=8,得l 圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,=32l =2 3.故=4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.答案:8π命题点2不规则几何体的体积与表面积[例4] (1)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B .33C.43 D .32解析:如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,则△BHC 中BC 边的高h =22. ∴S △AGD =S △BHC =12×22×1=24,∴V =V E ADG +V F BHC +V AGD BHC =2V E ADG +V AGD BHC =13×24×12×2+24×1=23.答案:A(2)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5解析:由几何体的三视图可知,该几何体是底面为正方形的斜平行六面体.由题意可知该几何体底面边长为3,高为6,所以侧棱长为32+62=3 5.故该几何体的表面积S =32×2+(3×6)×2+(3×35)×2=54+18 5.答案:B命题点3与球有关的组合体[例5] (1)(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3解析:设等边三角形ABC 的边长为x ,则12x 2sin 60°=93,得x =6.设△ABC 的外接圆半径为r ,则2r=6sin 60°,解得r =23,所以球心到△ABC 所在平面的距离d =42-(23)2=2,则点D 到平面ABC的最大距离d 1=d +4=6,所以三棱锥D -ABC 体积的最大值V max =13S △ABC ×6=13×93×6=18 3.答案:B(2)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球的半径为R ,V 2=43πR 3.V 1=πR 2·2R =2πR 3,∴V 1V 2=2πR 343πR3=32.答案:321.若所给的几何体是规则的柱体、锥体或台体,则可直接利用公式进行求解.2.求不规则几何体的表面积或体积时,通常将该几何体分割成基本的柱、锥、台体,先求出这些基本的柱、锥、台体的表面积,再通过求和或作差,从而获得该几何体的表面积.或者将不规则几何体补成规则几何体,再作体积之间的运算.3.解决球与其他几何体的切、接问题(1)关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系.(2)选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.(3)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各元素之间的关系.1.(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3解析:选C.连接BC1,因为AB ⊥平面BB 1C 1C ,所以∠AC 1B =30°,AB ⊥BC 1,所以△ABC 1为直角三角形.又AB =2,所以BC 1=2 3.又B 1C 1=2,所以BB 1=(23)2-22=22,故该长方体的体积V =2×2×22=8 2.2.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:正方体的棱长为2,以其所有面的中心为顶点的多面体是正八面体,其中正八面体的所有棱长都是2,则该正八面体的体积为13×(2)2×2=43.答案:43★3.(2018·四川达州模拟)如图(2),需在正方体的盒子内镶嵌一个小球,使得镶嵌后,组合体的三视图均为图(1)所示,且平面A 1C 1B 截得小球的截面面积为2π3,则该小球的体积为( )A.π6 B .4π3C.32π3D .82π3解析:选B.由题意知该小球为正方体的内切球,设正方体的棱长为2a ,则内切球的半径为a ,△A 1BC 1是边长为22a 的正三角形,且内切球与以点B 1为公共点的三个面的切点恰为△A 1BC 1三边的中点,∴平面A 1C 1B 截得小球的截面的面积是该正三角形的内切圆的面积, 设△A 1BC 1的内心为O ,连接BO 并延长交A 1C 1于点M ,连接OA 1,如图,由图可得,△A 1BC 1内切圆的半径是2a ×tan 30°=63a ,则△A 1BC 1内切圆的面积是π×63a ×63a =2π3a 2, 由题意可知,2π3a 2=2π3,∴a =1,∴该小球的体积V 球=4π3·13=4π3.故选B.化归与转化思想在求空间几何体体积中的应用1.“转”:指的是转换底面与高,将原来不容易求面积的底面转换为容易求面积的底面,或将原来不容易看出的高转换为容易看出并容易求解长度的高;2.“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算;3.“拼”:指的是将小几何体嵌入一个大几何体中,如有时将一个三棱锥还原成一个三棱柱,有时将一个三棱柱还原成一个四棱柱,还台为锥,这些都是拼补的方法.[例6] 如图,在三棱柱ABC -A 1B 1C 1的侧棱A 1A 和B 1B 上各有一个动点P 、Q ,且满足A 1P =BQ ,M 是棱CA 上的动点,则V M ABQPVABC A 1B 1C 1-V M ABQP的最大值是__________.解析:设VABC A 1B 1C 1=V ,V M ABQP =VM B 1BA ≤VC B 1BA =VB 1CBA =13V ,即M 与C 重合时V M ABQP最大,即V M ABQP VABC A 1B 1C 1-V M ABQP=V 3V -V 3=12.答案:12函数、不等式思想在立体几何中的应用对于立体几何中的有关最值问题,常用建立目标函数求其最值或利用基本不等式求最值.[例7] (2018·湖北沙市模拟)如图,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于E ,AF ⊥DC 交DC 于F ,且AD =AB =2,则三棱锥D -AEF 体积的最大值为________.解析:因为DA ⊥平面ABC ,所以DA ⊥BC ,又BC ⊥AC ,DA ∩AC =A ,所以BC ⊥平面ADC ,所以BC ⊥AF ,又AF ⊥CD ,BC ∩CD =C ,所以AF ⊥平面DCB ,所以AF ⊥EF ,AF ⊥DB ,又DB ⊥AE ,AE ∩AF =A ,所以DB ⊥平面AEF ,所以DE 为三棱锥D -AEF 的高.因为AE 为等腰直角三角形ABD 斜边上的高,所以AE =2,设AF =a ,FE =b ,则△AEF 的面积S =12ab ≤12·a 2+b 22=12×22=12,所以三棱锥D -AEF 的体积V ≤13×12×2=26(当且仅当a =b =1时等号成立). 答案:26[例8] 如图所示,在侧棱与底面垂直,且底面为正方形的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,始终保持MN ∥平面DCC 1D 1.设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选C.如图,过M 作MQ ∥DD 1,交AD 于Q ,连接QN .∵MN ∥平面DCC 1D 1,MQ ∥平面DCC 1D 1, MN ∩MQ =M ,∴平面MNQ ∥平面DCC 1D 1, 又QN ⊂平面MNQ ,∴NQ ∥平面DCC 1D 1,∴NQ ∥DC ,∵AQ =BN =x ,DD 1=AA 1=2,AD =AB =1, ∴MQ =2x ,在Rt △MQN 中,MN 2=MQ 2+QN 2,即y 2=4x 2+1, ∴y 2-x 214=1(x ≥0,y ≥1),∴函数y =f (x )的图象为焦点在y 轴上的双曲线上支的一部分.故选C.[素材库]1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2D .π4解析:选B.设圆柱底面的半径为r , 由题意可得12+(2r )2=22,解得r =32. ∴圆柱的体积V =πr 2×1=3π4,故选B. 2.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.由三视图得几何体的直观图如图所示.其中SD ⊥底面ABCD ,AB ⊥AD ,AB ∥CD ,SD =AD =CD =2,AB =1,故△SDC ,△SDA 为直角三角形,∵AB ⊥AD ,AB ⊥SD ,AD ∩SD =D ,∴AB ⊥平面SDA ,∴AB ⊥SA ,故△SAB 是直角三角形,从而SB =SD 2+AD 2+AB 2=3,易知BC =22+12=5,SC =22+22=22,则SB 2≠BC 2+SC 2,故△SBC 不是直角三角形,故选C.3.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8解析:选C.由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的边长分别为1 cm ,2 cm ,高为2 cm ,直四棱柱的高为2 cm.故直四棱柱的体积V =1+22×2×2=6 cm 3.4.(2018·天津卷)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为________.解析:四棱锥的底面BB 1D 1D 为矩形,其面积为1×2=2,又点A 1到底面BB 1D 1D 的距离,即四棱锥A 1BB 1D 1D 的高为12A 1C 1=22,所以四棱锥A 1BB 1D 1D 的体积为13×2×22=13. 答案:13限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④解析:选D.①中正、侧、俯三视图均相同,不符合题意;②中正、侧视图均相同,符合题意;③中正、侧、俯三视图均不相同,不符合题意;④中正、侧视图均相同,符合题意.2.圆环内圆半径为4,外圆半径为5,则圆环绕其对称轴旋转一周形成的几何体的体积为( )A.244π3B .500π3C.200π3D .256π3解析:选A.该旋转体是大球体中挖掉一个小球体,该旋转体体积为V =4π3×53-4π3×43=244π3.3.已知在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A.83 B .38C.43D .34解析:选C.设点A 1到截面AB 1D 1的距离是h ,由VA 1AB 1D 1=VA A 1B 1D 1,可得13S △AB 1D 1·h =13S △A 1B 1D 1·AA 1,即13×12×2×2×4=13×⎝⎛⎭⎫12×22×32h ,解得h =43. 4.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C.如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O -ABC 的体积最大,设球O 的半径为R ,此时V O ABC =V C AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.5.已知棱长为1的正方体的俯视图是一个面积为1的正方形,记该正方体的正视图与侧视图的面积分别为S 1,S 2,则( )A.1S 1-1S 2为定值 B.S 21+S 222为定值 C.1S 1+1S 2为定值 D.S 1S 22+2S 21+S 22为定值解析:选A.设投影面与侧面所成的角为α⇒S 1=sin α+cos α,S 2=sin(90°-α)+cos(90°-α)=sin α+cos α,S 1=S 2⇒1S 1-1S 2为定值.6.现有一块半球形原料,若通过切削将该原料加工成一个正方体工件,则所得工件体积与原料体积之比的最大值为( )A.63π B .66πC.328πD .324π解析:选A.当正方体的下底面在半球的大圆面上,上底面的四个顶点在球的表面上时,所得工件体积与原材料体积之比取得最大值,设此时正方体的棱长为a ,则球的半径为R =a 2+⎝⎛⎭⎫22a 2=62a ,所以所求体积比为a 312×43π×⎝⎛⎭⎫62a 3=63π,故选A.7.如图,BD 是边长为3的正方形ABCD 的对角线,将△BCD 绕直线AB 旋转一周后形成的几何体的体积等于________.解析:对角线BD 绕着AB 旋转,形成圆锥的侧面;边BC 绕着AB 旋转形成圆面;边CD 绕着AB 旋转,形成圆柱的侧面,所以该几何体是由圆柱挖去一个同底面的圆锥,所以V =π·32·3-13·π·32·3=18π.答案:18π8.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为________. 解析:设圆锥的母线长是R ,则扇形的弧长是90πR 180=πR2,设底面半径是r , 则πR 2=2πr ,所以r =R4, 所以圆锥的底面半径与母线长的比为1∶4. 答案:149.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PD ⊥底面ABCD ,M ,N 分别为AB ,PC 的中点,PD =AD =2,AB =4.则点A 到平面PMN 的距离为________. 解析:取PD 的中点E ,连接AE ,NE ,则在四棱锥P -ABCD 中,底面ABCD 是矩形,M ,N 分别为AB ,PC 的中点,所以NE ∥AM ,NE =AM ,所以四边形AENM 是平行四边形,所以AE ∥MN ,所以点A 到平面PMN 的距离等于点E 到平面PMN 的距离,设为h ,在△PMN 中,PN =5,PM =23,MN =5,所以S △PMN =12×23×2=6,由V E PMN =V M PEN ,可得13×6h =13×12×1×2×2,所以h =63. 答案:6310.如图直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.解析:由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,所以∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x .在Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R 为球的半径),所以⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1, 即x =2,则AB =AC =1, 所以S 矩形ABB 1A 1=2×1= 2. 答案: 2B 级 能力提升练11.(2019·吉林实验中学月考)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示,则该四棱锥的侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B.由正视图知:四棱锥的底面是边长为2的正方形,四棱锥的高为2,∴四棱锥的体积V =13×22×2=83;四棱锥的侧面是全等的等腰三角形,底为2,高为5,∴S 侧=4×12×2×5=4 5.12.若三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =215,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( )A .64πB .63πC .65πD .32π解析:选A.设球O 的半径为R ,∵AB =1,AC =2,∠BAC =60°,∴BC 2=1+4-2×1×2×cos 60°=3,所以AB 2+BC 2=AC 2.即△ABC 为直角三角形,那么△ABC 所在截面圆的直径为AC ,所以(2R )2=SA 2+AC 2=64.所以S 球=4πR 2=64π.13.已知四面体P -ABC 的四个顶点都在球O 的球面上,P A =8,BC =4,PB =PC =AB =AC ,且平面PBC ⊥平面ABC ,则球O 的表面积为( )A .64πB .65πC .66πD .128π解析:选B.如图,D ,E 分别为BC ,P A 的中点,易知球心O 在线段DE 上. ∵PB =PC =AB =AC ,∴PD ⊥BC ,AD ⊥BC ,PD =AD .又平面PBC ⊥平面ABC ,平面PBC ∩平面ABC =BC , ∴PD ⊥平面ABC .∴PD ⊥AD .∴PD =AD =4 2. ∵点E 是P A 的中点,∴ED ⊥P A ,且DE =EA =PE =4. 设球O 的半径为R ,OE =x ,则OD =4-x .在Rt △OEA 中,有R 2=16+x 2,在Rt △OBD 中,有R 2=4+(4-x )2,解得R 2=654,所以S =4πR 2=65π,故选B.14.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( ) A .3 B .32C .1D .32解析:选C.∵D 是等边三角形ABC 的边BC 的中点, ∴AD ⊥BC .又ABC -A 1B 1C 1为正三棱柱, ∴AD ⊥平面BB 1C 1C . 又四边形BB 1C 1C 为矩形,∴S △DB 1C 1=12S 四边形BB 1C 1C =12×2×3= 3.又AD =2×32=3,∴VA B 1DC 1=13S △B 1DC 1·AD =13×3×3=1.故选C. 15.(2018·安徽黄山模拟)如图,直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为________.解析:根据题意可知,该几何体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示,则所得几何体的表面积为圆锥侧面积、圆柱的侧面积以及圆柱的下底面面积之和,即表面积为π×1×12+12+2π×12+π×12=(2+3)π.答案:(2+3)π16.(2018·贵州贵阳适应性考试)已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为________.解析:因为六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,由对称性和底面正六边形的面积为定值知,当六棱锥P -ABCDEF 为正六棱锥时,体积最大.设正六棱锥的高为h ,则13×⎝⎛⎭⎫6×12×1×1×sin 60°h =3,解得h =2.记球O 的半径为R ,根据平面截球面的性质,得(2-R )2+12=R 2,解得R =54,所以球O 的表面积为4πR 2=4π⎝⎛⎭⎫542=25π4.答案:25π4第二节 直线、平面的平行关系教材细梳理知识点1 平面的基本性质(1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2.思考1:“分别在不同平面内的两条直线”是异面直线吗? 提示:不一定.思考2:若直线a 与b 异面,b 与c 异面,那么a 与c 异面吗?提示:不一定.异面直线不具有传递性,a 与c 可能异面,可能平行,也可能相交. [拓展]平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. 知识点3 直线与平面平行的判定定理和性质定理[1.一条直线与一个平面平行,那么它与这个平面内的直线平行或异面.2.如果两个平面平行,那么其中一个平面内的任意一条直线平行于另一个平面.3.垂直于同一条直线的两个平面平行.4.夹在两个平行平面间的平行线段相等.5.若α、β、γ是三个不同的平面,α∥β,β∥γ,则α∥γ.四基精演练1.思考辨析(在括号内打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)若直线a与平面α内无数条直线平行,则a∥α.()(4)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.()(5)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(6)设l为直线,α,β是两个不同的平面,若l∥α,l∥β,则α∥β.()答案:(1)×(2)×(3)×(4)×(5)×(6)×2.(知识点2)如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF 所成的角的大小为() ⇐源自必修二P52B组T1A.30°B.45°C.60°D.90°答案:C3.(知识点3)(2018·浙江卷)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A.若m⊄α,n⊂α,m∥n,由线面平行的判定定理知m∥α.若m∥α,m⊄α,n⊂α,不一定推出m∥n,直线m与n可能异面,故“m∥n”是“m∥α”的充分不必要条件.故选A.4.(知识点4)平面α∥平面β的一个充分条件是()⇐源自必修二P58练习T3A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案:D5.(知识点1)如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是________.⇐源自必修二P52A组T7答案:CD考点一空间点、线、面的基本关系[基础练通]1.(2018·山东烟台模拟)如图所示的是正方体和四面体,P,Q,R,S分别是所在棱的中点,则各图形中,P,Q,R,S四点共面的是________(填序号).答案:①②③2.(2018·山西临汾模拟)如图,在三棱台ABC-A1B1C1的6个顶点中任取3个点作平面α,设α∩平面ABC =l,若l∥A1C1,则这3个点可以是()A.B,C,A1B.B1,C1,AC.A1,B1,C D.A1,B,C1解析:选D.过点B作BD∥AC,则BD∥A1C1,连接A1B,C1D,CD,如图所示:则平面α可以为平面A1BDC1,则α∩平面ABC=BD=l,且l∥A1C1,所以这3个点可以是A1、C1、B.故选D.3.下列命题正确的是()A.若两条直线和同一个平面平行,则这两条直线平行B.若一直线与两个平面所成的角相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行解析:选C.A选项中的两条直线可能平行,可能异面,也可能相交;B中一直线可以与两垂直平面所成的角都是45°;由两平面平行的性质定理知C正确;D中的两平面也可能相交.1.共面、共线、共点问题的证明(1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.(3)证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.2.]异面直线的判定方法(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.此法在异面直线的判定中经常用到.(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.考点二直线与平面平行的判定与性质[创新贯通]命题点1线面平行的基本问题[例1](1)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:。
高考数学一轮复习第七章立体几何73直线平面平行的判定及其性质课件苏教版
32
考点2 直线与平面平行的判定与性质 直线与平面平行的判定
证明线面平行的常用方法 (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α). (3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β). (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
16
3.平面α∥平面β的一个充分条件是( ) A.存在一条直线a,a∥α,a∥β B.存在一条直线a,a⊂α,a∥β C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
17
课
休息时间到啦
前
自
主
回
课
顾
同学们,下课休息十分钟。现在是休息时间,你们休息一
19
4.在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面
ACE的位置关系为
.
20
平行 [如图所示,连接BD交AC于F,连接EF,则EF是△BDD1 的中位线,
21
∴EF∥BD1, 又EF⊂平面ACE, BD1⊄平面ACE, ∴BD1∥平面ACE.]
22
课堂考点探究
23
10
一、思考辨析(正确的打“√”,错误的打“×”)
(1)若一条直线平行于一个平面,则这条直线平行于这个平面内
的任一条直线.
()
(2)如果一个平面内的两条直线平行于另一个平面,那么这两个
平面平行.
()
11
(3)如果两个平面平行,那么分别在这两个平面内的两条直线平
行或异面.
()
(4)若直线a与平面α内无数条直线平行,则a∥α.
(1)AP∥平面BEF; (2)GH∥平面PAD.
高考数学一轮复习第7章立体几何第1讲作业课件理
12/11/2021
第六页,共三十五页。
A.①②⑥ B.①②③ C.④⑤⑥ D.③④⑤ 答案 B
12/11/2021
第七页,共三十五页。
答案
解析 正视图应该是边长为 3 和 4 的矩形,其对角线左下到右上是实线, 左上到右下是虚线,因此正视图是①,侧视图应该是边长为 5 和 4 的矩形, 其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图 应该是边长为 3 和 5 的矩形,其对角线左上到右下是实线,左下到右上是虚 线,因此俯视图是③.
12/11/2021
第二十七页,共三十五页。
解析
4.(2019·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三 棱锥的侧视图可能为( )
答案 D
12/11/2021
第二十八页,共三十五页。
答案
解析 由题图可知,该几何体为如图所示的三棱锥,其中平面 ACD⊥平 面 BCD.所以该三棱锥的侧视图可能为 D 项.
第二十六页,共三十五页。
答案
解析 由题图 2 及斜二测画法可知原俯视图为如图所示的平行四边形 OABC,设 CB 与 y 轴的交点为 D,则易知 CD=2,OD=2×2 2=4 2,∴ CO= CD2+OD2=6=OA,∴俯视图是以 6 为边长的菱形,由三视图知几何 体为一个直四棱柱,其高为 4,所以该几何体的侧面积为 4×6×4=96.故选 C.
A 组 基础关 1.如图所示,在三棱台 A′B′C′-ABC 中,沿 A′BC 截去三棱锥 A′ -ABC,则剩余的部分是( )
A.三棱锥 B.四棱锥 C.三棱柱 D.组合体 答案 B
解析 剩余的部分是四棱锥 A′-B′C′CB.
12/11/2021
第一页,共三十五页。
高考数学人教版江苏专用新精准大一轮复习课件:第7章2第2讲 直线、平面平行的判定与性质
第七章 立体几何
连结 AC,交 BD 于点 O,连结 C1O,与 A1C 交于点 F, 则点 F 就是 A1C 与平面 C1BD 的交点. 下面证明 A1E=EF=FC. 因为平面 A1C1C∩平面 AB1D1=EO1, 平面 A1C1C∩平面 C1BD=C1F, 平面 AB1D1∥平面 C1BD,所以 EO1∥C1F. 在△A1C1F 中,O1 是 A1C1 的中点,所以 E 是 A1F 的中点,即 A1E=EF. 同理可证,OF∥AE, 所以 F 是 CE 的中点,即 FC=EF, 所以 A1E=EF=FC.
第七章 立体几何
第 2 讲 直线、平面平行的判定与性质
第七章 立体几何
1.直线与平面平行的判定定理和性质定理
文字语言
图形语言
如果平面外一条直线和 _这__个__平__面__内___的一条直 判定 线平行,那么这条直线 定理 和这个平面平行(线线平
行⇒线面平行)
符号语言
因为_l_∥__a__, _a_⊂_α___, __l⊄__α__,所以 _l_∥__α__
栏目 导引
第七章 立体几何
3.如图所示,四边形 ABCD 是平行四边形,点 P 是 平面 ABCD 外一点,M 是 PC 的中点,在 DM 上取 一点 G,过 G 和 AP 作平面交平面 BDM 于 GH.求 证:AP∥GH. 证明:如图所示,连结 AC 交 BD 于点 O,连结 MO. 因为四边形 ABCD 是平行四边形.所以 O 是 AC 的 中点.又 M 是 PC 的中点,所以 AP∥OM. 又 AP⊄平面 BMD,OM⊂平面 BMD, 所以 AP∥平面 BMD. 又 AP⊂平面 PAHG,平面 PAHG∩平面 BMD=GH, 所以 AP∥GH.
【三维设计】(新课标)高考数学大一轮复习 第七章 立体几何精品讲义 理(含解析)
第七章立体几何第一节空间几何体的结构特征及三视图与直观图基础盘查一空间几何体的结构特征(一)循纲忆知认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(二)小题查验1.判断正误(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱( )(2) 有一个面是多边形,其余各面都是三角形的几何体是棱锥( )(3)用一个平面去截一个球,截面是一个圆面( )答案:(1)×(2)×(3)√2.(人教A版教材习题改编)如图,长方体ABCDA′B′C′D′被截去一部分,其中EH ∥A′D′,则剩下的几何体是________,截去的几何体是________.答案:五棱柱三棱柱基础盘查二空间几何体的三视图(一)循纲忆知1.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型.2.会用平行投影与中心投影两种方法画出简单空间图形的三视图,了解空间图形的不同表示形式.3.会画出某些建筑物的三视图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)正方体、球、圆锥各自的三视图中,三视图均相同( )(2)圆锥的俯视图是一个圆( )(3)圆台的正视图和侧视图是两个全等的等腰梯形( )答案:(1)×(2)√(3)√2.(北师大版教材例题改编)已知空间几何体的三视图如图,则该几何体是由__________________组合而成.答案:圆柱和正四棱柱3.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是________.答案:②③基础盘查三空间几何体的直观图(一)循纲忆知1.会用斜二测画法画出几何体的直观图.2.会用平行投影与中心投影画出简单空间图形的直观图.了解空间图形的不同表示形式.3.会画某些建筑物的直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°()(2)斜二测画法中,平行于x轴y轴的线段平行性不变,且长度也不变( )(3)斜二测画法中,原图形中的平行垂直关系在直观图中不变( )答案:(1)×(2)×(3)×2.(2015·东北三校第一次联考)利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是________.答案:①②考点一 空间几何体的结构特征|(基础送分型考点——自主练透)[必备知识]1.多面体的结构特征(1)棱柱⎩⎪⎨⎪⎧ 底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等(2)棱锥⎩⎪⎨⎪⎧ 底面:是多边形侧面:都是有一个公共顶点的三角形(3)棱台 棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分.2.旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到.(2)圆锥可以由直角三角形绕其一条直角边旋转得到.(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(4)球可以由半圆面或圆面绕直径旋转得到.[提醒](1)认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.(2)台体可以看成是由锥体截得的,但一定强调截面与底面平行.[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A .圆柱B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选DA错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图1图23.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③四棱锥的四个侧面都可以是直角三角形;④棱台的相对侧棱延长后必交于一点;⑤直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;③正确,如图1,PD⊥平面ABCD,其中底面ABCD为矩形,可证明∠PAB,∠PCB为直角,这样四个侧面都是直角三角形;命题④由棱台的定义知是正确的;⑤错误,当以斜边为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图2所示,它是由两个同底圆锥形成的.答案:①③④[类题通法]解决与空间几何体结构特征有关问题的技巧(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.考点二空间几何体的三视图|(重点保分型考点——师生共研)[必备知识](1)空间几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;③看不到的线画虚线.[提醒] 若相邻两物体的表面相交,则表面的交线是它们的分界线,在三视图中,要注意实、虚线的区别.[典题例析]1.(2014·江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.2.(2014·新课标全国卷Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B 将三视图还原为几何体即可.如图,几何体为三棱柱.[类题通法]1.对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图.2.由三视图还原几何体时,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.[演练冲关]1.(2015·南阳三模)已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.2.如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的侧视图为( )解析:选C 由俯视图知侧视图从左到右能看到的小立方体个数分别为2,3,1.考点三空间几何体的直观图|(重点保分型考点——师生共研)[必备知识]1.在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.[典题例析](2015·福州模拟)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[类题通法]用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.[演练冲关]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C 依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.一、选择题1.(2014·福建高考)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱B.圆锥C.四面体D.三棱柱解析:选A 圆柱的正视图是矩形,则该几何体不可能是圆柱.2.(2014·湖北高考)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B .③和①C .④和③D .④和②解析:选D 在空间直角坐标系O xyz 中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.选D.3.(2015·烟台一模)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选D 观察三视图,可得直观图如图所示.该三棱锥A BCD 的底面BCD 是直角三角形,AB ⊥平面BCD ,CD ⊥BC ,侧面ABC ,ABD 是直角三角形;由CD ⊥BC ,CD ⊥AB ,知CD ⊥平面ABC ,CD ⊥AC ,侧面ACD 也是直角三角形,故选D.4.(2015·淄博一模)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A BCD 的正视图与俯视图如图所示,则其侧视图的面积为( )A.22B.12C.24 D.14 解析:选D 由正视图与俯视图可得三棱锥A BCD 的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为22,所以侧视图的面积为S =12×22×22=14,选D. 5.(2015·武昌调研)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是( )解析:选D 易知该三棱锥的底面是直角边分别为1和2的直角三角形,注意到侧视图是从左往右看得到的图形,结合B 、D 选项知,D 选项中侧视图方向错误,故选D.6.如图,在正方体ABCD A1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P ABC 的正(主)视图与侧(左)视图的面积的比值为( )A.12B .1C .2D .不确定,与点P 的位置有关解析:选B 如题图所示,设正方体的棱长为a ,则三棱锥P ABC 的正(主)视图与侧(左)视图都是三角形,且面积都是12a 2,故选B. 二、填空题7.(2015·西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.答案:2 38.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.解析:由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC 的高为OE ,则OE ×12×22=O ′C ′, ∵O ′C ′=2,∴OE =42,∴S ▱OABC =6×42=24 2. 答案:24 29.(2015·武邑一模)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为________. 解析:本题构造长方体,体对角线长为7,其在侧视图中为侧面对角线a ,在俯视图中为底面对角线b ,设长方体底面宽为1,则b 2-1+a 2-1=6,即a 2+b 2=8,利用不等式⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22=4,则a +b ≤4.答案:410.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD A 1B 1C 1D 1中的四面体A CB 1D 1;②错误,反例如图所示,底面△ABC为等边三角形,可令AB =VB =VC =BC =AC ,则△VBC 为等边三角形,△VAB 和△VCA 均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.答案:①三、解答题11.已知:图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.解:图①几何体的三视图为:图②所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.12.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA =PD2+AD2=22+62=6 3 cm.第二节空间几何体的表面积与体积基础盘查一柱体、锥体、台体的表面积(一)循纲忆知了解柱体、锥体、台体的表面积的计算公式.(二)小题查验1.判断正误(1)几何体的表面积就是其侧面积与底面积的和( )(2)几何体的侧面积是指各个侧面积之和( )答案:(1)√(2)√2.(人教A版教材例题改编)已知棱长为a,各面均为等边三角形的四面体SABC,则它的表面积为________.解析:过S作SD⊥BC,∵BC =a ,∴SD =32a ∴S △SBC =34a 2, ∴表面积S =4×34a 2=3a 2. 答案:3a 23.(2015·北京石景山一模)正三棱柱的侧(左)视图如图所示,则该正三棱柱的侧面积为________.解析:由侧(左)视图知:正三棱柱的高(侧棱长)为2,底边上的高为3,所以底边边长为2,侧面积为3×2×2=12.答案:12基础盘查二 柱体、锥体、台体的体积 (一)循纲忆知了解柱体、锥体、台体的体积的计算公式. (二)小题查验 1.判断正误(1)等底面面积且等高的两个同类几何体的体积相等( ) (2)在三棱锥P ABC 中,V P ABC =V A PBC =V B PAC =V C PAB ( ) 答案:(1)√ (2)√2.(人教B 版教材例题改编)如图,在长方体ABCD A ′B ′C ′D ′中,用截面截下一个棱锥C A ′DD ′,则棱锥C A ′DD ′的体积与剩余部分的体积之比为________.答案:1∶53.(2015·海淀高三练习)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:43基础盘查三 球的表面积与体积 (一)循纲忆知了解球的表面积与体积的计算公式. (二)小题查验 1.判断正误(1)球的表面是曲面,不能展开在一平面上,故没有展开图( ) (2)正方体的内切球中其直径与棱长相等( ) 答案:(1)√ (2)√2.(人教A 版教材例题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶13.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为 2.设该球的直径为2R ,则2R =22+22+22=23,所以该几何体的表面积为4πR 2=4π(3)2=12π.答案:12π考点一 空间几何体的表面积|(基础送分型考点——自主练透)[必备知识]当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl[提醒] 组合体的表面积应注意重合部分的处理.[题组练透]1.(2014·陕西高考)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.2.(2014·安徽高考)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18解析:选A 由三视图可知该几何体的直观图如图所示,其是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分,其表面积为S =6×4-12×6+2×34×(2)2=21+ 3.3.已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析:由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的表面积S =π×1+π×9+π×(1+3)×32+22=26π.答案:26π[类题通法]求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.考点二 空间几何体的体积|(重点保分型考点——师生共研)[必备知识]1.柱体V 柱体=Sh ;V 圆柱=πr 2h .2.锥体V 锥体=13Sh ;V 圆锥=13πr 2h .3.台体V 台体=13(S +SS ′+S ′)h ; V 圆台=13πh (r 2+rr ′+r ′2).[提醒](1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题需注意几何体还原的准确性及数据的准确性.[典题例析]1.(2014·辽宁高考)某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4解析:选B 直观图为棱长为2的正方体割去两个底面半径为1的14圆柱,所以该几何体的体积为23-2×π×12×2×14=8-π.2.(2014·山东高考)三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.解析:如图,设点C 到平面PAB 的距离为h ,三角形PAB 的面积为S ,则V 2=13Sh ,V 1=V E -ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.答案:14[类题通法]1.计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.[演练冲关]1.(2015·唐山统考)某几何体的三视图如图所示,则该几何体的体积为()A .8π+16B .8π-16C .8π+8D .16π-8解析:选B 由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.2.(2015·苏州测试)如图,在直四棱柱ABCD A 1B 1C 1D 1中,点E ,F 分别在AA 1,CC 1上,且AE =34AA 1,CF =13CC 1,点A ,C 到BD 的距离之比为3∶2,则三棱锥E BCD 和F ABD 的体积比V E BCDV F ABD=________. 解析:由题意可知点A ,C 到BD 的距离之比为3∶2,所以S △BCD S △ABD =23,又直四棱柱ABCD A 1B 1C 1D 1中,AE =34AA 1,CF =13CC 1,所以AE CF =94,于是V E BCD V F ABD =13S △BCD ·AE13S △ABD ·CF =23×94=32. 答案:32考点三 与球有关的切、接问题|(常考常新型考点——多角探明)[必备知识]1.球的表面积公式:S =4πR 2; 球的体积公式V =43πR 32.与球有关的切、接问题中常见的组合:(1)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE =23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a . (2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a . ③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a . (3)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1AB 1D 1的外接球的球心和正方体ABCD A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a . ②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长). [多角探明]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:(1)正四面体的内切球; (2)直三棱柱的外接球; (3)正(长)方体的外接球; (4)四棱锥的外接球. 角度一:正四面体的内切球1.(2015·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度二:直三棱柱的外接球2.(2015·唐山统考)如图,直三棱柱ABC A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1 C. 2D.22解析:选C 由题意知,球心在侧面BCC1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x2,MC 1=x 2,OC 1=R =1(R 为球的半径),∴⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.角度三:正方体的外接球3.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π.答案:43π角度四:四棱锥的外接球4.(2014·大纲卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4解析:选A 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4,故选A.[类题通法]“切”“接”问题的处理规律 1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.一、选择题1.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A .100π B.100π3C .25πD.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π. 2.(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+22=1,所以V 球=4π3×13=4π3.故选D.3.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B. 3 C .2 6D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3.4.(2015·遵义模拟)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5解析:选 C 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB = 2.又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,PA =2+12=3,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容 1.空间几何 柱、锥、台、球及其简单组合体
要求 A BC √
体
柱、锥、台、球的表面积与体积 √
平面及其基本性质 2.点、线、
直线与平面平行、垂直的判定及性 面之间的位
质 置关系
两平面平行、垂直的判定及性质
√ √ √
第七章 立体几何
第 1 讲 平面的基本性质、 空间两条直线的位置关系
所以 EF∥A1B 且 EF=12A1B. 又因为 A1D1═∥═BC,所以四边形 A1BCD1 是平行四边形, 所以 A1B∥CD1,所以 EF∥CD1, 所以 EF 与 CD1 确定一个平面 α, 所以 E、F、C、D1∈α,即 E、C、D1、F 四点共面.
本例条件不变,如何证明“CE,D1F,DA 交于一点”? 证明:如图,由本例知 EF∥CD1,且 EF=12CD1,
2,由勾股定理逆定理可得∠EGF=90°.
答案:90°
平面的基本性质 如图所示,在正方体 ABCD-A1B1C1D1 中,E、F 分别是 AB 和 AA1 的中点.求证:E、C、D1、F 四点共面.
【证明】 如图所示,连结 CD1、EF、A1B, 因为 E、F 分别是 AB 和 AA1 的中点,
(2)易知 FH 与直线 AC 不平行,但共面, 所以设 FH∩AC=M, 所以 M∈平面 EFHG,M∈平面 ABC. 又因为平面 EFHG∩平面 ABC=EG, 所以 M∈EG, 所以 FH、EG、AC 共点.
空间两条直线的位置关系(高频考点) (1)在图中,G,N,M,H 分别是正三棱柱的顶点或所在 棱 的 中 点 , 则 表 示 直 线 GH , MN 是 异 面 直 线 的 图 形 有 ________.(填上所有正确答案的序号)
共点、共线、共面问题的证明方法 (1)证明点共线问题:①公理法:先找出两个平面,然后证明这 些点都是这两个平面的公共点,再根据基本公理 2 证明这些点 都在交线上;②同一法:选择其中两点确定一条直线,然后证 明其余点也在该直线上. (2)证明线共点问题:先证两条直线交于一点,再证明第三条直 线经过该点. (3)证明点、直线共面问题:①纳入平面法:先确定一个平面, 再证明有关点、线在此平面内;②辅助平面法:先证明有关的 点、线确定平面 α,再证明其余元素确定平面 β,最后证明平面 α、β 重合.
已知空间四边形 ABCD(如图所示),E、F 分 别是 AB、AD 的中点,G、H 分别是 BC、CD 上 的点,且 CG=13BC,CH=13DC.求证: (1)E、F、G、H 四点共面; (2)三直线 FH、EG、AC 共点.
证明:(1)连接 EF、GH, 因为 E、F 分别是 AB、AD 的中点, 所以 EF∥BD. 又因为 CG=13BC,CH=13DC, 所以 GH∥BD,所以 EF∥GH, 所以 E、F、G、H 四点共面.
所以四边形 CD1FE 是梯形, 所以 CE 与 D1F 必相交,设交点为 P, 则 P∈CE,且 P∈D1F, 又 CE⊂平面 ABCD,且 D1F⊂平面 A1ADD1, 所以 P∈平面 ABCD,且 P∈平面 A1ADD1. 又平面 ABCD∩平面 A1ADD1=AD,所以 P∈AD, 所以 CE、D1F、DA 三线共点.
解析:根据异面直线的定义可知共 3 对,分别是 AP 与 BC,CP 与 AB,BP 与 AC. 答案:3
2.如图所示,点 A 是平面 BCD 外一点,AD=BC=2,E、F 分别是 AB、CD 的中点,且 EF= 2,则异面直线 AD 和 BC 所成的角为________.
解析:如图,设 G 是 AC 的中点,连结 EG,FG. 因为 E,F 分别是 AB,CD 的中点,故 EG∥BC 且 EG=12BC =1,FG∥AD,且 FG=12AD=1,即∠EGF 为所求,又 EF=
成的角.不妨设 AA1=2AB=2,则 A1E=1,BE= 2,A1B= 5,
在△A1BE
中,cos∠A1BE=A1B22+A1EBB·2-EBA1E2=2×5+25×-1
= 2
3 1010.
答案:3
10 10
必明辨的 2 个易错点 (1)异面直线的认识; (2)忽视异面直线所成角的范围.
1.如图所示,在三棱锥 P-ABC 的六条棱所在的直线中,异面 直线共有________对.
2.(2019·徐州模拟)已知正四棱柱 ABCD-A1B1C1D1 中,AA1= 2AB,E 是 AA1 的中点,则异面直线 D1C 与 BE 所成角的余弦 值为________.
解析:连结 A1B.由题意知 A1D1═∥═BC.所以四边形 A1D1CB 为平
行四边形,故 D1C∥A1B.所以∠A1BE 为异面直线 D1C 与 BE 所
2.直线与直线的位置关系 (1)位置关系的分类 共面直线平相行交 异面直线:不同在任何一个平面内,没有公共点 (2)异面直线所成的角 ①定义:设 a,b 是两条异面直线,经过空间任一点 O 作直线 a′ ∥a,b′∥b,把 a′与 b′所成的锐角(或直角)叫做异面直线 a 与 b 所成的角.
②范围:0,π2. (3)定理 如果一个角的两边和另一个角的两边分别平行并且方向相同, 那么这两个角相等.
ቤተ መጻሕፍቲ ባይዱ
1.四个公理 公理 1:如果一条直线上的两点在一个平面内,那么这条直线 上所有的点都在这个平面内. 作用:可用来证明点、直线在平面内. 公理 2:如果两个平面有一个公共点,那么它们还有其他公共 点,这些公共点的集合是经过这个公共点的一条直线.(这两个 平面不重合)
作用:①可用来确定两个平面的交线;②判断或证明多点共线; ③判断或证明多线共点. 公理 3:经过不在同一条直线上的三点,有且只有一个平面. 作用:①可用来确定一个平面;②证明点线共面. 公理 4:平行于同一条直线的两条直线互相平行. 作用:判断空间两条直线平行的依据.
1.有下列命题:①空间四点共面,则其中必有三点共线;②空 间四点不共面,则其中任何三点不共线;③空间四点中有三点 共线,则此四点共面;④空间四点中任何三点不共线,则此四 点不共面.其中正确的命题是________.(填序号) 解析:①只需四点共面,任何三点不必共线;②③正确;④错 误. 答案:②③