最值问题----将军饮马(一)
初二数学:最值问题最常考的一种:将军饮马
初二数学:最值问题最常考的一种:将军饮马!一、知识点回顾最值问题其实考察的知识点还是比较简单的:①两点之间直线最短②点到直线的距离垂线段最短③圆外一点到圆上最短距离与最长距离④几何转化为解析式求最大最小值今天我们要讲的是两点之间直线最短类型中最常考的一种:将军饮马!二、模型讲解首先我们来了解一下到底什么是将军饮马模型?传说有一个将军牵着一匹马在A点,他们目标是要去B地,但由于马渴了,要先去L这条河喝一下水,问在哪个点喝水能使得马和将军走的路最少?这个点我们应该怎么找?为什么这么确定的P点到A点和到B点的距离之和是最短?因为点A与A’关于L对称,也就是说L垂直平分AA’。
那在L上任意一点到A与到A’的距离都是相等的,那么A到直线一点的距离转换为A’到直线上的距离,又由两点之间线段最短,可以得到A’B即为最小值。
刚刚我们给的是一条边,两个点,求两点之间的最短距离;现在把条件换一下,换成一个点两条边我们应该怎么办?如图:现题目变成这样,在OA、OB上分别取两点M、N,连接MN,MC,NC,要求这三条线段之和最小。
如何定确定 M、N这两点?总结将军饮马最主要用到的就是中垂线定理,也就是垂直平分线的一点到两端点的距离相等。
下面我们一起来看一看具体的题目。
三、真题演练四、整体总结将军饮马模型是最值问题中出现频率较高的一种,而且在平时的考试中也经常会出现,因此掌握好将军饮马模型对我们解决最值问题还是有很大的帮助。
将军饮马的本质是中垂线上的一点到两端点的距离相等。
微信热文精选:早安心语:一路感恩,且行且珍惜英语口语:抠门英文怎么说善解人意,是因为这些星座喜欢你24种碱性食物越吃越年轻!爆笑,熊孩子到底有多可怕呢?(有视频)。
专题09 最值模型-将军饮马(解析版)
专题09 最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:【最值原理】两点之间线段最短。
上图中A’是A关于直线m的对称点。
例1.(2022·湖南娄底·中考真题)菱形ABCD的边长为2,45ABC∠=︒,点P、Q分别是BC、BD上的动点,CQ PQ+的最小值为______.2【分析】过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,在直角三角形BEC中,勾股定理即可求解.mABPmAB mABPmAB【详解】解:如图,过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,菱形ABCD 的边长为2,45ABC ∠=︒,Rt BEC ∴中,22EC =∴PQ +QC 22【点睛】本题考查了菱形的性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题的关键.例2.(2022·四川眉山·中考真题)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC 的中点,连接PE ,PB ,若4AB =,3BC =PE PB +的最小值为________.【答案】6【分析】作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;然后求出B B '和BE 的长度,再利用勾股定理即可求出答案.【详解】解:如图,作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;⊥AC 是矩形的对角线,⊥AB =CD =4,⊥ABC =90°,在直角⊥ABC 中,4AB =,43BC =⊥3tan 43AB ACB BC ∠==,⊥30ACB ∠=︒, 由对称的性质,得2B B BF '=,B B AC '⊥,⊥1232BF BC ==⊥243B B BF '== ⊥23BE EF ==60CBF ∠=︒,⊥⊥BEF 是等边三角形,⊥BE BF B F '==,⊥BEB '∆是直角三角形, ⊥2222(43)(23)6B E BB BE ''=-=-,⊥PE PB +的最小值为6;故答案为:6.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,直角三角形的性质,特殊角的三角函数值,解题的关键是熟练掌握所学的知识,正确的找到点P 使得PE PB +有最小值.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】8 5【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P关于CE的对称点P′,由折叠的性质知CE是⊥DCM的平分线,⊥点P′在CD上,过点M作MF⊥CD于F,交CE于点G,⊥MN+NP=MN+NP′≤MF,⊥MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,⊥AD=CD=2,DE=1,⊥CE22125⊥12CE×DO=12CD×DE,⊥DO25⊥EO5⊥MF⊥CD,⊥EDC=90°,⊥DE⊥MF,⊥⊥EDO=⊥GMO,⊥CE为线段DM的垂直平分线,⊥DO=OM,⊥DOE=⊥MOG=90°,⊥⊥DOE⊥⊥MOG,⊥DE=GM,⊥四边形DEMG为平行四边形,⊥⊥MOG=90°,⊥四边形DEMG为菱形,⊥EG=2OE25GM= DE=1,⊥CG35,⊥DE⊥MF,即DE⊥GF,⊥⊥CFG⊥⊥CDE,⊥FG CG DE CE =,即35515FG = ⊥FG =35,⊥MF =1+35=85, ⊥MN +NP 的最小值为85.故答案为:85. 【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营,A B .他总是先去A 营,再到河边饮马,之后,再巡查B 营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连结AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线l 上另取任一点P ',连结'AP ,BP ',B P '',⊥直线l 是点B ,B '的对称轴,点P ,P '在l 上,(1)⊥PB =__________,P B '=_________,⊥AP PB AP PB '+=+=____________.在AP B ''∆中,⊥AB AP P B ''''<+,⊥AP PB AP P B '''+<+,即AP BP +最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点,A B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点P 为AB '与l 的交点,即A ,P ,B '三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形ABCD 的边长为4,E 为AB 的中点,F 是AC 上一动点.求EF FB +的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B 与D 关于直线AC 对称,连结DE 交AC 于点F ,则EF FB +的最小值就是线段ED 的长度,则EF FB +的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为14cm ,底面周长为16cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂的最短路程为_____cm . (4)如图⑥,在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到A B D '''∆,分别连接A C ',A D ',B C ',则A C B C ''+的最小值为____________. 【答案】(1)PB ',P B '',AB ';(2)25;(3)17;(4)23【分析】(1)根据对称性即可求解;(2)根据正方形的对称性知B 关于AC 的对称点是D ,连接ED ,则ED 是EF FB +的最小值;(3)先将玻璃杯展开,再根据勾股定理求解即可;(4)分析知:当''A B 与'B C 垂直时,A C B C ''+值最小,再根据特殊角计算长度即可;【详解】解:(1)根据对称性知:'''''',,PB PB P B P B AP PB AP PB AB ==+=+=,故答案为:PB ',P B '',AB ';(2)根据正方形的对称性知B 关于AC 的对称点是D ,连接ED ⊥ED 是EF FB +的最小值又⊥正方形的边长为4,E 是AB 中点⊥222425ED =+= ⊥EF FB +的最小值是25;(3)由图可知:蚂蚁到达蜂的最短路程为'AC的长度: ⊥'43,8,11AE A E cm BF cm BC cm EB cm =====, ⊥'15A B cm =⊥''222215817AC AB BC cm =+=+=(4)⊥在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到A B D '''∆ ⊥'''2,30A B AB A BD ==∠=︒ 当''A B 与'B C 垂直时,A C B C ''+值最小⊥''''////,AB A B CD AB A B CD == ⊥四边形''A B CD 是矩形,''30B AC ∠=︒⊥''2343,33B C AC == ⊥''23AC B C += 【点睛】本题考查“将军饮马”知识迁移,掌握“将军饮马”所遵循的数学原理,判断出最小是解题关键.模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置(图2 ).问题化为求A ’N +NB 最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1 图2 图3【最值原理】两点之间线段最短。
将军饮马题型
“将军饮马”类型题一.求线段和最值(一)两定一动型例1:如图,AM⊥EF,BN⊥EF,垂足为M、N,MN=12m,AM=5m,BN=4m,P是EF上任意一点,则PA+PB的最小值是______m.分析:这是最基本的将军饮马问题,A,B是定点,P是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A关于EF的对称点A’,根据两点之间,线段最短,连接A’B,此时A’P+PB即为A’B 最短.而要求A’B,则需要构造直角三角形,利用勾股定理解决.解答:作点A关于EF的对称点A’,过点A’作A’C⊥BN的延长线于C.易知A’M=AM=NC=5m,BC=9m,A’C=MN=12m,在Rt△A’BC中,A’B=15m,即PA+PB的最小值是15m.变式:如图,在边长为2的正三角形ABC中,E,F,G为各边中点,P为线段EF上一动点,则△BPG周长的最小值为_________.分析:考虑到BG为定值是1,则△BPG的周长最小转化为求BP+PG的最小值,又是两定一动的将军饮马型,考虑作点G关于EF的对称点,这里有些同学可能看不出来到底是哪个点,我们不妨连接AG,则AG⊥BC,再连接EG,根据“直角三角形斜边中线等于斜边的一半”,可得AE=EG,则点A就是点G关于EF的对称点.最后计算周长时,别忘了加上BG的长度.解答:连接AG,易知PG=PA,BP+PG=BP+PA,当B,P,A三点共线时,BP+PG=BA,此时最短,BA=2,BG=1,即△BPG周长最短为3.(二)一定两动型例2:如图,在△ABC中,AB=AC=5,D为BC中点,AD=4,P 为AD上任意一点,E为AC上任意一点,求PC+PE的最小值.分析:这里的点C是定点,P,E是动点,属于一定两动的将军饮马模型,由于△ABC是等腰三角形,AD是BC中线,则AD垂直平分BC,点C 关于AD的对称点是点B,PC+PE=PB+PE,显然当B,P,E三点共线时,BE更短.但此时还不是最短,根据“垂线段最短” 只有当BE⊥AC时,BE最短.求BE时,用面积法即可.解答:作BE⊥AC交于点E,交AD于点P,易知AD⊥BC,BD=3,BC=6,则AD·BC=BE·AC,4×6=BE·5,BE=4.8变式:如图,BD平分∠ABC,E,F分别为线段BC,BD上的动点,AB=8,△ABC的面积为20,求EF+CF的最小值________.分析:这里的点C是定点,F,E是动点,属于一定两动的将军饮马模型,我们习惯于“定点定线作对称”,但这题这样做,会出现问题.因为点C 的对称点C’必然在AB上,但由于BC长度未知,BC’长度也未知,则C’相对的也是不确定点,因此我们这里可以尝试作动点E关于BD的对称点.解答:如图,作点E关于BD的对称点E’,连接E’F,则EF+CF=E’F+CF,当E’,F,C三点共线时,E’F+CF=E’C,此时较短.过点C作CE’’⊥AB 于E’’,当点E’ 与点E’’重合时,E’’C最短,E’’C为AB边上的高,E’’C =5.(三)两定两动型例3:如图,∠AOB=30°,OC=5,OD=12,点E,F分别是射线OA,OB上的动点,求CF+EF+DE的最小值.分析:这里的点C,点D是定点,F,E是动点,属于两定两动的将军饮马模型,依旧可以用“定点定线作对称”来考虑.作点C关于OB的对称点,点D关于OA的对称点.解答:作点C关于OB的对称点C’,点D关于OA的对称点D’,连接C’D’.CF +EF+DE=C’F+EF+D’E,当C’,F,E,D’四点共线时,CF +EF+DE=C’D’最短.易知∠D’OC’=90°,OD’=12,OC’=5,C’D’=13,CF+EF+DE最小值为13.变式:如图,斯诺克比赛桌面AB宽1.78m,白球E距AD边0.22m,距CD 边1.4m,有一颗红球F紧贴BC边,且距离CD边0.1m,若要使白球E经过边AD,DC,两次反弹击中红球F,求白球E运动路线的总长度.分析:本题中,点E和点F是定点,两次反弹的点虽然未知,但我们可以根据前几题的经验作出,即分别作点E关于AD边的对称点E’,作点F 关于CD边的对称点F’,即可画出白球E的运动路线,化归为两定两动将军饮马型.解答:作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,连接E’F’,交AD于点G,交CD于点H,则运动路线长为EG+GH+HF 长度之和,即E’F’长,延长E’E交BC于N,交AD于M,易知E’M =EM=0.22m,E’N=1.78+0.22=2m,NF’=NC+CF’=1.4+0.1=1.5m,则Rt△E’NF’中,E’F’=2.5m,即白球运动路线的总长度为2.5m.小结:以上求线段和最值问题,几乎都可以归结为“两定一动”“一定两动”“两定两动”类的将军饮马型问题,基本方法还是“定点定线作对称”,利用“两点之间线段最短”“垂线段最短”的2条重要性质,将线段和转化为直角三角形的斜边,或者一边上的高,借助勾股定理,或者面积法来求解.当然,有时候,我们也需学会灵活变通,定点对称行不通时,尝试作动点对称.(二)求角度例1:P为∠AOB内一定点,M,N分别为射线OA,OB上一点,当△PMN 周长最小时,∠MPN=80°.(1)∠AOB=_____°(2)求证:OP平分∠MPN分析:这又是一定两动型将军饮马问题,我们应该先将M,N的位置找到,再来思考∠AOB的度数,显然作点P关于OA的对称点P’,关于OB的对称点P’’,连接P’P’’,其与OA交点即为M,OB交点即为N,如下图,易知∠DPC与∠AOB互补,则求出∠DPC的度数即可.解答:(1)法1:如图,∠1+∠2=100°,∠1=∠P’+∠3=2∠3,∠2=∠P’’+∠4=2∠4,则∠3+∠4=50°,∠DPC=130°,∠AOB=50°.再分析:考虑到第二小问要证明OP平分∠MPN,我们就连接OP,则要证∠5=∠6,显然很困难,这时候,考虑到对称性,我们再连接OP’,OP’’,则∠5=∠7,∠6=∠8,问题迎刃而解.解答:(1)法2:易知OP’=OP’’,∠7+∠8=∠5+∠6=80°,∠P’OP’’=100°,由对称性知,∠9=∠11,∠10=∠12,∠AOB=∠9+∠10=50°(2)由OP’=OP’’,∠P’OP’’=100°知,∠7=∠8=40°,∠5=∠6=40°,OP平分∠MPN.变式:如图,在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM 的度数为________.分析:这又是典型的一定两动型将军饮马问题,必然是作A点关于BC、DE 的对称点A′、A″,连接A′A″,与BC、DE的交点即为△AMN周长最小时M、N的位置.解答:如图,∵∠BAE=136°,∴∠MA′A+∠NA″A=44°由对称性知,∠MAA′=∠MA′A,∠NAA″=∠NA″A,∠AMN+∠ANM=2∠MA′A+2∠NA″A=88°思考题:1.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_______.2.如图,在矩形ABCD中,AB=6,AD=4.P为矩形ABCD内一点,若矩形ABCD面积为△PAB面积的4倍,则点P到A,B两点距离之和PA+PB的最小值为________.。
专题64 将军饮马模型与最值问题(解析版)
专题64 将军饮马模型与最值问题【模型引入】 什么是将军饮马?“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【模型描述】如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【模型抽象】如图,在直线上找一点P 使得P A +PB 最小?这个问题的难点在于P A +PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段. 【模型解析】作点A 关于直线的对称点A ’,连接P A ’,则P A ’=P A ,所以P A +PB =P A ’+PB当A ’、P 、B 三点共线的时候,P A ’+PB =A ’B ,此时为最小值(两点之间线段最短)AB 将军军营河【模型展示】【模型】一、两定一动之点点在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.【精典例题】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.【分析】△PMN 周长即PM +PN +MN 的最小值,此处M 、N 均为折点,分别作点P 关于OB 、OA 对称点P ’、P ’’,化PM +PN +MN 为P ’N +MN +P ’’M .当P ’、N 、M 、P ’’共线时,得△PMN 周长的最小值,即线段P ’P ’’长,连接OP ’、OP ’’,可得△OP ’P ’’为等边三角形,所以P ’P ’’=OP ’=OP =8.BBP OBAMNP''A【模型】二、两定两动之点点在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。
(word完整版)九年级数学复习专题-------将军饮马专题1
专题一利用轴对称解决两条线短之和最小值问题一:问题的背景古希腊一位将军要从A地出发到河边(如下图MN)去饮马,然后再回到驻地B。
问怎样选择饮马地点,才能使路程最短?分析:在河边饮马的地点有许多处,把这些地点与A、B连接起来的两条线段的长度之和,就是从A地到饮马地点(P),再回到B地的路程之和。
现在的问题是怎样找出使两条线段长度之和为最短的那个点来。
具体操作:在图上过A点作河边MN的垂线,垂足为C,延长AC 到A ',A '是A地对于河边MN的对称点;连结A B交河边MN于P, 那么P点就是题目所求的饮马地点。
原因:为什么饮马的地点选择在P点能使路程最短呢?因为AC= A C, AP 与BP的长度之和就是A P与B P的长度之和,即是AB的长度;而选择河边的任何其他点,如E,路程AE+EB二A 'E+BE>AB, 故P点就是符合要求的点。
(等腰三角形)(菱形)二:基本模型(K型)基础训练1、如图,正方形边长为8, M在CD上,且DM=2 N是AC上一动点,贝U ND+NM 的最小值为多少?2、如图,菱形ABCD中, / BAD=60 ,M是AB的中点,P是对角线AC上的一个动点,若AB长是3,则PM+PB勺最小值为多少?3、如图,已知点P是边长为2的正三角形ABC的中线AD上的动点,E是AC边的中点,则PC+PE勺最小值是多少?4、如图,在等腰直角三角形ABC中,AC=BC=2 / ACB=90 , D是BC中点,E是AB边上一动点,则EC+ED勺最小值是多少?5、如图,正三角形ABC的边长为2, M为BC中点,P为AC上一动点,贝U PB+PM 的最小值为多少?6等腰直角三角形ABC的直角边长为2,E是斜边AB的中点,P是AC边上的一动点,则PB+PM最小值为________________ 。
7、在三角形ABC中,点D,E分别为AB,AC边上的中点,BC=6 BC边上的高为4,若点P为BC边上一个动点,则三角形PDE周长的最小值是多少?8、如图,在矩形ABCD中, AD=3 / CAB=30、点P是线段AC上的动点,点Q是线段CD上的动点,贝U AQ+PQ勺最小值是多少?提咼训练1、如图,在直角三角形ABC中、/ ACB=90 , AC=6,BC=8 AD为/BAC的平分线。
2初中数学最值系列之将军饮马学案
第2讲最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】【例题1】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【问题简化】如图,在直线上找一点P使得PA+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.【练习2】如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是对角线AC上一动点,则线段DN+MN的最小值为________.【练习3】如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为射线CD上的动点,则|PA-PB|的最大值为________.【练习4】如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为_________.【练习5】如图,已知菱形ABCD的两条对角线分别为6和8,M、N分别是BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=_______.【练习6】如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=√(3),将△ABC 沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是______.【练习7】⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是_________;【练习8】如图,在等边△ABC中,AB=6,点E是AB的中点,AD是高,在AD上找一点P,使PB +PE的值最小,最小值为_________.【练习9】如图,在Rt△ABC中,∠ACB=90°,AC=6.AB=12,AD平分∠CAB,点F是AC的中点,点E()是AD上的动点,则CE+EF的最小值为A.3B.4C.33D.3【练习10】如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,()则PC+PD的最小值为A.4B.5C.6D.7【练习11】如图,矩形ABCD中,AB=10,BC=5,点E、F、G、H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.55B.5C.103D.153【练习12】(2019西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足13PAB ABCDS S∆=矩形,则点P到A、B两点距离之和PA+PB的最小值为()A.13B.10C.35D41二、将军饮马模型系列(一)【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题13】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB 上的动点,则△PMN周长的最小值为___________.【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.【练习14】(2018滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.362B.332C.6D.3【练习15】(2018·辽宁营口)如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC()于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是A.3B.2C.23D.4【练习16】(2018广西贵港)如图,在菱形ABCD中,AC=62,BD=6,E是BC的中点,P、M分别是AC、AB上的动点,连接PE、PM,则PE+PM的最小值是()A.6B.33C.6D.4.5【两定两动之点点】【例题17】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
将军饮马系列---最值问题
1.两点之间,线段最短.2.点到直线的距离,垂线段最短.3.三角形两边之和大于第三边,两边之差小鱼第三边.4.A B 、分别为同一圆心O 半径不等的两个圆上的一点,R r AB R r -≤≤+ 当且仅当A B O 、、三点共线时能取等号.古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦.有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军从A 出发到河边饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题.下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短.若A B 、在河流的异侧,直接连接AB ,AB 与l 的交点即为所求. 若A B 、在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.“将军饮马”系列最值问题知识回顾知识讲解海伦解决本问题时,是利用作对称点把折线问题转化成直线现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想轴对称及其性质:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称.如等腰ABC ∆是轴对称图形.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如下图,ABC ∆与'''A B C ∆关于直线l 对称,l 叫做对称轴.A 和'A ,B 和'B ,C 和'C 是对称点.轴对称的两个图形有如下性质:①关于某条直线对称的两个图形是全等形; ②对称轴是任何一对对应点所连线的垂直平分线;③两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上.线段垂直平分线:垂直平分线上点到线段两个端点的距离相等; 到线段两个端点距离相等的点在线段的垂直平分线上.当已知条件出现了等腰三角形、角平分线、高,或者求几条折线段的最小值等情况,通常考虑作轴对称变换,以“补齐”图形,集中条件。
最值系列之将军饮马
最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【问题简化】如图,在直线上找一点P使得PA+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
最值模型之将军饮马模型(解析版)
最值模型之将军饮马模型模型一两定一动型(线段和差的最值问题)【模型解读】在一条直线m上,求一点P,使PA与PB的和最小;题目在一条直线m上,求一点P,使PA+PB最小;分类(1)点A、B在直线m两侧(2)点A、B在直线同侧原图辅助线作法连接AB交直线m于点P,此点P即为所求,PA+PB最小值为AB 作A关于直线m的对称点A',连接A'B交直线m于点P,此点P即为所求,PA+PB最小值为A'B原理三角形两边之和大于第三边【模型解读】在一条直线m上,求一点P,使PA与PB的差最大;题目在一条直线m上,求一点P,使|PA-PB|最大;分类(1)点A、B在直线m同侧:(2)点A、B在直线m异侧原图辅助线作法延长AB交直线m于点P,此点P即为所求,|PA-PB|最大值为AB 过点B作关于直线m的对称点B',连接AB'交点直线m于P,此点P即为所求,|PA-PB|最大值为AB'原理三角形两边之差小于第三边。
例题解析1如图,正方形ABCD的边长为4,点E在边BC上,且BE=1,F为对角线BD上一动点,连接CF,EF,则CF+EF的最小值为.【答案】17【分析】连接AE交BD于一点F,连接CF,根据正方形的对称性得到此时CF+EF=AE最小,利用勾股定理求出AE即可.【详解】解:如图,连接AE交BD于一点F,连接CF,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AF=CF,∴CF+EF=AF+EF=AE,此时CF+EF最小,∵正方形ABCD的边长为4,∴AD=4,∠ABC=90°,∵点E在AB上,且BE=1,∴AE=AB2+BE2=42+12=17,即CF+EF的最小值为17故答案为:17.2如图,在菱形ABCD中,∠ABC=120°,对角线AC、BD交于点O,BD=8,点E为OD的中点,点F为AB上一点,且AF=3BF,点P为AC上一动点,连接PE、PF,则PF-PE的最大值为.【答案】2【分析】作E的对称点E',连接FE'并延长交AC于点P',根据三角形三边关系可得到PF-PE=PF-PE≤E F,最后根据等边三角形的性质及菱形的性质即可解答.【详解】解:作E的对称点E ,连接FE'并延长交AC于点P ,∴PE=PE ,∴PF-PE≤E F,=PF-PE当F、E 、P 在同一条直线上时,PF-PE有最大值E F,∵在菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB,∴△ABD是等边三角形,∴∠DAB=∠DBA=∠ADB=60°,,AD=AB=BD,∵BD=8,∴AB=8,∵AF=3BF,∴BF=2,∵点E为OD的中点,∴E 为OB的中点,∴BE =1BD=2,4∴BF=BE ,∴△BE F是等边三角形,∴E F=BF=2,故答案为2;变式训练1如图,菱形ABCD,点A、B、C、D均在坐标轴上,∠ABC=120°,点A-3,0,点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()3A.3B.5C.22D.32【答案】A【分析】直线AC上的动点P到E、D两定点距离之和最小属“将军饮马”模型,由D关于直线AC的对称点B,连接BE,则线段BE的长即是PD+PE的最小值.【详解】如图:连接BE,∵菱形ABCD,∴B、D关于直线AC对称,,∵直线AC上的动点P到E、D两定点距离之和最小∴根据“将军饮马”模型可知BE长度即是PD+PE的最小值.∵菱形ABCD,∠ABC=120°,点A-3,0,∴∠CDB=60°,∠DAO=30°,OA=3,∴OD=3,AD=DC=CB=23∴△CDB是等边三角形∴BD=23∵点E是CD的中点,∴DE=1CD=3,且BE⊥CD,∴BE=BD2-DE2=3故选:A.22如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4,则AE+OE的最小值是()A.42B.25+2C.213D.210【答案】D【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点A ,再连接A O,运用两点之间线段最短得到A O为所求最小值,再运用勾股定理求线段A O的长度即可.【详解】解:如图所示,作点A关于直线BC的对称点A ,连接A O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,∵A与A关于BC对称,∴AE=A E,AE+OE=A E+OE,当且仅当A ,O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A E+OE=A O,∵正方形ABCD,点O为对角线的交点,AB=2,∴OF=FB=12∵对称,∴AB=BA =4,∴FA =FB+BA =2+4=6,在Rt△OFA 中,OA =FO2+FA 2=210,故选:D.3如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+ MF的最小值为()A.1B.2C.3D.2【答案】C【分析】连接AF,则AF的长就是AM+FM的最小值,证明△ABC是等边三角形,AF是高线,利用三角函数即可求解.【详解】解:连接AF,则AF的长就是AM+FM的最小值.∵四边形ABCD 是菱形,∴AB =BC ,又∵∠ABC =60°,∴△ABC 是等边三角形,∵CF =BF ∴F 是BC 的中点,∴AF ⊥BC .则AF =AB •sin60°=2×32=3.即MA +MF 的最小值是3.故选:C4如图,已知△ABC 为等腰直角三角形,AC =BC =6,∠BCD =15°,P 为直线CD 上的动点,则|PA -PB |的最大值为.【答案】6【分析】作A 关于CD 的对称点A ′,连接A ′B 交CD 于P ,则点P 就是使|PA -PB |的值最大的点,|PA -PB |=A ′B ,连接A ′C ,根据等腰直角三角形的性质得到∠CAB =∠ABC =45°,∠ACB =90°,根据角的和差关系得到∠ACD =75°,根据轴对称的性质得到A ′C =AC =BC ,∠CA ′A =∠CAA ′=15°,推出△A ′BC 是等边三角形,根据等边三角形的性质即可得到结论.【详解】如图,作A 关于CD 的对称点A ′,连接A ′B 并延长交CD 延长线于点P ,则点P 就是使PA -PB 的值最大的点,PA -PB =A ′B ,连接A ′C ,∵△ABC 为等腰直角三角形,AC =BC =6,∴∠CAB =∠ABC =45°,∠ACB =90°,∵∠BCD =15°,∴∠ACD =75°,∵点A 与A ′关于CD 对称,∴CD ⊥AA ′,AC =A ′C ,∠CA ′A =∠CAA ′,∴∠CAA ′=15°,∵AC =BC ,∴A ′C =BC ,∠CA ′A =∠CAA ′=15°,∴∠ACA ′=150°,∵∠ACB =90°,∴∠A ′CB =60°,∴△A ′BC 是等边三角形,∴A ′B =BC =6.故答案为:65如图,MN 是⊙O 的直径,MN =6,点A 在⊙O 上,∠AMN =30°,B 为AN的中点,P 是直径MN 上一动点,则PA +PB 的最小值是.【答案】32【分析】首先利用在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点P 的位置,然后根据弧的度数发现一个等腰直角三角形计算.【详解】作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,连接OB ,则P 点就是所求作的点.此时PA +PB 最小,且等于AC 的长.连接OA ,OC ,∵∠AMN =30°,∴∠AON =60°,∵B 为AN的中点,∴AB =BN∴∠AOB =∠BON =30°,∵MN ⊥BC ,∴CN=BN,∴∠CON =∠NOB =30°,则∠AOC =90°,又OA =OC =3,则AC =32.故答案为:32.6如图,在矩形ABCD 中,AB =3,BC =5.动点P 满足S △PBC =13S 矩形ABCD.则点P 到B ,C 两点距离之和PB +PC 的最小值为。
专题02 将军饮马(一)-中考数学二次函数压轴题核心考点突破
N
M
B
D
C
【分析】M 点为折点,作 B 点关于 AD 的对称点,即 C 点,连接 CN,即为所求的最小值.
A
N M
B
D
C
过点 C 作 AB 垂线,利用勾股定理求得 CN 的长为 2 倍根号 7.
A
N
H
M
B
D
C
【隐身的等边三角形】 如图,在 Rt△ABD 中,AB=6,∠BAD=30°,∠D=90°,N 为 AB 上一点且 BN=2AN , M 是 AD 上的动点,连结 BM,MN,则 BM+MN 的最小值是___________.
y A
C P
A. (2, 2)
O
B.(5 , 5) 22
D
Bx
C.(8 , 8) 33
D. (3, 3)
【分析】此处点 P 为折点,可以作点 D 关于折点 P 所在直线 OA 的对称:
y D'
A
P
C
也可以作点 C 的对称:
O
D
Bx
y C' A
C P
O
D
Bx
【隐身的正方形】 (2017·辽宁营口)如图,在△ABC 中,AC=BC,∠ACB =90°,点 D 在 BC 上,BD=3,DC=1,
A . 2 13
B . 2 10
C.3 5
D. 41
D
C
P
A
B
【分析】由 SPAB
1 3 S矩形ABCD
可作出 P
点轨迹为直线
M N(A M =B N =2),作点
B
关于
MN 的对称点 B’,
化折线 PA+PB 为 PA+PB’.
特殊的平行四边形中的最值模型之将军饮马、遛马、造桥模型(解析版)
特殊的平行四边形中的最值模型之将军饮马、遛马、造桥模型“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗,由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
将军饮马问题从本质上来看是由轴对称衍生而来,同时还需掌握平移型将军饮马(即将军遛马、造桥或过桥),主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,本专题就特殊的平行四边形背景下的将军饮马问题进行梳理及对应试题分析,方便掌握。
模型1.将军饮马模型(双线段和的最小值)模型2.将军饮马模型(双线段差的最大值)模型3.将军饮马(多线段和的最值模型)模型4.将军遛马、造桥(过桥)模型模型1.将军饮马模型(双线段和的最小值)条件:A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小值。
模型(1)点A、B在直线m两侧:模型(2)点A、B在直线同侧:模型(1)点A、B在直线m两侧:模型(2)点A、B在直线同侧:图(1)图(2)模型(1):如图(1),连结AB ,根据两点之间线段最短,AP +BP 的最小值即为:线段AB 的长度。
模型(2):如图(2),作点A 关于定直线m 的对称点A ',连结A 'B ,根据对称得到:P A =P A ',故AP +BP =A 'P +BP ,再利用“两点之间线段最短”,得到AP +BP 的最小值即为:线段A 'B 的长度。
1.(2024·四川广安·中考真题)如图,在▱ABCD 中,AB =4,AD =5,∠ABC =30°,点M 为直线BC 上一动点,则MA +MD 的最小值为.【答案】41【分析】如图,作A 关于直线BC 的对称点A ,连接A D 交BC 于M ,则AH =A H ,AH ⊥BC ,AM =A M ,当M ,M 重合时,MA +MD 最小,最小值为A D ,再进一步结合勾股定理求解即可.【详解】解:如图,作A 关于直线BC 的对称点A ,连接A D 交BC 于M ,则AH =A H ,AH ⊥BC ,AM =A M ,∴当M ,M 重合时,MA +MD 最小,最小值为A D ,∵AB =4,∠ABC =30°,在▱ABCD 中,∴AH =12AB =2,AD ∥BC ,∴AA =2AH =4,AA ⊥AD ,∵AD =5,∴A D =42+52=41,故答案为:41【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.2.(23-24八年级下·广东广州·期中)如图,在矩形ABCD 中,AB =5,AD =3,点P 满足S △P AB =13S 矩形ABCD,则点P 到A ,B 两点距离之和P A +PB 的最小值为()A.29B.34C.52D.41【答案】D【分析】首先由S△P AB=13S矩形ABCD,得出动点在与平行且与的距离是2的直线上,作点A关于直线l的对称点E,连结AE,BE,则BE的长就是所求的最短距离,然后勾股定理求得BE的长,即得答案.【详解】设AB边上的高是h,∵S△P AB=13S矩形ABCD,∴12AB⋅h=13AB⋅AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作点A关于直线l的对称点E,连结AE,BE,则BE的长就是所求的最短距离,在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=AB2+AE2=52+42=41,即P A+PB的最小值为41.故选D.【点睛】本题考查了最短路线问题,轴对称的性质,矩形的性质,勾股定理,两点之间线段最短的性质,作点A 关于直线l的对称点E,并得到BE的长就是所求的最短距离是解题的关键.3.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质。
最值系列之将军饮马 - 解析
最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB 上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.AP''当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
中考数学二次函数压轴题突破最值问题之将军饮马
O
N
P''
此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N
所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、
N、P’’共线时,△PMN周长最小.
【例题】如图,点 P 是∠AOB 内任意一点,∠AOB=30°,OP=8,点 M 和点 N 分别是射线 OA 和射线 OB 上的动点,则△PMN 周长的最小值为___________.
形 PMNQ 的周长最小。
【一定两动之点线】
在OA、OB上分别取M、N使得PM+MN最小。
A
A
P'
M P
M
P
O
N
B
ON
B
此处 M 点为折点,作点 P 关于 OA 对称的点 P’,将折线段 PM+MN 转化为 P’M+MN ,即 过点 P’作 OB 垂线分别交 OA、OB 于点 M、N,得 PM+MN 最小值(点到直线的连线中, 垂线段最短)
二次中物函理 数压轴题突破 ——最值问题之将军饮马
中物理
将军饮马(一)
1 一、什么是将军饮马?
【问题引入】 “白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人 李颀《古从军行》里的一句诗。而由此却引申出一系 列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】 如图,将军在图中点A处,现在他要带马去河边喝水,之后返 回军营,问:将军怎么走能使得路程最短?
当A’、P、B三点共线的时候,PA’+PB=A’B, 此时为最小值(两点之间线段最短)
【思路概述】
作端点(点A或点B)关于折点(上图P点)所在直线的对称,
将军饮马”模型详解与拓展 (1)
将军饮马”模型详解与拓展 (1)A,B,C,D,使得四边形ABCD的周长最小。
该问题可以通过两次翻折来解决。
第一步:分别画点P、Q关于直线OM、ON的对称点P1、Q1、P2、Q2.第二步:联结P1Q2、P2Q1,交OM、ON于点A、B、C、D。
根据“翻折运动”的相关性质,AP=AP1,BP=BP2,CQ=CQ1,DQ=DQ2;根据“两点之间,线段距离最短”可知此时AP1+P1Q2+QC1+CD+DQ2+BP2最短即四边形ABCD周长最短。
将军饮马”问题源于唐朝诗人XXX的诗《古从军行》。
在这首诗中,将军从山脚下的A点出发,走到河边饮马后再到B点宿营。
问题是,怎样走才能使总的路程最短?该问题可以通过“线段和最值”问题中的“一定直线、异侧两定点”模型来解决。
根据“两点之间,线段距离最短”的原理,联结AB交直线l于点P,点P即为所求点。
除了“一定直线、异侧两定点”模型外,还有“一定直线、同侧两定点”、“一定直线、一定点一动点”和“一定点、两定直线”等模型。
这些模型都可以通过“翻折运动”来转化为“一定直线、异侧两定点”问题,然后应用“两点之间,线段距离最短”的原理来求解。
对于“一定点、两定直线”问题,需要通过两次翻折来解决。
分别画点P、Q关于直线OM、ON的对称点P1、Q1、P2、Q2,然后联结P1Q2、P2Q1,交OM、ON于点A、B、C、D。
根据“翻折运动”的相关性质和“两点之间,线段距离最短”的原理,可以得到四边形ABCD周长最短。
总之,“将军饮马”问题是一个典型的“线段和最值”问题,可以通过不同的模型和翻折运动来解决。
掌握这些模型和原理,可以帮助我们更好地解决类似的几何问题。
如何使四边形PAQB的周长最小?在数学问题中,我们经常需要优化某些值。
这个问题的目标是最小化四边形PAQB的周长。
为了解决这个问题,我们需要先找到四边形的特征。
四边形PAQB是由四个点P、A、Q和B组成的。
我们可以使用坐标系来表示这些点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节课你的收获是什么?
【问题解析】 △PMN周长即PM+PN+MN的最小值,此处 M、N均为折点,分别作点P关于OB、OA对称点P'、P'', 化PM+PN+MN为P'N+MN+P''M.当P'、N、M、P''共线时, 得△PMN周长的最小值,即线段P'P''长,连接OP'、OP'', 可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
【问题解析】:此处点P为折点,可以作点D关于折点P 所在直线OA的对称: 也可以作点C的对称:
05 正方形中的将军饮马。
【问题描述】:如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,
DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4
B.5
C.6
D.7
【问题解析】:作点C关于P点 所在直线AB的对称点C',当C'、 P、D共线时,PC+PD最小, 最小值为5,故选B.
05 正方形中的将军饮马。
【问题描述】:如图,正方形ABCD的边长是4,M在DC上,且DM=1, N是AC边上 的一动点,则△DMN周长的最小值是________。
【问题解析】:考虑DM为定值, 故求△DMN周长最小值即求 DN+MN最小值.点N为折点, 作点D关于AC的对称点,即点B, 连接BN交AC于点N,此时 △DMN周长最小.
04 将军饮马模型系列“一定两动”之点到线。
【问题描述】:在OA、OB上分别取点M、N,使得PM+MN最小。
【问题解析】:此处M点为折点, 作点P关于OA对称的点P',将折线 段PM+MN转化为P'M+MN,即过 点P'作OB垂线分别交OA、OB于点 M、N,得PM+MN最小值(点到直 线的连线中,垂线段最短)
【问题解决】作点A关于直线的 对称点A',连接PA',则PA'=PA, 所以PA+PB=PA'+PB.
当A'、P、B三点共线的时 候,PA'+PB=A'B,此时为最小 值(两点之间线段最短)
02 将军饮马模型系列“一定两动”之点到点。
【问题描述】:在OA、OB上分别取点M、N,使得△PMN周长最小。
【问题解析】:此处M、N均为折点, 分别作点P关于OA(折点M所在直 线)、OB(折点N所在直线)的对 称点,化折线段PM+MN+NP为 P'M+MN+NP'',当P'、M、N、P'' 共线时,△PMN周长最小。
【例题】 :如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是 射线OA和射线OB上的动点,则△PMN周长的最小值为________.
最值问题
----之将军饮马(一)
01 什么是将军饮马?
【问题描述】: 如图,将军在图中点A处,现在他要带马去河 边喝水,之后返回军营,问:将军怎么走能使得路程最短?
【问题简化】: 如图,在直线上找一点P使得PA+PB最小?
【问题分析】:这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结 果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段 最短”等,所以此处,需转化问题,将折线段变为直线段.
05 正方形中的将军饮马。
【问题描述】:如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且
AC:CB=1:3,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形
PDBC2,5/2) C.(8/3,8/3) D.(3,3)
03 将军饮马模型系列“两定两动”之点到点。
【问题描述】:在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
【问题解析】:考虑PQ是条定线段, 故只需考虑PM+MN+NQ最小值即 可,分别作点P、Q关于OA、OB对 称,化折线段PM+MN+NQ为 P'M+MN+NQ',当P'、M、N、Q' 共线时,四边形PMNQ的周长最小。