1反比例函数图象性质及应用(2014-2015)
反比例函数的图像和性质的综合应用
解析
根据题意,将点 A(-2 ,3)和点 B(3,-2 )分别代入两个函数中 ,得到关于 m、k、b 的方程组,解方程组求 得 m、k、b 的值,即 可得到两个函数的解析
式。
05
反比例函数在几何图形中应用
相似三角形判定定理推广
预备定理
平行于三角形的一边,并且和 其他两边相交的线段,所截得 的三角形的三边与原三角形三 边对应成比例。
反比例函数图像在平面直角坐标系中 ,沿y轴方向平移,函数表达式不变, 图像沿y轴平移。
伸缩变换规律
01
当k>0时,图像分别位于第一、三象限,每一个象限内,从 左往右,y随x的增大而减小;
02
当k<0时,图像分别位于第二、四象限,每一个象限内,从 左往右,y随x的增大而增大。
03
k>0时,函数在x<0上同为减函数、在x>0上同为减函数; k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3
平行四边形面积问题
通过已知相邻两边及其夹角求解面积,或已知面 积和一边长度及夹角求解另一边长度,应用反比 例函数进行求解。
速度、时间、距离关系分析
匀速直线运动问题
通过已知速度和时间求解距离,或已 知距离和时间求解速度,利用反比例 关系建立方程。
变速直线运动问题
曲线运动问题
通过已知速度和方向的变化规律,求 解某时刻的速度或某段时间内的平均 速度及运动轨迹,结合反比例函数进 行综合分析。
解析
根据题意,将点(-2, -1)代入两个函数中, 得到关于 k、m、n 的 方程组,解方程组求得 k、m、n 的值,即可 得到两个函数的解析式 。再将 x = 3 代入两个 函数中,得到关于 k、 m、n 的另一个方程, 与前面的方程组联立求 解,即可得到最终的解
函数及其图象反比例函数反比例函数的图象和性质
2023函数及其图象反比例函数反比例函数的图象和性质•反比例函数概述•反比例函数的图象特征•反比例函数的性质•反比例函数的应用目•反比例函数与其他数学内容的联系•研究反比例函数的实验与数值模拟录01反比例函数概述形如$y = \frac{k}{x}$($k$为常数,$k \neq 0$)的函数称为反比例函数。
定义当$k > 0$时,图象分布在第一、三象限,且在每个象限内$y$随$x$的增大而减小;当$k < 0$时,图象分布在第二、四象限,且在每个象限内$y$随$x$的增大而增大。
性质定义与性质描述生活中常见的数量关系例如,当两个变量成反比例关系时,可以用反比例函数来描述它们之间的关系。
例如,路程一定时,速度与时间成反比;物体重量一定时,浮力与排开液体的体积成反比等。
数学中基本概念之间的联系反比例函数与正比例函数、一次函数、二次函数等有密切的联系,研究反比例函数有助于理解这些基本概念之间的联系与区别。
反比例函数的重要性描述自然现象和社会现象许多自然现象和社会现象中都存在反比例关系,例如物理学中的万有引力定律、电学中的欧姆定律等。
研究反比例函数可以描述这些现象,并帮助人们更好地理解它们。
数学应用在数学中,反比例函数与其他函数、方程、不等式等都有密切的联系。
研究反比例函数可以帮助人们更好地理解这些概念,并为解决实际问题提供更好的数学工具。
研究反比例函数的意义与发展02反比例函数的图象特征中心对称反比例函数图象以原点为中心对称。
双曲线反比例函数图象表现为双曲线,两支曲线永远不会相交。
形状特征水平位置当反比例函数解析式中的常数为正数时,图象在第一、三象限;当常数为负数时,图象在第二、四象限。
垂直位置由于反比例函数的图象关于原点对称,因此当常数为正数时,图象向右上方倾斜;当常数为负数时,图象向右下方倾斜。
位置特征当自变量x增大时,函数值y会减小;当自变量x减小时,函数值y会增大。
当|x|增大时,|y|会减小;当|x|减小时,|y|会增大。
反比例函数反比例函数的图象与性质
2023-11-06
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数 。
反比例函数的积分特性
反比例函数在区间(-∞,0)和(0,+∞) 上的积分等于常数k。
VS
反比例函数在区间(-∞,x)和(x,+∞)上 的积分等于常数k乘以x。
04
反比例函数的应用
用反比例函数解决实际问题
电力分布
在电力分布问题中,常常 需要使用反比例函数来计 算电力的分布情况,以便 合理规划电力设施。
反比例函数的定义域和值域
定义域为{x|x≠0},值域为{y|y≠0}。
反比例函数的单调性
在区间(-∞,0)和(0,∞)上单调递减。
反比例函数的基本形式
反比例函数的基本形式
01
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。Biblioteka 反比例函数的解析式02
反比例函数通常被表示为y = k / x的形式,其中k是常数且不
热传导
在热传导中,可以使用反比例函数 来描述热量在介质中的传导规律。
在几何中的应用
圆的面积
在计算圆的面积时,可以使用 反比例函数来描述圆的面积与
半径之间的关系。
球的体积
在计算球的体积时,可以使用 反比例函数来描述球的体积与
半径之间的关系。
光线反射
在光线反射问题中,可以使用 反比例函数来描述光线反射的
反比例函数图像和性质ppt课件
反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
反比例函数的图像和性质的应用
03
反比例函数的变形与拓展
通过对反比例函数进行变形和拓展,可以得到更复杂的函数形式,如复
合反比例函数等。这些变形和拓展可以丰富反比例函数的应用场景,提
高解决问题的能力。
感谢您的观看
THANKS
两者图像可能相交,交点坐标满足两 个函数的解析式。
增减性
反比例函数在各自象限内单调减少或 增加,二次函数则根据开口方向决定 增减性。
在复合函数中应用
复合函数构造
通过反比例函数与其他基本初等 函数复合,构造出复杂的复合函
数。
图像变换
复合函数的图像可以通过基本初等 函数的图像经过平移、伸缩、对称 等变换得到。
03
反比例函数性质分析
单调性讨论
在第一象限和第三象限内,反比例函数是单 调减函数,即随着x的增大,y值逐渐减小。
在第二象限和第四象限内,反比例函数是单 调增函数,即随着x的增大,y值逐渐增大。
反比例函数在x=0处没有定义,因此不存在 x=0处的单调性。
奇偶性判断
01
反比例函数是奇函数,即满足f(x)=-f(x)。这是因为对于任意x≠0 ,都有f(-x)=-1/x=-f(x)。
在描点时,应尽量选择具有代表性的点,如 函数图像的拐点、与坐标轴的交点等。
注意点的分布
描出的点应均匀分布在函数的定义域内,避 免出现过于密集或过于稀疏的情况。
准确连线
在连线时,要确保曲线的走势与函数的性质 相符合,特别是在函数的拐点处,要注意曲 线的弯曲方向。
图像变换规律
1
平移变换
当反比例函数的图像沿 x 轴或 y 轴平移 时,其函数表达式会相应地发生变化。 例如,将 y = k/x 的图像沿 x 轴向右平 移 a 个单位,得到新的函数 y = k/(x a)。
《反比例函数的图象、性质和应用》 讲义
《反比例函数的图象、性质和应用》讲义一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
比如,在路程一定的情况下,速度 v 和时间 t 之间的关系就可以表示为 v = s/t(s 为路程,是一个定值),此时速度 v 就是时间 t 的反比例函数。
需要注意的是,反比例函数中 x 的取值范围是x≠0,因为分母不能为 0。
二、反比例函数的图象反比例函数的图象是双曲线。
以函数 y = 2/x 为例,我们可以通过列表、描点、连线的方法来画出它的图象。
选取一些 x 的值,比如-2、-1、-1/2、1/2、1、2 等,计算出对应的 y 值:当 x =-2 时,y =-1;当 x =-1 时,y =-2;当 x =-1/2 时,y =-4;当 x = 1/2 时,y = 4;当 x = 1 时,y = 2;当 x = 2 时,y = 1。
然后在平面直角坐标系中描出这些点,并用平滑的曲线将它们连接起来,就得到了反比例函数 y = 2/x 的图象。
反比例函数的图象有以下两个特点:1、当 k>0 时,图象的两支分别位于第一、三象限,在每一象限内y 随 x 的增大而减小;当 k<0 时,图象的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。
2、反比例函数的图象是以原点为对称中心的中心对称的两条曲线。
三、反比例函数的性质1、对称性反比例函数的图象既是轴对称图形,又是中心对称图形。
对称轴是直线 y = x 和直线 y = x,对称中心是原点。
2、增减性在反比例函数 y = k/x 中,当 k>0 时,在每个象限内,函数值 y 随自变量 x 的增大而减小;当 k<0 时,在每个象限内,函数值 y 随自变量 x 的增大而增大。
但要注意的是,这里说的增减性一定是在每个象限内,不能笼统地说在整个定义域内的增减性。
3、渐近性反比例函数的图象无限接近于 x 轴和 y 轴,但永远不会与 x 轴和 y轴相交。
反比例函数图象性质及应用复习课件
04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。
反比例函数的性质与应用总结
反比例函数的性质与应用总结反比例函数是数学中常见的函数类型之一,它与比例关系相反。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,而当一个变量减小时,另一个变量会相应地增大。
本文将对反比例函数的性质及其应用进行总结,并探讨在实际问题中的具体应用。
一、反比例函数的性质1. 定义域与值域:反比例函数的定义域通常为实数集,值域为除零以外的实数集。
2. 函数表达式:反比例函数的一般形式为 y = k/x,其中 k 为常数。
3. 曲线特征:反比例函数的图像为一条经过原点的双曲线。
随着 x 的增大,y 的值逐渐减小,反之亦然。
4. 渐近线:反比例函数的图像存在两条渐近线,即 y = 0 和 x = 0,分别表示 y 趋近于 0 和 x 趋近于无穷大的情况。
二、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是一些常见的应用示例:1. 电阻与电流关系:根据欧姆定律,电阻与电流之间的关系符合反比例函数。
电阻越大,通过电阻的电流越小;电阻越小,通过电阻的电流越大。
2. 时间与速度关系:在匀速运动中,时间与速度之间的关系也是反比例函数。
时间越长,相同距离下的速度越小;时间越短,相同距离下的速度越大。
3. 工作人员数量与完成时间关系:在一项任务中,工作人员数量与完成时间之间存在着反比例关系。
工作人员数量增多,完成时间相应缩短;工作人员数量减少,完成时间相应延长。
4. 投资收益与投入资金关系:一些投资项目中,投资收益与投入资金之间符合反比例函数。
投入资金越多,相同周期下的投资收益越低;投入资金越少,相同周期下的投资收益越高。
5. 音乐演奏中的音高与音强关系:在音乐领域,音高与音强之间也存在反比例关系。
音高越高,音强相对较小;音高越低,音强相对较大。
综上所述,反比例函数在数学中具有明确的性质,同时也在各个领域中有着广泛的应用。
了解反比例函数的性质以及在实际问题中的应用,无论是在解题过程还是在实际生活中都能带来便利,为我们解决问题提供了有力的数学工具。
反比例函数的图像与性质
反比例函数的图像与性质反比例函数是一种常见的数学函数类型,其图像非常有特点,具有一些独特的性质。
本文将介绍反比例函数的图像及其性质,以帮助读者更好地理解和应用这一函数类型。
一、反比例函数的图像反比例函数的一般形式可以表示为 y = k/x,其中 k 为非零常数。
根据这个函数形式,我们可以研究其图像及其性质。
1. 关于 y 轴和 x 轴的对称性:我们可以观察到反比例函数的图像关于 y 轴和 x 轴均具有对称性。
也就是说,如果一个点 (x, y) 在反比例函数的图像上,那么点 (-x, y)、(x, -y)、(-x, -y) 也会在图像上。
2. 渐近线:对于反比例函数 y = k/x,当 x 趋近于 0 时,y 趋于正无穷大或负无穷大。
也就是说,反比例函数的图像会有两个垂直于 x 轴的渐近线,分别位于第一象限和第三象限。
这两条渐近线可以用方程 x = 0 和 y =0 来表示。
3. 变化趋势:反比例函数的图像随着 x 的增大而逐渐趋向于 x 轴正半轴,随着 x的减小而逐渐趋向于x 轴负半轴。
换句话说,当x 趋近于正无穷大时,y 趋于 0;当 x 趋近于负无穷大时,y 也趋于 0。
这一性质可以通过直观的图像来观察和理解。
二、反比例函数的性质除了图像特点外,反比例函数还具有一些性质,对于解题和实际应用有重要意义。
下面我们将介绍一些常见的性质。
1. 定义域和值域:反比例函数 y = k/x 的定义域为除了 x=0 外的所有实数,值域也为除了 y=0 外的所有实数。
这是因为 0 不能作为分母。
2. 增减性:当 x1<x2 时,对于反比例函数,由于 x1 和 x2 在同一侧相对于 0,所以可以推出 y1 和 y2 在同一侧相对于 0。
也就是说,反比例函数在定义域内的不同点上具有相同的增减性。
3. 零点:反比例函数的零点为x=0,即在坐标系的原点处。
当x 不等于零时,反比例函数的值不会等于零,因此没有其他零点。
函数及其图象反比例函数反比例函数的图象和性质
反比例函数图像的变换规律
伸缩变换
当k值变化时,反比例函数的图像 会沿着x轴或y轴方向伸缩。当k增 大时,图像会向原点靠近;当k减 小时,图像会远离原点。
平移变换
当反比例函数沿x轴或y轴平移时 ,其图像也会相应地沿x轴或y轴 方向移动。
03
反比例函数的性质
反比例函数的单调性
递减性
当$k > 0$时,反比例函数在$(\infty,0)$和$(0,+\infty)$上单调递 减。
溶质溶解度
在溶质溶解度中,溶解度 与温度也成反比关系,即 温度越高,溶解度越低。
反比例函数在经济问题中的应用
供需关系
在市场经济中,供需关系 呈反比关系,即供应量越 大,需求量越小;反之亦 然。
货币流通速度
在货币流通中,货币流通 速度与货币供应量也成反 比关系,即货币供应量越 大,货币流通速度越慢。
热力学中的气体定律
在热力学中,气体的压强与体积也成反比关系,即压强越大,体积 越小。
反比例函数在化学问题中的应用
01
02
03
化学反应速率
在化学反应中,反应速率 与反应物的浓度成反比关 系,即浓度越高,反应速 率越快。
化学平衡
在化学平衡中,反应物的 转化率与反应温度成反比 关系,即温度越高,转化 率越低。
04
反比例函数的图像是双 曲线。
反比例函数的应用场景
在物理学中,反比例函数可以用来描述一些物理量之间的关系,例如电 流与电阻之间的关系可以表示为 $I = \frac{V}{R}$。
在化学中,反比例函数可以用来描述一些化学反应速率与反应物浓度之 间的关系。
在经济学中,反比例函数可以用来描述一些经济现象之间的关系,例如 需求与价格之间的关系可以表示为 $D = \frac{N \times P}{M}$。
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中的一种特殊函数形式,它的性质和应用在实际问题中非常重要。
本文将介绍反比例函数的性质,并探讨它在实际生活中的应用。
1. 反比例函数的定义反比例函数是指一个函数,其自变量x和因变量y满足以下关系式:y = k/x其中,k为常数,x ≠ 0。
2. 反比例函数的性质2.1 定义域和值域:反比例函数的定义域为除去0的实数集,值域为除去0的实数集。
这是由于在反比例函数中,除数不能为0。
2.2 反比例函数的图像特点:反比例函数的图像呈现出一种特殊的形状,即从左上方无限逼近于x轴和y轴。
随着自变量x的增大,因变量y呈现逐渐趋近于0的趋势;而随着自变量x的减小,因变量y也逐渐趋近于0。
2.3 反比例函数的对称性:反比例函数的图像关于一条直线对称,该直线过原点并且与y轴和x轴都垂直。
这种对称性使得反比例函数的图像在途中呈现出镜像对称的特点。
3. 反比例函数的应用3.1 物理学中的应用:反比例函数在物理学中具有广泛的应用,如弹簧的伸长和力的关系、电路中电阻和电流的关系等等。
通过研究反比例函数,我们可以更好地理解物理现象,为实际问题的解决提供依据。
3.2 经济学中的应用:在经济学中,反比例函数也有重要的应用。
例如,生产线的吞吐量与工人数量之间的关系,以及企业的销售量与售价之间的关系等。
通过建立反比例函数模型,我们可以更好地了解经济规律,并进行经济决策的优化。
3.3 生活中的应用:反比例函数的应用也可以在日常生活中找到。
例如,汽车行驶过程中的速度和所需要的时间之间的关系,以及购买商品的价格与所能购买的数量之间的关系等。
通过了解反比例函数的性质,我们可以更好地规划日常生活,做出合理的决策。
通过对反比例函数的性质和应用的研究,我们不仅能够深入理解数学中的一个重要概念,还能够将其应用于实际问题的解决中。
反比例函数不仅在学术领域有着丰富的内涵,也在实际生活中发挥着重要的作用。
反比例函数的图像与性质 课件
反比例函数图像的特点
探索反比例函数图像的形状和特征。
反比例函数的运算和应用
学习如何进行反比例函数的运算,并了解其在 实际问题中Байду номын сангаас应用。
参考资料
1 参考书目
- 反比例函数的进一步学习
2 参考链接
- 更多关于反比例函数的信息
反比例函数的图像与性质
欢迎来到本课件,我们将介绍反比例函数的图像和性质。了解什么是反比例 函数及其表示方法。
什么是反比例函数
定义
反比例函数是一种数学函数关系,当其中一个变量的值增大时,另一个变量的值相应地减小。
表示方法
通常用y=k/x来表示,其中k是非零实数。
反比例函数的图像
性质
反比例函数的图像呈现出一个下凹的曲线,且经过 第一象限和第三象限。
比例线性关系
反比例函数的图像与比例函数的图像之间存在线性 关系。
比例函数的应用
1
实际问题
反比例函数可以用于解决实际问题,例
参考例题
2
如时间和速度之间的关系。
我们将提供一些参考例题,以加深对反 比例函数的理解和应用。
总结
反比例函数的定义和性质
了解反比例函数是如何定义的以及其特点。
反比例函数的几何意义
图像特点
图像的特点是有两条渐近线,即x轴和y轴,它们分 别称为垂直渐近线和水平渐近线。
反比例函数的几何意义
1 越来越快地接近x轴和y轴
2 与比例函数的区别
随着x值的增大或减小,函数的值会越来越接 近y轴或x轴。
相比之下,比例函数的图像是通过原点的直 线。
反比例函数的运算
乘除法反转
当两个变量成反比例关系时,乘积保持不变。
反比例函数的图像和性质是什么
反比例函数的图像和性质是什么
反比例的图像和性质
当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;
当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
反比例函数定义
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图象中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。
因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。
而y=k/x有时也被写成xy=k或y=k·x-1。
反比例函数的应用举例
反比例函数的图象上有一点P(m,n)其坐标是关于t的一元二次方程t²-3t+k=0的两根,且P到原点的距离为根号13,求该反比例函数的解析式。
分析:
要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程。
解:∵m,n是关于t的方程t²-3t+k=0的两根,
∴m+n=3,
mn=k,
又∵PO=根号13,
∴m²+n²=13,
∴(m+n)²-2mn=13,
∴9-2k=13.
∴k=-2
当k=-2时,
△=9+8>0,
∴k=-2符合条件。
反比例函数的图像和性质课件
反比例函数的图像和性质课件反比例函数是数学中的一种重要函数类型,它的图像和性质在数学学习中占据着重要的地位。
本文将从图像和性质两个方面来探讨反比例函数的特点和应用。
一、反比例函数的图像反比例函数的图像呈现出一种特殊的形状,即一条经过原点的斜线。
具体来说,反比例函数的图像是一条从左上方向右下方倾斜的直线。
这是因为反比例函数的定义域为实数集,而值域为除了0以外的实数集,因此函数的图像必然不会经过y轴上的任何点。
通过观察反比例函数的图像,我们可以发现,随着自变量的增大,函数的值会逐渐减小。
这是因为反比例函数的定义中包含有除法运算,而除法运算会使得结果随着被除数的增大而减小。
因此,反比例函数的图像呈现出一种渐近线的特点,即当自变量趋近于正无穷大时,函数的值趋近于0。
二、反比例函数的性质除了图像的特点之外,反比例函数还具有一些重要的性质。
首先,反比例函数的定义域为实数集,但值域为除了0以外的实数集。
这是因为在反比例函数中,除数不能为0,否则会导致无意义的结果。
因此,在计算反比例函数的值时,我们需要注意避免除以0的情况。
其次,反比例函数的导数为常数。
这是因为反比例函数的定义可以表示为y=k/x的形式,其中k为常数。
对该函数进行求导,我们可以得到dy/dx=-k/x^2。
可以看出,反比例函数的导数与自变量x无关,只与常数k有关。
这也意味着反比例函数的斜率在整个定义域上保持不变。
另外,反比例函数还具有一个重要的性质,即函数值的乘积为常数。
具体来说,对于反比例函数y=k/x,当x1和x2为定义域中的两个不同的实数时,有y1*y2=k。
这个性质在实际问题中有着广泛的应用,例如在电路中,电阻和电流的关系就符合反比例函数的性质。
三、反比例函数的应用反比例函数在实际问题中有着广泛的应用。
例如,在物理学中,牛顿第二定律中描述了物体的加速度与施加在物体上的力成反比的关系。
根据牛顿第二定律的表达式F=ma,我们可以得到物体的加速度a与作用力F的关系为a=k/F,其中k为常数。
反比例函数的图象和性质课件
函数值的无限性
01
由于x不能为0,所以y的值是无限 的,即反比例函数图像上存在无穷 多个点。
02
在每一个象限内,随着x的增大或 减小,y的值会趋近于无穷大或无 穷小。
函数值的单调性
当k>0时,函数在(0, +∞)区间内单调 递减,在(-∞, 0)区间内也单调递减。
当k<0时,函数在(0, +∞)区间内单调递 增,在(-∞, 0)区间内也单调递增。
反比例函数的定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 k 是 常数。
反比例函数的性质
反比例函数的图象是双曲线,当 k > 0 时,双曲线的两支 分别位于第一、第三象限;当 k < 0 时,双曲线的两支分 别位于第二、第四象限。
反比例函数的单调性
在各自象限内,反比例函数是单调递减的。
反比例函数的图象和性质课件
目录
• 反比例函数概述 • 反比例函数的图像性质 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数是指函数形式为$f(x) = frac{k}{x}$(其中$k neq 0$)的函数。
当$k > 0$时,反比例函数的图像分布在 第一象限和第三象限;当$k < 0$时,图 像分布在第二象限和第四象限。
经济问题
在经济学中,反比例函数可以用 于描述商品价格与市场需求之间 的关系,通过分析反比例函数的 特性,可以预测市场价格的变动
趋势。
在物理中的应用
磁场问题
在电磁学中,磁场与电流之间的 关系可以用反比例函数描述,通 过分析反比例函数的特性,可以 解决与磁场和电流相关的问题。
反比例函数的图象和性质课件
反比例函数的图象和性质ppt课件介绍了反比例函数的定义、性质、图象以及 应用。通过课件,你将了解反比例函数的基本概念和特点,并掌握其在实际 问题中的应用。
I. 反比例函数的定义及性质
定义
反比例函数是一种特殊的函 数关系,其变量之间的比例 关系是相反的。
解析式
反比例函数的解析式一般为y = k/x,其中k为常数。
练习题演练
通过练习题的演练,加深对反比例函数的理解,并提高解决实际问题的能力。
IV. 总结与思考
特点回顾
反比例函数具有对称轴、渐近线等特点,是一种重要的函数类型。
图象对实际问题的帮助
反比例函数的图象可以帮助我们理解和解决实际问题,提供定性和定量的分析。
进一步思考
通过深入思考和探索,我们可以将反比例函数应用于更复杂的优化问题中。
反比例函数的图象可以通过平移、 伸缩等变换得到不同的形态。
反比例函数的图象包括关键点, 如顶点、渐近线和交点。
III. 反比例函数的应用
与正比例函数的关系
反比例函数和正比例函数是互为倒数的关系,它们在实际问题中经常同时出现。
实际问题中的应用
反比例函数在经济、物理和工程等领域中有广泛的应用,例如弹簧的伸长和台阶的高度与数 量关系。
定义域和值域
反比例函数的定义域为除数 不为0的实数集合,值域为不 等于0的实数集合。
单调性
反比例函数在定义域内通常是单调递减或单调增 函数。
渐近线
反比例函数在x轴和y轴上都有渐近线,分别为y = 0和x = 0。
II. 反比例函数的图象
基本形态
变形
特征点
反比例函数的图象通常为双曲线, 具有一个对称轴。
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中一类特殊的函数,其形式为y=k/x,其中k为常数。
反比例函数具有一些特殊的性质和广泛的应用。
本文将探讨反比例函数的性质以及其在实际问题中的应用。
一、反比例函数的性质1. 反比例函数的图像特点:反比例函数的图像呈现出一条双曲线,曲线在坐标系的第一和第三象限中。
当x趋于正无穷或负无穷时,y趋于0,当x为0时,y趋于无穷大或无穷小。
2. 反比例函数的单调性:反比例函数在定义域内是单调的,即如果x1>x2,则k/x1<k/x2或k/x1>k/x2。
3. 反比例函数的对称性:反比例函数具有关于原点的对称性,即对于任意实数x,有k/x=-k/(-x)。
4. 反比例函数的渐近线:反比例函数的图像有两条渐近线,即x轴和y轴,当x趋于正无穷大或负无穷大时,反比例函数的图像趋近于x 轴;当y趋于正无穷大或负无穷大时,反比例函数的图像趋近于y轴。
二、反比例函数的应用反比例函数在实际问题中有着广泛的应用,以下是几个常见的应用领域:1. 电阻与电流关系:欧姆定律可以表示为U=RI,其中U为电压,I 为电流,R为电阻。
当电阻保持不变时,电压与电流成反比例关系;当电流保持不变时,电压与电阻成正比例关系。
2. 时间与速度关系:在旅行中,速度等于路程除以时间,即v=s/t。
当路程保持不变时,速度与时间成反比例关系;当速度保持不变时,速度与路程成正比例关系。
3. 投资收益率:在投资领域,投资的收益率与投资金额成反比例关系。
投资金额越大,收益率越低;投资金额越小,收益率越高。
4. 物体质量与重力关系:牛顿第二定律可以表示为F=ma,其中F 为物体受到的力,m为物体的质量,a为物体的加速度。
当力保持不变时,加速度与物体质量成反比例关系;当加速度保持不变时,力与物体质量成正比例关系。
以上仅是反比例函数的一些常见应用示例,实际上反比例函数在各个科学领域都有广泛的应用,如经济学、物理学、工程学等。
反比例函数一次函数二次函数性质及图像
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。
反比例函数的图像和性质
反比函数的图象和性质是什么?
反比函数的图象是什么?反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性,以上就是反比函数的图象和性质。
接下来详细的看一下其中的内容吧!
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y 是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。
当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。
在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。
②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。
而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x 轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。
③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K 越大的话,反比例函数距离坐标轴就会越来越远。
④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。
反比例函数图像和性质教学课件
THANK YOU
反比例函数图像和性质教学 课件
contents
目录
• 反比例函数简介 • 反比例函数的图像绘制 • 反比例函数的性质分析 • 反比例函数的应用举例 • 反比例函数与其他知识点的关联
01
反比例函数简介
反比例函数的定义
1 2
反比例函数
形如 (f(x) = frac{k}{x}) (其中 (k neq 0)) 的函数 被称为反比例函数。
反比例函数的渐近线
反比例函数的图像没有界限,但可以无限接近两条渐近线,分别是 (y = 0) 和 (x = 0)。
反比例函数的应用
在物理学、工程学和其他科学领域中,反比例函数有广泛的应用,例如电阻、电容和电感 之间的关系。
02
反比例函数的图像绘 制
使用数学软件绘制反比例函数图像
软件选择
选择适合的数学软件,如 GeoGebra、Desmos等,这些
运动与减肥的关系
在减肥过程中,运动量与减肥效果之 间存在反比关系,即当运动量增大时 ,减肥效果不一定更明显,需要合理 控制饮食和运动量。
05
反比例函数与其他知 识点的关联
与一次函数的关联
一次函数是形如y=kx+b的函数,其中k和b是常数,且k≠0。当b=0时,一次函数退化为正比例函数 ,其图像是一条过原点的直线。反比例函数与正比例函数在形式上相似,只是自变量x的次数为-1。 因此,反比例函数的图像也位于坐标轴的两侧,并随着x的增大而趋近于无穷远。
一次函数和反比例函数在图像上都是单调的,但方向相反。一次函数随着x的增大而增大或减小,而 反比例函数则随着x的增大而减小或增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考解决方案反比例函数图象性质及应用学生姓名:上课时间:内容基本要求略高要求较高要求反比例函数 能结合具体问题了解反比例函数的意义;能画出反比例函数的图象; 理解反比例函数的性质会根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题------一、反比例函数的定义函数ky x=(k 为常数,0k ≠)叫做反比例函数,其中k 叫做比例系数,x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.二、反比例函数的图象反比例函数ky x=(k 为常数,0k ≠)的图象由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图象关于x 轴对称,也关于y 轴对称.三、反比例函数的性质反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线; 当0k >时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大.注意:⑴反比例函数ky x=(0k ≠)的取值范围是0x ≠.因此,①图象是断开的两条曲线,画图象时,不要把两个分支连接起来. ②叙述反比例函数的性质时,一定要加上“在每一个象限内”,如当0k >时,双曲线ky x=的两支分别在一、三象限,在每一个象限内,y 随x 的增大而减小.这是由于0x ≠,即0x >或0x <的缘故.如果笼统地叙述为0k <时,y 随x 的增大而增大就是错误的.自检自查必考点中考怎么考反比例函数图象性质及应用⑵由于反比例函数中自变量x 和函数y 的值都不能为零,所以图象和x 轴、y 轴都没有交点,但画图时要体现出图象和坐标轴无限贴近的趋势. ⑶在画出的图象上要注明函数的解析式.四、反比例函数解析式的求法反比例函数的解析式(0)ky k x=≠中,只有一个系数k ,确定了k 的值,也就确定了反比例函数的解析式.因此,只需给出一组x 、y 的对应值或图象上一点的坐标,利用待定系数法,即可确定反比例函数的解析式.【例1】下列关于x 的函数中:①2y x =;②43y x -=;③k y x =;④22m y x+=中一定是反比例函数的有( )A .1个 B. 2个 C. 3个 D. 4个【例2】已知()2212m m y m m x +-=+是关于x 的反比例函数,求m 的值及函数的解析式。
【巩固】已知函数1mm y x-=是y 关于x 的反比例函数,求m 的值.【例3】若函数||1a y x-=是反比例函数,则a 的值为( ). A. a 为任意实数 B. 0a > C. 1a ≠ D. 1a ≠±【例4】已知y 与2x 成反比例,当3x =时,4y =,则y 是x 的( )A. 正比例函数B.一次函数C.反比例函数D.以上都不是【例5】反比例函数xy 1-=的图象大致是图中的( ).例题精讲【例6】在下图中,反比例函数xk y 12+=的图像大致是( )A B C D【巩固】已知点P (1,a )在反比例函数ky x=(0k ≠)的图像上,其中223a m m =++(m 为实数),则这个函数的图像在第_____象限.【巩固】如果点(,2)t t --在双曲线xky =上,那么____0k ,双曲线在第______象限. 【巩固】已知(1)a y a x =-是反比例函数,则它的图象在( ).A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【例7】反比例函数()2231my m x -=-的图像所在的象限内,y 随x 增大而增大,则反比例函数的解析式是( ) A.4y x =B.4y x =-C.4y x =或4y x=- D.不能确定 【巩固】在反比例函数5k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( ) A .5k > B .0k > C .5k < D .0k <【例8】已知反比例函数xky =的图像在第二、第四象限内,函数图像上有两点()()1227,,5,A y B y ,则1y 与2y 的大小关系为( )A.12y y >B. 12y y =C. 12y y <D. 无法确定【巩固】若点A (1-,1y )、B (2,2y )、B (π,3y )都是反比例函数21k y x+=的图像上,试比较1y 、2y 、3y 的大小关系________________.【巩固】已知点11(,)A x y ,22(,)B x y 是反比例函数xky =(0k >)的图象上的两点,若120x x <<,则有( ). A.120y y <<B.210y y <<C.120y y <<D.210y y <<【例9】已知反比例函数12my x-=的图像上两点A (1x ,1y ),B (2x ,2y ),当120x x <<时,有12y y <,则m 的取值范围是_____.【巩固】反比例函数3y x =-的图像上有三点,(2-,a ),(1-,b ),(1,c ) ,比较a ,b ,c 大小.【例10】反比例函数22(21)my m x -=-,当0x >时,y 随x 的增大而增大,则m 的值是( ).A.1±B.小于12的实数 C.1-D.1【例11】在同一坐标系中,(1)y m x =-与my x=-的图象的大致位置不可能的是( ). xyxyxyxyOOOOA B C D【巩固】函数y ax a =-与ay x=(0a ≠)在同一直角坐标系中的图象可能是( ) O yx O yx OyxO yxA .B .C .D .【巩固】已知a b >,且0a ≠,0b ≠,0a b +≠,则函数y ax b =+与a by x+=在同一坐标系中的图象不可能是( )DC B A OOOOyxyxyxyx【例12】如图所示的函数图象的关系式可能是( )A.y x =B.1y x=C.2y x =D.1y x =xyO【例13】如图是三个反比例函数1k y x =、2ky x =、3k y x=在x 轴上方的图象,由此观察得到1k 、2k 、3k 的大小关系为___________y=k 3xy=k 2xy=k 1x x yO【例14】在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将会( )A.逐渐增大B.不变C.逐渐减小D.先增大后减小【例15】反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).A.1B.2C.3D.4【例16】 已知双曲线ky x=经过点()-13,,如果()11A a b ,,()22B a b ,两点在该双曲线上,且12a a <,那么1b 与2b 的大小关系为________.【例17】 如图,正方形OABC ADEF 、的顶点A D C ,、在坐标轴上,点F 在AB 上,点B E 、在函数1y x=()0x >的图象上,则点E 的坐标是________.yxOF E DC B A【例18】 如图,11212POA P A A 、△△都是等腰直角三角形,点12P P 、在函数4y x=()0x >的图象上,斜边112OA A A 、都在x 轴上,则点2A 的坐标是________.A 2A 1P 2P 1Oyx【巩固】如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.。
A 2A 1P 2P 1Oxy【例19】 如图,直线l 和双曲线()0ky k x=>交于A B 、两点,P 是线段AB 上的点(不与A B 、重合),过点A B P 、、分别向x 轴作垂线,垂足分别是C D E 、、,连接OA OB OP 、、,设AOC △面积是1S 、BOD △面积是2S 、POE △面积是3S ,则( )A .123S S S <<B .123S S S >>C .123S S S =>D .123S S S =<i D ECBPAO yx【例20】 如图,已知一次函数y kx b =+的图象与反比例函数8y x=-的图象交于A 、B 两点,且A 点的横坐标和B 点的纵坐标都是2- ⑴求一次函数解析式 ⑵AOB ∆的面积OBAxy【例21】 已知:如图,在平面直角坐标系xOy 中,Rt OCD ∆的一边OC 在x 轴上,90C ∠=︒,点D 在第一象限,3OC =,4DC =,反比例函数的图象经过OD 的中点A .⑴求该反比例函数的解析式;⑵若该反比例函数的图象与Rt OCD ∆的另一边交于点B ,求过A 、B 两点的直线的解析式.【巩固】已知反比例函数ky x=的图象经过点(3,1)A - (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30︒得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由【例22】 已知函数12y y y =-,且1y 为x 的反比例函数,2y 为x 的正比例函数,且23-=x 和1x =时,y 的值都是1.求y 关于x 的函数关系式.【例23】某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的关系式为________________.【巩固】一定质量的氧气,密度ρ是体积V 的反比例函数,当8V =3m 时, 1.5ρ=3/kg m ,则ρ与V 的函数关系式为______.【例24】某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V ( 3m )的反比例函数,其图像如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ) A .不小于543m B .小于543m C .不小于453m D .小于453mP ( kPa)V ( m 3)601.6O(1.6 , 60)【例25】 已知甲、乙两地相距S (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度y (km/h )的函数关系图象大致是( )DCBAt / hv (km/h )Ot / hv (km/h )Ot / hv (km/h )OOv (km/h )t / h【巩固】如图所示的是一蓄水池每小时的排水量31/V m h -⋅与排完水池中的水所用的时间()t h 之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______3m ;(2)此函数的解析式为____________;(3)若要在6h 内排完水池中的水,那么每小时的排水量至少应该是______3m ; (4)如果每小时的排水量是35m ,那么水池中的水需要______h 排完.【巩固】为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?【例26】 如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点.训练时要求A B ,两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴,y 轴的正方向分别表示正东、正北方向.设A B ,两船可近似看成在双曲线4y x=上运动.湖面风平浪静,双帆远影优美.训练中当教练船与A B ,两船恰好在直线y x =上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45 方向上,A 船测得AC 与AB 的夹角为60 ,B 船也同时测得C 船的位置(假设C 船位置不再改变,A B C ,,三船可分别用A B C ,,三点表示).(1)发现C 船时,A B C ,,三船所在位置的坐标分别为(______)(______)A B ,,,和(______)C ,; (2)发现C 船,三船立即停止训练,并分别从A O B ,,三点出发船沿最短路线同时..前往救援,设A B ,两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.OBA x (百米)y (百米)C第二阶段·反比例函数图象性质及应用·学生版 Page 11 of 11【题1】已知函数1m m y x -=是y 关于x 的反比例函数,求m 的值.【题2】如图,点P 在反比例函数()10y x x=>的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点'P .则在第一象限内,经过点'P 的反比例函数图象的解析式是( )321231P O xyA .()50y x x =->B .()50y x x =>C .()60y x x =->D .()60y x x => 【题3】函数y x m =+与(0)m y m x =≠在同一坐标系内的图象可以是( )A O x y O x y B O x y C DO x y【题4】已知反比例函数的图象经过点()21P -,,则这个函数的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限【题5】反比例函数21m y x-=的图象如图所示,1(1)A b -,,2(2)B b -,是该图象上的两点. ⑴比较1b 与2b 的大小;⑵求m 的取值范围.课后作业。