13.2.1作轴对称图形(2)导学案

合集下载

八年级数学上册13.2.1画轴对称图形导学案新版新人教版2

八年级数学上册13.2.1画轴对称图形导学案新版新人教版2

画轴对称图形学习目标:1.能够按要求作出简单平面图形经过一次对称后的图形。

2、能设计简单的轴对称图案。

3、通过画轴对称图形,增强学生学习几何的趣味感,培养审美情操。

:学习重点:利用对称轴作轴对称图形。

学习难点:找对称点。

一、自主学习1、如图:你能做出它关于虚线的对称图形吗?(1)找到点A的对称点A′(2) A A′与对称轴有什么关系?(3)在图中另找一对对称点,连接对称点的线段与对称轴还有上述关系吗?归纳:连接任意一对对称点的线段被对称轴____________2、预习自测:如图,已知点A和直线l,试画出点A关于直线l的对称点A′。

请说说你的画法lA·二、合作探究与展示探究点一:画已知图形的轴对称图形作△AB C关于直线l的对称的图形△A′B′C′画法:lABC探究点二:找对称轴已知△ABC,及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形。

A . A′BC三、当堂检测:(1、2题为必做题;3、4 题为选做题。

)1.请画出三角形关于直线l对称的图形LACB2、下面是我们学过的一些几何图形,说出下面图形是不是轴对称图形,并完成下表。

长方形正方形三角形等腰三角形等边三角形平行四边形任意梯形等腰梯形圆图形长方形正方形三角形等腰三角形等边三角形平行四边形任意梯形等腰梯形圆对称轴的条数3.如图,△ABC中,AB=AC,DE是AB的垂直平分线,AB=8,BC=4,∠A=36°,则∠DBC= ,△BDC的周长C△BDC = .1.如图,ΔABC的三边AB、BC、CA的长分别是20、30、40、其中三条角平分线将ΔABD分为三个三角形,则SΔAOB:SΔBOC:SΔAOC=______ .第3题第4题2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+2.下列不能判断是正方形的有()A.对角线互相垂直的矩形B.对角线相等的矩形C.对角线互相垂直且相等的平行四边形D.对角线相等的菱形3.如图,点A、B在反比例函数y=kx(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4B.6C.8D.124.下列各式成立的是A.()222-=-B.255=-C.2x x=D.()266-=5.人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程( ) A.100(1+x)=196B.100(1+2x)=196C.100(1+x2)=196 D.100(1+x)2=1966.如图,直线y=﹣43x+4与x轴、y轴分别交于点A、B、C是线段AB上一点,四边形OADC是菱形,则OD的长为()A .4.2B .4.8C .5.4D .67.已知a 、b 、c 是ABC △的三边,且满足3220a ac ab --=,则ABC △一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形8.如图,ABC 中,AB AC 16==,AD 平分BAC ∠,点E 为AC 的中点,连接DE ,若CDE 的周长为26,则BC 的长为( )A .20B .16C .10D .89.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y =kx ﹣2的图象上,则k 的值为( ) A .k =2 B .k =4 C .k =15 D .k =3610.2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是4二、填空题 11.4是_____的算术平方根.12.如图,已知在△ABC 中,D 、E 分别是 AB 、AC 的中点,BC=6cm ,则DE 的长度是_____ cm .13.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是_______.14.在函数y=12xx++中,自变量x的取值范围是_____.15.在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.16.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.17.在□ABCD中,O是对角线的交点,那么12AB AC-=____.三、解答题18.暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.19.(6分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.20.(6分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a 元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:(1)填空:a=,b=,c=.(2)写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.(3)函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.21.(6分)如图,已知菱形ABCD 的对角线AC 、BD 交于点O ,DB =2,AC =4,求菱形的周长.22.(8分)如图,在▱ABCD 中,E 、F 为对角线BD 上的两点,且BE=DF .求证:∠BAE=∠DCF .23.(8分)在平面直角坐标系中,直线AB 经过()1,1、()3,5-两点.(1)求直线AB 所对应的函数解析式:(2)若点(),2P a -在直线AB 上,求a 的值.24.(10分)如图,在ABC △中,AD BC ⊥,12AD =,16BD =,5CD =.()1求ABC △的周长;()2判断ABC △是否是直角三角形,并说明理由.25.(10分)解下列方程(1)3x 2-9x=0(2)4x2-3x-1=0参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048,减去提前完成时间72048x+,可以列出方程:72072054848x-=+故选:D.【点睛】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.2.B【解析】【分析】根据正方形的判定逐项判断即可.【详解】A、对角线互相垂直的矩形是正方形,此项不符题意B、对角线相等的矩形不一定是正方形,此项符合题意C、对角线互相垂直且相等的平行四边形是正方形,此项不符题意D、对角线相等的菱形是正方形,此项不符题意故选:B.【点睛】本题考查了正方形的判定,熟记正方形的判定方法是解题关键.3.C【解析】∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB:S△CMA=(CNCM)2=(12)2=14,而S△BNC=2,∴S△CMA=1,∵OM=MN=NC,∴OM=12 MC,∴S△AOM=12S△AMC=4,∵S△AOM=12|k|,∴12|k|=4,∴k=1.点睛:本题主要考查了反比例函数的比例系数k的几何意义以及相似三角形的判定与性质.从反比例函数y=kx(k≠0)的图象上任取一点向x轴或y轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.4.D【解析】分析:根据二次根式的性质逐项化简即可.详解:A. ∵2==,故不正确;B. ∵5=,故不正确;C. ∵当x<0x=-,故不正确;D. ∵6==,故正确;故选D.()0a a=≥是解答本题的关键.5.D【解析】【分析】设月平均增长率为x,分别表示出四、五月份的销售量,根据五月份的销售量列式即可.【详解】解:设月平均增长率为x,则四月份销售量为100(1+x), 五月份的销售量为:100(1+x)2=196.故答案为:D【点睛】本题考查了列一元二次方程,理清题中等量关系是列方程的关键.6.B【解析】【分析】由直线的解析式可求出点B、A的坐标,进而可求出OA、OB的长,再利用勾股定理即可求出AB的长,由菱形的性质可得OE⊥AB,OE=DE,再根据直角三角形的面积可求出OE的长,进而可求出OD的长. 【详解】解:∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴点A(3,0)、点B(0,4),∴OA=3,OB=4,∴5=,∵四边形OADC是菱形,∴OE⊥AB,OE=DE,由直角三角形的面积得1122OA OB OE AB=,即3×4=5×OE. 解得:OE=2.4,∴OD=2OE=4.8. 故选B.【点睛】本题考查了菱形的性质和一次函数与坐标轴的交点问题,难度不大,题目设计新颖,解题的关键是把求OD 的长转化为求直角△AOB 斜边上的高OE 的长的2倍.7.C【解析】【分析】由a 3-ac 2-ab 2=0知a (a 2-c 2-b 2)=0,结合a≠0得出a 2=b 2+c 2,根据勾股定理逆定理可得答案.【详解】解:∵a 、b 、c 是△ABC 的三边,∴a≠0,b≠0,c≠0,又a 3-ac 2-ab 2=0,∴a (a 2-c 2-b 2)=0,则a 2-c 2-b 2=0,即a 2=b 2+c 2,∴△ABC 一定是直角三角形.故选:C .【点睛】本题考查因式分解的应用,解题的关键是掌握勾股定理逆定理与因式分解的运用.8.A【解析】【分析】根据等腰三角形的性质可得AD BC ⊥,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】AB AC =,AD 平分BAC ∠,AD BC ∴⊥,ADC 90∠∴=,点E 为AC 的中点,1DE CE AC 82∴===. CDE 的周长为26,CD 10∴=,BC 2CD 20∴==.故选A .【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.9.B【解析】【分析】根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【详解】将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.10.D【解析】【分析】众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.【详解】解:这组数据6出现了6次,最多,所以这组数据的众数为6;这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;这组数据的平均数=110(5×2+6×6+7×2)=6;这组数据的方差S2=110[2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;所以四个选项中,A、B、C正确,D错误.故选:D.【点睛】本题考查了方差的定义和意义:数据x1,x2,…x n,其平均数为x,则其方差S2=[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.二、填空题11.16.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.12.1【解析】【分析】根据三角形中位线定理进行解答即可得.【详解】∵D、E 分别是AB、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=162=1cm,故答案为1.【点睛】本题考查了三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13.1【解析】【分析】首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【详解】第五组的频数是10×0.2=8,则第六组的频数是10-5-10-6-7-8=1.故答案是:1.【点睛】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和. 14.x≥﹣2且x≠1.【解析】【分析】根据二次根式的非负性及分式有意义的条件来求解不等式即可.【详解】解:根据题意,得:x+2≥1且x≠1,解得:x≥﹣2且x≠1,故答案为x≥﹣2且x≠1.【点睛】二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.15.【解析】【分析】利用勾股定理可用m 表示出OB 的长,根据平方的非负数性质即可得答案.【详解】∵点B 的坐标是(m ,m-4),∴∵(m-2)2≥0,∴2(m-2)2+8≥8,OB 的最小值为,故答案为:【点睛】本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.16.6【解析】根据三角形的中位线性质可得,26BC DE cm ==17.OB【解析】【分析】由向量的平行四边形法则及相等向量的概念可得答案.【详解】解:因为:□ABCD , 所以,12OA AC =, 所以:-=-=12AB AC AB AO OB . 故答案为:OB .【点睛】本题考查向量的平行四边形法则,掌握向量的平行四边形法则是解题的关键.三、解答题18.(1)设y=kx+b,当x=0时,y=2,当x=150时,y=1.∴ 150k+b=1 b="2"解得∴y=x+2.(2)当x=400时,y=×400+2=5>3. ∴他们能在汽车报警前回到家. 【解析】(1)先设出一次函数关系式,再根据待定系数法即可求得函数关系式;(2)把x=400代入一次函数关系式计算出y 的值即可得到结果.19.(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC 的面积为10.【解析】【分析】(1) A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC 边长为5,BC 边上的高为4,再计算面积.【详解】解:(1)直角坐标系如图所示.图书馆的坐标为B(-2,-2).(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为12×5×4=10.【点睛】本题考核知识点:平面直角坐标系.解题关键点:理解坐标的意义,利用坐标求出线段长度.20.(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(317,9);其意义为当x<317时是方案调价前合算,当x>317时方案调价后合算.【解析】【分析】(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.【详解】①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元,故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3,函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y2=7+(x﹣3)×1.4,整理得,y2=1.4x+2.8;所以,当y1=y2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=317,y=9;所以,函数y1与y2的图象存在交点(317,9);其意义为当x<317时是方案调价前合算,当x>317时方案调价后合算.【点睛】本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.21.【解析】【分析】由在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,可求得OA与OB的长,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.【详解】解:∵四边形ABCD是菱形,∴OA=12AC═12×4=2,OB=12BD=12×2=1,AC⊥BD,∴AB∴菱形的周长为【点睛】此题考查了菱形的性质.注意菱形的对角线互相平分且垂直且互相平分定理的应用是解此题的关键.22.证明见解析【解析】【分析】要证明∠BAE=∠DCF,可以通过证明△ABE≌△CDF,由已知条件BE=DF,∠ABE=∠CDF,AB=CD得来.【详解】解:∵四边形ABCD 是平行四边形∴AB ∥CD ,AB =CD∴∠ABE =∠CDF∵BE =DF∴△ABE C ≌△CDF∴∠BAE =∠DCF【点睛】本题考查全等三角形的判定和性质,该题较为简单,是常考题,主要考查学生对全等三角形的性质和判定以及平行四边形性质的应用.23. (1) 2y x =-+;(2)4a =【解析】【分析】(1)设直线AB 解析式为y=kx+b ,把A 与B 坐标代入求出k 与b 的值,即可确定出直线AB 所对应的函数解析式;(2)把点P (a ,-2)代入吧(1)求得的解析式即可求得a 的值.【详解】解:(1)设直线AB 所对应的函数表达式为y kx b =+.直线AB 经过()1,1A 、()3,5B -两点,∴135k b k b +=⎧⎨-+=⎩解得12k b =-⎧⎨=⎩∴直线AB 所对应的函数表达式为2y x =-+.(2)点(),2P a -在直线AB 上,∴22a -=-+.∴4a =.【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于把已知值代入解析式.24.(1)54;(2)ABC △不是直角三角形,理由见解析.【解析】【分析】(1)在Rt ABD △和Rt ACD 中,利用勾股定理分别求得AB 与AC 的长即可; (2)利用勾股定理的逆定理进行判断即可.【详解】解:()1AD BC ⊥,90ADB ADC ∴∠=∠=.在Rt ABD △和Rt ACD 中,根据勾股定理得222AB AD BD =+,222AC AD CD =+,又12AD =,16BD =,5CD =,20,13AB AC ∴==,ABC C AB AC BC AB AC BD DC ∴=++=+++201316554=+++=; ()2ABC △不是直角三角形.理由:20,13,21AB AC BC ===,222AB AC BC ∴+≠,ABC ∴不是直角三角形.【点睛】本题主要考查勾股定理及其逆定理,解此题的关键在于熟练掌握其知识点. 25.(1)x 1=0,x 2=3;(2)x 1=1,x 2=-14.【解析】【分析】(1)直接利用提取公因式法分解因式进而解方程得出答案;(2)直接利用十字相乘法分解因式解方程得出答案.【详解】(1)3x 2-9x=0,3x(x-3)=0,解得:x 1=0,x 2=3;(2)4x 2-3x-1=0,(4x+1)(x-1)=0,解得:x1=1,x2=-14.【点睛】本题考查了利用因式分解法解一元二次方程,正确掌握因式分解的方法是解题的关键.2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程可能是( ) A .x 2-3x+2=0B .x 2+3x+2=0C .x 2+3x-2=0D .x 2-2x+3=02.一元二次方程()200++=≠ax bx c a 的求根公式是( )A .21,242b b ac x a-±-=B .21,242b b ac x a ±-=C .21,224b b ac x a±-=D .21,242a b ac x b-±-=3.用正三角形和正方形镶嵌一个平面,在同一个顶点处,正三角形和正方形的个数之比为( ) A .1:1B .1:2C .2:3D .3:24.如图,,E F 分别是矩形ABCD 的边,AB CD 上的点,将四边形AEFD 沿直线EF 折叠,点A 与点C 重合,点D 落在点'D 处,已知8,4AB BC ==,则AE 的长是( )A .4B .5C .6D .75.点A 、B 均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。

人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。

本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。

二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。

但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。

因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。

三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。

3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。

四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。

2.难点:如何引导学生通过作图的方法来画出轴对称图形。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。

六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。

七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。

2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。

3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。

4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。

人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计

人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计
4.家长参与作业,有助于激发学生的学习兴趣,培养学生的观察力和实践能力。
希望同学们认真完成作业,通过实践和练习,不断提高自己的几何图形认识和运用能力。
(四)课堂练习,500字
1.教师布置课堂练习题,要求学生在规定时间内完成。
“下面,请同学们完成这几道练习题,巩固所学知识。遇到问题可以互相讨论,也可以请教老师。”
2.学生独立完成练习题,教师巡回辅导,解答学生疑问。
3.教师选取部分学生的练习题进行讲解,分析解题思路和方法。
“这道题目考查了我们对轴对称图形的性质的理解。我们可以通过找到对称轴,然后利用对称性质解决问题。”
“现在,请同学们分成小组,讨论一下轴对称图形的性质以及它们在实际生活中的应用。每个小组派一名代表分享讨论成果。”
2.学生在小组内展开讨论,教师巡回指导,解答学生疑问。
“同学们,你们发现轴对称图形有哪些性质?它们在生活中有哪些应用?”
3.各小组代表分享讨论成果,教师点评并总结。
“很好,各小组都取得了不错的成果。轴对称图形的性质包括:对称轴两侧的图形完全一致,对称轴上的点称为对称点等。它们在生活中的应用非常广泛,如剪纸、建筑、标志等。”
3.教师布置课后作业,提醒学生加强练习。
“课后,请同学们完成这几道练习题,巩固所学知识。下节课我们将进一步探讨轴对称图形的其他性质和应用。”
五、作业布置
为了巩固本节课所学的轴对称图形知识,培养学生的动手操作能力和应用能力,特布置以下作业:
1.完成课本第13.2节课后练习题,包括填空题、选择题和解答题,要求学生在规定时间内独立完成,注意解题过程的规范性和逻辑性。
人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计
一、教学目标
(一)知识与技能

2024秋八年级数学上册第十三章轴对称13.2画轴对称图形1画轴对称图形教学设计(新版)新人教版

2024秋八年级数学上册第十三章轴对称13.2画轴对称图形1画轴对称图形教学设计(新版)新人教版
3.学生可能遇到的困难和挑战:在学习轴对称图形的过程中,学生可能会遇到一些困难和挑战。首先,理解轴对称图形的概念和性质可能需要一定的时间和空间想象力。其次,画出轴对称图形时,学生可能会遇到对对称轴的确定和对称点的找寻等方面的困难。此外,将轴对称图形的知识应用于实际问题解决时,学生可能会遇到问题建模和运算的挑战。因此,教师需要通过合理的教学设计和引导,帮助学生克服这些困难和挑战,提供必要的支持和指导。
教学过程设计
1.导入新课(5分钟)
目标:引起学生对轴对称图形的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道什么是轴对称图形吗?它与我们的生活有什么关系?”
展示一些关于轴对称图形的图片或视频片段,让学生初步感受轴对称图形的魅力或特点。
简短介绍轴对称图形的基本概念和重要性,为接下来的学习打下基础。
2.轴对称图形基础知识讲解(10分钟)
2.轴对称图形的性质:引导学生探究轴对称图形的性质,如对应点的连线与对称轴垂直,对应点的距离相等。
3.轴对称图形的画法:教授学生如何画出轴对称图形,包括找出对称轴,画出对应点,连接对应点等步骤。
4.实际应用:通过一些实际问题,让学生运用轴对称图形的知识解决问题,提高学生的实际应用能力。
核心素养目标
本节课的核心素养目标主要包括以下几个方面:
⑤轴对称图形的性质和画法的应用:利用轴对称图形的性质和画法可以解决一些几何问题,如求解对称图形的面积、角度等。
板书设计:
1.轴对称图形的概念
-可以沿着某条直线折叠,两边完全重合
2.轴对称图形的性质
-对称轴和对应点
-对应点连线与对称轴垂直
-对应点距离相等
3.轴对称图形的画法
-找出对称轴
-画出对应点

轴对称图形导学案教案

轴对称图形导学案教案

1.1轴对称和轴对称图形教学目标:1、认识轴对称与轴对称图形;2、会画出对称轴,找出对称点;教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:正确辨认轴对称图形,画出它们的对称轴;三案设计:一、自学质疑动手操作:(1)演示操作(2)用一张正方形的纸片,折叠后,把下列图形剪出来,并与同学交流你的剪法。

通过自学,你还有什么发现和问题呢?二、交流展示思考回答其他同学提出的发现和问题三、互动探究2、观察、思考:(投影片)4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。

3、议一议:(1)两组图片(动画演示)(2)揭示轴对称概念:像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.四、精讲点播4、探索思考:(1)观察图片:(2)揭示轴对称图形概念:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

动手画出这几幅图片的对称轴。

5、讨论、交流:轴对称与轴对称图形的区别与联系。

6、说说生活中的轴对称和轴对称图形,与同学讨论、交流,同小组互相补充。

班级姓名学号等第五、校正反馈12、六、迁移应用3、观察下列各种图形,判断是不是轴对称图形?并找出该轴对称图形的对称轴?1.2轴对称的性质 (1)教学目标:1、知道线段的垂直平分线的概念,探索并掌握“成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线”等性质.2、经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.3、利用轴对称的基本性质解决实际问题。

教学重点:灵活运用“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”等性质。

教学难点:轴对称的性质的理解和拓展运用。

三案设计:一、自学质疑如右图所示,在纸上任意画一点A,把纸对折,用针在点A处穿孔,再把纸展开,并连接两针孔A、A′.两针孔A、A′和线段AA′与折痕MN之间有什么关系?通过自学,你还有什么发现和问题呢?二、交流展示思考回答其他同学提出的问题三、互动探究1、请同学们按要求画点、折纸、扎孔,仔细观察你所做的图形,然后研究:两针孔A、A′与折痕MN之间有什么关系?线段AA′与折痕MN之间又有什么关系呢?两针孔A、A′,直线MN线段AA′.2、那么直线MN为什么会垂直平分线段AA′呢?3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(midpoint perpendicular).例如,如图,对称轴MN就是对称点A、A′连线(即线段AA′)的垂直平分线.4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、A′B′、BB′.线段AB与A′B′有什么关系?线段BB′与MN 有什么关系?5.如图,再在纸上任画一点C,并仿照上面进行操作.(1)线段AC与A′C′有什么关系? BC与B′C′呢?线段CC′与MN有什么关系?(2)∠A与∠A′有什么关系? ∠B与∠B′呢? △ABC与△A′B′C′有什么关系?为什么?(3)轴对称有哪些性质?6.轴对称的性质:(1)成轴对称的两个图形全等.(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.四、精讲点播例1、小明取一张纸对折,然后用小针在对折的纸上扎出“4”,将纸打开后铺平.图中两个“4”有什么关系?例2、(1)如图,A、B、C、D的对称点分别是,线段AC、AB的对应线段分别是,CD= ,∠CBA= ,∠ADC= .(2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证.(3)AE与BF平行吗?为什么?(4)AE与BF平行,能说明轴对称图形对称点的连线一定互相平行吗?(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?例3、如下图,两个三角形成轴对称,你能画出对称轴吗?与同伴交流你的做法.方法一:连接1对对称点,然后画一条这对对称点连线的垂直平分线.方法二:分别延长两对互不平行的对称线段,得到两个交点,再过两个交点画一条直线,这条直线就是对称轴.方法三:分别连接两对对称点,找出两对对称点连线的中点,再过两中点画一条直线,这条直线就是对称轴.你能解释一下上面三种方法的合理性吗班级姓名学号等第五、校正反馈1、两个图形关于某直线对称,对称点一定在()(A)这条直线的同旁(B)这条直线的两旁(C)这条直线上(D)这条直线的两旁或这条直线上2、下列说法正确的是 ( )(A)直线L上的一点关于直线L的对称点不存在(B)关于直线L对称的两个图形全等(C)△ABC和△A/B/C/关于直线L对称,则△ABC是轴对称图形(D)AD是△ABC的中线,若△ABC不是等腰三角形,则△ABC关于AD对称的图形不存在3、下列说法中错误的是 ( )(A)两个对称的图形对应点连线的垂直平分线就是它们的对称轴(B)关于某直线对称的两个图形全等(C)面积相等的两个三角形对称(D)轴对称指的是两个图形沿着某一直线对折后重合4、请按要求画图(画图用铅笔),并回答问题:(1)画线段AB (2)画线段AB的中垂线MN,垂足为O(3)在MN上任取一点P,连接PA、PB (4)PA=PB吗?为什么?(5)∠A=∠B吗?∠APO=∠BPO吗?为什么?(6)再在MN上任取一点Q,连接QA、QB,那么∠PAQ=∠PBQ吗?六、迁移应用5、如图,将标号A、B、C、D的正方形沿图中虚线剪开后,得到标号为P、Q、M、N的四个图形。

人教版-数学-八年级上册-《13.2.1画轴对称图形》导学案

人教版-数学-八年级上册-《13.2.1画轴对称图形》导学案

学科数学课题13.2.1 画轴对称图形年级八年级课型探究课流程具体内容方法指导一、目标导学学习目标:1.能按照要求作出简单平面图形经过一次或两次轴对称后的图形;2.能利用轴对称进行图案设计.二、自主学习轴对称变换的特征:由一个平面图形可以得到它关于一条直线 l 对称的图形,这个图形与原图形的形状、大小完全一样.新图形上的每一点,都是原图形上的某一点关于直线l的对称点.连接任意一对对应点的线段被对称轴垂直平分.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.在由小正方形围成的L形图中,请你用三种方法分别添画一个小正方形,使它成为轴对称图形.方法指导(1)温馨提示:(用时(2)分钟)三、问题探究已知一个图形和一条直线,如何作出与这个图形关于这条直线对称的图形呢?例1 已知点A和直线l,以直线l 为对称轴,作点A经轴对称变换后所得的图形A′例2 已知线段AB和直线l,以直线l为对称轴,作线段AB经轴对称变换后所得的图形A′B′.例3 已知三角形ABC和直线l,作出三角形ABC关于直线l对称的图形.见课本67页例1方法指导温馨提示:(用时分钟)四、反馈提升已知四边形ABCD和直线l,作出与四边形ABCD关于直线l对称的图形.方法指导温馨提示:(用时分钟)五、达标运用水泵站修在什么地方?如图,要在河边修建一个水泵站,分别向刘村、张庄送水,思考:水泵站修在河边什么地方,可使所用的水管最短?方法指导温馨提示:(限时分钟)总结与反思【知识梳理】合作交流:【收获与反思】。

八年级上册数学13.2作轴对称图形导学案

八年级上册数学13.2作轴对称图形导学案

13.2画轴对称图形第1课时作轴对称图形一、新课导入1.导入课题:你们会利用轴对称进行简单的图案设计吗?今天我们就一起来学习怎样作轴对称图形.2.学习目标:(1)知道轴对称变换前后的两个图形是全等的,并且任意一对对应点所连线段被对称轴垂直平分.(2)已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.3.学习重、难点:重点:已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.难点:能进行简单的轴对称变换设计对称性图案.二、分层学习1.自学指导:(1)自学内容:教材第67页到本页思考上面部分.(2)自学时间:5分钟.(3)自学方法:通过观察、动手操作、总结出成轴对称的两个图形的有关性质.(4)自学参考提纲:①结合图13.2-1,阅读教材第67页第一段,把重点语句做上记号.②将下列图案沿直线l折叠,用针尖沿着玉米图案扎出,再打开看看,得到了什么?连接对应点(找三对),看所连线与l有何位置关系?测量对应点所连线段被l分成的两段有何关系?解:得到一个与玉米图案一样的图形,所连线段被l垂直平分、相等.图1 图2③将你实验得出的结论用几何方法论证一下.④结论:a.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;b.新图形上的每一点,都是原图形上的某一点关于直线l的对称点;c.连接任意一对对应点的线段都被对称轴垂直平分.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:八年级学生已经具备一定观察能力,了解学生能否将实验操作得出的结论完整地用语言表达出来.②差异指导:结合学生画出的图形,引导学生表述实验发现的结论.(2)生助生:互助交流关于直线对称的两个图形的对应点与对称轴存在的关系.4.强化:(1)填空:①由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;②新图形上的每一点,都是原图形上的某一点关于直线l的对称点;③连接任意一对对应点的线段都被对称轴垂直平分.④两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.(2)交流学习成果:①轴对称前后两个图形的关系;②对应点连线与对称轴的关系.(3)总结:①轴对称前后两个图形全等;②对应点连线被对称轴垂直平分.1.自学指导:(1)自学内容:探究如何作出一个图形关于某直线的对称图形.(2)自学时间:5分钟.(3)自学方法:作一个图形关于某条直线的对称图形,应根据轴对称的性质作对称点.(4)探究提纲:①作已知一点关于某条直线的对称点的方法是怎样的?过点P作直线l的垂线,垂足为O,在垂线上截取OP′=OP,P′即为所求作的点.②作已知一条线段关于某条直线的对称线段的方法是怎样的?分别作点A,B关于直线l的对称点A′,B′,连接A′B′,A′B′即为所求作的线段.③作已知一个三角形关于某条直线对称的三角形的方法是怎样的?分别作点A,B,C关于直线l的对称点A′,B′,C′,顺次连接A′B′、A′C′、B′C′,△A′B′C′即为所求作的三角形.④作已知图形关于某条直线对称的图形的方法是怎样的?分别作点A,B,C,D关于直线l的对称点A′,B′,C′,D′,顺次连接A′B′,B′C′,C′D′,D′A′,四边形A′B′C′D′即为所求作的四边形.⑤改变对称轴的位置,然后画一画.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否掌握画图的依据和方法.②差异指导:由点、线段、三角形再到复杂图形,一步一步引出关于直线对称的图形的画法,并让学生观察改变对称轴后图形的变与不变之处.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流及总结:作一个图形关于某条直线的对称图形的方法.(2)结论:分别作出这些点关于对称轴的对应点再连接这些对应点,就可以得到原图形的轴对称图形(3)教材第68页“练习”.三、评价1.学生的自我评价(围绕三维目标):学生之间相互交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(第1、2题每题10分,第3题20分,第4题30分,共70分)1.已知:直线AB与直线A′B′交于点P,并且这两条直线关于直线l成轴对称,下列说法正确的是(C )A.直线AB与直线A′B′的长度不相等B.直线AB、A′B′与直线l不一定能交于同一点C.直线AB、A′B′与直线l一定交于P点D.点P关于直线l的对称点不存在2.下列说法:①关于某直线对称的两个图形的面积相等;②平面内两个完全相同的图形一定关于某直线对称;③两个图形成轴对称,其对应点连线的垂直平分线就是它们的对称轴;④关于某直线对称的两个图形,对称点一定在该直线的两旁;其中正确的是(B)A.①②B.①③C.①②③D.①②③④3.如图,把下列图形补成关于直线l对称的图形.4.已知△ABC及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形.(1)直线l就是AA′的垂直平分线;(2)作出B、C关于直线l的对称点B′、C′.(3)连接A′B′、B′C′、C′A′,即得△ABC关于直线l的对称图形△A′B′C′.二、综合应用(15分)5.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.解:一般三角形:沿中线折,没有重合的;沿高线折,底边重合,沿角平分线折,两邻边重合.等腰三角形:沿底边上的中线折,底边重合,两邻边也重合;沿底边上的高线折,底边重合,两邻边重合;沿顶角角平分线折,底边重合,两邻边也重合.三、拓展延伸(15分)6.如图所示,∠AOB内一点P,P1P2分别是P关于OA、OB的对称点,P1P2=交OA于M,交OB于N.若P1P2=8cm,则△PMN的周长是多少?解:∵P1、P关于OA对称,P2、P关于OB对称,∴OA垂直平分P1P,OB垂直平分P2P.∴MP1=MP,NP2=NP.∴C△PMN=PM+MN+NP.=P1M+MN+NP2= P1P2==8cm.。

13.2.1《画轴对称图形》教案-河南省漯河市舞阳县人教版八年级数学上册

13.2.1《画轴对称图形》教案-河南省漯河市舞阳县人教版八年级数学上册

13.2.1《画轴对称图形》【课标内容】通过观察和动手操作认识轴对称图形,能辨别那些图形是轴对称图形,在动手操作的过程中培养学生的观察能力、动手操作能力和创新思维能力.【教材分析】本节教材在学习了轴对称的基础上学习的,在学习本节课之前,学生已经初步知道了轴对称特点,大部分同学对轴对称掌握的比较好,学生已具备了学习本节课的部分知识和思想准备,学习这部分内容,对学习等腰三角等的知识奠定了基础,是进一步研究等腰三角形的工具性内容,因此本节课在教材中具有承上启下的作用.【学情分析】鉴于教材特点及初二学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用教具、学具,在实验、演示、操作、观察、练习等师生的共同活动中引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意利用图片的不同颜色的对比来启发学生,运用投影仪提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识.【教学目标】1.理解解线段的垂直平分线的性质性质定理及逆定理;2. 要求学生在学习中运用发现法;让学生通过探索活动来发现结论,经历知识的再发现过程;【教学重点】引导学生探索并掌握轴对称图形的基本特点、简单轴对称图形的画法.【教学难点】用轴对称知识解决相应的数学问题【教学方法】五步教学法演示法、直观教学法【课前准备】三角板学案多媒体课件【课时设置】二课时【教学过程】第一课时一、预学自检互助点拨(阅读教材P67-68,完成以下问题)1.知识回顾(1)什么是轴对称图形?什么叫两个图形成轴对称?(2)轴对称主要有哪些性质?2﹒操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?3﹒归纳:结论 1.对称轴的方向和位置发生变化时,得到的图形的方向和位置也发生变化.结论2.由一个图形可以得到它关于对称轴的对称图形,这两个图形的形状大小完全相同活动1操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;(2)新图形上一个点,都是原图形上的某一点关于直线l的对称点;(3)连接任意一对对应点的线段被对称轴垂直平分.活动2二、合作互学探究新知1﹒画出点A关于 l 的对称点A’:( 1 )过点A作对称轴l 的垂线,垂足为B;( 2 )延长A B 至A’,使得BA’= A B.( 3 )点 A’就是点A关于 l 的对称点.如图(1),已知△ABC l 对称的图形吗?图(1) 图(2) 学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:(1)过A 作l 的垂线垂足为O ;(2)连接A O 并延长到A ′,使A ′O=A O ,则点A ′就是点A 关于直线l 的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些B'l l特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、自我检测成果展示1.完成课后68页练习1﹒ 2题2.用两个圆、两个三角形、两条平行线段可以构造出许多独特而有意义的轴对称图形(如下图),请你也仿照构思一个图案,别忘了加上一两句贴切的解说词哦.四、应用提升挑战自我1.探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?五、经验总结反思收获本节课你学到了什么?写出来【设计意图】师引导学生归纳总结,旨在让学生学会归纳总结,梳理知识,提高认识.【板书设计】13.2作轴对称图形(一)一、轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.二、利用轴对称变换设计图案【备课反思】这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:让学生在观察中让思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主.反思这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点吗,学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦.。

八年级数学上册 13.2.2 画轴对称图形导学案(新版)新人教版

八年级数学上册 13.2.2 画轴对称图形导学案(新版)新人教版

八年级数学上册 13.2.2 画轴对称图形导学案(新版)新人教版13、2画轴对称图形(2)学习目标:1、理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律、2、掌握在平面直角坐标系中作出一个图形的轴对称图形的方法、学习重点:在平面直角坐标系中关于x 轴或y 轴对称的点的变化规律和作出与一个图形关于x 轴或y 轴对称的图形、预习案如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?对于平面直角坐标系中任意一点,你能找出其关于 x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?探究案在平面直角坐标系中,画出下列已知点及其关于x 轴对称的点,把它们的坐标填入表格中、观察下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?在平面直角坐标系中,画出下列已知点及其关于y 轴对称的点,把它们的坐标填入表格中观察关于y 轴对称的每对对称点的坐标有怎样的变化规律?请你再找几个点,分别画出它们的对称点,检验一下你发现的规律、点(x,y)关于x 轴对称的点的坐标为(___,____);点(x,y)关于y 轴对称的点的坐标为(___,____)课堂练习练习1 分别写出下列各点关于x 轴和y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)、练习2 若点P(2a+b,-3a)与点P′(8,b+2)关于x 轴对称,则a = _______,b= _______ ;若关于y 轴对称,则a =_________,b=______、例题:如图,四边形ABCD 的四个顶点的坐标分别为 A(-5,1),B (-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于x 轴和y 轴对称的图形、归纳画一个图形关于x 轴或y 轴对称的图形的方法和步骤、课堂小结:本节课你有哪些收获?还有哪些疑问?姓名_________ 分数_________检测案1、分别写出下列各点关于x 轴和y 轴对称的点的坐标、(3,6)、(-7,9)、(6,-1)、(-3,-5)、(0,10)、2、以正方形ABCD 的中心为原点建立平面直角坐标系、点A 的坐标为(1,1)、写出点B,C,D 的坐标、。

人教版数学八年级上册13.2 画轴对称图形(2课时)教案与反思

人教版数学八年级上册13.2 画轴对称图形(2课时)教案与反思

13.2 画轴对称图形投我以桃,报之以李。

《诗经·大雅·抑》原创不容易,【关注】,不迷路!第1课时画轴对称图形一、基本目标【知识与技能】掌握作已知图形关于直线的轴对称图形的方法.【过程与方法】在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.【情感态度与价值观】经历实际操作、认真体验的过程,发展学生的思维空间,培养学生的应用意识和探究精神.二、重难点目标【教学重点】作出简单平面图形关于直线的轴对称图形.【教学难点】利用轴对称进行一些图案设计环节1 自学提纲,生成问题【5min阅读】阅读教材P67~P68的内容,完成下面练习.【3min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2 巩固练习(学生独学)1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( B )2.在3×3的正方形格点图中,格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.略活动3 拓展延伸(学生对学)【例2】如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB =60°,则∠CFD=( )A.20°B.30°C.40°D.50°【互动探索】根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD =90.∵∠EFB=60°,∴∠CFD=30°,故选B.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3 课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即可.请完成本课时对应习!第2课时坐标中的轴对称一、基本目标【知识与技】理解并掌握关于x轴、y轴对称的点的坐标的规律.【过程与方法】1.在探索关于x轴、y轴对称的点的坐标的规律时,发展学生形象思维能力和数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.【情感态度与价值观】在探规律的过程中,培养学的应用意识和探究精神,提高学生的求知欲和好奇心.二、重难点目标【教学重点】直角坐标系中关于x轴、y轴对称的点的特征.【教学难点】能解决有关坐标中的轴对称问题.环节1 自学提纲,生成问题【5min阅读】阅读教材P68~P70的内容,完成下面练习.【3min反馈】1.(1)点(x,)关于x轴对称的点的坐标为(x,-y);(2)关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数.2.(1)点(x,y)关于y轴对称的点的坐标为(-x,y);(2)关于x轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变.3.点P(-4,3)关于x轴的对称点为Q,则点Q的坐标为(-4,-3).4.点P(-3,4)关于y轴的对称点为M,则点M的坐标为(3,4).环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】在平面直角坐标系中,已知点A(-3,1)、B(-1,0)、C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.【互动探索】(引发学生思考)作已知图形关于坐标轴的对称图形的关键是什么?【解答】如图,△DEF是△ABC关于y轴对称的图形.【互动总结】(学生总结,老师点评)在坐标系中作出关于坐标轴的对称点,然后顺次连结,即可作出已知图形关于坐标轴的对称图形.活动2 巩固练习(学生独学)1.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).2.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.3.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2018的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.(2)∵A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2018=1.3.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.解:画图略.其中A1(3,-4)、B1(1,-2)、C1(5,-1).活动3 拓展延伸(学生对学)【例3】如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD的四个顶点在格点上.(1)若以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,画出四边形ABCD关于y轴对称的四边形A1B1C1D1;(2)点D1的坐标是________;(3)求四边形ABCD的面积.【互动探索】(1)以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,然后作出各点关于y轴对称的点,顺次连结即可;(2)根据直角坐标系的特点,写出点D1的坐标;(3)把四边形ABCD分解为两个直角三角形,求出面积.【解答】(1)画图略.(2)点D1的坐标为(-1,1).(3)四边形ABCD的面积为×1×3+×1×2=.【互动总结】(学生总结,老师点评)轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连结对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。

轴对称图形导学案

轴对称图形导学案

《轴对称图形》导学案
姓名:
学习目标:1.进一步理解轴对称的概念,探索图形成轴对称的两个特征。

2.懂得在方格纸上画出一个图形的轴对称图形。

一、旧知回顾。

1.剪一剪:动手剪出一个轴对称图形。

2.说一说:什么样的图形叫做轴对称图形?
二、自主学习,合作交流。

1.在自己剪的图案上至少找出3组对应点,并用字母表示。

2.点A到对称轴的距离是()格,点Aˊ到对称轴的距离是( )格,
点 A 与点A’到对称轴的距离都是()格;
点()与点()到对称轴的距离都是()格;
点()与点()到对称轴的距离都是()格;
……
我发现:对应点到()的距离()。

3.连一连:连接每组对应点,你发现了什么?
我发现:每组对应点的连线与对称轴()。

4.根据你发现的轴对称图形的特征,你能补全这个轴对称图形吗?
组内交流:怎样画得又快又好?
三、知识应用。

1.选一选。

2.找规律填空。

3.欣赏图片。

轴对称在各个领域的应用,同学们要学好数学,将来用自己的智慧和勤劳的双手为人类创造出更多美好的事物。

《轴对称图形》教案(精选5篇)

《轴对称图形》教案(精选5篇)

•••••••••••••••••《轴对称图形》教案(精选5篇)《轴对称图形》教案(精选5篇)作为一位兢兢业业的人民教师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

那么你有了解过教案吗?下面是小编收集整理的《轴对称图形》教案(精选5篇),仅供参考,大家一起来看看吧。

《轴对称图形》教案1教学目标:1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。

2、让学生在学习的过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增强学习数学的兴趣。

教学重难点:让学生通过折纸等方法确定轴对称图形的对称轴,会画出简单轴对称图形的对称轴。

教学准备:教师:多媒体教学课件,白纸、长方形纸、正方形纸各一张,梯形和三角形。

学生:白纸、长方形纸、正方形纸各一张。

教学对象的分析:这部分内容主要通过折纸等方法确定轴对称图形的对称轴,进一步体会轴对称的特征。

学生在前面已经的学习中,已经知道了一个图形对折,折痕两边完全重合的图形是轴对称图形,并且认识了对称轴。

所以针对这一具体内容,课的一开始就通过撕纸玩轴对称图形,学生对这一内容非常感兴趣。

教学过程:一、“玩”对称,谈话激趣谈话:如果给你一张纸,你打算怎么玩这张纸?……你想不想知道老师是怎么玩这张纸?看好了,先对折,对折后有一条折痕(板书:折痕),然后从折痕处撕开。

怎么样,想试一试吗?(把教师的作品贴在黑板上)二、自主探究轴对称图形的对称轴。

1、仔细观察你的作品,它是一个什么图形?(我的图形是轴对称图形)(有一条线,有一条折痕,两边完全一样,完全重合)板书:轴对称图形提问:为什么你觉得你的图形是轴对称图形呢?(对折后两边能完全重合的图形叫做轴对称图形)2、谈话:轴对称图形中间都有一条(折痕),而折痕所在的直线就是这个图形的对称轴,(板书:折痕所在的直线叫对称轴)。

八年级数学上册 13.2.1 作轴对称图形(第2课时)教案 (新版)新人教版

八年级数学上册 13.2.1 作轴对称图形(第2课时)教案 (新版)新人教版

作轴对称图形中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

13.2.1 画轴对称图形导学案

13.2.1  画轴对称图形导学案

13.2 画轴对称图形导学案学习目标:1、通过具体实例学画轴对称图形,认识轴对称变形,探索它的基本性质和定义。

2、能利用轴对称进行图案设计,通过利用轴对称作图和图案设计发展实践能力。

3、通过作轴对称画图,设计图案,锻炼学生克服困难的意志,培养创新精神。

学习重点:能够按要求作出简单平面图形经过轴对称后的图形。

学习难点:利用轴对称进行一些图案设计。

学习过程:一、创设情境独立思考(课前20分钟)1、阅读课本P 67~68 页,思考下列问题:◆课本P67页例1你能独立完成吗?2、独立思考后我还有以下疑惑:二、答疑解惑我最棒(约8分钟)三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题【1】阅读教材P67的图13.2-1【2】归纳:(1)由一个平面图形可以得到它关于一条直线L成轴对称的图形,这个图形与原图形的、完全相同。

(2)新图形上一个点,都是原图形上的某一点关于直线L 的点。

(3)连接任意一对对应点的线段被对称轴。

四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:【1】如图,已知△ABC和直线,你能作出△ABC关于直线对称的图形。

画图步骤:(1)找点:(2)画点:(3)连线:【2】归纳:教材P68页几何图形都可以看作是由组成,对于某些图形,只要会出图形中一些特殊点的,连接这些,就可以得到原图形的。

2、运用新知解决问题:(重点例习题的强化训练)(1)探究:要在河边修建一个水泵站,分别向张村、李庄送水(如图)。

修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由。

(2)把下列图形补成关于L对称的图形。

人教版八年级数学上册13.2《作轴对称图形二》导学案

人教版八年级数学上册13.2《作轴对称图形二》导学案

13.2《作轴对称图形二》导学案一、学习目标1、理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律。

2、掌握在平面直角坐标系中作出一个图形的轴对称图形的方法。

二、预习内容自学课本70页至71页,完成下列问题:1、问题:(1)你能看出西直门和东直门的位置关系吗?(2)如果告诉你表示东直门的点的坐标,你能说出表示西直门的点的坐标吗?说一说你是如何想的:2、(1)在平面直角坐标系中,画出已知点及其对称点,并把坐标填入表格中(2)仔细观察,关于x 轴对称的点横坐标 ,纵坐标 。

点(x, y )关于x 轴对称的点的坐标为 。

关于y 轴对称的点横坐标 ,纵坐标 。

点(x, y )关于y 轴对称的点的坐标为 。

3、反馈练习:分别写出下列各点关于x 轴和y 轴对称的点的坐标:已知点 A(2,-3)B(-1,2)C(-6,-5)D(21,1) E(4,0)关于x 轴的对称点关于y 轴的对称点xy11O(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)已知点(-2,6)(1,-2)(-1,3)(-4,-2)(1,0)关于x轴的对称点关于y轴的对称点三、探究学习4、例2、如图,四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C (-2,5)、D(-5,4),分别作出与四边形ABCD关于y轴和x轴对称的图形.解:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A、B、C、D关于y轴对称的点分别为A′(_____,_____)、B′(_____,_____)、C′(_____,_____)、D′(_____,_____),依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于y轴对称的四边形A′B′C′D′.问题:如何做一个多边形的对称图形?反馈练习:课本71页练习第2、3题四、巩固测评1、点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为__________.2、点M(a, -5)与点N(-2, b)关于x 轴对称,则a=_____, b =_____.3、点P(-5, 6)与点Q 关于y 轴对称,则点Q 的坐标为__________.4、点M(a, -5)与点N(-2, b)关于y 轴对称,则a=_____, b =_____.5、已知点P(2a+b,-3a)与点P’(8,b+2).若点p 与点p’关于x 轴对称,则a=_____ b=_______. 若点p 与点p’关于y 轴对称,则a=_____ b=_______.6、已知△ABC 的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC 关于y 轴对称的图形。

作轴对称图形导学案

作轴对称图形导学案

作轴对称图形导学案主备:刘斐备课人:李鸿海学习目标:1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.学习重点:1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.学习难点:1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.学前准备:在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.这节课我们就是来作简单平面图形经过轴对称后的图形.探索思考:•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案。

对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.动手并思考:如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.(1)你会得怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?答案:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.课时小结:本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.课后反思:季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.2.1作轴对称图形(2)
一、学习目标
1、能够按要求作出简单平面图形经过轴对称后的图形;
2、能够用轴对称的知识解决生活中的实际问题。

二、温故知新 1、把下列图形补成关于l 对称的图形。

2、仔细观察第三个图形,你能尽可能多的从图中找出一些线段之间的关系吗? 三、自主探究 合作展示 探究(一) 1、 如图(1).要在燃气管道l 上修建一个泵站,分别向A 、B 两镇供气.•

站修在管道的什么地方,可使所用的输气管线最短?
2、请同学们任意取点探究,并完成下列表格。

3、通过以上探究,你发现什么规律吗?
4、根据你发现的规律,在图(2)中完成本题。

探究(二) 问题
为什么在P 点的位置修建泵站,就能使所用的输气管线最短
呢?
四、双基检测
1、如图(3),在铁路l 的同侧有两个工厂A 、B ,要在路边建一个货
场C ,使A 、B 两厂到货场C 的距离的和最小.问点C 的位置如何
选择?
l l
l l
l
l l l
'C '
B '
A l l C l l
B l
l A
ABC BCl l l
图(1)
图(2)
B A B
图(3)
A
l
2、如图(4),如果我们把台球桌做成等边三角形的形状,那么从
AC的中点D处发出的球,能否依次经BC,AB两边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球的运动路线。

3、如图(5),A为马厩,B为帐篷,牧马人某一天要从
马厩牵出马,先到草地边某一处牧马,再到河边饮水,
然后回到帐篷,请你帮他确定这一天的最短路线。

五、学习反思
B C
图(4)
图(5)。

相关文档
最新文档