不等式组表示的平面区域

合集下载

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

二元一次不等式组知识点讲解及习题

二元一次不等式组知识点讲解及习题

第三节:二元一次不等式组与简单的线性规划1、二元一次不等式表示的区域:二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域。

注意:由于对直线同一侧的所有点(x,y),把它代入Ax+By+C,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0) ,从Ax0+By0+C的正负可以判断出Ax+By+C>0表示哪一侧的区域(一般在C≠0时,取原点作为特殊点)2、二元一次不等式组表示的区域:二元一次不等式表示平面的部分区域,所以二元一次方程组表示各个区域的公共部分。

(二元一次不等式表示的区域)例1、画出不等式2x+y-6<0表示的平面区域。

(跟踪训练)画出不等式4x-3y≤12表示的平面区域。

(点的分布)例2、已知点P(x 0,y 0)与点A(1,2)在直线l:3x+2y-8=0的两侧,则( ) A 、3x 0+2y 0>0 B 、3x 0+2y 0<0 C 、3x 0+2y 0>8 D 、3x 0+2y 0<8(跟踪训练)已知点(3 ,1)和点(-4 ,6)在直线 3x –2y + m = 0 的两侧,则( ) A .m <-7或m >24 B .-7<m <24 C .m =-7或m =24D .-7≤m ≤ 24(二元一次不等式组表示的平面区域) 例3、画出不等式组表示的区域。

(1) (2)⎪⎩⎪⎨⎧-≥≤+<242y y x xy ⎪⎪⎩⎪⎪⎨⎧+<≥+≥<9362323x y y x x y x(已知区域求不等式)例4、求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。

(跟踪训练)下图所示的阴影区域用不等式组表示为(已知不等式组求围成图形的面积)例5、求不等式组3,0,20xx yx y≤⎧⎪+≥⎨⎪-+≥⎩表示的平面区域的面积(跟踪训练)在直角坐标系中,由不等式组230,2360,35150,x yx yx yy->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点个数(绝对值不等式的画法)例6、画出不等式|x|+|y|<1所表示的区域。

寻求二元一次不等式(组)所表示的平面区域的方法

寻求二元一次不等式(组)所表示的平面区域的方法

寻求二元一次不等式(组)所表示的平面区域的方法东北师范大学 熊明军 大连理工大学 曾玲莉简单线性规划问题是高考必考知识点,而其基础在于研究二元一次不等式(组)所对应的平面区域.下面介绍一些方法来快速准确地确定二元一次不等式(组)所表示的平面区域.方法一:直线定界,特殊点定域找出一个二元一次不等式(组)在平面直角坐标系内所表示的平面区域的基本方法是:①画直线②取特殊点③代值定域④求公共部分①画直线──作出各不等式对应方程表示的直线(原不等式带等号的作实线,否则作虚线);②取特殊点──平面直角坐标系内的直线要么过原点,要么不过原点;当直线过原点时我们选取特殊点或(坐标轴上的点),当直线不过原点时我们选取原点做特殊点;③代值定域──将选取的特殊点代入所给不等式:如果不等式成立,则不等式所表示的平面区域就是该特殊点所在的区域;如果不等式不成立,则不等式所表示的平面区域就是该特殊点所在区域的另一边.④求公共部分──不等式组所确定的平面区域,是各个二元一次不等式所表示平面区域的公共部分.例1 画出不等式组所表示的平面区域.解析:①画直线:不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②取特殊点:直线过原点,可取特殊点;直线不过原点,可取特殊点.③将代入,即,不等式不成立,直线另一侧区域就是不等式所表示的平面区域;将代入,即,不等式成立,则原点所在区域就是不等式所表示的平面区域.(图一)④求公共部分:如图二所示公共部分就是不等式组所表示的平面区域.方法二:法向量判定法由平面解析几何知识知道直线(不同时为0)的一个法向量为.以坐标原点作为法向量的始点,可以利用向量内积证明如下结论:(1)不等式(),不等式表示的平面区域就是法向量指向的区域;(大于同向)(2)不等式(),不等式表示的平面区域就是法向量反向的区域;(小于反向)例2画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是,法向量;不等式对应的直线方程是,法向量;在平面直角坐标系中作出直线与及其相应的法向量(如图).②由于不等式(),平面区域是法向量指向的区域(图一);不等式(),平面区域是法向量反向的区域(图二).③然后求的公共部分就是不等式组所表示的平面区域.方法三:未知数系数化正法直线(不同时为0)含有两个未知数,于是我们可以将未知数的系数分为两类:项系数与项系数来研究.(1)项系数化正法:顾名思义就是利用不等式性质,不等号两边同时(移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的上方;反之为下方)有结论:项系数正值化:上;下.例3画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②将不等式组中每个不等式项系数正值化,得或(移项).③关于的不等式()即(或者),直线上方的区域就是该不等式所表示的平面区域(图一);关于的不等式()即,直线下方的区域就是该不等式所表示的平面区域(图二).④然后求的公共部分就是不等式组所表示的平面区域.(2)项系数化正法:同(1)一样,不等号两边同时(或移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的右方;反之为左方)有结论:项系数正值化:右;左.可结合例3来对项系数化正法进行理解.上述方法中,方法一是寻找二元一次不等式所表示的平面区域的常规方法,思维回路较长,适合对理论的学习,但要快速准确地解决简单的线性规划问题就必须掌握方法二或方法三中之一.2011-05-04 人教网。

不等式表示的平面区域

不等式表示的平面区域

x
2 0
a2

y
2 0
b2
1 表示点在含原点的区域外;
M(x0,y0)
y
x
2 0
a2

y
2 0
b2
1
x
2 0
a2

y2 0b21 Nhomakorabeax
2 0
a2

y
2 0
b2
1
F1
O
F2
x
四、二次不等式表示的平面区域
2.双曲线上、含原点和不含原点的区域
设点 M(x0,y0),
标准方程:
y2 a2

x2 b2
或区域的位置关系.
(1)x-2y+9=0 (2) y2 4x
(3)
x2 5

y2 9
1
(4) x2

y2 9
1
(5) (x 2)2 (y 1)2 5
(6) x2 y2 2x 6y 1 0
( 7) -2x +y>2
【解析】M ( 2 , 6) ,N ( -3, 3) (5) (x 2)2 (y 1)2 5
专题:不等式表示的平面区域
一、一次不等式与平面区域
1、一元一次不等式与区间
一元一次不等式的解集一般形式为:
x>a;
P
a
x
x<a;
a
x
x≥a;
a
x
x≤a.
a
x
实数 a 将数轴分成两段,用来表示不等
式的解集.
一、一次不等式与平面区域
2、一元一次不等式组与区间
一元一次不等式的解集一般形式为:

数学讲义:第3章 3.5 3.5.1 二元一次不等式(组)所表示的平面区域 Word版含答案(1)

数学讲义:第3章 3.5 3.5.1 二元一次不等式(组)所表示的平面区域 Word版含答案(1)

3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域1.二元一次不等式的概念我们把含有两个未知数,并且未知数的最高次数是1的不等式,称为二元一次不等式.2.二元一次不等式组的概念我们把由几个二元一次不等式组成的不等式组,称为二元一次不等式组.3.二元一次不等式(组)的解集概念满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.4.二元一次不等式表示的平面区域及确定(1)直线l:ax+by+c=0把直角坐标平面分成了三个部分:①直线l上的点(x,y)的坐标满足ax+by+c=0.②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0,另一侧平面区域内的点(x ,y )的坐标满足ax +by +c <0.(2)在直角坐标平面内,把直线l :ax +by +c =0画成实线,表示平面区域包括这一边界直线;画成虚线表示平面区域不包括这一边界直线.(3)①对于直线ax +by +c =0同一侧的所有点,把它的坐标(x ,y )代入ax +by +c 所得的符号都相同.②在直线ax +by +c =0的一侧取某个特殊点(x 0,y 0),由ax 0+by 0+c 的符号可以断定ax +by +c >0表示的是直线ax +by +c =0哪一侧的平面区域.5.二元一次不等式组表示的平面区域二元一次不等式组表示的平面区域是各个不等式表示的平面区域的公共部分.1.由不等式3x +2y +6≤0表示的平面区域(阴影部分)是( )D [把(0,0)点代入3x +2y +6≤0中可知6≤0不成立,即(0,0)不在3x +2y +6≤0所表示的平面区域内,结合直线过点(0,-3)和(-2,0)可知D 正确.]2.以下各点在3x +2y <6表示的平面区域内的是____________. ①(0,0);②(1,1);③(0,2);④(2,0).①②③ [将点的坐标代入,只有①②③满足上述不等式.3.已知点A (1,0),B (-2,m ),若A ,B 两点在直线x +2y +3=0的同侧,则m 的取值集合是________.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m >-12 [因为A ,B 两点在直线x +2y +3=0的同侧,所以把点A (1,0),B (-2,m )代入可得x +2y +3的符号相同,即(1+2×0+3)(-2+2m +3)>0,解得m >-12.](1)x-2y+4≥0;(2)y>2x.[解](1)画出直线x-2y+4=0,∵0-2×0+4=4>0,∴x-2y+4>0表示的区域为含(0,0)的一侧,因此所求为如图所示的区域,包括边界.(2)画出直线y-2x=0,∵0-2×1=-2<0,∴y-2x>0(即y>2x)表示的区域为不含(1,0)的一侧,因此所求为如图所示的区域,不包括边界.应用“以直线定界,以特殊点定域”的方法画平面区域,先画直线Ax+By+C=0,取点代入Ax+By+C验证.在取点时,若直线不过原点,一般用“原点定域”;若直线过原点,则可取点(1,0)或(0,1),这样可以简化运算.画出所求区域,若包括边界,则把边界画成实线;若不包括边界,则把边界画成虚线.1.(1)如图所示的平面区域(阴影部分)用不等式表示为________. (2)画出不等式2x +y -4>0表示的平面区域.[解] (1)由截距式得直线方程为x 2+y1=1, 即x +2y -2=0.因为0+2×0-2<0,且原点在阴影部分中,故阴影部分可用不等式x +2y -2<0表示.(2)先画直线2x +y -4=0(画成虚线).取原点(0,0)代入,得2x +y -4=2×0+0-4=-4<0,所以不等式2x +y -4>0表示的区域是直线2x +y -4=0右上方的平面区域,如图中的阴影部分所示.(1)⎩⎨⎧x -2y ≤3,x +y ≤3,x ≥0,y ≥0;(2)⎩⎨⎧x -y <2,2x +y ≥1,x +y <2.[解] (1)x -2y ≤3,即x -2y -3≤0,表示直线x -2y -3=0上及左上方的区域;x+y≤3,即x+y-3≤0,表示直线x+y-3=0上及左下方区域;x≥0表示y轴及其右边区域;y≥0表示x轴及其上方区域.综上可知,不等式组(1)表示的区域如图所示.(2)x-y<2,即x-y-2<0,表示直线x-y-2=0左上方的区域;2x+y≥1,即2x+y-1≥0,表示直线2x+y-1=0上及右上方区域;x+y<2表示直线x+y=2左下方区域.综上可知,不等式组(2)表示的区域如图所示.1.不等式组的解集是各个不等式解集的交集,所以不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.2.在画二元一次不等式组表示的平面区域时,应先画出每个不等式表示的区域,再取它们的公共部分即可.其步骤为:(1)画线;(2)定侧;(3)求“交”;(4)表示.2.画出不等式(x +2y +1)(x -y +4)≤0表示的平面区域. [解] 此不等式可转化为⎩⎪⎨⎪⎧ x +2y +1≥0,x -y +4≤0或⎩⎪⎨⎪⎧x +2y +1≤0,x -y +4≥0.分别画出这两个不等式组所表示的平面区域,这两个平面区域的并集即为所求的平面区域,如图所示(阴影部分).1.若点P (1,2),Q (1,1)在直线x -3y +m =0的同侧,如何求m 的取值范围? [提示] 直线x -3y +m =0将坐标平面内的点分成三类:在直线x -3y +m =0上的点和在直线x -3y +m =0两侧的点,而在直线x -3y +m =0同侧点的坐标,使x -3y +m 的值同号,异侧点的坐标使x -3y +m 的值异号.故有(1-3×2+m )(1-3×1+m )>0,即(m -5)(m -2)>0,所以m >5或m <2.2.不等式组⎩⎨⎧x +y >2,x -y >0,x <4表示的区域是什么图形?你能求出它的面积吗?该图形若是不规则图形,如何求其面积?[提示] 不等式组表示的平面区域如图阴影部分△ABC ,该三角形的面积为S △ABC=12×6×3=9.若该图形不是规则的图形,我们可以采取“割补”的方法,将平面区域分为几个规则图形求解.3.点(0,0),(1,0),(2,1),(3,4)在不等式组⎩⎨⎧x +y >2,x -y >0,x <4表示的平面区域内吗?该平面区域内有多少个纵、横坐标均为整数的点?[提示] 若所给点在不等式组所表示的平面区域内,则该点的坐标一定适合不等式组,否则,该点不在这个不等式组表示的平面区域内.经代入检验可知,在(0,0),(1,0),(2,1),(3,4)中只有点(2,1)在不等式组表示的平面区域内.在寻求平面区域内整数点时,可根据不等式组表示的平面区域(探究2提示中的图形)边界的顶点,先给其中的一个未知数赋值,如x =1,则不等式组可化为⎩⎪⎨⎪⎧y >1,y <1,1<4,显然该不等式组无解;再令x =2,则原不等式组化为⎩⎪⎨⎪⎧y >0,y <2,2<4,则0<y <2,又因为y ∈Z ,故y =1,所以x=2时只有一个整点.同样方法x =3时,有(3,0),(3,1),(3,2)三个整点在该区域内;x =4时在该区域内没有整点.总之在不等式组⎩⎪⎨⎪⎧x +y >2,x -y >0,x <4表示的平面区域内,共有4个整点.当然,也可在作图时,利用打网格线的方法寻求.【例3】已知不等式组⎩⎨⎧x >0,y >0,4x +3y ≤12.(1)画出不等式组表示的平面区域; (2)求不等式组所表示的平面区域的面积; (3)求不等式组所表示的平面区域内的整点坐标.[思路探究] (1)怎样画出不等式组表示的平面区域?(2)该平面区域是什么图形?如何求其面积?(3)整点是什么样的点?怎样求其坐标?[解] (1)不等式4x +3y ≤12表示直线4x +3y =12上及其左下方的点的集合;x >0表示直线x =0右方的所有点的集合;y >0表示直线y =0上方的所有点的集合,故不等式组表示的平面区域如图①所示.(2)如图①所示,不等式组表示的平面区域为直角三角形,其面积S =12×4×3=6.(3)当x=1时,代入4x+3y≤12,得y≤8 3,∴整点为(1,2),(1,1).当x=2时,代入4x+3y≤12,得y≤4 3,∴整点为(2,1).∴区域内整点共有3个,其坐标分别为(1,1),(1,2),(2,1).如图②.1.在应用平面区域时,准确画出不等式组表示的平面区域是解题的关键.2.画出不等式表示的平面区域后,常常要求区域面积或区域内整点的坐标.(1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形.(2)整点是横、纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠近直线的点,以免出现错误.3.投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,用数学关系式和图形表示上述要求.[解]设生产A产品x百吨,生产B产品y百吨,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0.用图形表示以上限制条件,得其表示的平面区域如图所示(阴影部分).1.本节课的重点是二元一次不等式表示的平面区域的判定,难点是二元一次不等式组所表示的平面区域的确定.2.本节课要掌握的规律方法(1)二元一次不等式(组)表示平面区域的确定方法. (2)求二元一次不等式组所表示的平面区域面积的方法.3.本节课的易错点为:画平面区域时,注意边界线的虚实问题.1.判断(正确的打“√”,错误的打“×”) (1)二元一次不等式x +y >2的解有无数多个.( )(2)二元一次不等式(组)的解集可以看成直角坐标系内的点构成的集合.( ) (3)二元一次不等式组中的每个不等式都必须是二元一次不等式.( ) [解析] (1)√.因为满足x +y >2的实数x ,y 有无数多组,故该说法正确. (2)√.因为二元一次不等式(组)的解为有序数对(x ,y ),有序数对可以看成直角坐标平面内点的坐标.故该说法正确.(3)×.因为在二元一次不等式组中可以含有一元一次不等式,如⎩⎪⎨⎪⎧ 2x +y -1≥0,3x +2<0也称为二元一次不等式组. [答案] (1)√ (2)√ (3)×2.下面给出的四个点中,位于⎩⎨⎧x +y -1<0,x -y +1>0表示的平面区域内的点是 ( )A .(0,2)B .(-2,0)C .(0,-2)D .(2,0) C [依次将A ,B ,C ,D 四个选项代入验证即可,只有C 符合条件. ]3.下列说法正确的是________.(填序号)①由于不等式2x -1>0不是二元一次不等式,故不能表示平面的某一区域; ②点(1,2)在不等式2x +y -1>0表示的平面区域内;③不等式Ax +By +C >0与Ax +By +C ≥0表示的平面区域是相同的; ④第二、四象限表示的平面区域可以用不等式xy <0表示.②④ [①错误.因为不等式2x -1>0虽然不是二元一次不等式,但它表示直线x =12右侧的区域.②正确.因为(1,2)是不等式2x +y -1>0的解.③错误.因为不等式Ax +By +C >0表示的平面区域不包括边界Ax +By +C =0,而不等式Ax +By +C ≥0表示的平面区域包括边界Ax +By +C =0.④正确.因为第二、四象限区域内的点(x ,y )中x ,y 异号,故xy <0.该说法正确.]4.在平面直角坐标系中,求不等式组⎩⎨⎧ x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积. [解] 在平面直角坐标系中,作出x +y -2=0,x -y +2=0和x =2三条直线,利用特殊点(0,0)可知可行域如图阴影部分所示,其面积S=4×2×12=4.。

不等式表示的平面区域

不等式表示的平面区域
结论二 直线定界,特殊点定域。
这种方法称为代点法
例1.画出下面二元一次不等式表示 的平面区域:
⑴ 2xy30 ⑵ 3x2y60
(1)不等式表示的区域是在哪条直线的一 侧?这条直线是画实线还是虚线? (2)运用代点法判断平面区域的位置时取 哪个特殊点代入较好?
例题示范:
⑴:画出不等式 2xy30 表示的平面
y 每部分中的点都有哪些特点? x+y-1=0
在直线的上方、下方取一些点:
上方:(0,2),(1,3), o
x
(0,5),(2,2)
下方:(-1,0),(0,0),
(0,-2),(1,-1)
分别把点的坐标代入式子中,会有什么结果?
猜想:直线同侧点的坐标是否使式子的值具有相
同的符号?
y
x+y-1>0
①含有两个未知数②未知数的最高次数为1,
我们称这样的不等式为 二元一次不等式 .
类似于方程组,我们把这四个不等式构成一个不等
式组,并记为
2x y 100
像这样的不等式组, 叫 二元一次不等式组
1 0 x 1 2 y 8 0 0 0
x
10,
x
Z
y 2 0 , y Z
2、探究二元一次不等式的解集表示的图形
不等式表示的平面区 域
一、引入
本班计划用少于100元的钱购买单价分别为2 元和1元的大、小彩球装点学校运动会的会场, 根据需要,大球数不少于10个,小球数不少 于20个,请你给出几种不同的购买方案?
二、新知探究:
1、建立二元一次不等式模型
(1)引入问题中的变量:
设购买大球x个,小球y个。
(2)把文字语言转化为数学符号语言:

二元一次不等式(组)表示的平面区域

二元一次不等式(组)表示的平面区域

二元一次不等式(组)表示的平面区域(1)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则实数a 的取值范围是( D )A .⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1]C .⎣⎢⎡⎦⎥⎤1,43D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞解析:不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x ,2x +y =2,得A ⎝ ⎛⎭⎪⎫23,23,由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0). 若原不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a≥43.(2)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积被直线y=kx +43分为2∶1两部分,则k 的值是1或5.解析:不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 的三等分点时,直线y =kx +43能把平面区域分为2∶1两部分.因为A (1,1),B (0,4),所以AB 靠近A 的三等分点为⎝ ⎛⎭⎪⎫23,2,靠近B 的三等分点为⎝ ⎛⎭⎪⎫13,3,当y =kx +43过点⎝ ⎛⎭⎪⎫23,2时,k =1,当y =kx +43过点⎝ ⎛⎭⎪⎫13,3时,k =5.1.二元一次不等式(组)表示平面区域的判断方法直线定界,测试点定域. 2.求平面区域的面积(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( B ) A .4 B .1 C .5D .无穷大解析:不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即所求,求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S=12×(2-1)×2=1.(2)若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( B )A .12 B .1 C .32D .2解析:在同一直角坐标系中作出函数y =2x 的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.。

2020年高考数学(理)之纠错笔记专题07 不等式(含解析)

2020年高考数学(理)之纠错笔记专题07 不等式(含解析)

专题07 不等式易错点1 忽视不等式隐含条件致误设2()f x ax bx =+,若1≤(1)f -≤2,2≤(1)f ≤4,则(2)f -的取值范围是________.【错解】由1(1)22(1)4f f ≤-≤⎧⎨≤≤⎩得1224a b a b ≤-≤⎧⎨≤+≤⎩①②,①+②得:332a ≤≤, ②−①得:112b ≤≤.由此得4≤(2)f -=4a −2b ≤11,所以(2)f -的取值范围是[4,11].【错因分析】错误的主要原因是多次使用同向不等式的可加性而导致了(2)f -的范围扩大.【试题解析】解法一:设(2)f -=m (1)f -+n (1)f (m 、n 为待定系数),则4a −2b =m (a −b )+n (a +b ),即4a −2b =(m+n )a +(n −m )b ,于是得42m n n m +=⎧⎨-=-⎩,解得31m n =⎧⎨=⎩.∴(2)f -=3(1)f -+(1)f .又∵1≤(1)f -≤2,2≤(1)f ≤4,∴5≤3(1)f -+(1)f ≤10,即5≤(2)f -≤10.解法二:由(1)(1)f a b f a b -=-⎧⎨=+⎩,得1[(1)(1)]21[(1)(1)]2a f fb f f ⎧=-+⎪⎪⎨⎪=--⎪⎩,∴(2)f -=4a −2b =3(1)f -+(1)f .又∵1≤(1)f -≤2,2≤(1)f ≤4,∴5≤3(1)f -+(1)f ≤10,即5≤(2)f -≤10.解法三:由题意,得1224a b a b ≤-≤⎧⎨≤+≤⎩,确定的平面区域如图中阴影部分所示.当(2)f -=4a −2b 过点31(,)22A 时,取得最小值3142522⨯-⨯=; 当(2)f -=4a −2b 过点B (3,1)时,取得最大值4×3−2×1=10,∴5≤(2)f -≤10. 【答案】[5,10](1)此类问题的一般解法:先建立待求整体与已知范围的整体的关系,最后通过“一次性”使用不等式的运算求得整体范围;(2)求范围问题如果多次利用不等式的性质有可能扩大变量取值范围.1.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是 A .[7,26]- B .[1,20]- C .[4,15] D .[1,15]【答案】B【解析】解:令m x y =-,4n x y =-,,343n m x n m y -⎧=⎪⎪⇒⎨-⎪=⎪⎩, 则855520941,33333z x y n m m m =-=--≤≤-∴≤-≤Q , 又884015333n n -≤≤∴-≤≤Q ,因此80315923z x y n m -=-=-≤≤,故选B.【名师点睛】本题考查了利用不等式的性质,求不等式的取值范围问题,利用不等式同向可加性是解题的关键.易错点2 忽略不等式性质成立的条件给出下列命题: ①若,0a b c <<,则c ca b<; ②若33acbc -->,则a b >;③若a b >且*k ∈N ,则kka b >;④若0c a b >>>,则a b c a c b>--. 其中正确命题的序号是 .【错解】①11a b a b <⇒>,又0c <,则c ca b<,故①正确;②当0c <时,a b <,故②不正确; ③正确;④由0c a b >>>知0c a c b ->->,∴110c a c b <<--,故a a b c a c b c b<<---,故④不正确.故填①③.【错因分析】①③忽略了不等式性质成立的条件;④中的推论显然不正确.【试题解析】①当ab <0时,c ca b<不成立,故①不正确; ②当c <0时,a >b 不成立,故②不正确;③当a =1,b =−2,k =2时,命题不成立,故③不正确; ④由a >b >0⇒−a <−b <0⇒0<c −a <c −b ,两边同乘以1()()c a c b --,得110c b c a<<--,又0a b >>,∴a a bc a c b c b>>---,故④正确.故填④. 【答案】④不等式的性质的几点注意事项(1)在应用传递性时,如果两个不等式中有一个带等号而另一个不带等号,那么等号是传递不过去的.如a ≤b ,b <c ⇒a <c .(2)在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).(3)“a >b >0⇒a n >b n (n ∈N *,n >1)”成立的条件是“n 为大于1的自然数,a >b >0”,假如去掉“n 为大于1的自然数”这个条件,取n =-1,a =3,b =2,那么就会出现“3-1>2-1”的错误结论;假如去掉“b >0”这个条件,取a =3,b =-4,n =2,那么就会出现“32>(-4)2”的错误结论.2.若非零实数,a b 满足a b <,则下列不等式成立的是A .1a b <B .2b aa b+≥C .2211ab a b<D .22a a b b +<+【答案】C【解析】A,1a a b b b--=不一定小于0,所以该选项不一定成立; B,如果a <0,b <0时, 2b aa b+≥不成立,所以该选项不一定成立;C, 2222110a bab a b a b --=<,所以2211ab a b<,所以该不等式成立; D, 22()()()()(1)a a b b a b a b a b a b a b +-=+-+-=-++-不一定小于0,所以该选项不一定成立. 故选:C【名师点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.错点3 忽略对二次项系数的讨论导致错误已知关于x 的不等式mx 2+mx +m -1<0恒成立,则m 的取值范围为______________. 【错解】由于不等式mx 2+mx +m -1<0对一切实数x 都成立, 所以m <0且Δ=m 2-4m (m -1)<0,解得m <0.故实数m 的取值范围为(-∞,0).【错因分析】由于本题中x 2的系数含有参数,且当m =0时不等式不是一元二次不等式,因此必须讨论m 的值是否为0.而错解中直接默认不等式为一元二次不等式,从而采用判别式法处理导致漏解. 【试题解析】由于不等式mx 2+mx +m -1<0对一切实数x 都成立,当m =0时,-1<0恒成立;当m ≠0时,易知m <0且Δ=m 2-4m (m -1)<0,解得m <0. 综上,实数m 的取值范围为(-∞,0]. 【答案】(-∞,0]解一元二次不等式的一般步骤一化:把不等式变形为二次项系数大于零的标准形式. 二判:计算对应方程的判别式.三求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. 四写:利用“大于取两边,小于取中间”写出不等式的解集.3.若不等式2(1)0mx m x m +-+>对实数x ∈R 恒成立,则实数m 的取值范围是 A .1m <-或13m > B .1m > C .13m >D .113m -<<【答案】C【解析】由题得0m =时,x <0,与已知不符,所以0m ≠. 当m ≠0时,220(1)40m m m ∆>=--<且,所以13m >. 综合得m 的取值范围为13m >. 故选C.【名师点睛】不等式20ax bx c >++的解是全体实数(或恒成立)的条件是当0a =时,0,0b c >=或当0a ≠时,00a ∆>⎧⎨<⎩;不等式20ax bx c <++的解是全体实数(或恒成立)的条件是当0a =时,0,0b c <=或当0a ≠时,00a ∆<⎧⎨<⎩.解不等式恒成立问题的技巧(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.易错点4 解含参不等式时不能正确分类导致错误解不等式(2)1()1a x a x ->∈-R .【错解】原不等式可化为(2)101a x x -->-,即(2)(1)01a x x x --->-, 等价于[(1)(21)](1)0a x a x ---->,即21()(1)01a x x a --->-, 因为21111a aa a --=--,所以 当01a a >-,即1a >或0a <时,2111a a ->-; 当01a a =-,即0a =时,2111a a -=-; 当01a a <-,即01a <<时,2111a a -<-.综上,当1a >或0a <时,原不等式的解集为{|1x x <或21}1a x a ->-; 当0a =时,原不等式的解集为{|1}x x ≠; 当01a <<时,原不等式的解集为21{|1a x x a -<-或1}x >. 【错因分析】显然当a =0时,原不等式是不成立的,故上述求解过程是错误的.实际上错解中的变形非同解变形,因为a -1的符号是不确定的,错解中仅考虑了当a -1>0时的情况. 【试题解析】显然当0a =时,原不等式是不成立的.当a ≠0时原不等式可化为(2)101a x x -->-,即(2)(1)01a x x x --->-, 等价于[(1)(21)](1)0a x a x ---->(*),当1a =时,(*)式可转化为(1)0x -->,即10x -<,即1x <.当1a >时,(*)式可转化为21()(1)01a x x a --->-. 当1a <时,(*)式可转化为21()(1)01a x x a ---<-. 又当1a ≠时,21111a aa a --=--, 所以当1a >或0a <时,2111a a ->-; 当01a <<时,2111a a -<-. 综上,当1a >时,原不等式的解集为{|1x x <或21}1a x a ->-; 当1a =时,原不等式的解集为{|1}x x <; 当01a <<时,原不等式的解集为21{|1}1a x x a -<<-; 当0a =时,原不等式的解集为∅; 当0a <时,原不等式的解集为21{|1}1a x x a -<<-.在求解此类问题时,既要讨论不等式中相关系数的符号,也要讨论相应方程两个根的大小.在不等式转化的过程中,要特别注意等价性;在比较两根的大小时,也要注意等价性,否则将导致分类讨论不完全而出错.4.已知函数()()2,1ax bf x a b x -=∈-R . (1)若关于x 的不等式20ax b ->的解集为1,2⎛⎫+∞⎪⎝⎭,求()0f x <解集;(2)若12a =,解不等式()0f x >的解集. 【答案】(1)1,12⎛⎫⎪⎝⎭;(2)见解析【解析】(1)()21ax bf x x -=-. ∵不等式20ax b ->的解集为1,2⎛⎫+∞⎪⎝⎭, ∴0a >,0a b =>,()()()()210021101a x f x a x x x -<⇔<⇔--<-,∴()0f x <的解集为1,12⎛⎫ ⎪⎝⎭. (2)12a =时,不等式()()()()00101x bf x f x x b x x ->⇔=>⇔-->-, ①当1b >时,不等式的解集为()(),1,b -∞+∞U ; ②当1b =时,不等式的解集为{}1x x ≠;③当1b <时时,不等式的解集为()(),1,b -∞+∞U .易错点5 不能准确把握目标函数的几何意义致误设变量x ,y 满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数z =3x −2y 的最小值为A .−5B .−4C .−2D .3【错解】不等式组表示的平面区域如图所示,由图可知,当直线z =3x −2y 平移到过点(1,0)时取得最小值,即z min =3×1−2×0=3.故选D.【错因分析】本题易出现以下两个错误:一是理所当然地把目标函数“z”跟“截距”画上等号,没有正确理解目标函数的意义致错;二是不能正确区分直线斜率的“陡峭”程度,导致最优解不正确,相应地导致目标函数的最小值求解错误.【试题解析】不等式组表示的平面区域是如图所示的阴影部分,结合图形,可知当直线3x−2y=z平移到过点(0,2)时,z=3x−2y的值最小,最小值为−4,故选B.形如z=Ax+By(B≠0),即A zy xB B=-+,zB为该直线在y轴上的截距,z的几何意义就是该直线在y轴上截距的B倍,至于z与截距能否同时取到最值,还要看B的符号.5.若实数x,y满足2303301x yx yy+-≤+-≥≤⎧⎪⎨⎪⎩,则z x y=-的最大值是A.1-B.0 C.3 D.4【答案】C【解析】作出不等式组2303301x yx yy+-≤+-≥≤⎧⎪⎨⎪⎩表示的平面区域,如图中阴影部分所示,设z =x −y ,得y =x −z ,平移直线y =x −z ,由图象可知当直线y =x −z 经过点B(3,0)时,直线y =x −z 的截距最小,此时z 最大. 此时z 的最大值为z =3−0=3,故选C.易错点6 忽略等号成立的一致性导致错误若x >0,y >0,且x +2y =1,则11x y+的最小值为_______________. 【错解】因为x >0,y >0,所以1=x +2y ≥22xy 8xy ≤1,即xy ≤18,故1xy ≥8. 因为11x y +≥12xy11x y +≥2842=11x y +的最小值为42 【错因分析】在求解过程中使用了两次基本不等式:x +2y ≥22xy 11x y +≥12xy“=”需满足x =2y 与x =y ,互相矛盾,所以“=”不能同时取到,从而导致错误. 【试题解析】因为x +2y =1,x >0,y >0,所以1111(2)()x y x y x y +=++=23322x yy x++≥+,当且仅当2x y y x =,即2x y =,即221,12x y ==-时取等号.故11x y +的最小值为322+连续应用基本不等式求最值时,要注意各不等式取等号时的条件是否一致,若不能同时取等号,则连续用基本不等式是求不出最值的,此时要对原式进行适当的拆分或合并,直到取等号的条件成立.6.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13 B .38C .37D .1【答案】A【解析】因为40x y xy +-=,化简可得4x y xy +=,左右两边同时除以xy 得141y x +=.求3x y+的最大值,可先求333x y x y+=+的最小值.因为1413333x y x y y x ⎛⎫⎛⎫⎛⎫+⨯=+⨯+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭4143333x y y x =+++1433≥+3≥, 当且仅当433x yy x=时取等号. 所以3x y +的最大值为13. 故选A.【名师点睛】本题考查了基本不等式的简单应用,关键要注意“1”的灵活应用,属于基础题.一、不等关系与不等式 1.比较大小的常用方法(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论. 注意:作商时各式的符号为正,若都为负,则结果相反. (3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值. ②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值.2.不等式的性质及应用(1)应用不等式性质解题的指导思想:理解不等式的性质时,首先要把握不等式性质成立的条件,特别是实数的正负和不等式的可逆性;其次,要关注常见函数的单调性对于理解不等式性质的指导性.(2)解决此类问题常用的两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件. 3.求代数式的取值范围的一般思路(1)借助性质,转化为同向不等式相加进行解答; (2)借助所给条件整体使用,切不可随意拆分所给条件; (3)结合不等式的传递性进行求解;(4)要注意不等式同向可乘性的适用条件及整体思想的运用. 二、一元二次不等式及其解法 1.解一元二次不等式的一般步骤(1)一化:把不等式变形为二次项系数大于零的标准形式. (2)二判:计算对应方程的判别式.(3)三求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)四写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含有参数的一元二次不等式的步骤(1)二次项系数若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式. (2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式. 3.解不等式恒成立问题的技巧(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.即①若()f x 在定义域内存在最大值m ,则()f x a <(或()f x a ≤)恒成立⇔a m >(或a m ≥); ②若()f x 在定义域内存在最小值m ,则()f x a >(或()f x a ≥)恒成立⇔a m <(或a m ≤);③若()f x 在其定义域内不存在最值,只需找到()f x 在定义域内的最大上界(或最小下界)m ,即()f x 在定义域内增大(或减小)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可以取到. (2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.4.已知不等式的解集求参数的解题方法已知不等式的解集求参数问题的实质是考查三个“二次”间的关系.其解题的一般思路为:(1)根据所给解集确定相应方程的根和二次项系数的符号;(2)由根与系数的关系,或直接代入方程,求出参数值或参数之间的关系,进而求解. 5.简单分式不等式的解法若()f x 与()g x 是关于x 的多项式,则不等式()0()f xg x >(或<0,或≥0,或≤0)称为分式不等式.解分式不等式的原则是利用不等式的同解原理将其转化为有理整式不等式(组)求解.即()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧>⇒⇒⋅>⎨⎨><⎩⎩或;()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧<⇒⇒⋅<⎨⎨<>⎩⎩或; ()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≥⎧≥⇒⇒⋅>=⎨≠⎩或; ()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≤⎧≤⇒⇒⋅<=⎨≠⎩或.对于形如()()f xg x >a (或<a )的分式不等式,其中a ≠0,求解的方法是先把不等式的右边化为0,再通过商的符号法则,把它转化为整式不等式求解. 6.简单高次不等式的解法不等式的最高次项的次数高于2的不等式称为高次不等式.解高次不等式常用的方法有两种:(1)将高次不等式()0(0)f x ><中的多项式()f x 分解成若干个不可约因式的乘积,根据实数运算的符号法则,把它等价转化为两个或多个不等式(组).于是原不等式的解集就是各不等式(组)解集的并集.(2)穿针引线法:①将不等式化为标准形式,一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积;②求出各因式的实数根,并在数轴上标出;③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶次重根穿而不过(奇过偶不过);④记数轴上方为正,下方为负,根据不等式的符号写出解集. 三、简单的线性规划问题1.画二元一次不等式表示平面区域的一般步骤为:第一步,“直线定界”,即画出边界0Ax By C ++=,要注意是虚线还是实线;第二步,“特殊点定域”,取某个特殊点00(,)x y 作为测试点,由00Ax By C ++的符号就可以断定0Ax By C ++>表示的是直线0Ax By C ++=哪一侧的平面区域; 第三步,用阴影表示出平面区域. 2.复杂不等式(组)表示的平面区域高次不等式、绝对值不等式及双向不等式都可以转化为不等式(组),从而画出这些不等式(组)表示的平面区域.对于含绝对值的不等式表示的平面区域的作法:先分情况讨论去掉绝对值符号,从而把含绝对值的不等式转化为一般的二元一次不等式(组),然后按照“直线定界,特殊点定域”的方法作出所求的平面区域. 3.求平面区域面积问题的步骤(1)画出不等式组表示的平面区域.(2)判断平面区域的形状(三角形区域是比较简单的情况),求出各边界交点的坐标.(3)若图形为规则图形,则直接利用面积公式求解;若图形为不规则图形,则运用割补法计算平面区域的面积,其中求解距离问题时常常用到点到直线的距离公式. 4.简单线性规划问题的解法在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤可概括为“画、移、求、答”,即:(1)画:在平面直角坐标系中,画出可行域和直线0ax by += (目标函数为z ax by =+); (2)移:平行移动直线0ax by +=,确定使z ax by =+取得最大值或最小值的点; (3)求:求出使z 取得最大值或最小值的点的坐标(解方程组)及z 的最大值或最小值; (4)答:给出正确答案. 5.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 6.求线性目标函数最值的两种方法(1)平移直线法:作出可行域,正确理解z 的几何意义,确定目标函数对应的直线,平移得到最优解.对一个封闭图形而言,最优解一般在可行域的顶点处取得,在解题中也可由此快速找到最大值点或最小值点.(2)顶点代入法:①依约束条件画出可行域;②解方程组得出可行域各顶点的坐标;③分别计算出各顶点处目标函数z ax by =+的值,经比较后得出z 的最大(小)值. 求解时需要注意以下几点:(ⅰ)在可行解中,只有一组(x ,y )使目标函数取得最值时,最优解只有1个.如边界为实线的可行域当目标函数对应的直线不与边界平行时,会在某个顶点处取得最值.(ⅰ)同时有多个可行解取得一样的最值时,最优解有多个.如边界为实线的可行域,目标函数对应的直线与某一边界线平行时,会有多个最优解.(ⅰ)可行域一边开放或边界线为虚线均可导致目标函数找不到相应的最值,此时也就不存在最优解. 四、基本不等式1.利用基本不等式求最值的方法利用基本不等式,通过恒等变形及配凑,使“和”或“积”为定值.常见的变形手段有拆、并、配. (1)拆——裂项拆项对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件. (2)并——分组并项目的是分组后各组可以单独应用基本不等式,或分组后先由一组应用基本不等式,再组与组之间应用基本不等式得出最值.(3)配——配式配系数有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值. 注意:①基本不等式涉及的量为正实数,同时验证等号能否取到.②分子、分母有一个一次,一个二次的分式结构的函数以及含有两个变量的函数,适合用基本不等式求最值.取倒数以应用基本不等式是对分式函数求最值的一种常见方法. 2.有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}M N x x =-<<I . 故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.设全集()(){}130U x x x =∈+-≤Z ,集合{}0,1,2A =,则U A ð= A .{}1,3- B .{}1,0-C .{}0,3D .{}1,0,3-【答案】A【解析】由()()130x x +-≤,解得13x -≤≤,故{}1,0,1,2,3U =-,所以{}1,3U A =-ð,故选A. 3.已知1a b >>,01c <<,下列不等式成立的是 A .a b c c > B .ac bc < C .log log c c a b > D .c c ba ab <【答案】D【解析】由题意,对于A 中,由1a b >>,01c <<知,a b c c < ,故本选项错误. 对于B 中,由1a b >>,01c <<知,ac bc >,故本选项错误. 对于C 中,由1a b >>,01c <<知,log log c c a b <,故本选项错误.对于D 中,由1a b >>,01c <<知,-11c c a b -< ,则11c c ab a ab b --⋅<⋅,即c c ba ab <. 故本选项正确. 故选:D .【名师点睛】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质,合理准确推算是解答的关键,着重考查了推理与运算能力,属于基础题.4.关于x 的不等式240ax x a -+≥的解集是(,)-∞+∞,则实数a 的取值范围是 A .1,2⎛⎤-∞ ⎥⎝⎦B .1,4⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,4⎡⎫+∞⎪⎢⎣⎭【答案】D【解析】不等式240ax x a -+≥的解集是(,)-∞+∞, 即x ∀∈R ,240ax x a -+≥恒成立, 当0x =,0a ≥,当0x ≠时,14||||a x x ≥+, 因为1144||||x x ≤+,当且仅当2x =等号成立,所以1,4a ⎡⎫∈+∞⎪⎢⎣⎭. 故选:D .5.任意正数x ,不等式21ax x ≤+恒成立,则实数a 的最大值为 A .1BC .2D.2【答案】C【解析】0x >Q ,211x a x x x+∴≤=+,又12x x +≥=Q (当且仅当11x x x =⇒=取到等号), 2a ∴≤.【名师点睛】本题主要考查了含参数不等式恒成立时参数的取值范围,常用的方法有分离参数法,再结合基本不等式,转化成求最值的问题.6.【2019年高考天津卷理数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为A .2B .3C .5D .6【答案】C【解析】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值.由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -, 所以max 4(1)15z =-⨯-+=. 故选C.【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求. 7.【2019年高考全国II 卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【名师点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断. 8.已知m,n ∈(0,+∞),若m =m n+2,则当m 22+2n 2−4m −2n 取得最小值时,m +n =A .2B .4C .6D .8【答案】C 【解析】因为m =m n+2,所以mn =m +2n ,m 22+2n 2−4m −2n =m 22+2n 2−2,下面只需求解m 22+2n 2的最小值即可.因为mn =m +2n ≥2√2m n ,故mn ≥8,又m 22+2n 2≥mn =8,当且仅当m=2n =4时,等号成立,此时m+n =6.9.设实数x,y 满足{x −y −2≤0x +2y −4≥0x ≥0,则x 2+y 2的最小值为A .4B .165C .689D .0【答案】B【解析】画出可行域如图所示,则目标函数x 2+y 2的几何意义是可行域内的点到原点距离的平方,所以x 2+y 2的最小值为165,故选B .10.若存在实数x,y 使不等式组{x −y ≥0x −3y +2≤0x +y −6≤0与不等式x −2y +m ≤0都成立,则实数m 的取值范围是A .m ≥0B .m ≤3C .m ≥1D .m ≥3【答案】B【解析】由题意作出{x −y ≥0x −3y +2≤0x +y −6≤0所表示的平面区域如图中阴影部分所示,x −2y +m ≤0表示了直线上方的部分,故由{y =6−xx =y ,解得x =3,y =3,所以3-3×2+m ≤0,解得m ≤3. 故选B.11.已知,x y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,2z x y =+的最大值为m ,若正数,a b 满足a b m +=,则14a b +的最小值为A . B.32C .D .52【答案】B【解析】作出不等式组2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩对应的平面区域如图(阴影部分):由2z x y =+得2y x z =-+,平移直线2y x z =-+,由图象可知当直线2y x z =-+经过点30A (,)时,直线2y x z =-+的截距最大,此时z 最大.代入目标函数2z x y =+得236z =⨯=,即6m =.则141146()()6a b a b a b a b +=∴+=++,1413145662b a a b =+++≥+=()(,当且仅当24a b ==,时取等号,故选B .【名师点睛】本题主要考查线性规划以及基本不等式的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.首先作出不等式组对应的平面区域,再利用目标函数的几何意义,求最大值m ,然后根据基本不等式的性质进行求解即可.12.已知关于x 的不等式x 2−4ax +6a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax1x 2的最小值是A .√63B .23√3C .23√6D .43√3【答案】C【解析】由题意可知,x 1,x 2是方程x 2−4ax +6a 2=0两个根,则x 1+x 2=4a,x 1x 2=6a 2,所以x 1+x 2+ax 1x 2=4a +16a ≥23√6,当且仅当a =√612时,等号成立. 13.若函数y =R ,则实数k 的取值范围是______.【答案】[)1,+∞【解析】∵函数y =R ,∴2210kx x -+≥对任意x ∈R 恒成立, 当0k =时,不等式化为210x -+≥,对任意x ∈R 不恒成立;当0k ≠时,则0440k k >⎧⎨∆=-≤⎩,解得1k ≥,综上,实数k 的取值范围是[)1,+∞.故答案为[)1,+∞.【名师点睛】本题考查函数的定义域及其求法,考查数学转化思想方法及分类讨论的数学思想方法,是中档题.14.实数,x y 满足1,, 4.x y x x y ≥⎧⎪≥⎨⎪+≤⎩能说明“若z x y =+的最大值是4,则1,3x y ==”为假命题的一组(,)x y 值是__________.【答案】(2,2)(答案不唯一)【解析】实数x ,y 满足1 4.x y x x y ≥⎧⎪≥⎨⎪+≤⎩,,的可行域以及x +y =4的直线方程如图.能说明“若z =x +y 的最大值为4,则x =1,y =3”为假命题的一组(x ,y )值是(2,2)(线段BC 上的点均符合题意). 故答案为:(2,2)(答案不唯一).【名师点睛】本题考查线性规划的简单应用,画出可行域是解题的关键.15.已知a 是任意实数,则关于x 的不等式(a 2−a +2017)x 2<(a 2−a +2017)2x+3的解集为 .【答案】{x|−1<x <3}【解析】∵a 2−a +2017=(a −12)2+2017−14>1,∴(a 2−a +2017)x 2<(a 2−a +2017)2x+3,即x 2<2x +3,解得−1<x <3.16.【2019年高考天津卷理数】设0,0,25x y x y >>+=__________.【答案】方法二:0,0,25,x y x y >>+=Q0,xy ∴>===≥.当且仅当3xy =时等号成立,【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立. 17.已知m >0,n >0,若2m =1−2n ,则3m +27n的最小值为 .【答案】96【解析】因为2m +2n =1,m >0,n >0,所以3m +27n =(3m+27n)(2m +2n )=6(10+n m +9m n)≥6(10+2√nm ·9m n)=96,当且仅当n m =9mn ,即m =18,n =38时,等号成立.18.已知实数x ,y 满足不等式组{x −y +2≥0,x +y −4≥0,2x −y −5≤0,则z =x 2+y 2-10y+25的最大值为 .【答案】65【解析】作出不等式组所表示的可行域,如图中阴影部分所示,因为z =x 2+y 2-10y+25=(x -0)2+(y -5)2的几何意义表示可行域中的点(x ,y )到定点M (0,5)的距离的平方.结合图象易知点C 到点M 的距离最大, 由{x −y +2=0,2x −y −5=0,得C (7,9),则z max =(7-0)2+(9-5)2=65.19.设实数x ,y 满足{x −y −2≤0,x +2y −5≥0,y −2≤0,则u =y 2−x 2xy 的取值范围是 . 【答案】[-83,32]【解析】不等式组表示的平面区域如图中阴影部分所示.其中A (3,1),B (1,2),C (4,2),yx 表示动点(x ,y )与原点连线的斜率,因为x ,y >0,所以当yx 取最大(小)值时,xy 取最小(大)值,由图可知当(x ,y )=(1,2)时,(yx )max =2,同时(xy )min =12,所以u max =(yx )max -(xy )min =32,当(x ,y )=(3,1)时,(yx )min =13,同时(xy )max =3,所以u min =(yx )min -(xy )max =-83,所以u 的取值范围是[-83,32].20.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin601sin60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此()11444559,c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当23c a ==时取等号,则4a c +的最小值为9.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.21.【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;。

不等式表示的平面区域

不等式表示的平面区域
1
1
(x,y) ⊕ X
因为点P(x0,y0)是直线x+y-1=0 上任意点, 所以对于直线x+y-1=0右上方的任意 点(x,y),x+y-1>0都成立
同理,对于直线x+y-1=0左下方的任意点(x,y), x+y-1<0都成立。
所以在平面直角坐标系中,以二元一次不等式x+y-1>0
的解为坐标的点的集合是在直线x+y-1=0右上方的平面 Y 区域。
小结:以直线定出界,再以特殊点定出区域。
③巩固:画出下列不等式表示的平面区域: ⑴x-y+1<0 ⑶2x+5y-10≥0
Y 1 -1
⑵2x+3y-6>0 ⑷4x-3y≤12
Y
2
X 3
o
X
O
Y 2 X 5
Y
O -4
3
O
X
例2画出不等式组
x-y+5≥0 x+y≥0
表示的平面区域 Y
x≤3 分析:不等式组表示的平面区域
不直线哪一侧的区域。
当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)
或(1,0)当特殊点。
⒉若“>”或“<”时可把直线画成虚线,若“≥”或“≤” 时可把直线画成实线。
例1 画出直线2x+y-6<0 表示的平面区域。 解:先画直线2x+y -6 =0(画成虚线) Y 取原点(0,0)代入2x+y- 6 ∵ 2×0+ 0 -6= - 6<0 O ∴ 原点在2x+y-6 <0 表示平面区域内 3 X 6
在平面直角坐标系中,以二元一次不 等式x+y-1<0的解为坐标的点的 集合是在直线x+y-1=0左下方的 平面区域。 结论:二元一次不等式Ax+By+C>0在平 面直角坐标系中表示直线Ax+By+C=0的 某一侧所有点组成的平面区域(虚线表示区域 不包括边界直线)。 O X

高考数学培优复习:第7章 3 第3讲 二元一次不等式(组)及简单的线性规划问题新题培优练

高考数学培优复习:第7章 3 第3讲 二元一次不等式(组)及简单的线性规划问题新题培优练

[基础题组练]1.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )解析:选C.用特殊点代入,比如(0,0),容易判断为C.2.(2019·开封市高三定位考试)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是( )A.132 B.116 C .32D .64解析:选C.作出不等式组表示的平面区域,如图中阴影部分所示,设u =x -2y ,由图知,当u =x -2y 经过点A (1,3)时取得最小值,即u min =1-2×3=-5,此时z =⎝⎛⎭⎫12x -2y取得最大值,即z max =⎝⎛⎭⎫12-5=32,故选C.3.(2018·高考北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D.若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D.4.(2019·长春市质量检测(二))已知动点M (x ,y )满足线性条件⎩⎪⎨⎪⎧x -y +2≥0,x +y ≥0,5x +y -8≤0,定点N (3,1),则直线MN 斜率的最大值为( )A .1B .2C .3D .4解析:选C.不等式组表示的平面区域为△ABC 内部及边界,如图所示,数形结合可知,当M 点与B 点重合时,MN 的斜率最大.由⎩⎪⎨⎪⎧5x +y -8=0,x +y =0,得B (2,-2).MN 斜率的最大值为1+23-2=3.5.(2019·陕西省质量检测(一))若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为________.解析:法一:由约束条件可知可行域的边界分别为直线y =1,x +y =0,x -y -2=0,则边界的交点分别为(-1,1),(3,1),(1,-1),分别代入z =x -2y ,得对应的z 分别为-3,1,3,可得z 的最大值为3.法二:作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0并平移,由图可知,当直线过点(1,-1)时,z 取得最大值,即z max =1-2×(-1)=3. 答案:36.(2019·广东茂名模拟)已知点A (1,2),点P (x ,y )满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,O 为坐标原点,则z =OA →·OP →的最大值为________.解析:由题意知z =OA →·OP →=x +2y ,作出可行域如图阴影部分,作直线l 0:y =-12x ,当l 0移到过A (1,2)的l 的位置时,z 取得最大值,即z max =1+2×2=5.答案:57.(2019·石家庄市质量检测(二))设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -3≤0,x +y ≥3,y -2≤0,则y +1x的最大值为________.解析:作出可行域,如图中阴影部分所示,而y +1x 表示区域内的动点(x ,y )与定点(0,-1)连线的斜率的取值范围,由图可知,当直线过点C (1,2)时,斜率最大,为2-(-1)1-0=3.答案:38.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解:(1)作出可行域如图中阴影部分所示,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1. 所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).[综合题组练]1.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②綈p ∨q ③p ∧綈q ④綈p ∧綈q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A.通解 作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧綈q 正确.故选A.优解 在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧綈q 正确.故选A.2.(2019·重庆六校联考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D.画出约束条件所表示的可行域,如图中阴影部分所示.令z =0,画出直线y =ax ,a =0显然不满足题意.当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与x +y -2=0平行,此时a =-1;当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与2x -y +2=0平行,此时a =2.综上,a =-1或2.3.(2019·安徽合肥一模)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千克B .360千克C .400千克D .440千克解析:选 B.设生产甲产品x 件,生产乙产品y 件,利润z 千元,则⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,z =2x +y ,作出⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +3y ≤480,6x +y ≤960表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N )时,z 取得最大值,为360.4.(综合型)实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 坐标为(7,9),显然点B到直线x +2y -4=0的距离最大,此时z max =21.答案:21。

一元二次不等式组与平面区域

一元二次不等式组与平面区域

平面区域的性质
连通性
平面区域是连通的,即任意两点都可 以用一条完全位于该区域内的路径连 接起来。
封闭性
凸性
如果平面区域内的任意两点所连的线 段都完全位于该区域内,则该区域是 凸的。凸区域具有良好的几何性质, 便于进行数学分析和计算。
如果平面区域是由一个或多个闭合曲 线围成,则该区域是封闭的。封闭区 域具有明确的边界和内部。
一元二次不等式组 与平面区域
contents
目录
• 引言 • 一元二次不等式组的解法 • 平面区域的表示方法 • 一元二次不等式组与平面区域的关系 • 一元二次不等式组与平面区域的应用 • 总结与展望
01
CATALOGUE
引言
目的和背景
研究目的
探讨一元二次不等式组与平面区域的关 系,以及如何利用不等式组表示平面区 域。
VS
研究背景
一元二次不等式组是数学中的重要概念, 与平面区域有着密切的联系。在实际问题 中,经常需要利用不等式组来表示某些平 面区域,例如经济学中的生产可能性边界 、物理学中的相图等。因此,研究一元二 次不等式组与平面区域的关系具有重要的 理论意义和应用价值。
一元二次不等式组的概念
一元二次不等式
只含有一个未知数,且未知数的最高次数为2的不等式。
解的判别与性质
判别式
一元二次方程的判别式为Δ=b²-4ac,根据判别式的值可以 判断方程的根的情况。
解的性质
当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有 两个相等的实根(即一个重根);当Δ<0时,方程无实根 。
不等式组的解集性质
不等式组的解集可能是空集、一个区间或多个区间的并集 ,具体取决于不等式组中各个不等式的解集及其之间的关 系。

二元一次不等式(组)所表示的平面区域知识讲解

二元一次不等式(组)所表示的平面区域知识讲解

(2) 2 y 1 ≥ 0
x 3 ≤ 0
y
3
则它们的交集
2
就是已知不等式
1
组所表示的区域。
-1 O 1
2y+1=0 -1
-2
2x-3y+2=0
23 x-3=0
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨。如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域。
例1.画出下面二元一次不等式表示的平 面区域:
(1)2x-y-3>0; (2)3x+2y-6≤0.
解:(1)所求的平面区 域不包括直线,用虚线 画直线l:2x-y-3=0,
将原点坐标(0,0)代入 2x-y-3,得
y 2x-y-3=0 2
1
-1 O -1
x 12
-2
2×0-0-3=-3<0,
2x-y-3>0
二元一次不等式的一般形式为 Ax+By+C>0 或 Ax+By+C<0,
现在我们来探求二元一次不等式解集 的几何意义。
已知直线l:Ax+By+C=0,它把平面分 为两部分,每个部分叫做开半平面,开半 平面与l的并集叫做闭半平面。
根据直线方程的意义,凡在l上的点的 坐标都满足方程①,而不在直线l上的点 的坐标都不满足方程①。
-1 O -1 -2
x+y-1=0 x 12
这使我们猜想:l同侧的点的坐标是否 使式子x+y-1的值具有相同的符号?要么 都大于零,要么都小于零。

高三数学二元一次不等组表示的平面区域试题答案及解析

高三数学二元一次不等组表示的平面区域试题答案及解析

高三数学二元一次不等组表示的平面区域试题答案及解析1.不等式组表示的平面区域的面积为______________.【答案】11【解析】作出可行域如图中阴影部分所示,易求得C(4,0),B(4,2),D(0,3),A(2,3),所以阴影部分面积为12-=11.考点:二元一次不等式组表示的平面区域2.已知点A(a,1)与点B(a+1,3)位于直线x-y+1=0的两侧,则a的取值范围是 .【答案】【解析】由已知得,即答案为.【考点】不等式表示的平面区域.3.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域,上的一个动点,则·的取值范围是()A.[-1,0]B.[0,1]C.[0,2]D.[-1,2]【答案】C【解析】·=-x+y,令z=-x+y,做出可行域,求线性规划问题.4.若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为 .【答案】3【解析】时,平面区域是一个无限区域,故.作出不等式组表示的平面区域如图所示,易得点,所以.【考点】不等式组表示的平面区域.5.已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(,1),则z=·的最大值为().A.4B.3C.4D.3【答案】C【解析】作不等式组表示的平面区域D,如图所示.又z=·=(x,y)·(,1)=x+y,∴y=-x+z.令l0:y=-x,平移直线l,当过点M(,2)时,截距z有最大值.故zmax=×+2=46.如果实数满足,若直线将可行域分成面积相等的两部分,则实数的值为______.【答案】【解析】画出可行域,如图所示的阴影部分,直线过定点(1,0),要使得其平分可行域面积,只需过线段的中点(0,3)即可,故.【考点】1、二元一次不等式组表示的平面区域;2、直线的方程.7.在平面直角坐标系中,记不等式组所表示的平面区域为.在映射的作用下,区域内的点对应的象为点,则由点所形成的平面区域的面积为()A.B.C.D.【答案】C【解析】由得,代入得,,画出平面区域,面积为8.【考点】1、映射的概念;2、不等式组表示的平面区域.8.已知实数x,y满足,则z=2|x|+y的取值范围是_________【答案】[-1,11]【解析】作出可行域与目标函数,结合图象可得目标函数经过(0,-1)时,有最小值-1,经过点(6,-1)时有最大值11,所以取值范围是[-1,11]。

2020版高考数学(理)新探究大一轮分层演练:第七章 不等式 第3讲 含解析

2020版高考数学(理)新探究大一轮分层演练:第七章 不等式 第3讲 含解析

1.(2019·长春模拟)不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )解析:选B.x -3y +6≥0表示直线x -3y +6=0以及该直线下方的区域,x -y +2<0表示直线x -y +2=0上方的区域,故选B.2.二元一次不等式组⎩⎪⎨⎪⎧2x +3y ≤12,2x +3y ≥-6,0≤x ≤6所表示的平面区域的面积为( )A .18B .24C .36D .1213解析:选C.不等式组所表示的平面区域如图阴影部分,四边形ABCD 是平行四边形,由图中数据可知其面积S =(4+2)×6=36.3.(2019·合肥市第一次教学质量检测)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0x -y ≤0x +y -6≤0,则x -2y 的最大值为( ) A .-9 B .-3 C .-1D .3解析:选C.画出可行域,如图中阴影部分所示,令z =x -2y ,可知z =x -2y 在点(1,1)处取得最大值-1,故选C.4.(2019·河南郑州模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1,则z =2|x -2|+|y |的最小值是( )A .6B .5C .4D .3解析:选C.画出不等式组⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1表示的可行域,如图阴影部分,其中A (2,4),B (1,5),C (1,3),所以x ∈[1,2],y ∈[3,5].所以z =2|x -2|+|y |=-2x +y +4,当直线y =2x -4+z 过点A (2,4)时,直线在y 轴上的截距最小,此时z 有最小值,所以z min =-2×2+4+4=4,故选C.5.(2019·河南郑州一中押题卷二)若x ,y 满足约束条件⎩⎨⎧3x -y +3≥0,3x +y -3≤0,y ≥0,则当y +1x +3取最大值时,x +y 的值为( ) A .-1 B .1 C .- 3D. 3解析:选D.作出可行域如图中阴影部分所示,y +1x +3的几何意义是过定点M (-3,-1)与可行域内的点(x ,y )的直线的斜率,由图可知,当直线过点A (0,3)时,斜率取得最大值,此时x ,y 的值分别为0,3,所以x +y = 3.故选D.6.(2017·高考全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析:作出约束条件表示的可行域如图中阴影部分所示,作出直线l :3x -4y =0,平移直线l ,当直线z =3x -4y 经过点A (1,1)时,z 取得最小值,最小值为3-4=-1.答案:-17.(2019·广东茂名模拟)已知点A (1,2),点P (x ,y )满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,O 为坐标原点,则z =OA →·OP→的最大值为________.解析:由题意知z =OA →·OP →=x +2y ,作出可行域如图阴影部分,作直线l 0:y =-12x ,当l 0移到过A (1,2)的l 的位置时,z 取得最大值,即z max =1+2×2=5.答案:58.(2019·西安市八校联考)设实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0x +y ≥0y ≤a ,若z =x +2y 的最大值为3,则a 的值是________.解析:依题意得a >0,在平面直角坐标系内大致画出不等式组⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a 表示的平面区域,结合图形可知,直线z =x +2y 经过直线y =a 与直线x -y =0的交点,即点(a ,a )时,z =x +2y 取得最大值3,因此a +2a =3,a =1. 答案:19.已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围. 解:(1)直线AB 、AC 、BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ][4×(-3)-3×2-a ]<0, 即(14-a )(-18-a )<0, 得a 的取值范围是-18<a <14. 10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx,求z 的最小值;(2)设z =x 2+y 2+6x -4y +13,求z 的最大值.解:由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.作出(x ,y )的可行域如图阴影部分所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0, 解得A ⎝⎛⎭⎫1,225. 由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1). 由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2). (1)因为z =y x =y -0x -0,所以z 的值即是可行域中的点与原点O 连线的斜率,观察图形可知z min =k OB=25. (2)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中, d max =(-3-5)2+(2-2)2=8, 故z 的最大值为64.1.(2019·河南安阳模拟)已知z =2x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,且z 的最大值是最小值的4倍,则a 的值是( )A.211B.14 C .4D.112解析:选B.作出不等式组对应的平面区域如图:由z =2x +y 得y =-2x +z , 平移直线y =-2x ,由图可知当直线y =-2x +z 经过点A 时,直线的纵截距最大, 此时z 最大,由⎩⎪⎨⎪⎧x +y =2,y =x 解得⎩⎪⎨⎪⎧x =1,y =1, 即A (1,1),z max =2×1+1=3,当直线y =-2x +z 经过点B 时,直线的纵截距最小, 此时z 最小,由⎩⎪⎨⎪⎧x =a ,y =x 解得⎩⎪⎨⎪⎧x =a ,y =a , 即B (a ,a ),z min =2×a +a =3a , 因为z 的最大值是最小值的4倍, 所以3=4×3a ,即a =14,故选B.2.(2019·石家庄市教学质量检测(二))若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0x -y ≤0x 2+y 2≤4,则z =y -2x +3的最小值为( )A .-2B .-23C .-125D.2-47解析:选C.作出不等式组表示的平面区域,如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当区域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125,故选C.3.(2019·陕西省高三教学质量检测试题(一))点(x ,y )满足不等式|x |+|y |≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________.解析:|x |+|y |≤1所确定的平面区域如图中阴影部分所示,目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y )到点P (2,2)距离的平方,由图可知Z 的最小值为点P (2,2)到直线x +y =1距离的平方,即为⎝⎛⎭⎪⎫2+2-122=92.答案:924.(2019·山西五校联考)不等式组⎩⎪⎨⎪⎧y -1≥0,x -y +2≥0,x +4y -8≤0表示的平面区域为Ω,直线x =a (a >1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z =ax +y 的最大值为________.解析:如图,平面区域Ω为△ABC 及其内部,作直线x =a (1<a <4)交BC 、AC 分别于点E 、F .由题意可知S △EFC =15S △ABC ,则12(4-a )·⎝⎛⎭⎫-14a +2-1=15×12×5×1=12,可得a =2,所以目标函数z =ax +y 即为z =2x +y ,易知z =2x +y 在点C (4,1)处取得最大值,则z max =9.答案:95.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1.所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).6.(2017·高考天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解:(1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.。

第39讲 二元一次不等式(组)与简单的线性规划问题

第39讲 二元一次不等式(组)与简单的线性规划问题

第39讲 二元一次不等式(组)与简单的线性规划问题夯实基础 【p 89】【学习目标】会从实际情境中抽象出二元一次不等式组,了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【基础检测】1.不等式组⎩⎪⎨⎪⎧x ≤1,x -y +1≥0所表示的平面区域是( )【解析】不等式组⎩⎪⎨⎪⎧x ≤1,x -y +1≥0所表示的平面区域在直线x =1的左边,在直线y =x +1的右下方,故选A.【答案】A2.若实数x ,y 满足不等式组⎩⎨⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A .3 B.52C .2D .22【解析】因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3), 故|AB|=2,|AC|=22,其面积为12×|AB|×|AC|=2.【答案】C3.若变量x ,y 满足约束条件⎩⎨⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z =x +y 的最大值为________.【解析】如图所示,当直线l :y =-x +z 过C (4,2)时,x +y 有最大值,最大值为6.【答案】64.某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共30个,生产一个遥控小车模型需10分钟,生产一个遥控飞机模型需12分钟,生产一个遥控火车模型需8分钟,已知总生产时间不超过320分钟,若生产一个遥控小车模型可获利160元,生产一个遥控飞机模型可获利180元,生产一个遥控火车模型可获利120元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元.【解析】设每天安排生产x 个遥控小车模型,y 个遥控飞机模型,则生产(30-x -y )个遥控火车模型,依题意得,实数x ,y 满足线性约束条件⎩⎪⎨⎪⎧10x +12y +8(30-x -y )≤320,30-x -y ≥0,x ≥0,y ≥0,目标函数为z =160x +180y +120(30-x -y ),化简得⎩⎪⎨⎪⎧x +2y ≤40,x +y ≤30,x ≥0,y ≥0,z =40x +60y +3 600,作出不等式组⎩⎪⎨⎪⎧x +2y ≤40,x +y ≤30,x ≥0,y ≥0,表示的可行域(如图所示):作直线l 0:y =-23x -60,将直线l 0向右上方平移过点P 时,直线在y 轴上的截距最大,由⎩⎨⎧x +2y =40,x +y =30,得⎩⎨⎧x =20,y =10,所以P (20,10), 此时z max =40×20+60×10+3 600=5 000(元). 【答案】5 000 【知识要点】 1.基本概念(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是__1__的不等式称为二元一次不等式.(2)二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组. (3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成的有序数对(x ,y),所有这样的有序数对(x ,y)构成的集合称为二元一次不等式(组)的解集.2.二元一次不等式(组)表示的平面区域(1)在平面直角坐标系中,平面内的所有点都被直线Ax +By +C =0分成三类: 第一类:在直线Ax +By +C =0上的点;第二类:在直线Ax +By +C =0上方区域内的点; 第三类:在直线Ax +By +C =0下方区域内的点.Ax +By +C >0(<0):表示直线l :Ax +By +C =0某一侧所有点组成的平面区域,直线l 应画成__虚线__.Ax +By +C ≥0(≤0):表示直线l :Ax +By +C =0某一侧含边界直线上的所有点组成的平面区域,直线l 应画成__实线__.(2)对于直线Ax +By +C =0同一侧的所有点,把它的坐标(x ,y)代入Ax +By +C ,所得符号都相同,因此只需在直线Ax +By +C =0的同一侧取某个特殊点(x 0,y 0)作为测试点,由Ax 0+By 0+C 的符号就可以断定Ax +By +C>0表示的是直线Ax +By +C =0哪一侧的平面区域.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的__交集__.3.线性规划中的基本概念(1)约束条件:由x ,y 的不等式(或方程)组成的不等式组.(2)线性约束条件:由x ,y 的一次不等式(或方程)组成的不等式组. (3)目标函数:__关于x ,y 的函数的解析式__,如z =2x +6y 等. (4)线性目标函数:关于x ,y 的一次解析式. (5)可行解:满足线性约束条件的解(x ,y). (6)可行域:所有可行解组成的集合.(7)最优解:使目标函数取得__最大值或最小值__的可行解.(8)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题,统称为__线性规划问题__.4.常见简单的二元线性规划实际问题一是在人力、物力、资金等资源一定的条件下,如何使用它们完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.解线性规划问题的一般步骤:审题、设元——__列出约束条件__(通常为不等式组)——建立__目标函数__——作出__可行域__——求__最优解__.典 例 剖 析 【p 90】考点1 平面区域的确定与应用例1(1)变量x ,y 满足⎩⎨⎧5x +2y -18≤0,2x -y ≥0,x +y -3≥0,若直线kx -y +2=0经过该可行域,则k 的最大值为( )A .1B .2C .3D .4【解析】直线kx -y +2=0过定点(0,2),作可行域如图所示(阴影部分),由⎩⎪⎨⎪⎧5x +2y -18=0,2x -y =0得B (2,4). 当定点(0,2)和B 点连接时,斜率最大,此时k =4-22-0=1, 则k 的最大值为1. 故选A. 【答案】A(2)若不等式组⎩⎪⎨⎪⎧x -y>0,3x +y<3,x +y>a表示一个三角形内部的区域,则实数a 的取值范围是( )A.⎝⎛⎭⎫34,+∞B.⎝⎛⎭⎫32,+∞ C.⎝⎛⎭⎫-∞,34 D.⎝⎛⎭⎫-∞,32 【解析】不等式组⎩⎪⎨⎪⎧x -y>0,3x +y<3表示的平面区域如图:由⎩⎪⎨⎪⎧x -y =0,3x +y =3解得x =y =34,即A ⎝⎛⎭⎫34,34, 由图可知,a <34+34=32.故实数a 的取值范围是a <32.故选D. 【答案】D【小结】利用几何意义求解的平面区域问题,应作出平面图形,利用数形结合的方法去求解.考点2 简单线性与非线性规划问题例2若变量x ,y 满足约束条件⎩⎨⎧x +y -2≥0,3x -y ≤6,x -y ≥0,求:(1)z =x -2y +3的最大值;(2)z =y +2x +3的取值范围;(3)z =x 2+y 2-2x -y +1的取值范围.【解析】作出可行域,如图阴影部分所示.由⎩⎪⎨⎪⎧x +y -2=0,3x -y =6⇒⎩⎪⎨⎪⎧x =2,y =0即A (2,0), 由⎩⎪⎨⎪⎧x +y -2=0,x -y =0⇒⎩⎪⎨⎪⎧x =1,y =1即B (1,1), 由⎩⎪⎨⎪⎧3x -y =6,x -y =0⇒⎩⎪⎨⎪⎧x =3,y =3即C (3,3). (1)由图可知z =x -2y +3在点A (2,0)处取得最大值,z max =5.(2)z =y +2x +3可看作(x ,y )与(-3,-2)连线的斜率的取值范围,在点A (2,0),C (3,3)处取得最优解,z min =0+22+3=25,z max =3+23+3=56.所以z ∈⎣⎡⎦⎤25,56.(3)z =x 2+y 2-2x -y +1=(x -1)2+⎝⎛⎭⎫y -122-14,(x -1)2+⎝⎛⎭⎫y -122可看作点(x ,y )与点⎝⎛⎭⎫1,12距离的平方, 由图可知d min =⎪⎪⎪⎪1+12-22=122.所以z min =d 2min -14=18-14=-18. 在点C (3,3)处取得最大值,z max =(3-1)2+⎝⎛⎭⎫3-122-14=10.所以z ∈⎣⎡⎦⎤-18,10. 【小结】(1)求线性目标函数的最大值或最小值,必须先求出准确的可行域,令目标函数等于0.将其对应的直线平行移动,最先通过或最后通过的顶点便是最优解.(2)求非线性目标函数的最大值或最小值,充分理解目标函数并将目标函数赋予几何意义,如截距、点到直线的距离、过已知点的直线斜率等是本例求解的关键和切入点.考点3 含参数的简单线性规划问题例3(1)已知实数x ,y 满足约束条件⎩⎨⎧x ≥2,x -2y +4≥0,2x -y -4≤0,若z =kx +y 的最大值为13,则实数k =( )A .2 B.132 C.94D .5【解析】可行域为一个三角形ABC 及其内部,其中A (2,3),B (2,0),C (4,4),当-k>0时,2k +3=13,k =5(舍);或4k +4=13,k =94(舍),当-k<0时,4k +4=13,k =94,选C.【答案】C(2)已知x ,y 满足约束条件⎩⎨⎧x +y -4≤0,x -2y -4≤0,2x -y +4≥0,若z =ax -y 取得最大值的最优解不唯一...,则实数a 的值为( )A .-1B .2 C.12D .2或-1【解析】作出不等式组对应的平面区域如图阴影部分所示. 由z =ax -y 得y =ax -z ,即直线的截距最小,z 最大.若a =0,此时y =-z ,此时,目标函数只在B 处取得最大值,不满足条件;若a>0,目标函数y =ax -z 的斜率k =a>0,要使z =ax -y 取得最大值的最优解不唯一,则直线y =ax -z 与直线x -2y -4=0平行,此时a =12;若a<0,不满足,故选C.【答案】C【小结】解决含参数的线性规划问题,要对以下问题高度关注: (1)解题时要看清题目,不能忽视或漏掉参数的范围.(2)对于题目中最值条件的确定至关重要,且不能计算出错,如果不能正确解出最值点坐标,那么代入求解就会出错.考点4 线性规划的应用例4(1)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果甲、乙两种产品每吨可获利润分别为3万元、4万元,A.12万元 B .16C .17万元 D .18万元【解析】设每天生产甲、乙两种产品分别为x ,y 吨,利润为z 万元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为 z =3x +4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域,由z =3x +4y 得y =-34x +z4,平移直线y =-34x +z 4,由图象可知当直线y =-34x +z 4经过点B 时,直线y =-34x +z4的截距最大,此时z 最大,解方程组⎩⎨⎧3x +2y =12,x +2y =8,得⎩⎨⎧x =2,y =3,即B 的坐标为(2,3),∴z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨,3吨,能够产生最大的利润,最大的利润是18万元.【答案】D(2)小明准备用积攒的300元零用钱买一些科普书和文具,作为礼品送给山区的学生.已知科普书每本6元,文具每套10元,并且买的文具的数量不少于科普书的数量,那么最多可以买的科普书与文具的总数是________.【解析】设买科普书x 本与文具y 套,总数为z =x +y.由题意可得⎩⎨⎧6x +10y ≤300,x ≤y (x ,y ∈N ),作出可行域如图中阴影部分所示,将z =x +y 化为y =-x +z ,作出直线y =-x 并平移,使之经过可行域,易知经过点A ⎝⎛⎭⎫754,754时,纵截距最大,但因x ,y 均属于正整数,故取得最大值时的最优解应为(18,19),此时z 最大为37.【答案】37【小结】解线性规划应用问题的一般步骤: (1)分析题意,设出未知量;(2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答. 【能力提升】例5某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP【解析】(1)依题意得⎩⎨甲乙1-P 甲=P 乙-0.05,解得⎩⎨⎧P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4. (2)依题意得x 、y 应满足的约束条件为 ⎩⎪⎨⎪⎧4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y. 作出不等式组所表示的平面区域,如图阴影部分,即可行域.作直线l 0:0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,此时z 取得最大值.解方程组⎩⎨⎧x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5. 所以,当x =2,y =3时,z 取最大值为2.5.方 法 总 结 【p 91】1.二元一次不等式(组)表示的平面区域确定的方法二元一次不等式(组)表示的平面区域,有三种方法判定:第一种:若用y)第三种:选特殊点判定(如原点),取一点坐标代入二元一次不等式(组),若成立,则平面区域包括该点,反之,则不包括.2.线性规划问题求解策略(1)解决线性规划问题时,找出约束条件和目标函数是关键,一般步骤如下: ①作:确定约束条件,并在坐标系中作出可行域;②移:由z =ax +by 变形为y =-a b x +z b ,所求z 的最值可以看成是求直线y =-a b x +zb在y 轴上的截距的最值(其中a ,b 是常数,z 随x ,y 的变化而变化),将直线ax +by =0平移,在可行域中观察使zb最大(或最小)时所经过的点;③求:求出取得最大值或最小值的点的坐标,并将其代入目标函数求得最大值和最小值; ④答:写出最后结论.(2)可行域可以是一个一侧开放的平面区域,也可以是一个封闭的多边形,若是一个多边形,目标函数的最优解一般在多边形的某个顶点处取得.(3)若要求的最优解是整数解,而通过图象求得的是非整数解,这时应以与线性目标函数的距离为依据,在直线的附近寻求与此直线最近的整点,或者用“调整优值法”去寻求最优解.走 进 高 考 【p 91】1.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.【解析】画出可行域,如图中阴影部分所示.作出直线3x +2y =0并平移,结合图象可知, 当平移后的直线经过点B(2,0)时,直线z =3x +2y 在y 轴上的截距最大,z 取最大值,即当⎩⎪⎨⎪⎧x =2,y =0时,z max =3×2+0=6.【答案】6 2.(2018·北京)若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是__________.【解析】解法一:由x +1≤y ≤2x 作出可行域如图中阴影部分所示,令z =2y -x ,易知z =2y -x 在点A(1,2)处取得最小值,最小值为3.解法二:由题意知:⎩⎨⎧x -y ≤-1,2x -y ≥0,则2y -x =-3(x -y)+(2x -y)≥3,所以2y -x 的最小值为3.【答案】3。

高中数学 第三章 不等式 3.5.1 二元一次不等式(组)所表示的平面区域课件 新人教B版必修5

高中数学 第三章 不等式 3.5.1 二元一次不等式(组)所表示的平面区域课件 新人教B版必修5

界),且 A(1,1),B(0,4),C0,43,直线 y=a(x+1)恒过点 P(-1,0),且斜率为 a,
由斜率公式可知 kAP=12,
kBP=4. 若直线 y=a(x+1)与区域 D 有公共点,
数形结合可得12≤a≤4. 【答案】 (1)(-∞,2)∪(5,+∞)
(2)12,4
1.若点 P(a2,a)不在不等式 x+2y+1≤0 表示的 平面区域内,则 a 的取值范围是________. 解析:因为点 P(a2,a)不在不等式 x+2y+1≤0 表示的平面区 域内, 所以 a2+2a+1>0,即(a+1)2>0,解得 a≠-1. 所以 a 的取值范围是{a∈R|a≠-1}. 答案:{a∈R|a≠-1}
2.不等式(x-y)(x+2y-2)≥0 表示的平面区域的大致图形是 ()
解析:选 B.原不等式等价于xx- +y2≥y-0, 2≥0 或xx- +y2≤y-0, 2≤0. 故原不等式表示的区域由这两个不等式组表示的区域组成.
3.平面直角坐标系中,不等式组23xx+ -23yy- +14≥ ≥00, ,表示的平面区 x≤2
(1)画二元一次不等式组表示平面区域的一般步骤
(2)求平面区域面积的方法 求平面区域的面积,先画出不等式组表示的平面区域,然后根 据区域的形状求面积. ①若画出的平面区域是规则的,则直接利用面积公式求解. ②若平面区域是不规则的,可采用分割的方法,将平面区域分 成几个规则图形求解.
1.不等式组xx- +yy≤ ≤00,表示的平面区域是(
1.二元一次不等式的概念 (1)二元一次不等式是指含有_两__个___未知数,且未知数的最高次 数为一次的不等式. (2)一般形式为 Ax+By+C>0 或 Ax+By+C<0.其中 A2+B2≠ 0.

二元一次不等式(组)所表示的平面区域教案人教版

二元一次不等式(组)所表示的平面区域教案人教版
5.二元一次不等式(组)的实际应用:
-能够将实际问题转化为二元一次不等式(组)问题。
-学会运用二元一次不等式(组)解决实际问题,如线性规划、区域限制等。
6.二元一次不等式(组)的性质:
-了解二元一次不等式(组)的性质,如传递性、互补性等。
-掌握不等式(组)的解集的性质,如闭合性、连续性等。
作业布置与反馈
1.逻辑推理:通过学习二元一次不等式(组)的表示方法,培养学生运用逻辑推理能力,理解不等式(组)之间的逻辑关系,能够准确判断平面区域内各点是否满足不等式(组)的条件。
2.直观想象:通过在平面直角坐标系中表示二元一次不等式(组)所表示的平面区域,培养学生的直观想象能力,使学生能够直观地认识和理解不等式(组)所表示的区域的形状和位置。
解决方法:通过大量练习,让学生在坐标系中绘制不同类型的不等式(组)所表示的区域,加深对“交集”和“并集”的理解。
(2)将实际问题转化为二元一次不等式(组)问题,并求解。
解决方法:引导学生分析实际问题中的约束条件,将其转化为不等式(组)形式,然后运用所学知识求解。可以结合生活实例进行讲解,让学生感受到数学与生活的联系。
(二)存在主要问题
1.课堂管理:在教学过程中,部分学生在课堂上注意力不集中,影响教学效果。
2.教学方法:在讲解知识点时,有时过于侧重理论,忽视了学生的实际操作能力的培养。
3.作业布置:作业布置有时过于繁琐,导致学生花费大量时间完成,影响学习效果。
(三)改进措施
1.改进课堂管理:通过设置课堂规则,加强课堂管理,提高学生的课堂注意力。
教学难点与重点
1.教学重点:
(1)理解二元一次不等式在平面直角坐标系中的表示方法,掌握“交集”和“并集”的概念。
举例:在坐标系中,不等式x+y<2表示的是直线x+y=2下方的区域,不包括直线上的点。

高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面

高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面

辅导讲义――二元一次不等式(组)与简单的线性规划[例4] 若点A (1,1),B (2,-1)位于直线0=-+a y x 的两侧,则a 的取值范围是___________.)2,1([巩固] 若点A (1,a )与原点在直线l :01=-+y x 的同侧,则实数a 的取值范围是_________.)0,(-∞[例5] 如图所示的平面区域(阴影部分)用不等式表示为_________________.033<--x y[巩固] 能表示图中阴影区域的二元一次不等式组是__________________.⎪⎩⎪⎨⎧-≥≤+≤11y y x x y[例6] 画出不等式组⎪⎩⎪⎨⎧≥>≤-+02042y y x y x 所表示的平面区域.[巩固] 画出不等式0)4)(12(<--++yxyx表示的平面区域.1.基本概念名称意义约束条件由变量x,y组成的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的解析式,如:22yxz+=线性目标函数关于x,y的一次解析式,如yxz+=2可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最值问题注意:(1)对于实际背景的线性规划问题,可行域通常位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的定点;(2)对于线性规划问题,结果可能有唯一最优解,或是有无穷最优解,或是无最优解.2.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.[例1] 设yxz-=2,其中x,y满足⎪⎩⎪⎨⎧≤≥-+≥+-221xyxyx,则z的取值范围是_________________.]4,21[-知识模块2简单的线性规划精典例题透析[例4] 不等式组⎪⎩⎪⎨⎧≤--≥++≤020220x y y x x 表示的平面区域的面积为__________.3[巩固1] 若不等式组⎪⎩⎪⎨⎧<++>>a y x x y x 11所确定的平面区域的面积为0,则实数a 的取值范围是____________.]3,(-∞[巩固2] 在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040(a 为常数)表示的平面区域的面积是9,则实数._____=a 1[巩固3] 在平面直角坐标系中,若不等式组⎪⎪⎨⎧≤-≥-+0101x y x (a 为常数)所表示的平面区域内的面积等于2,则.___=a[例5] 已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-+≥-18360202y x y x y x ,且y ax z +=取得最大值的最优解恰为)3,23(,则a 的取值范围是______.(-2,2)[巩固] 若直线4=+by ax 与不等式组⎪⎩⎪⎨⎧≥++≤-+≥+-0420420852y x y x y x 表示的平面区域无公共点,则b a +的取值范围是________.(-3,3)[例6] 某公司计划招聘男职工x 名,女职工y 名,要求女职工人数不能多于男职工,女职工的人数不得少于男职工的31,最少10名男职工,则该公司最少能招聘多少名职工.CO的排放量b及每万吨铁矿石的价格c如下表:[巩固] 铁矿石A和B的含铁率a,冶铁每万吨铁矿石的2a b(万吨)c(万吨)A50% 1 3B70% 5.0 6CO的排放量不超过2(万吨),求购买铁矿石的最少费用. 某冶铁厂至少要生产9.1(万吨)铁,若要求2知识模块3经典题型[例](1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.(2)如图阴影部分表示的区域可用二元一次不等式组表示为_____________.答案 (1) 73 (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 (1)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73. (2)两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. [巩固](1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a=______.(2)如图所示的平面区域(阴影部分)满足不等式_______________.答案 (1) 7 (2)x +y -1>0解析 (1)直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A (1,0),B (1,a +1),C (0,1)组成的三角形的内部(包括边界), 且a >-1,则其面积等于12×(a +1)×1=4,解得a =7.(2)边界对应直线方程为x +y -1=0,且为虚线,区域中不含(0,0),由以上可知平面区域(阴影部分)满足x +y -1>0.题型二:求线性目标函数的最值(2)(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 (1) 6 (2)12解析 (1)画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1, ∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.(2)作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1, 解得a =12.[巩固](1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为________.(2)(2014·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为_______.答案 (1) 4 (2) -12解析 (1)由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.(2)作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A (-2k,0).∵z =y -x 的最小值为-4,∴2k =-4,解得k =-12,故选D.题型三:线性规划的实际应用[例] 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. [巩固] 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元.答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y .由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).1.在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为_______.答案 1夯实基础训练解析 不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去),故选C. 2.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为____________.答案 2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距, 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 3.(2014·课标全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.答案 8解析 画出可行域如图所示.由z =2x -y ,得y =2x -z ,欲求z 的最大值,可将直线y =2x 向下平移, 当经过区域内的点,且满足在y 轴上的截距-z 最小时, 即得z 的最大值,如图,可知当过点A 时z 最大,由⎩⎪⎨⎪⎧ x +y -7=0,x -3y +1=0,得⎩⎪⎨⎪⎧x =5,y =2,即A (5,2),则z max =2×5-2=8. 4.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积为________.答案 4解析 作出可行域为△ABC (如图),则S △ABC =4.5.设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________,z 的最小值为________.答案 2 -2解析 在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =z ,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.6.在平面直角坐标系中画出不等式组⎩⎪⎨⎪⎧|x |≤|y |,|x |<1所表示的平面区域.解析 |x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域; |x |<1表示x =±1所夹含y 轴的带状区域.7.若直线x +my +m =0与以P (-1,-1)、Q (2,3)为端点的线段不相交,求m 的取值范围.解 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧ -1-m +m >0,2+3m +m >0,或⎩⎪⎨⎪⎧-1-m +m <0,2+3m +m <0,所以,m 的取值范围是m <-12.8.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 解 (1)依题意每天生产的伞兵个数为100-x -y , 所以利润ω=5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x 、y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x 、y ∈N .目标函数为ω=2x +3y +300,作出可行域,如图所示,作初始直线l 0:2x +3y =0,平移l 0,当l 0经过点A 时,ω有最大值,由⎩⎪⎨⎪⎧ x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.∴最优解为A (50,50),此时ωmax =550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤a ,x +y ≥8,x ≥6,且不等式x +2y ≤14恒成立,则实数a 的取值范围是__________.答案 [8,10]解析 不等式组表示的平面区域如图中阴影部分所示,显然a ≥8,否则可行域无意义. 由图可知x +2y 在点(6,a -6)处取得最大值2a -6,由2a -6≤14得,a ≤10.10.(2014·课标全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=________.答案 3解析 当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分). 由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值. z min =1+3×2=7,满足题意.11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.12.若函数y =log 2x 的图象上存在点(x ,y ),满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,2x -y +2≥0,y ≥m ,则实数m 的最大值为________.答案 1解析 如图,作出函数的可行域,当函数y =log 2x 过点(2,1)时,实数m 有最大值1.能力提升训练13.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为10 000元,生产1车皮乙种肥料产生的利润为5 000元,那么适当安排生产,可产生的最大利润是________元.答案 30 000解析 设生产甲种肥料x 车皮,生产乙种肥料y 车皮, 则z =10 000x +5 000y , ⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,x ≥0,y ≥0,画出图形可知,目标函数在D (2,2)处有最大值, 且z max =10 000×2+5 000×2=30 000(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o
x
x+2yx+2y-1=0
x − 4 y ≤ −3 (1) 3 x + 5 y ≤ 25 x ≥ 1
y ≤ 0 (2) x ≤ 0 x + y + 3 > 0
例3 画出不等式组
x − y + 5 ≥ 0 x + y ≥ 0 x ≤ 3
表示的平面区域。 表示的平面区域。
求平面区 域的面积 x+y=0
y
4 A
B -2
o
C 2
x
练习:求由三直线 练习:求由三直线x-y=0;x+2y-4=0及y+2=0 及 所围成的平面区域所表示的不等式。 所围成的平面区域所表示的不等式。
解:此平面区域在 此平面区域在x-y=0的右下方, x-y≥0 的右下方, 此平面区域在 的右下方
Y
x-y=0
它又在x+2y-4=0的左下方, x+2y-4≤0 它又在 的左下方, 的左下方 它还在y+2=0的上方, y+2≥0 的上方, 它还在 的上方
例题分析
表示的平面区域。 例1:画出不等式 2x+y-6<0表示的平面区域。 : 表示的平面区域 y
6
o
3
x
y=-2x+6
例题分析
表示的平面区域。 例1:画出不等式 2x+y-6<0表示的平面区域。 : 表示的平面区域 y
6
o
2x+y-6<0
3
x
2x+y-6=0
例2 将下列图中的平面区域(阴影部分)用不等 将下列图中的平面区域(阴影部分) 式出来( 中的区域不包含y 式出来(图(1)中的区域不包含y轴)
x+2y-4=0 o
2
4
则用不等式可表示为: 则用不等式可表示为
x
-2 y+2=0
x − y ≥ 0 x + 2 y − 4 ≤ 0 y + 2 ≥ 0
探究拓展
画出不等式(x+2y-1)(x-y+3)>0表示的区域 画出不等式(x+2y-1)(x-y+3)>0表示的区域 解: y x-y+3=0
Y
O
X
x-y+5=0 注:不等式组表示 的平面区域是各不 等式所表示平面区 域的公共部分。 域的公共部分。 x=3
的三个顶点坐标为A 例4 在△ABC的三个顶点坐标为 (0,4),B (-2,0), 的三个顶点坐标为 , , C (2,0),求△ABC内任一点 内任一点(x,y)所满足的条件 , 内任一点 所满足的条件

(1) -1<x<1
(2) 2x+y>0
(3) 3x-y-3≥0
思考运用 Y
例3 画出不等式组
x+y=0
x − y + 5 ≥ 0 x + y ≥ 0 x ≤ 3
表示的平面区域。 表示的平面区域。 x-y+5=0
O
X
x=3 注:不等式组表示的平面区域是各不等式所表示 平面区域的公共部分。 平面区域的公共部分。
思考运用 Y
例3 画出不等式组
x+y=0
x − y + 5 ≥ 0 x + y ≥ 0 x ≤ 3
表示的平面区域。 表示的平面区域。 x-y+5=0 注:不等式组表示 的平面区域是各不 等式所表示平面区 域的公共部分。 域的公共部分。
O
X
x=3
画出下列不等式组表示的平面区域。 画出下列不等式组表示的平面区域。
在数学的天地里, 在数学的天地里,重要的 不是我们知道什么, 不是我们知道什么,而是我们 怎么知道什么! 怎么知道什么!
——毕达哥拉斯 毕达哥拉斯
把平面分成两个区域: 一、直线y=kx+b把平面分成两个区域: 直线 把平面分成两个区域 y>kx+b表示直线上方的平面区域; 表示直线上方的平面区域; 表示直线上方的平面区域 y<kx+b表示直线下方的平面区域. 表示直线下方的平面区域. 表示直线下方的平面区域 二、Ax+By+C>0(A2+B2≠0) 直线定界, 直线定界,特殊点定域
y y y
2x+y=4
x+y=0
o x o x o x
(3) (1) (2)
解 (1) x>0
(2) x+y≥0
(3) 2x+y<4
将下列各图中的平面区域(阴影部分) 将下列各图中的平面区域(阴影部分)用不等式表 示出来
y y y
2x
x
o
(1)
1
x
o
(2)
(3)
相关文档
最新文档