高中数学必修五:2.2《等差数列(1)》ppt课件
合集下载
高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5
3.在等差数列{an}中,若 a1·a3=8,a2=3,则公差 d=( )
A.1 B.-1 C.±1 D.±2 a1(a1+2d)=8,
解析:由已知得 a1+d=3,
解得 d=±1. 答案:C
第九页,共32页。
4. lg( 3 + 2 ) 与 lg( 3 - 2 ) 的 等 差 中 项 是 ______________.
第十六页,共32页。
[变式训练] (1)已知数列 3,9,15,…,3(2n-1),…, 那么 81 是它的第________项( )
A.12 B.13 C.14 D.15 (2)已知等差数列{an}中,a15=33,a61=217,试判断 153 是不是这个数列的项,如果是,是第几项? 解析:(1)an=3(2n-1)=6n-3,由 6n-3=81,得 n =14.
第十七页,共32页。
(2)设首项为 a1,公差为 d,则 an=a1+(n-1)d, a1+(15-1)d=33,
由已知 a1+(61-1)d=217,
a1=-23, 解得
d=4. 所以 an=-23+(n-1)×4=4n-27,
第十八页,共32页。
令 an=153,即 4n-27=153,解得 n=45∈N*, 所以 153 是所给数列的第 45 项. 答案:(1)C (2)45
答案:(1)× (2)√ (3)√ (4)√
第七页,共32页。
2.已知等差数列{an}中,首项 a1=4,公差 d=-2,
则通项公式 an 等于( )
A.4-2n
B.2n-4
C.6-2n
D.2n-6
解析:因为 a1=4,d=-2,所以 an=4+(n-1)×(-
2)=6-2n.
高中数学人教A版必修5《等差数列》PPT课件
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
人教版高中数学必修五 2.2 等差数列
(2)符号语言:an+1-an=d(d 为常数,n∈N*).
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
人教高中数学必修五 第二章 2.2 等差数列求和公式(共55张PPT)
或
跟踪练习
1. 在等差数列{an}中; (1)已知a6=10,S5=5,求a8和S10; (2)已知a3+a15=40,求S17.
解
5×4 S5=5a1+ d=5, 2 (1) a6=a1+5d=10,
解得 a1=-5,d=3. ∴a8=a6+2d=10+2×3=16. 10×9 S10=10a1+ d=10×(-5)+5×9×3=85. 2 17×a1+a17 17×a3+a15 17×40 (2)S17= = = =340. 2 2 2
又当 n=1 时,a1=21 1=1≠5,
-
5 ∴an= n-1 2
n=1, n≥2.
(2)法一
an+12 (消 Sn);由 Sn= (n∈N*),得 4an+1=4(Sn+ 4
2
1-Sn)=(an+1+1)
-(an+1)2
化简得(an+1+an)(an+1-an-2)=0, 因为an>0,∴an+1-an=2, 又4S1=4a1=(a1+1)2得a1=1, 故{an}是以1为首项,2为公差的等差数列,所以an=2n-1.
法二
(消 an):由上可知
2 Sn=an+1,∴2 Sn=Sn-Sn-1+1(n≥2), 化简可得( Sn-1)2=Sn-1, ( Sn+ Sn-1-1)( Sn- Sn-1-1)=0, 又 S1=1,{an}的各项都为正数, 所以 Sn- Sn-1=1. 所以 Sn=n,从而 Sn=n2, 所以 an=Sn-Sn-1=2n-1(n≥2),a1=1 也适合,故 an =2n-1.
4S n 4S1 4S 2 ... Sn 3. 已知数列{an}中, a1=2,a1 2 a2 2 an 2
,
求 an.
高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式课件新人教A版必修5
6.等差数列通项公式的变形应用 已知等差数列{an}中的任意两项 an,am(n,m∈N*,m≠n),
则
an am
a1 (n 1)d, a1 (m 1)d
⇒
an-am=(n-m)d⇒
d an am , nm an am (n
m)d.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
2.对等差数列定义的理解 (1)“从第2项起”是因为首项没有“前一项”. (2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不 一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中 强调“同一个常数”,注意不要漏掉这一条件. (3)求公差d时,可以用d=an-an-1来求,也可以用d=an+1-an来求.注意公差是每 一项与其前一项的差,且用an-an-1求公差时,要求n≥2,n∈N*.
解析:由等差数列的定义知强调两个方面:①从第2项起; ②差为同一个常数,故选D.
2.等差数列{an}中,a4+a8=10,a10=6,则公差 d 等于( A )
(A) 1 4
(B) 1 2
(C)2
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
2d a14d 105, a1 3d a1 5d
99,
解得
ad1
39, 2,
所以
a20=a1+19d=1.
答案:1
课堂探究
题型一 等差数列的通项公式
【例1】 已知{an}为等差数列,a15=8,a60=20,求a75.
则
an am
a1 (n 1)d, a1 (m 1)d
⇒
an-am=(n-m)d⇒
d an am , nm an am (n
m)d.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
2.对等差数列定义的理解 (1)“从第2项起”是因为首项没有“前一项”. (2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不 一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中 强调“同一个常数”,注意不要漏掉这一条件. (3)求公差d时,可以用d=an-an-1来求,也可以用d=an+1-an来求.注意公差是每 一项与其前一项的差,且用an-an-1求公差时,要求n≥2,n∈N*.
解析:由等差数列的定义知强调两个方面:①从第2项起; ②差为同一个常数,故选D.
2.等差数列{an}中,a4+a8=10,a10=6,则公差 d 等于( A )
(A) 1 4
(B) 1 2
(C)2
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
2d a14d 105, a1 3d a1 5d
99,
解得
ad1
39, 2,
所以
a20=a1+19d=1.
答案:1
课堂探究
题型一 等差数列的通项公式
【例1】 已知{an}为等差数列,a15=8,a60=20,求a75.
高中数学必修5课件:第2章2-2-2等差数列的性质
(4)形如a1+a2+a3,a4+a5+a6,a7+a8+a9,…的抽取, 实 际 上 是 3a2,3a5,3a8… 当 然 成 等 差 数 列 . 对 于 每 2 项 , 4 项 , 5 项…抽取,道理是相同的.
(5)a1+an=a2+an-1=a3+an-2=…
数学 必修5
第二章 数列
1.已知{an}为等差数列,a2+a8=12,则a5等于( )
A.4
B.5
C.6
D.7
解析: a2+a8=2a5=12,∴a5=6. 答案: C
数学 必修5
第二章 数列
2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5
+a6等于( )
A.40
B.42
C.43
D.45
解析: ∵a2+a3=2a1+3d,∴d=3,∴a4+a5+a6=a1 +a2+a3+3×3d=42.
答案: B
数学 必修5
第二章 数列
3 . 已知 {an} 为等差数列 , a3+ a8=22 ,a6= 7, 则a5= ________.
解析: ∵a3+a8=a5+a6=22,∴a5=22-a6=22-7= 15.
答案: 15
数学 必修5
第二章 数列
4.在等差数列{an}中, (1)已知a2+a3+a23+a24=48,求a13; (2)已知a2+a3+a4+a5=34,a2·a5=52,求公差d. 解析: 方法一:(1)直接化成a1和d的方程如下:(a1+d) +(a1+2d)+(a1+22d)+(a1+23d)=48,即4(a1+12d)=48, ∴4a13=48,∴a13=12.
数学 必修5
第二章 数列
利用等差数列的定义巧设未知量,可以简化 计算.一般地有如下规律:当等差数列{an}的项数n为奇数时, 可设中间一项为a,再用公差为d向两边分别设项:…a-2d,a -d,a,a+d,a+2d,…;当项数为偶数项时,可设中间两 项为a-d,a+d,再以公差为2d向两边分别设项:…a-3d,a -d,a+d,a+3d,…,这样可减少计算量.
(5)a1+an=a2+an-1=a3+an-2=…
数学 必修5
第二章 数列
1.已知{an}为等差数列,a2+a8=12,则a5等于( )
A.4
B.5
C.6
D.7
解析: a2+a8=2a5=12,∴a5=6. 答案: C
数学 必修5
第二章 数列
2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5
+a6等于( )
A.40
B.42
C.43
D.45
解析: ∵a2+a3=2a1+3d,∴d=3,∴a4+a5+a6=a1 +a2+a3+3×3d=42.
答案: B
数学 必修5
第二章 数列
3 . 已知 {an} 为等差数列 , a3+ a8=22 ,a6= 7, 则a5= ________.
解析: ∵a3+a8=a5+a6=22,∴a5=22-a6=22-7= 15.
答案: 15
数学 必修5
第二章 数列
4.在等差数列{an}中, (1)已知a2+a3+a23+a24=48,求a13; (2)已知a2+a3+a4+a5=34,a2·a5=52,求公差d. 解析: 方法一:(1)直接化成a1和d的方程如下:(a1+d) +(a1+2d)+(a1+22d)+(a1+23d)=48,即4(a1+12d)=48, ∴4a13=48,∴a13=12.
数学 必修5
第二章 数列
利用等差数列的定义巧设未知量,可以简化 计算.一般地有如下规律:当等差数列{an}的项数n为奇数时, 可设中间一项为a,再用公差为d向两边分别设项:…a-2d,a -d,a,a+d,a+2d,…;当项数为偶数项时,可设中间两 项为a-d,a+d,再以公差为2d向两边分别设项:…a-3d,a -d,a+d,a+3d,…,这样可减少计算量.
人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
证明.在求{an}通项公式时,要用到{an-2}是等差数列,先求 1
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.
高中数学等差数列ppt课件
人教版·数学·必修5·第二章《数列》
2.2.1等差数列(1)
复习回顾
数列: 按照一定顺序排成的一列数称为数列。
实质: 数式:如果数列{an}的第n项an与项数n之间的 关系可以用一个公式来表示,这个公式就叫做这个 数列的通项公式.(反映项与序号之间的关系)
1、等差数列的定义
一般地,如果一个数列a1, a2, a3,…, an, …从第二项起,每一项与它的前一项的 差等于同一个常数d,
a2–a1=a3-a2=···=an-an-1=···=d 那么这个数列就叫做等差数列。常数d叫做等 差数列的公差。
等差数列定义的符号表示:
(1){an}是等差数列⇔an-an-1=d(n≥2,n ∈N*) (2){an}是等差数列⇔ an+1-an=d(n ∈N*)
又,当n=1时,等式成立 ∴ n∈N*时, an=a1+(n – 1)d
法二
∵{an}是等差数列,则有
an–an-1=d an-1–an-2=d an-2–an-3=d ……
累加法:
这一推导思想 在今后的数列 求和问题中也
a2–a1=d
有重要的应用
相加得:an – a1=(n–1)d
∴an=a1+(n–1)d
作差。 不能颠倒。 2、作差的结果要求是同一个常数。可以是正
数,也可以是0和负数。
温馨提示:
(1)从第二项起:如果一个数列,不从第2项起,而是从 第3项或第4项起,每一项与它前一项的差是同一个常数, 那么此数列不是等差数列,但可以说从第2项或第3项起是 一个等差数列。
(2)同一个常数:一个数列,从第2项起,每一项与它的 前一项的差,尽管等于一个常数,这个数列可不一定是等 差数列,因为这些常数可以不同,当常数不同时,当然不 是等差数列,因此定义中“同一个”常数,这个“同一个”十 分重要。
2.2.1等差数列(1)
复习回顾
数列: 按照一定顺序排成的一列数称为数列。
实质: 数式:如果数列{an}的第n项an与项数n之间的 关系可以用一个公式来表示,这个公式就叫做这个 数列的通项公式.(反映项与序号之间的关系)
1、等差数列的定义
一般地,如果一个数列a1, a2, a3,…, an, …从第二项起,每一项与它的前一项的 差等于同一个常数d,
a2–a1=a3-a2=···=an-an-1=···=d 那么这个数列就叫做等差数列。常数d叫做等 差数列的公差。
等差数列定义的符号表示:
(1){an}是等差数列⇔an-an-1=d(n≥2,n ∈N*) (2){an}是等差数列⇔ an+1-an=d(n ∈N*)
又,当n=1时,等式成立 ∴ n∈N*时, an=a1+(n – 1)d
法二
∵{an}是等差数列,则有
an–an-1=d an-1–an-2=d an-2–an-3=d ……
累加法:
这一推导思想 在今后的数列 求和问题中也
a2–a1=d
有重要的应用
相加得:an – a1=(n–1)d
∴an=a1+(n–1)d
作差。 不能颠倒。 2、作差的结果要求是同一个常数。可以是正
数,也可以是0和负数。
温馨提示:
(1)从第二项起:如果一个数列,不从第2项起,而是从 第3项或第4项起,每一项与它前一项的差是同一个常数, 那么此数列不是等差数列,但可以说从第2项或第3项起是 一个等差数列。
(2)同一个常数:一个数列,从第2项起,每一项与它的 前一项的差,尽管等于一个常数,这个数列可不一定是等 差数列,因为这些常数可以不同,当常数不同时,当然不 是等差数列,因此定义中“同一个”常数,这个“同一个”十 分重要。
高中数学必修5课件:第2章2-2-1等差数列
第二章 数列
解析: (1)证明:bn+1-bn=an+11-2-an-1 2 =4-a41n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12, ∴数列{bn}是首项为12,公差为12的等差数列.
数学 必修5
第二章 数列
(2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
数学 必修5
第二章 数列
[规范解答] 方法一:设等差数列{an}的前三项分别为
a1,a2,a3.依题意得aa11·+a2a·a23+=a63=6,18,
∴a31a·1+a1+3dd=·1a81,+2d=66,
2分
解得ad1==-115 或ad1==51.,
6分
数学 必修5
第二章 数列
∵数列{an}是递减等差数列,∴d<0. 故取a1=11,d=-5, ∴an=11+(n-1)·(-5)=-5n+16. 即等差数列{an}的通项公式为an=-5n+16. 令an=-34,即-5n+16=-34,得n=10. ∴-34是数列{an}的项,且为第10项.
由aa190<>11,, 得221155++98dd><11,,
解得785<d<235.
故选 C. 【错因】 在解决本题时,必须深刻理解“从第10项起开
始比1大”的含义.尤其是“开始”这个词,它不仅表明 “a10>1”,而且还隐含了“a9≤1”这一条件,所对上述两个错 解都未从题干中彻底地挖掘出隐含条件.
第二章 数列
4.已知三个数成等差数列,它们的和为18,它们的平方 和为116,求这三个数.
人教版A版高中数学必修5:等差数列_课件26
等差数列
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数
10n n2 n2 10n
50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1
10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数
10n n2 n2 10n
50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1
10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使
高中数学课件-1-2-1-1等差数列的概念和通项公式 课件(北师大版必修5)
§2 等差数列
第一章 数列
进入导航
2.1 等差数列
第一章 数列
进入导航
第1课时 等差数列的概念和通项公式
预习篇 课堂篇 提高篇
巩固篇 课时作业
第一章 数列
进入导航
学习目标
1.理解等差数列的特点与定义,掌握等差数列的判断 方法.
2.记住等差数列的概念、等差数列的通项公式,并能 运用通项公式解决一些简单问题.
第一章 数列
进入导航
进入导航
【尝试解答】 数列5,8,11,…记为{an},数列 3,7,11,…记为{bm},则an=5+(n-1)·3=3n+2,bm=3+ (m-1)·4=4m-1.
令an=bm,得3n+2=4m-1(n,m∈N+), 即n=43m-1(n,m∈N+). 要使n为正整数,m必须是3的倍数,记m=3k(k∈N+). ∴n=43·3k-1=4k-1.
第一章 数列
进入导航
理解等差数列的定义需注意以下问题: (1)注意定义中“从第2项起”这一前提条件的两层含 义:其一,第1项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且 必须从第2项起,以便保证数列中各项均与其前一项作差. (2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后 面的项减前面的项;其二是强调这两项必须相邻.
第一章 数列
进入导航
规律方法 求解时要紧紧抓住“同一个常数”这个条件,本例中 的第2小题是从第2项开始的等差数列,即1,2,3,…n构 成等差数列,但整个数列不是等差数列.
第一章 数列
进入导航
根据下列数列的通项公式an,判断各数列是否为等差 数列:
(1)an=3n+5;(2)an=n2.
第一章 数列
进入导航
2.1 等差数列
第一章 数列
进入导航
第1课时 等差数列的概念和通项公式
预习篇 课堂篇 提高篇
巩固篇 课时作业
第一章 数列
进入导航
学习目标
1.理解等差数列的特点与定义,掌握等差数列的判断 方法.
2.记住等差数列的概念、等差数列的通项公式,并能 运用通项公式解决一些简单问题.
第一章 数列
进入导航
进入导航
【尝试解答】 数列5,8,11,…记为{an},数列 3,7,11,…记为{bm},则an=5+(n-1)·3=3n+2,bm=3+ (m-1)·4=4m-1.
令an=bm,得3n+2=4m-1(n,m∈N+), 即n=43m-1(n,m∈N+). 要使n为正整数,m必须是3的倍数,记m=3k(k∈N+). ∴n=43·3k-1=4k-1.
第一章 数列
进入导航
理解等差数列的定义需注意以下问题: (1)注意定义中“从第2项起”这一前提条件的两层含 义:其一,第1项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且 必须从第2项起,以便保证数列中各项均与其前一项作差. (2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后 面的项减前面的项;其二是强调这两项必须相邻.
第一章 数列
进入导航
规律方法 求解时要紧紧抓住“同一个常数”这个条件,本例中 的第2小题是从第2项开始的等差数列,即1,2,3,…n构 成等差数列,但整个数列不是等差数列.
第一章 数列
进入导航
根据下列数列的通项公式an,判断各数列是否为等差 数列:
(1)an=3n+5;(2)an=n2.
高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5
第十六页,共25页。
研一研·问题(wèntí)探究、课堂更高
效 例2
已知1a,1b,1c成等差数列,求证:b+a c,a+b c,a+c b也
成等差数列.
证明 ∵1a,1b,1c成等差数列,
本
∴2b=1a+1c,即 2ac=b(a+c).
讲 栏 目
∵b+a c+a+c b=cb+c+acaa+b=c2+a2+acba+c
开 关
(5)1,2,5,8,11,….
第七页,共25页。
研一研·问题探究(tànjiū)、课堂更 高效
解 (1)是等差数列,a1=4,d=3;
(2)是等差数列,a1=31,d=-6;
本 讲
(3)是等差数列,a1=0,d=0;
栏 目
(4)是等差数列,a1=a,d=-b;
开 关
(5)不是等差数列,a2-a1=1,a3-a2=3,∴a2-a1≠a3-a2.
高效 探究 若数列{an}满足:an+1=an+2an+2,求证:{an}是等差
数列.
证明 ∵an+1=an+2an+2
本
⇔2an+1=an+an+2
讲 栏
⇔an+2-an+1=an+1-an
目
开 关
∴an+1-an=an-an-1=…=a2-a1(常数).
∴{an}是等差数列.
第十三页,共25页。
跟踪训练 2 已知 a,b,c 成等差数列,那么 a2(b+c),b2(c
+a),c2(a+b)是否能构成等差数列?
证明 ∵a,b,c 成等差数列,∴a+c=2b.
本 ∴a2(b+c)+c2(a+b)=a2b+a2c+c2a+c2b
讲 栏
=(a2b+c2b)+(a2c+c2a)=b(a2+c2)+ac(a+c)
高中数学必修五第二章数列
设等差数列
的前n项和为sn,已知a3=12,s12>0,s13<0,
(1)求公差d的取值范围
(2)指出s1,s2,s3……,s12中哪一个的值最大,并说明理由
2.4等比数列
定义:一般的,如果一个数列从第二项起,每一项与它的前 一项的比等于同意常数,那么这个数列叫做等比数列,这个 常数叫做等比数列的公比,公比通常用字母q表示。
Sn=an+(an-d)+(an-2d)+……+【an-(n-1)d】 两式相加得 2sn=n(a1+an) 由此可得 sn=n(a1+an)/2 带入通项公式得 sn=na1+n(n-1)d/2
例题一
2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通 知》。
某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间在全 市中小学建成不同标准的校园网。据测算,2001年该市用于“校校通”工程 的经费为500万元。为了保证工程的顺利实施,计划每年投入的资金都比上 一年增加50万元。那么从2001年起的未来10年内,该市在“校校通”工程 中的总投入是多少?
(1)求AB,BC,CD的长
(2)已AB,BC,CD的长为等差数列的前三项,以第十项为边长的正方形 面积为多少?
AB C
D
2.3等差数列的前n项和
定义:一般的,我们称a1+a2+a3+……+an 为数列 表示,即sn=a1+a2+……+an
的前n项和,用Sn
推理过程: 因为 Sn=a1+(a1+d)+(a1+2d)+……+【a1+(n-1)d】
海南省三亚华侨学校人教版高中数学必修五课件:2.2 等差数列(共19张PPT).pptx
-401= -5-4(n-1) 成立
解关于n的方程, 得n=100
即-401是这个数列的第100项。
例2 在等差数列{an}中,已知a5=10, a12=31,求首项a1与 公差d. 解:由题意知, a5=10=a1+4d a12=31=a1+11d 解得: a1=-2 d=3 即等差数列的首项为-2,公差为3
等差数列
引例一
1+2+3+···+100=?
高斯
(1777—1855) 德国著名数学家
得到数列 1,2,3,4, … ,100
引例二
姚明刚进NBA一周训练罚球的个数:
第一天:600, 第二天:650, 第三天:700, 第四天:750, 第五天:800, 第六天:850, 第七天:900.
得到数列 600,650,700,750,800,850,9来自0 mn 32
∴m与n的等差中项为3
等差数列的性质1
在等差数列{an}中,若an=3n+1.那么 a1+a5=a2+a4吗?a2+a5=a3+a4成立吗?
• 性质1:{an}是公差为d的等差数列,若正整数m、n、 p、q满足m+n=p+q,则am+an=ap+aq. 例1、已知等差数列{an}中,a7+a9=16,a4=1,则 15 a12=____。 例2、已知等差数列{an}中,a3+a4+a5 + a6+a7=450,则 a2+a8=_1_8_0_。
引例三
女鞋鞋底的长度,单位(cm) 20、21、22、23、24
得到数列 20、21、22、23、24
1、高斯计算的数列:1、2、3、4、5……98、99、100 2、姚明训练罚球的个数: 600、650、700、750、800、850、900 3、女鞋鞋底的长度:20、21、22、23、24
解关于n的方程, 得n=100
即-401是这个数列的第100项。
例2 在等差数列{an}中,已知a5=10, a12=31,求首项a1与 公差d. 解:由题意知, a5=10=a1+4d a12=31=a1+11d 解得: a1=-2 d=3 即等差数列的首项为-2,公差为3
等差数列
引例一
1+2+3+···+100=?
高斯
(1777—1855) 德国著名数学家
得到数列 1,2,3,4, … ,100
引例二
姚明刚进NBA一周训练罚球的个数:
第一天:600, 第二天:650, 第三天:700, 第四天:750, 第五天:800, 第六天:850, 第七天:900.
得到数列 600,650,700,750,800,850,9来自0 mn 32
∴m与n的等差中项为3
等差数列的性质1
在等差数列{an}中,若an=3n+1.那么 a1+a5=a2+a4吗?a2+a5=a3+a4成立吗?
• 性质1:{an}是公差为d的等差数列,若正整数m、n、 p、q满足m+n=p+q,则am+an=ap+aq. 例1、已知等差数列{an}中,a7+a9=16,a4=1,则 15 a12=____。 例2、已知等差数列{an}中,a3+a4+a5 + a6+a7=450,则 a2+a8=_1_8_0_。
引例三
女鞋鞋底的长度,单位(cm) 20、21、22、23、24
得到数列 20、21、22、23、24
1、高斯计算的数列:1、2、3、4、5……98、99、100 2、姚明训练罚球的个数: 600、650、700、750、800、850、900 3、女鞋鞋底的长度:20、21、22、23、24
人教A版高中数学必修五2.2《等差数列》课件
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/ 8/3202 1/8/320 21/8/3 2021/8/ 38/3/2 021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021 年8月3 日星期 二2021/ 8/3202 1/8/320 21/8/3
•
15、最具挑战性的挑战莫过于提升自 我。。2 021年8 月2021 /8/320 21/8/32 021/8/ 38/3/20 21
a1,an,n,d 知三求一
例2 、在等差数列{an}中 ,已知a6=12 ,a18=36 ,
求{an}的通项公式 解:由题意可得 a1+5d=12
a1+17d=36 ∴ d = 2 ,a1 =2
∴ an = 2+(n-1) ×2 = 2n
求通项公式的关键:
求基本量a1和d
方程思想
等差数列的通项公式为:
通项公式应用
例1(1)求等差数列7,4,1,-2,…的第100项; (2)判断-401是不是等差数列 –5,-9 ,-13…
的项?如果是,是第几项,如果不是,说明理由。
变式:《九章算术•均输章》——等差数列问题 今有金箠(chui),长五尺。斩本一尺,重四斤; 斩末一尺,重二斤。问次一尺各重几何。
a2=a1+d, a3=a2+d = (a1+d) + d = a1+ 2d
a4=a3+d=(a1+2d)+d=a1+3d
…
归纳: an=a1+(n-1)d
当n=1时,上式也成立。
观察归纳
已知等差数列{an}的首项是a1,公差是d
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ 答案]
[ 解析]
4,7
由已知,x 是 1 和 y 的等差中项,即 2x=1+y①, ②
y 是 x 和 10 的等差中项,即 2y=2x+10 由①、②可解得 x=4,y=7.
课堂典例探究
等差数列的定义及判定
判断下列数列是否为等差数列. (1)an=3-2n;(2)an=n2-n.
[ 分析]
本题考察判断数列是否是等差数列,即判断 an+1
-an(n∈N*)是否为同一个常数. [ 解析] (1)∵an+1-an=[3-2(n+1)] -(3-2n)=-2, 是常
数, ∴数列{an}是等差数列. (2)∵an+1-an=[(n+1)2-(n+1)] -(n2-n)=2n, 不是常数, ∴数列{an}不是等差数列.
a1=1 ,解得 d=2
.
∴a9=a1+(9-1)d=1+8×2=17.
[ 方法总结]
构成等差数列的基本量是 a1 和 d,根据已知
条件列出关于 a1 和 d 的方程组,求出 a1 和 d,进而求出通项公 式 an=a1+(n-1)D.
(1)求等差数列 10,8,6,„的第 20 项. (2)100 是不是等差数列 2,9,16,„的项?如果是,是第几 项?如果不是,说明理由. [ 解析] (1)∵a1=10,d=8-10=-2,
常数列是特殊的等差数列. 要依据,即 an+1-an=d(常数)(n∈N*)⇔{an}是等差数列.
下列数列是等差数列的是( 1 1 1 1 A.3,5,7,9 C.1,-1,1,-1
)
B.1, 3, 5, 7 D.0,0,0,0
[ 答案]
[ 解析] 故排除 B;
D
1 1 1 1 ∵5-3≠7-5,故排除 A;∵ 3-1≠ 5- 3,
注意:对于等差数列定义的理解要注意: (1)“从第 2 项起”也就是说等差数列中至少含有三项. (2)“每一项与它的前一项的差”不可理解为“每相邻两 项的差”. (3)“同一个常数 d”,d 是等差数列的公差,即 d=an-an
-1
,d 可以为零,当 d=0 时,等差数列为常数列,也就是说, (4)等差数列的定义是判断、证明一个数列为等差数列的重
∵-1-1≠1-(-1),故排除 C,∴选 D.
2.等差数列的通项公式 以 a1 为首项,d 为公差的等差数列{an}的通项公式为 an= a1+(n-1)D. (1)用累加法推导等差数列的通项公式 ∵数列{an}是等差数列, ∴an-an-1=d,an-1-an-2=d,an-2-an-3=d,„,a2-a1 =D. 以上各式的左、右两边分别相加,得 an-a1=(n-1)d, ∴an=a1+(n-1)D.
1.还记得数列的定义吗?_________. 2.数列{an}的通项公式是指________之间 的函数关系,而递推公式体现的是________之 间的等量关系. [答案] 1.按一定顺序排列的一列数叫做数列
2.项an与项数n项与项
1.等差数列的定义 一般地,如果一个数列从第 2 项起,每一项与它的前一项 的差等于同一个常数,那么这个数列就叫做等差数列,这个常 数叫做等差数列的公差, 公差通常用字母 d 表示. 若公差 d=0, 则这个数列为常数列.
已知数列的通项公式为 an=6n-1, 问这个数列是等差数列 吗?若是等差数列,其首项与公差分别是多少?
ቤተ መጻሕፍቲ ባይዱ[ 解析]
∵an+1-an=[6(n+1)-1] -(6n-1)=6(常数),
∴{an}是等差数列,其首项 a1=6×1-1=5,公差为 6.
等差数列的通项公式
在等差数列{an}中: (1)已知 a5=-1,a8=2,求 a1 与 d; (2)已知 a1+a6=12,a4=7,求 a9.
等差数列{an}中,a3=5,a7=13,求通项公式 an.
[ 解析]
设数列{an}的首项为 a1,公差为 d,由题意,得
a1=1 ,解得 d=2
a1+2d=5 a1+6d=13
.
∴an=a1+(n-1)d=2n-1.
3.等差中项 如果 a, A, b 成等差数列, 那么 A 叫做 a 与 b 的等差中项, a+b 即 A= 2 .
注意:在一个等差数列中,从第 2 项起,每一项(有穷数列 的末项除外)都是它的前一项与后一项的等差中项,即 2an=an-
1+an+1;实际上,等差数列中的某一项是与其等距离的前后两
项的等差中项,即 2an=an-m+an+m(m、n∈N*,m<n).
已知: 1, x, y,10 构成等差数列, 则 x、 y 的值分别为________.
成才之路 ·数学
人教A版 ·必修5
路漫漫其修远兮 吾将上下而求索
第二章
数 列
第二章
2.2 等差数列
第1课时 等差数列的概念与通项公式
1
课前自主预习
2
课堂典例探究
3
课 时 作 业
课前自主预习
汉朝的天文著作《周髀算经》中有记载,大意如下:在平 地上立八尺高的土圭,日中测影,在二十四节气中,冬至影长 1 1 丈 3 尺 5 寸, 以后每一节气影长递减 9 寸 96分; 夏至影最短, 1 仅长 1 尺 6 寸,以后每一节气影长递增 9 寸 96分.如果把这些 影长记录下来,会构成一个什么样的数列呢?
[ 分析]
根据等差数列的通项公式 an=a1+(n-1)d,由条
a1+5-1d=-1 (1)由题意知 a1+8-1d=2 a1=-5 ,解得 d=1
件可建立关于 a1、d 的二元一次方程组解出 a1、D.
[ 解析] .
a1+a1+6-1d=12 (2)由题意知 a1+4-1d=7
(2)用迭代法推导等差数列的通项公式 ∵数列{an}是等差数列, ∴an=an-1+d=an-2+d+d=„=a1+(n-1)d, 即 an=a1+(n-1)D.
注意: (1)如果将通项公式 an=a1+(n-1)d 看成关于 n 的函 数,其图象是一条直线上的一群孤立点.这条直线的斜率为 d, 截距为 a1-D. (2)公式中有四个量,即 an,a1,n,D.已知其中任意三个 量,通过解方程都可求得剩下的一个量. (3)等差数列的通项公式可推广为 an=am+(n-m)d(n≥m, m,n∈N*).由此可知已知等差数列的任意两项,就可求出其 他的任意一项.