湖北省黄冈中学2015-2016学年高二(上)期末数学试卷(解析版)
2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。
2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。
2015-2016学年湖北省部分重点中学高二上学期期末理科数学试卷(带解析)

绝密★启用前2015-2016学年湖北省部分重点中学高二上学期期末理科数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:149分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A . B .C .D .2、某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有( ) A .10种 B .20种 C .30种 D .40种3、已知椭圆+=1上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于( )4、在△ABC中,A(x,y),B(﹣2,0),C(2,0),给出△ABC满足的条件,就能得到动点A的轨迹方程,如表给出了一些条件及方程:条件方程①△ABC周长为10;②△ABC面积为10;③△ABC中,∠A=90°E1:y2=25;E2:x2+y2=4(y≠0);E3:则满足条件①、②、③的轨迹方程分别用代号表示为()A.E3,E1,E2B.E1,E2,E3C.E3,E2,E1D.E1,E3,E25、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A. B. C. D.6、给出一个如图所示的流程图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( )A .1B .2C .3D .47、l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线,q :l 1,l 2不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件 C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件8、设随机变量ξ~N (μ,σ2),函数f (x )=x 2+4x+ξ没有零点的概率是0.5,则μ等于( )A .1B .4C .2D .不能确定9、下列命题中正确的个数为( )①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②残差平方和越小的模型,模型拟合的效果越好;③用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好. A .1 B .2 C .3 D .010、设X 是一个离散型随机变量,其分布列如图,则q 等于( )x﹣11P0.51﹣2qq2A.1 B.1±C.1﹣D.1+11、抛物线y=﹣的焦点坐标是()A.(0,) B.(,0) C.(0,﹣2) D.(﹣2,0)12、命题“∀n∈Z,n∈Q”的否定是()A.∃n0∈Z,n0∉Q B.∃n0∉Z,n0∈QC.∀n0∈Z,n0∉Q D.∀n0∉Z,n0∈Q第II卷(非选择题)二、填空题(题型注释)13、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件;则下列结论中正确的是:.①P(B)=;②P(B|A1)=;③事件B与事件A1相互独立;④P(B)的值不能确定,因为它与A1,A2和A3中哪一个发生有关;⑤事件A1,A2和A3两两互斥.14、许多因素都会影响贫穷,教育也许是其中的一个,在研究这两个因素的关系时,收集了某国50个地区的成年人至多受过9年教育的百分比(x%)和收入低于官方规定的贫困线的人数占本地区人数的百分比(y%)的数据,建立的回归直线方程是y=0.8x+4.6,这里,斜率的估计0.8说明一个地区受过9年或更少的教育的百分比每增加,则收入低于官方规定的贫困线的人数占本地区人数的百分比将增加左右.15、(2x﹣)6展开式中常数项为(用数字作答).16、某项测试有6道试题,小明答对每道试题的概率都是,则小明参加测试(做完全部题目)刚好答对2道试题的概率为.三、解答题(题型注释)17、直线l 与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,已知=(ax 1,by 1),=(ax 2,by 2),若⊥且椭圆的离心率,又椭圆经过点,O 为坐标原点. (Ⅰ)求椭圆的方程;(Ⅱ)若直线l 过椭圆的焦点F (0,c )(c 为半焦距),求直线l 的斜率k 的值; (Ⅲ)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.18、有编号为1,2,3,…,n 的n 个学生,入坐编号为1,2,3,…n 的n 个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法. (1)求n 的值;(2)求随机变量ξ的概率分布列和数学期望.19、如图是某市有关部门根据对某地干部的月收入情况调查后画出的样本频率分布直方图,已知图中第一组的频数为4000.请根据该图提供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)(1)求样本中月收入在[2500,3500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1500,2000)的这段应抽多少人?(3)试估计样本数据的中位数.20、袋内装有6个球,这些琮依次被编号为l 、2、3、…、6,设编号为n 的球重n 2﹣6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出一个球,求其重量大于其编号的概率; (2)如果不放回的任意取出2个球,求它们重量相等的概率.21、在平面直角坐标系中,已知点A (﹣1,0),B (1,0),动点P 满足:•=m(|•|2﹣2),求动点P 的轨迹方程,并根据m 的取值讨论方程所表示的曲线类型.22、(2015秋•湖北校级期末)已知命题p :方程x 2+mx+1=0有两个不相等的实根;q :不等式4x 2+4(m ﹣2)x+1>0的解集为R ;若p 或q 为真,p 且q 为假,求实数m 的取值范围.参考答案1、A2、C3、B4、A5、C6、C7、A8、B9、A10、C11、C12、A13、①②⑤14、1%,0.8%15、6016、17、(Ⅰ);(Ⅱ);(Ⅲ)△AOB的面积是定值1.18、(1)n=4.0 2 3 4∴.19、(1)2000;(2)20人;(3)1750元.20、(1).(2).21、见解析22、m的取值范围是m<﹣2或m≥3或1<m≤2.【解析】1、试题分析:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,由满足条件的直线只有一对,得,由此能求出双曲线的离心率的范围.解:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,如图,又∵满足条件的直线只有一对,当直线与x轴夹角为30°时,双曲线的渐近线与x轴夹角大于30°,双曲线与直线才能有交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于30°,则无交点,则不可能存在|A1B1|=|A2B2|,当直线与x轴夹角为60°时,双曲线渐近线与x轴夹角大于60°,双曲线与直线有一对交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于60°,也满足题中有一对直线,但是如果大于60°,则有两对直线.不符合题意,∴tan30°,即,∴,∵b2=c2﹣a2,∴,∴,∴,∴双曲线的离心率的范围是.故选:A.考点:双曲线的简单性质.2、试题分析:根据题意,分三类:第一类:甲、乙两人各去一个景点,另外两人去同一景点,有种方法;第二类:甲单独去一个景点,乙与另两人中的一人去同一景点,有种方法;第三类:乙单独去一个景点,甲与另两人中的一人去同一景点,有种方法;由分类计数原理,得:共有种安排方法;故选C.考点:排列与组合.3、试题分析:首先根据椭圆的定义求出MF2=8的值,进一步利用三角形的中位线求的结果.解:根据椭圆的定义得:MF2=8,由于△MF2F1中N、O是MF1、F1F2的中点,根据中位线定理得:|ON|=4,故选:B.考点:椭圆的简单性质.4、试题分析:根据题意,依次分析可得,①中可转化为A点到B、C两点距离之和为常数,符合椭圆的定义,利用定义法求轨迹方程;②中利用三角形面积公式可知A点到BC距离为常数,轨迹为两条直线;③中∠A=90°,可用斜率或向量处理.解:①△ABC的周长为10,即AB+AC+BC=10,而BC=4,所以AB+AC=6>BC,故动点A的轨迹为椭圆,与E3对应;②△ABC的面积为10,所以BC•|y|=10,|y|=5,与E1对应,③∠A=90°,故•=(﹣2﹣x,﹣y)(2﹣x,﹣y)=x2+y2﹣4=0,与E2对应.故满足条件①、②、③的轨迹方程分别用代号表示为E3E1E2故选A.考点:曲线与方程.5、试题分析:根据几何概型的概率公式求出对应的测度,即可得到结论.解:分别设两个互相独立的短信收到的时间为x,y.则所有事件集可表示为0≤x≤5,0≤y≤5.由题目得,如果手机受则到干扰的事件发生,必有|x﹣y|≤2.三个不等式联立,则该事件即为x﹣y=2和y﹣x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形即图中阴影区域而所有事件的集合即为正方型面积52=25,阴影部分的面积25﹣2×(5﹣2)2=16,所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为.故选:C.考点:几何概型.6、试题分析:由已知的流程图,我们易得这是一个计算并输出分段函数函数值的程序,我们根据条件,分x≤2,2<x≤5,x>5三种情况分别讨论,满足输入的x值与输出的y 值相等的情况,即可得到答案.解:当x≤2时,由x2=x得:x=0,1满足条件;当2<x≤5时,由2x﹣3=x得:x=3,满足条件;当x>5时,由=x得:x=±1,不满足条件,故这样的x值有3个.故选C.考点:选择结构.7、试题分析:根据充分条件和必要条件的定义结婚空间直线的位置关系,进行判断即可.解:若l1,l2是异面直线,则l1,l2不相交,即充分性成立,若l1,l2不相交,则l1,l2可能是平行或异面直线,即必要性不成立,故p是q的充分条件,但不是q的必要条件,故选:A.考点:必要条件、充分条件与充要条件的判断.8、试题分析:由题中条件:“函数f(x)=x2+4x+ξ没有零点”可得ξ>4,结合正态分布的图象的对称性可得μ值.解:函数f(x)=x2+4x+ξ没有零点,即二次方程x2+4x+ξ=0无实根得ξ>4,∵函数f(x)=x2+4x+ξ没有零点的概率是0.5,∴P(ξ>4)=0.5,由正态曲线的对称性知μ=4,故选:B.考点:正态分布曲线的特点及曲线所表示的意义.9、试题分析:根据“残差”的意义、线性相关系数和相关指数的意义,即可作出正确的判断.解:根据线性相关系数r的绝对值越接近1,两个变量的线性相关性越强;反之,线性相关性越弱,判断①错误;根据比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果就越好,判断②正确;根据用相关指数R2刻画回归的效果时,R2的值越大说明模型的拟合效果就越好,判断③错误;综上,正确的命题是②.故选:A.考点:相关系数.10、试题分析:由离散型随机变量的分布列的性质,X其每个值的概率都在[0,1]之间,且概率之和为1,得到关于q的不等式组,求解即可.解:由分布列的性质得;⇒∴q=1﹣;.故选C考点:离散型随机变量及其分布列.11、试题分析:抛物线方程化为标准方程,确定开口方向,即可得到抛物线的焦点坐标.解:抛物线方程化为标准方程为:x2=﹣8y∴2p=8,∴=2∵抛物线开口向下∴抛物线y=﹣x2的焦点坐标为(0,﹣2)故选:C.考点:抛物线的简单性质.12、试题分析:根据全称命题的否定方法,结合已知中的原命题,可得答案.解:命题“∀n∈Z,n∈Q”的否定是∃n0∈Z,n0∉Q,故选:A考点:命题的否定.13、试题分析:利用相互独立事件概率乘法公式、条件概率计算公式、互斥事件定义求解.解:∵甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件,再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,∴事件A1,A2,A3不会同时出现,∴事件A1,A2,A3是两两互斥事件,P(A1)=,P(A2)=,P(A3)=,P(B|A1)==,P(B|A2)=,P(B|A3)=,∴P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=,故①正确,②正确,④错误,⑤正确;事件B发生与否受到事件A1的影响,∴事件B与事件A1不是相互独立事件,故③错误.故答案为:①②⑤.考点:概率的意义.14、试题分析:回归直线方程y=0.8x+4.6中,回归系数是0.8,回归截距是4.6,根据相应的意义可求.解:回归直线方程y=0.8x+4.6中,回归系数是0.8,回归截距是4.6,斜率的估计0.8表示个地区受过9年或更少的教育的百分比每增加1%,则收入低于官方规定的贫困线的人数占本地区人数的百分比将增加0.8%左右.故答案为1%,0.8%考点:回归分析的初步应用.15、试题分析:通项公式为,令,所以常数项为考点:二项式定理16、试题分析:由条件利用n次独立重复试验中恰好发生k次的概率公式,求得要求事件的概率.解:要求事件的概率为••=,故答案为:.考点:n次独立重复试验中恰好发生k次的概率.17、试题分析:(Ⅰ)利用椭圆的离心率,椭圆经过点,建立方程组,求得几何量,从而可得椭圆的方程;(Ⅱ)设l的方程,代入椭圆方程,利用韦达定理,结合=0可得方程,从而可求直线l的斜率k的值;(Ⅲ)分类讨论:①当直线AB斜率不存在时,即x1=x2,y1=﹣y2,利用=0,A在椭圆上,可求△AOB的面积;②当直线AB斜率存在时,设AB的方程为y=kx+t,代入椭圆方程,利用韦达定理,结合=0可得△AOB的面积是定值.解:(Ⅰ)∵椭圆的离心率,椭圆经过点,∴∴a=2,b=1∴椭圆的方程为(Ⅱ)依题意,设l的方程为由,∴显然△>0,…5分由已知=0得:==解得(Ⅲ)①当直线AB斜率不存在时,即x1=x2,y1=﹣y2,∵=0,∴,∵A在椭圆上,∴,∴,|y1|=∴S==1;②当直线AB斜率存在时,设AB的方程为y=kx+t,代入椭圆方程,可得(k2+4)x2+2ktx+t2﹣4=0△=4k2t2﹣4(k2+4)(t2﹣4)>0,x1+x2=,x1x2=∵=0,∴4x1x2+y1y2=0,∴4x1x2+(kx1+t)(kx2+t)=0∴2t2﹣k2=4∴==1综上,△AOB的面积是定值1.考点:直线与圆锥曲线的关系;椭圆的标准方程.18、试题分析:(1)解题的关键是ξ=2时,共有6种坐法,写出关于n的表示式,解出未知量,把不合题意的舍去.(2)学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,当变量是0时表示学生所坐的座位号与该生的编号都相同,当变量是2时表示学生所坐的座位号与该生的编号有2个相同,理解变量对应的事件,写出分布列和期望.解:(1)∵当ξ=2时,有C n2种坐法,∴C n2=6,即,n2﹣n﹣12=0,n=4或n=﹣3(舍去),∴n=4.(2)∵学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,当变量是0时表示学生所坐的座位号与该生的编号都相同,当变量是2时表示学生所坐的座位号与该生的编号有2个相同,当变量是3时表示学生所坐的座位号与该生的编号有1个相同,当变量是4时表示学生所坐的座位号与该生的编号有0个相同,∴,,,,∴ξ的概率分布列为:∴.考点:离散型随机变量及其分布列.19、试题分析:(1)根据频率分布直方图,求出各段的频率,然后再求[2500,3500)的人数;(2)根据抽样方法,选取抽样的人数,(3)根据求中位数的方法即可.解:(1)∵月收入在[1000,1500]的频率为0.0008×500=0.4,且有4000人,∴样本的容量n=,月收入在[1500,2000)的频率为0.0004×500=0.2,月收入在[2000,2500)的频率为0.0003×500=0.15,月收入在[3500,4000)的频率为0.0001×500=0.05,∴月收入在[2500,3500)的频率为;1﹣(0.4+0.2+0.15+0.05)=0.2,∴样本中月收入在[2500,3500)的人数为:0.2×10000=2000.(2)∵月收入在[1500,2000)的人数为:0.2×10000=2000,∴再从10000人用分层抽样方法抽出100人,则月收入在[1500,2000)的这段应抽取(人).(3)由(1)知月收入在[1000,2000)的频率为:0.4+0.2=0.6>0.5,∴样本数据的中位数为:=1500+250=1750(元).考点:众数、中位数、平均数;频率分布直方图.20、试题分析:(1)由题意可得n2﹣6n+12>n,解得n<3,或n>4,故有n=1,2,5,6,由此求得重量大于其编号的概率.(2)如果不放回的任意取出2个球,这两个球的编号可能的情况共15种,设编号为m的球与编号为n的球重量相等,可得m+n=6,共有2种情况,由此求得所求事件的概率.解:(1)由编号为n的球其重量大于其编号,则有n2﹣6n+12>n,解得n<3,或n>4,故n=1,2,5,6.∴从袋中任意取出一个球,求其重量大于其编号的概率为=.(2)如果不放回的任意取出2个球,这两个球的编号可能的情况为:1、2;1、3;1、4;1、5;1、6;2、3;2、4;2、5;2、6;3、4;3、5;3、6;4、5;4、6;5、6,共15种情况.设编号为m的球与编号为n的球重量相等,则有m2﹣6m+12=n2﹣6n+12,即(m﹣n)(m+n﹣6)=0,结合题意可得m+n﹣6=0,即m+n=6.故满足m+n=6的情况为1、5;2、4,共两种情形.故所求事件的概率为.考点:排列、组合及简单计数问题;古典概型及其概率计算公式.21、试题分析:设P(x,y),根据向量条件建立方程关系进行化简即可得到结论..解:(1)设P(x,y),则=(﹣1﹣x,﹣y),=(1﹣x,﹣y),=(x,y),=(﹣1,0),=(1,0)∴=x2+y2﹣1,=﹣x,∵,∴x2+y2﹣1=m(x2﹣1)化简得,(m﹣1)x2﹣y2=m﹣1,∴当m>1时,方程为x2﹣=1,表示焦点在x轴上的双曲线;当m=1时,方程为y=0,是x轴所在直线;当0<m<1时,方程为x2+=1,表示焦点在x轴上的椭圆;当m=0时,方程为x2+y2=1,表示单位圆;当m<0时,方程为x2+=1,表示焦点在y轴上的椭圆.考点:平面向量数量积的运算;轨迹方程.22、试题分析:利用一元二次方程有两个不相等的实根与判别式的关系即可得出p,再利用不等式4x2+4(m﹣2)x+1>0的解集为R与判别式的关系即可得出q;由p或q为真,p且q为假,可得p与q为一真一假,进而得出答案.解:∵方程x2+mx+1=0有两个不相等的实根,∴,∴m>2或m<﹣2又∵不等式4x2+4(m﹣2)x+1>0的解集为R,∴,∴1<m<3∵p或q为真,p且q为假,∴p与q为一真一假,(1)当p为真q为假时,,解得m<﹣2或m≥3.(2)当p为假q为真时,综上所述得:m的取值范围是m<﹣2或m≥3或1<m≤2.考点:一元二次不等式的解法;复合命题的真假.。
湖北省黄冈市高二数学上学期期末考试试题理(扫描版)

黄冈市2016年秋季高二期末考试数学参考答案(理科)一、选择题: BCDAA DBCAB CD二、填空题:13. 14. 15. 16.三、解答题:17.【解析】由命题,得,对于命题,即使得恒成立若,,即.---4分;若a=0,1>0恒成立,满足题意,所以 ....5分由题意知与一真一假,当真假时,所以.-------6分当假真时,即.-------8分综上可知,的取值范围为.-------10分考点:1.命题的判断;2.一元二次不等式恒成立;3.分类讨论.18.【解析】试题解析:(1)位已婚男性的年龄平均值和样本方差分别为:,...3分...6分众数为36....... .....7 分;中位数为...................9分(2)在年龄段的频率分别为,,,,所以人数分别为4人,,11人,4人..12分考点:1,频率分布直方图,2,中位数,众数,平均数及样本方差公式;19.(1)记“取到同色球”为事件A,概率为.(要求写出所有的情况)...6分(2)设甲乙到达的时刻分别为x,y,则,甲乙到达时刻(x,y)为图中正方形区域,甲比乙先到则需满足,为图中阴影部分区域,(要求画图).......10分设甲比乙先到为事件B,则.......12分考点:1、古典概型;2、几何概型;3、二元一次不等式表示的平面区域.20.【解析】(1)由得圆心为(1,-2),∵圆的半径为∴圆的方程为: .........2分当切线的斜率存在时,设所求圆C的切线方程为,即∴∴∴,切线方程为..4分当切线的斜率不存在时,切线方程为 .................5分∴所求圆C的切线方程为:或者 ........6分(2)∵圆的圆心在在直线上,可设圆心为,则圆的方程为: ............7分∵∴设M(x,y)则得:...8分设为圆∴点M应该既在圆上又在圆上,即圆和圆有交点∴................10分由得,由得综上所述,的取值范围为 ......12分考点:圆的切线方程;圆与圆的位置关系的应用.21.【解析】(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面....5分(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为........12分22.【解析】(I)设椭圆标准方程,由抛物线的焦点为,.因为,所以.又,,,又,∴,.所以椭圆的标准方程...5分(II)由题意,直线的斜率存在,设直线的方程为.由消去,得.设,,,则是方程的两根,,即,....7分①且,由,得.若,则点位于椭圆任意一点,满足,当........9分因为点在椭圆上,所以,,...............................10分再由①得,又,∴综合知t 的范围..........12分。
人教A版选修2-2高二期末调研考试理科数学试题.docx

高中数学学习材料唐玲出品湖北省黄冈市2015-2016学年秋高二期末调研考试理科数学试题2015年秋季高二期末考试数学参考答案(理科)一、选择题 DADBB DCBAC AD二、 13.16 14.13a -≤≤. 15.3 16.① ④ 17.(1)检测数据的频率分布直方图如图:...........................................5分(2)检测数据中醉酒驾驶的频率是210.1520+=...............................6分 估计检测数据中酒精含量的众数是35与55................................8分 估计检测数据中酒精含量的平均数是0.01510250.020⨯⨯+⨯⨯+⨯⨯+⨯⨯0.01010650.01510750.01010850.005109555+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.....................10分18.(1)由22430x ax a -+<,得(3)()0x a x a --<,又0a >,所以3a x a <<. ...............................2分 当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<................................3分由2260280x x x x ⎧--≤⎨+->⎩得2324x x x -≤≤⎧⎨><-⎩或得23x <≤, 即q 为真时实数x 的取值范围是23x <≤. ...............................4分 若p q ∧为真,则p 真且q 真,.. .............................5分 所以实数x 的取值范围是23x <<. ...............................6分 (2)p ⌝是q ⌝的充分不必要条件,即p q ⌝⇒⌝,且q ⌝推不出p ⌝. 即q是p的充分不必要条件,2,3]⊂即((a,3a) ...............................8分则332a a >⎧⎨≤⎩,解得12a <≤,所以实数a 的取值范围是12a <≤..............................12分 19.(Ⅰ)前三次射击成绩依次记为123x x x 、、,后三次成绩依次记为123y y y 、、,从这6次射击成绩中随机抽取两个,基本事件是:121323{,},{,},{,},x x x x x x 121323{,},{,},{,},y y y y y y 111213{,},{,},{,},x y x y x y212223{,},{,},{,},x y x y x y 313233{,},{,},{,}x y x y x y ,共15个,...............................3分其中可使||1a b ->发生的是后9个基本事件.故93(||1)155P a b ->==.……………6分 (Ⅱ)因为着弹点若与A B C 、、的距离都超过1cm ,则着弹点就不能落在分别以A B C、、为中心,半径为1cm 的三个扇形区域内,只能落在扇形外的部分................................7分因为43cos sin 55C C =∴=则1=56sin 9,2ABC S C ∆⨯⨯⨯=...............................9分 满足题意部分的面积为211922ABC S S ππ∆'=-⨯⨯=-,...............................11分故所求概率为118ABCS p S π∆'==-. ……………12分20(1)∵ ()0,2F ,4p =, ∴ 抛物线方程为y x 82=,...............................1分与直线22y x =+联立消去y 得: 016162=--x x ,设),(),,(2211y x B y x A ..........2分 则16,162121-==+x x x x , ...............................3分 ∴ =++=++=)42)(42()2)(2(||||2121x x y y BF AF 80; ...............................5分(2)假设存在,由抛物线py x 22=与直线22y x =+联立消去y 得:0442=--p px x设),(),,(2211y x B y x A ,0,∆>则p x x p x x 4,42121-==+,...............................7分)24,2(+p p P ),2,2(p p Q ...................................................8分方法一,22+=∴p PQ ...................................................9分 p p p p AB +⋅=+⋅=225416)4(5 又...............................10分∴=AB PQ 21且01342=-+p p )(141舍或-==p p ...............................11分故存在14p =0.∆>且满足 ......................12分方法二:由0=⋅QB QA 得:0)2)(2()2)(2(2121=--+--p y p y p x p x ................9分 即1212(2)(2)(222)(222)0x p x p x p x p --++-+-=,...............................10分 ∴ 0488))(64(522121=+-++-+p p x x p x x , ...............................11分 代入得01342=-+p p ,)(141舍或-==p p .故存在0.∆>且满足 14p =.........12分 21.试题分析:(1)证明:在图中,由题意可知,,BA PD ABCD ⊥为正方形,所以在图中,,2SA AB SA ⊥=,四边形ABCD 是边长为2的正方形, ........................................2分 因为SB BC ⊥,AB ⊥BC ,所以BC ⊥平面SAB , . .............................4分又SA ⊂平面SAB ,所以BC ⊥SA ,又SA ⊥AB ,所以SA ⊥平面ABCD , ........6分(2)方法一:建立空间直角坐标系,以AB x AD y AS 为轴,为轴,为Z 轴,.....7分(000),(220),(020),(002)A C D S ,,,,,,,,124,(0)333SE SD E =∴,,................8分24(220),(0),(002)(,,)33AC AE AS AEC n x y z ====则,,,,,,设平面的法向量为0,0(2,2,1)n AC n AE n ⋅=⋅==-得.....................10分 ,ACD AS θ又平面的法向量为设二面角为,则1cos ,tan 2 2.3n AS n ASθθ⋅==∴=⋅即二面角E —AC —D 的正切值为22..............12分 方法二:在AD 上取一点O ,使13AO AD =,连接EO 因为13SE SD =,所以EO//SA 所以EO ⊥平面ABCD ,过O 作OH ⊥AC 交AC 于H ,连接EH , ...7分则AC ⊥平面EOH ,所以AC ⊥EH 。
2015-2016年湖北省部分重点中学高二上学期期末数学试卷(文科)与解析

2015-2016学年湖北省部分重点中学高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数的共轭复数是()A.i+2B.i﹣2C.﹣2﹣i D.2﹣i2.(5分)命题“∀n∈Z,n∈Q”的否定是()A.∃n0∈Z,n0∉Q B.∃n0∉Z,n0∈Q C.∀n0∈Z,n0∉Q D.∀n0∉Z,n0∈Q 3.(5分)某种食品的广告词是:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效果可大了,原来这句话的等价命题是()A.不拥有的人们不一定幸福B.不拥有的人们可能幸福C.拥有的人们不一定幸福D.不拥有的人们就不幸福4.(5分)从标有1、2、3、4的卡片中先后抽出两张卡片,则号码4“在第一次被抽到的概率”、“在第一次未被抽到而第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是()A.B.C.D.5.(5分)已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,在左支上过F1的弦AB的长为5,若2a=8,那么△ABF2的周长是()A.16B.18C.21D.266.(5分)某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率为()A.B.C.D.7.(5分)2x2﹣5x﹣3<0的一个必要不充分条件是()A.﹣<x<3B.﹣<x<0C.﹣3<x<D.﹣1<x<6 8.(5分)为调查甲乙两个网络节目的受欢迎程度,随机选取了8天,统计上午8:00﹣10:00的点击量.茎叶图如图,设甲、乙的中位数分别为x1,x2,方差分别为D1,D2,则()A.x1<x2,D1<D2B.x1>x2,D1>D2C.x1<x2,D1>D2D.x1>x2,D1<D29.(5分)若椭圆和双曲线有相同的焦点F1,F2,P是两曲线的一个交点,则|PF1|•|PF2|等于()A.m﹣a B.C.m2﹣a2D.10.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球11.(5分)椭圆+=1内有两点A(2,2),B(3,0),P为椭圆上任意一点,则|PA|+|PB|的最小值为()A.B.C.4D.12.(5分)如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若,则.类比以上性质,体积为V的三棱锥的第i个面的面积记为S i(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为H i(i=1,2,3,4),若=,则=()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知复数(m2﹣5m+6)+(m2﹣3m)i是纯虚数,则实数m=.14.(5分)双曲线2x2﹣y2=m的一个焦点是(0,),则m的值是.15.(5分)甲乙两人约定在6时到7时之间在某处会面,并约定先到者等候另一人15分钟,过时即可离去,则两人会面的概率是.16.(5分)如图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,…,一直数到2015时,对应的指头是(填指头的名称).三、解答题(共6小题,满分70分)17.(10分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a<0;命题q:实数x 满足x2+2x﹣8>0,且¬p是¬q的必要不充分条件,求实数a的取值范围.18.(12分)试求以椭圆+=1的右焦点为圆心,且与双曲线﹣=1的渐近线相切的圆方程.19.(12分)某市四所重点中学进行高二期中联考,共有5000名学生参加,为了了解数学学科的学习情况,现从中随机的抽取若干名学生在这次测试中的数学成绩,制成如下频率分布表:(1)根据上面的频率分布表,推出①,②,③,④处的数字分别为,,,,;(2)在所给的坐标系中画出[80,150]上的频率分布直方图;(3)根据题中的信息估计总体:①120分及以上的学生人数;②成绩在[126,150]中的概率.20.(12分)已知:f(x)=x2+px+q.求证:(1)f(1)+f(3)﹣2f(2)=2;(2)|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.21.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.22.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.2015-2016学年湖北省部分重点中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数的共轭复数是()A.i+2B.i﹣2C.﹣2﹣i D.2﹣i【解答】解:∵复数==﹣2﹣i,∴共轭复数是﹣2+i故选:B.2.(5分)命题“∀n∈Z,n∈Q”的否定是()A.∃n0∈Z,n0∉Q B.∃n0∉Z,n0∈Q C.∀n0∈Z,n0∉Q D.∀n0∉Z,n0∈Q 【解答】解:命题“∀n∈Z,n∈Q”的否定是∃n0∈Z,n0∉Q,故选:A.3.(5分)某种食品的广告词是:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效果可大了,原来这句话的等价命题是()A.不拥有的人们不一定幸福B.不拥有的人们可能幸福C.拥有的人们不一定幸福D.不拥有的人们就不幸福【解答】解:“幸福的人们都拥有”我们可将其化为:如果人是幸福的,则这个人拥有某种食品它的逆否命题为:如果这个没有拥有某种食品,则这个人是不幸福的即“不拥有的人们就不幸福”故选:D.4.(5分)从标有1、2、3、4的卡片中先后抽出两张卡片,则号码4“在第一次被抽到的概率”、“在第一次未被抽到而第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是()A.B.C.D.【解答】解:第一次抽,每张卡片被抽到的概率相同,∴号码4在第一次被抽到的概率为.号码4在第一次未被抽到而第二次被抽到的概率为号码4在整个张中抽样过程中被抽到的概率为故选:C.5.(5分)已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,在左支上过F1的弦AB的长为5,若2a=8,那么△ABF2的周长是()A.16B.18C.21D.26【解答】解:依题意,|AF2|﹣|AF1|=2a=8,|BF2|﹣|BF1|=2a=8,∴(|AF2|﹣|AF1|)+(|BF2|﹣|BF1|)=16,又|AB|=5,∴(|AF2|+|BF2|)=16+(|AF1|+|BF1|)=16+|AB|=16+5=21.∴|AF2|+|BF2|+|AB|=21+5=26.即△ABF2的周长是26.故选:D.6.(5分)某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率为()A.B.C.D.【解答】解:抽样比f==,∴A类学校应该抽取2000×=200,∴A类学校中的学生甲被抽到的概率为P==.故选:A.7.(5分)2x2﹣5x﹣3<0的一个必要不充分条件是()A.﹣<x<3B.﹣<x<0C.﹣3<x<D.﹣1<x<6【解答】解:2x2﹣5x﹣3<0的充要条件为对于A是2x2﹣5x﹣3<0的充要条件对于B,是2x2﹣5x﹣3<0的充分不必要条件对于C,2x2﹣5x﹣3<0的不充分不必要条件对于D,是2x2﹣5x﹣3<0的一个必要不充分条件故选:D.8.(5分)为调查甲乙两个网络节目的受欢迎程度,随机选取了8天,统计上午8:00﹣10:00的点击量.茎叶图如图,设甲、乙的中位数分别为x1,x2,方差分别为D1,D2,则()A.x1<x2,D1<D2B.x1>x2,D1>D2C.x1<x2,D1>D2D.x1>x2,D1<D2【解答】解:由茎叶图分别得到甲、乙的点击量数据为:甲65,68,70,75,77,78,82,85;乙60,65,70,72,74,81,84,94甲、乙的中位数分别为,,甲的平均数为=75乙的平均数为=75所以甲乙的方差分别为=42.=.所以x1>x2,D1<D2.故选:D.9.(5分)若椭圆和双曲线有相同的焦点F1,F2,P是两曲线的一个交点,则|PF1|•|PF2|等于()A.m﹣a B.C.m2﹣a2D.【解答】解:∵椭圆和双曲线有相同的焦点F1,F2,P是两曲线的一个交点,∴|PF1|+|PF2|=2,|PF1|﹣|PF2|=2,|PF1|•|PF2|==m﹣a.故选:A.10.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解答】解:从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球1个白球;1个红球2个白球;3个球全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项C中,事件“至少有一个红球”与事件“至少有一个白球”的交事件为“2个红球1个白球”与“1个红球2个白球”;选项D中,事件“恰有一个红球”与事件“恰有二个红球”互斥不对立.故选:D.11.(5分)椭圆+=1内有两点A(2,2),B(3,0),P为椭圆上任意一点,则|PA|+|PB|的最小值为()A.B.C.4D.【解答】解:根据椭圆的标准方程知,a=5,b=4,c=3,∴离心率,如图,设P到右准线的距离为d,则:=;∴;∴;由图可看出,过A作右准线的垂线,当与椭圆的交点为P点时,|PA|+d=最小;即的最小值为.故选:D.12.(5分)如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若,则.类比以上性质,体积为V的三棱锥的第i个面的面积记为S i(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为H i(i=1,2,3,4),若=,则=()A.B.C.D.【解答】解:根据三棱锥的体积公式得:,即KH1+2KH2+3KH3+4KH4=3V,∴,即.故选:B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知复数(m2﹣5m+6)+(m2﹣3m)i是纯虚数,则实数m=2.【解答】解:当纯虚数.故答案为:2.14.(5分)双曲线2x2﹣y2=m的一个焦点是(0,),则m的值是﹣2.【解答】解:双曲线2x2﹣y2=m,即,由题意知m<0,它的焦点为(0,±),∴=,∴m=﹣2,故答案为:﹣2.15.(5分)甲乙两人约定在6时到7时之间在某处会面,并约定先到者等候另一人15分钟,过时即可离去,则两人会面的概率是.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|6<x<7,6<y<7}集合对应的面积是边长为1的正方形的面积s=1,而满足条件的事件对应的集合是A═{(x,y)|6<x<7,6<y<7,|x﹣y|≤}得到∴两人能够会面的概率是故答案为:16.(5分)如图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,…,一直数到2015时,对应的指头是中指(填指头的名称).【解答】解:第1圈的数字为1,2,3,4,5,共5个数字,除第1圈外其余每一圈都有4个数字,且偶数圈是从无名指开始,空小指位置,奇数圈(1圈除外),从食指始从上往下排,则2015=5+2010=5+502×4+2,即2015在第504圈上的第2个数,此时从无名指开始从下往上排,第二个数排在中指上,故答案为:中指三、解答题(共6小题,满分70分)17.(10分)设命题p :实数x 满足x 2﹣4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x ﹣8>0,且¬p 是¬q 的必要不充分条件,求实数a 的取值范围. 【解答】解:设A={x |x 2﹣4ax +3a 2<0(a <0)}={x |3a <x <a (a <0)}, B={x |x 2+2x ﹣8>0}={x |(x ﹣2)(x +4)>0}={x |x <﹣4或x >2}.…(5分) ∵¬p 是¬q 的必要不充分条件, ∴q 是p 必要不充分条件, ∴A ⊊B ,…(8分)所以3a ≥2或a ≤﹣4,又a <0,所以实数a 的取值范围是a ≤﹣4.…(12分)18.(12分)试求以椭圆+=1的右焦点为圆心,且与双曲线﹣=1的渐近线相切的圆方程.【解答】解:由题意得:椭圆的右焦点为F (5,0),双曲线的渐近线方程为y=±x ,根据对称性可知,点F 到两直线y=±x 的距离相等,这个距离就是所求圆的半径r ,不妨取直线y=x ,即4x ﹣3y=0,∴r===4,则所求圆的方程为(x ﹣5)2+y 2=16.19.(12分)某市四所重点中学进行高二期中联考,共有5000名学生参加,为了了解数学学科的学习情况,现从中随机的抽取若干名学生在这次测试中的数学成绩,制成如下频率分布表:(1)根据上面的频率分布表,推出①,②,③,④处的数字分别为,3,0.025,0.1,1;(2)在所给的坐标系中画出[80,150]上的频率分布直方图;(3)根据题中的信息估计总体:①120分及以上的学生人数;②成绩在[126,150]中的概率.【解答】解:(I)先做出③对应的数字,=0.1,∴②处的数字是1﹣0.05﹣0.2﹣0.3﹣0.275﹣0.1﹣0.05=0.025∴①处的数字是0.025×120=3,④处的数字是1,故答案为:3;0.025;0.1;1(II)由频率分布表在所给的坐标系中画出[80,150]上的频率分布直方图:(III)①120分及以上的学生人数为:(0.275+0.1+0.05)×120=51.②成绩在[126,150]中的概率为:0.5×0.275+0.1+0.05=0.26.20.(12分)已知:f(x)=x2+px+q.求证:(1)f(1)+f(3)﹣2f(2)=2;(2)|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.【解答】证明:(1)∵f(x)=x2+px+q∴f(1)=1+p+qf(2)=4+2p+qf(3)=9+3p+q所以f(1)+f(3)﹣2f(2)=(1+p+q)+(9+3p+q)﹣2(4+2p+q)=2;(2)假设|f(1)|,|f(2)|,|f(3)|都小于,则,即有∴﹣2<f(1)+f(3)﹣2f(2)<2由(1)可知f(1)+f(3)﹣2f(2)=2,与﹣2<f(1)+f(3)﹣2f(2)<2矛盾,∴假设不成立,即原命题成立.21.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.22.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得 又,所以a=2 ,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x=的定义域为I,如果存在实数M满足:(1)对于任意的x I∈,都有()f x M≤;yxo(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
湖北省黄冈中学2015-2016学年高二数学上学期期末考试试题 理(含解析)

湖北省黄冈中学2015-2016学年高二上学期期末考试数学试题(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1、总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08 B.07C.02 D.012、甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④C.②④D.①③④3、当输入x=-4时,如图的程序运行的结果是()A.7 B.8C.9 D.154、下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.若命题“”为假命题,则“”为真命题5、一名小学生的年龄和身高(单位:cm)的数据如下表:由散点图可知,身高y与年龄x之间的线性回归方程为,预测该学生10岁时的身高为()A.154 B.153C.152 D.1516、“a≠5且b≠-5”是“a+b≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件7、某校共有学生2000名,各年级男、女生人数如下表:如果从全校学生中随机抽取一名学生,抽到二年级女生的概率为0.19.现用分层抽样的方法在全校学生中分年级抽取64名学生参加某项活动,则应在三年级中抽取的学生人数为()A.24 B.18C.16 D.128、已知双曲线的一个焦点与抛物线y2=-4x的焦点重合,且双曲线的离心率为,则此双曲线的方程为()A.B.C.D.9、如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=AC=2,,则AA1与平面AB1C1所成的角为()A.B.C.D.10、已知:a,b,c为集合A={1,2,3,4,5}中三个不同的数,通过如下框图给出的一个算法输出一个整数a,则输出的数a=4的概率是()A.B.C. D.11、如图,在平行六面体ABCD—A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且AA1=3,则A1C的长为()A.B.C. D.12、椭圆的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为()A.B.C. D.二、填空题13、三进制数121(3)化为十进制数为__________.14、若命题“,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为__________.15、在区间上随机地取出一个数x,若满足|x|≤m的概率为,则m=__________.16、以下四个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;③设A、B为两个定点,k为常数,若|PA|-|PB|=k,则动点P的轨迹为双曲线;④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则|AB|=7.其中真命题的序号为__________(写出所有真命题的序号)三、解答题17、(本小题满分10分)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如下表:(Ⅰ)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);(Ⅱ)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.18、(本小题满分12分)p:实数x满足x2-4ax+3a2<0,其中a>0,q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)是的充分不必要条件,求实数a的取值范围.19、(本小题满分12分)某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C 刚好是边长分别为5cm,6cm,的三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间解析:.15、3解析:.16、①②④17、(1)检测数据的频率分布直方图如图:(5分)(2)检测数据中醉酒驾驶的频率是.(6分)估计检测数据中酒精含量的众数是35与55.(8分)估计检测数据中酒精含量的平均数是.(10分)18、(1)由,得,又a>0,所以a<x<3a.(2分)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.(3分)由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.(4分)若p∧q为真,则p真且q真,(5分)所以实数x的取值范围是2<x<3.(6分)(2)是的充分不必要条件,即,且推不出.即q是p的充分不必要条件,(8分)则,解得1<a≤2,所以实数a的取值范围是1<a≤2.(12分)19、(Ⅰ)前三次射击成绩依次记为x1、x2、x3,后三次成绩依次记为y1、y2、y3,从这6次射击成绩中随机抽取两个,基本事件是:,共15个,(3分)其中可使|a-b|>1发生的是后9个基本事件.故.(6分)(Ⅱ)因为着弹点若与A、B、C的距离都超过1cm,则着弹点就不能落在分别以A、B、C为圆心,半径为1cm的三个扇形区域内,只能落在扇形外的部分.(7分)因为(9分)满足题意部分的面积为,(11分)故所求概率为.(12分)20、(1)∵F(0,2),p=4,∴抛物线方程为x2=8y,(1分)与直线y=2x+2联立消去y得:x2-16x-16=0,设A(x1,y1),B(x2,y2).(2分)则x1+x2=16,x1x2=-16,(3分);(5分)(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y得:x2-4px-4p=0.设A(x1,y1),B(x2,y2),△>0,则x1+x2=4p,x1x2=-4p,(7分)P(2p,4p+2),Q(2p,2p).(8分)方法一:(9分)(10分)(11分)故存在且满足△>0.(12分)方法二:由得:.(9分)即,(10分),(11分)代入得4p2+3p-1=0,.故存在且满足△>0.(12分)21、(1)证明:在图中,由题意可知,BA⊥PD,ABCD为正方形,所以在图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,(2分)因为SB⊥BC,AB⊥BC,所以BC⊥平面SAB,(4分)又SA平面SAB,所以BC⊥SA,又SA⊥AB,所以SA⊥平面ABCD.(6分)(2)方法一:建立空间直角坐标系,以AB为x轴,AD为y轴,AS为z轴,(7分)A(0,0,0),C(2,2,0),D(0,2,0),S(0,0,2).(8分).(10分)即二面角E—AC—D的正切值为.(12分)方法二:在AD上取一点O,使,连接EO.因为,所以EO//SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,(7分)则AC⊥平面EOH,所以AC⊥EH.所以∠EHO为二面角E—AC—D的平面角,(9分),在Rt△AHO中,.(11分),即二面角E—AC—D的正切值为.(12分)22、(1)由题意知|PQ|=|AQ|,又∵|CP|=|CQ|+|PQ|=4.(2分),由椭圆定义知Q点的轨迹是椭圆,(3分)2a=4,即a=2,,∴Q的轨迹方程E:.(5分)(2)由题意知所求的直线不可能垂直于x轴,所以可设直线为:y=kx-2,M(x1,y1),N(x2,y2),联立方程组,将y=kx-2代入中得(7分)(8分),当且仅当即t=2时面积最大,最大值为1.(10分)(11分).(12分)。
2015-2016学年湖北省黄冈中学高二上学期期末数学试卷(带解析)

绝密★启用前2015-2016学年湖北省黄冈中学高二上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:168分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2013•绍兴一模)如图,正四面体ABCD 的顶点C 在平面α内,且直线BC 与平面α所成角为45°,顶点B 在平面α上的射影为点O ,当顶点A 与点O 的距离最大时,直线CD 与平面α所成角的正弦值等于( )A .B .C .D .2、(2015秋•黄冈校级期末)如图,△ADP 为正三角形,四边形ABCD 为正方形,平面PAD ⊥平面ABCD .M 为平面ABCD 内的一动点,且满足MP=MC .则点M 在正方形ABCD 内的轨迹为(O 为正方形ABCD 的中心)( )A .B .C .D .3、(2015秋•黄冈校级期末)已知双曲线的一条渐近线方程为3x ﹣2y=0.F 1、F 2分别是双曲线的左、右焦点,过点F 2的直线与双曲线右支交于A ,B 两点.若|AB|=10,则△F 1AB 的周长为( )A .18B .26C .28D .364、(2015秋•黄冈校级期末)某人有5把钥匙,其中2把能打开门.现随机取钥匙试着开门,不能开门就扔掉.则恰好在第3次才能开门的概率为( ) A .B .C .D .5、(2011•洛阳二模)巳知F 1,F 2是椭圆(a >b >0)的两焦点,以线段F 1F 2为边作正三角形PF 1F 2,若边PF 1的中点在椭圆上,则该椭圆的离心率是( )A .﹣1B .+1C .D .6、(2015秋•黄冈校级期末)在一次歌手大奖赛上,七位评委为歌手打出的分数(满分10分)茎叶图如图:去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A .9.4,0.484B .9.4,0.016C .9.5,0.04D .9.5,0.0167、(2014•开福区校级模拟)若椭圆和双曲线的共同焦点为F1,F2,P是两曲线的一个交点,则|PF1|•|PF2|的值为()A. B.84 C.3 D.218、(2015秋•黄冈校级期末)“若a≠0或b≠0,则ab≠0”的否命题为()A.若a≠0或b≠0,则ab=0B.若a≠0且b≠0,则ab=0C.若a=0或b=0,则ab=0D.若a=0且b=0,则ab=09、(2015秋•黄冈校级期末)为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是()A.直线l1和l2相交,但是交点未必是点(s,t)B.直线l1和l2有交点(s,t)C.直线l1和l2由于斜率相等,所以必定平行D.直线l1和l2必定重合10、(2010•云南模拟)已知向量=(1,1,0),=(﹣1,0,2),且与互相垂直,则k的值是()A.1 B. C. D.11、(2015•安徽模拟)已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12、(2013•宣武区校级模拟)用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是()A. B. C. D.第II卷(非选择题)二、填空题(题型注释)13、(2015秋•黄冈校级期末)已知F是双曲线C:x2﹣y2=2的右焦点,P是C的左支上一点,A(0,2).当△APF周长最小时,该三角形的面积为.14、(2015秋•黄冈校级期末)已知三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S、A、B、C四点均在以O为球心的某个球面上,则点O到平面ABC的距离为.15、(2015秋•黄冈校级期末)在半径为r的圆周上任取两点A,B,则|AB|≥r的概率为.16、(2015秋•黄冈校级期末)阅读如图所示的程序,当输入a=2,n=4时,输出s= .三、解答题(题型注释)17、(2015•湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C 2的方程;(Ⅱ)若|AC|=|BD|,求直线l 的斜率.18、(2013•绍兴一模)如图,在梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AD=4,点P 在平面ABCD 上的射影中点O ,且,二面角P ﹣AD ﹣B 为45°.(1)求直线OA 与平面PAB 所成角的大小; (2)若AB+BP=8求三棱锥P ﹣ABD 的体积.19、(2015秋•黄冈校级期末)已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,准线l 与坐标轴交于点M ,过焦点且斜率为的直线交抛物线于A ,B 两点,且|AB|=12.(Ⅰ)求抛物线的标准方程; (Ⅱ)若点P 为该抛物线上的动点,求的最小值.20、(2015秋•黄冈校级期末)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别为A 1D 1和A 1B 1的中点.(Ⅰ)求二面角B ﹣FC 1﹣B 1的余弦值;(Ⅱ)若点P 在正方形ABCD 内部及边界上,且EP ∥平面BFC 1,求|EP|的最小值.21、(2015秋•黄冈校级期末)命题p :∃x ∈R ,ax 2+ax ﹣1≥0,q :>1,r :(a ﹣m )(a ﹣m ﹣1)>0.(1)若¬p ∧q 为假命题,求实数a 的取值范围; (2)若¬q 是¬r 的必要不充分条件,求m 的取值范围.22、(2015秋•黄冈校级期末)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].(Ⅰ)根据频率分布直方图,估计该企业的职工对该部门评分的平均值;(Ⅱ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.参考答案1、A2、A3、B4、B5、A6、D7、D8、D9、B10、D11、A12、C13、314、15、16、246817、(Ⅰ)+=1;(Ⅱ)±.18、(1)30°.(2)19、(Ⅰ)y2=4x;(Ⅱ)20、(Ⅰ).(Ⅱ)21、(1)a≥1或a≤﹣4;(2)m≤﹣3或m>1.22、(Ⅰ)76.2;(Ⅱ)p=【解析】1、试题分析:由题意,可得当O、B、A、C四点共面时顶点A与点O的距离最大,设此平面为β.由面面垂直判定定理结合BO⊥α,证出β⊥α.过D作DE⊥α于E,连结CE,根据面面垂直与线面垂直的性质证出DH∥α,从而点D到平面α的距离等于点H 到平面α的距离.设正四面体ABCD的棱长为1,根据BC与平面α所成角为45°和正四面体的性质算出H到平面α的距离,从而在Rt△CDE中,利用三角函数的定义算出sin∠DCE=,即得直线CD与平面α所成角的正弦值.解:∵四边形OBAC中,顶点A与点O的距离最大,∴O、B、A、C四点共面,设此平面为β∵BO⊥α,BO⊂β,∴β⊥α过D作DH⊥平面ABC,垂足为H,设正四面体ABCD的棱长为1,则Rt△HCD中,CH=BC=∵BO⊥α,直线BC与平面α所成角为45°,∴∠BCO=45°,结合∠HCB=30°得∠HCO=75°因此,H到平面α的距离等于HCsin75°=×=过D作DE⊥α于E,连结CE,则∠DCE就是直线CD与平面α所成角∵DH⊥β,α⊥β且DH⊄α,∴DH∥α由此可得点D到平面α的距离等于点H到平面α的距离,即DE=∴Rt△CDE中,sin∠DCE==,即直线CD与平面α所成角的正弦值等于故选:A考点:直线与平面所成的角.2、试题分析:在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α,平面α与平面ABCD有一个公共点D,则它们有且只有一条过该点的公共直线.取特殊点B,可排除选项B,故选A.考点:轨迹方程.3、试题分析:求出双曲线方程利用双曲线定义,转化求解三角形的周长即可.解:因为渐近线方程为3x﹣2y=0,所以双曲线的方程为.△F1AB的周长为|AF1|+|BF1|+|AB|=(|AF2|+2a)+(|BF2|+2a)+|AB|=2|AB|+4a=28.故选:B.考点:双曲线的简单性质.4、试题分析:先求出基本事件总数,再求出恰好在第3次才能开门包含的基本事件个数,由此能求出恰好在第3次才能开门的概率.解:∵某人有5把钥匙,其中2把能打开门.现随机取钥匙试着开门,不能开门就扔掉.∴恰好在第3次才能开门的概率为.故选:B.考点:古典概型及其概率计算公式.5、试题分析:设边PF1的中点为Q,连接F2Q,Rt△QF1F2中,算出|QF1|=c且|QF2|=c,根据椭圆的定义得2a=|QF1|+|QF2|=(1+)c,由此不难算出该椭圆的离心率.解:由题意,设边PF1的中点为Q,连接F2Q在△QF1F2中,∠QF1F2=60°,∠QF2F1=30°Rt△QF1F2中,|F1F2|=2c(椭圆的焦距),∴|QF1|=|F1F2|=c,|QF2|=|F1F2|= c根据椭圆的定义,得2a=|QF1|+|QF2|=(1+)c∴椭圆的离心率为e===﹣1故选:A考点:椭圆的简单性质.6、试题分析:利用茎叶图性质、平均数和方差公式求解.解:由茎叶图得去掉一个最高分和一个最低分后,所剩数据的平均值:,方差.故选:D.考点:极差、方差与标准差;众数、中位数、平均数.7、试题分析:设|PF1|>|PF2|,根据椭圆和双曲线的定义可分别表示出|PF1|+|PF2|和|PF1|﹣|PF2|,进而可表示出|PF1|和|PF2|,根据焦点相同进而可求得|pF1|•|pF2|的表达式.解:由椭圆和双曲线定义不妨设|PF1|>|PF2|则|PF1|+|PF2|=10|PF1|﹣|PF2|=4所以|PF1|=7|PF2|=3∴|pF1|•|pF2|=21故选D.考点:圆锥曲线的共同特征.8、试题分析:根据否命题的定义进行判断即可.解:同时否定条件和结论得否命题:若a=0且b=0,则ab=0,故选:D.考点:四种命题间的逆否关系.9、试题分析:由题意知,两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,所以两组数据的样本中心点是(s,t),回归直线经过样本的中心点,得到直线l1和l2都过(s,t).解:∵两组数据变量x的观测值的平均值都是s,对变量y的观测值的平均值都是t,∴两组数据的样本中心点都是(s,t)∵数据的样本中心点一定在线性回归直线上,∴回归直线l1和l2都过点(s,t)∴两条直线有公共点(s,t)故选:B.考点:变量间的相关关系.10、试题分析:根据题意,易得k+,2﹣的坐标,结合向量垂直的性质,可得3(k﹣1)+2k﹣2×2=0,解可得k的值,即可得答案.解:根据题意,易得k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2).∵两向量垂直,∴3(k﹣1)+2k﹣2×2=0.∴k=,故选D.考点:数量积判断两个平面向量的垂直关系.11、试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.12、试题分析:用随机数表法从100名学生中抽选20人,属简单随机抽样,每人被抽到的概率都相等均为解:本抽样方法为简单随机抽样,每人被抽到的概率都相等均为,故某男学生被抽到的机率是故选C考点:等可能事件的概率.13、试题分析:利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF 周长最小时,该三角形的面积解:设左焦点为F1(﹣2,0),右焦点为F(2,0).△APF周长为|AF|+|AP|+|PF|=|AF|+|AP|+(|PF1|+2a)=|AF|+|AP|+|PF1|+2a≥|AF|+|AF1|+2a,当且仅当A,P,F1三点共线,即P位于P0时,三角形周长最小.此时直线AF1的方程为y=x+2,代入x2﹣y2=2中,可求得,故.故答案为:3.考点:双曲线的简单性质.14、试题分析:根据三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,可得S在面ABC上的射影为AB中点H,SH⊥平面ABC,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心,OH为O与平面ABC 的距离,由此可得结论.解:∵三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,∴S在面ABC上的射影为AB中点H,∴SH⊥平面ABC.∴SH上任意一点到A、B、C的距离相等.∵SH=,CH=1,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心.∵SC=2∴SM=1,∠OSM=30°∴SO=,∴OH=,即为O与平面ABC的距离.故答案为:考点:点、线、面间的距离计算.15、试题分析:根据题意,画出图形,结合图形,得出以A为正六边形的一个顶点作圆的内接正六边形,则正六边形的边长为半径r,当B点落在劣弧外时,有|AB|≥r,求出对应的概率即可.解:如图所示,选定点A后,以A为正六边形的一个顶点作圆的内接正六边形,则正六边形的边长为半径r,当B点落在劣弧外时,有|AB|≥r,则所求概率为P==.故答案为:.考点:几何概型.16、试题分析:模拟执行程序,依次写出每次循环得到的p,s,i的值,当i=5时满足条件i>n,退出循环,输出s的值为2468.解:模拟执行程序,可得a=2,n=4,s=0,p=0,i=1p=2,s=2,i=2不满足条件i>n,p=22,s=24,i=3不满足条件i>n,p=222,s=246,i=4不满足条件i>n,p=2222,s=2468,i=5满足条件i>n,退出循环,输出s的值为2468.故答案为:2468.考点:程序框图.17、试题分析:(Ⅰ)通过C1方程可知a2﹣b2=1,通过C1与C2的公共弦的长为2且C1与C2的图象都关于y轴对称可得,计算即得结论;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通过=可得(x1+x2)2﹣4xx2=(x3+x4)2﹣4x3x4,设直线l方程为y=kx+1,分别联立直线与抛物线、直线与1椭圆方程,利用韦达定理计算即可.解:(Ⅰ)由C1方程可知F(0,1),∵F也是椭圆C2的一个焦点,∴a2﹣b2=1,又∵C1与C2的公共弦的长为2,C1与C2的图象都关于y轴对称,∴易得C1与C2的公共点的坐标为(±,),∴,又∵a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+=1;(Ⅱ)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),∵与同向,且|AC|=|BD|,∴=,∴x1﹣x2=x3﹣x4,∴(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的斜率为k,则l方程:y=kx+1,由,可得x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k,x1x2=﹣4,由,得(9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,∴16(k2+1)=+,化简得16(k2+1)=,∴(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.18、试题分析:(1)过O点作OH⊥AB,垂足为H,连接PH.过O点作OK⊥PH,连接AK,证明∠OAK就是OA与平面PAB所成的角,求出OK、OA的长,即可求直线OA与平面PAB所成角的大小;(2)利用AB+BP=8,求出AB的长,利用三棱锥P﹣ABD的体积V=,即可求三棱锥P﹣ABD的体积.解:(1)过O点作OH⊥AB,垂足为H,连接PH.过O点作OK⊥PH,连接AK.∵PO⊥平面ABCD,∴PO⊥AB.∵OH⊥AB,∴AB⊥平面POH.∵OK⊂平面POH,∴AB⊥OK,∵OK⊥PH,∴OK⊥平面PAB.∴∠OAK就是OA与平面PAB所成角.∵PA=PD,∴P点在平面ABCD上的射影O在线段AD的中垂线上,设AD的中点为E,连接EP,EO,∴EO⊥AD,EP⊥AD,∴∠PEO为二面角P﹣AD﹣B的平面角,∴∠PEO=45°.在等腰△PAD中,∵AD=4,∴EA=ED=2,∵PA=PD=2.∴PE=2.在Rt△PEO中,OP=OE=2,∴OA=2,又∵OH=AE=2,PO=2,在Rt△POH中,可得OK=∴sin∠OAK==,∴∠OAK=30°,∴直线OA与平面PAB所成的角为30°.(2)设AB=x,则PB=8﹣x,连接OB.在Et△POB中,PB2=PO2+OB2,∵OE⊥AE,OE=AE,∴∠OAE=45°,∴∠OAB=45°.在△OAB中,OB2=AO2+AB2﹣2AO•AB•cos∠OAB=8+x2﹣4x∴4+8+x2﹣4x=(8﹣x)2,∴x=,即AB=∴三棱锥P﹣ABD的体积V==考点:与二面角有关的立体几何综合题.19、试题分析:(Ⅰ)求出抛物线的焦点坐标,写出直线方程,与抛物线联立,利用弦长公式求出写出,即可求此抛物线方程;(Ⅱ)过点P作PA垂直于准线,A为垂足,则由抛物线的定义可得|PF|=|PA|,则==sin∠PMA,故当PA和抛物线相切时,最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.解:(Ⅰ)因焦点F(,0),所以直线l的方程为y=(x﹣),与抛物线y2=2px联立,消去y得4x2﹣20px+p2=0①设A(x1,y1),B(x2,y2),则x1+x2=5p,∴|AB|=x1+x2+p=6p=12,∴p=2,∴抛物线方程为y2=4x.(Ⅱ)由题意可得,焦点F(1,0),准线方程为x=﹣1过点P作PA垂直于准线,A为垂足,则由抛物线的定义可得|PF|=|PA|,则==sin∠PMA,∠PMA为锐角.故当∠PMA最小时,最小,故当PM和抛物线相切时,最小.设切点P(a,2),则PM的斜率为=(2)′=,求得a=1,可得P(1,2),∴|PA|=2|PM|=2sin∠PMA=考点:抛物线的简单性质.20、试题分析:以D为坐标原点,以DA,DC,DD1分别为x轴、y轴、z轴正方向建立空间直角坐标系.求出B,C1,E,F的坐标,(Ⅰ)求出面FC1B1的一个法向,面BFC1的法向量,利用空间向量的数量积求解二面角B﹣FC1﹣B1的余弦值.(Ⅱ)设P(x,y,0)(0≤x≤1,0≤y≤1),利用EP∥平面BFC1,推出,求出x,y的关系,利用空间距离结合二次函数的最值求解即可.解:以D为坐标原点,以DA,DC,DD1分别为x轴、y轴、z轴正方向建立空间直角坐标系.则.(Ⅰ)由图可取面FC1B1的一个法向量;,设面BFC1的法向量为,则,可取.所以,即二面角B﹣FC1﹣B1的余弦值为.(Ⅱ)因为P在正方形ABCD内部及边界上,所以可设P(x,y,0)(0≤x≤1,0≤y≤1),则.因为EP∥平面BFC1,所以,即(1,2,1)=0,所以,∵0≤x≤1,0≤y≤1,∴,∴,所以=,当时,.考点:直线与平面平行的判定;二面角的平面角及求法.21、试题分析:分别求出p,q,r为真时的a的范围,(1)由¬p∧q为假命题,则p 真q假,得到关于a的不等式组,解出即可;(2)问题转化为r是q的必要不充分条件,得到关于a的不等式,解出即可.解:关于命题p:∃x∈R,ax2+ax﹣1≥0,a>0时,显然成立,a=0时不成立,a<0时只需△=a2+4a≥0即可,解得:a<﹣4,故p为真时:a(0,+∞)∪(﹣∞,﹣4];关于q:>1,解得:﹣2<a<1,关于r:(a﹣m)(a﹣m﹣1)>0,解得:a>m+1或a<m,(1)若¬p∧q为假命题,则p真q假,∴,解得:a≥1或a≤﹣4;(2)若¬q是¬r的必要不充分条件,即r是q的必要不充分条件,即q⇒r,∴m+1≤﹣2或m>1,即m≤﹣3或m>1.考点:复合命题的真假;必要条件、充分条件与充要条件的判断.22、试题分析:(Ⅰ)由频率分布直方图的性质能求出a,由此能估计该企业的职工对该部门评分的平均值.(Ⅱ)由频率分布直方图可知在[40,50)内的人数为2人,在[50,60)内的人数为3人,由此能求出此2人评分都在[40,50)的概率.解:(Ⅰ)∵(0.004+a+0.022+0.028+0.022+0.018)×10=1,∴a=0.006.估计该企业的职工对该部门评分的平均值:=0.04×45+0.06×55+0.22×65+0.28×75+0.22×85+0.18×95=76.2.(Ⅱ)由频率分布直方图可知:在[40,50)内的人数为0.004×40×50=2(人),在[50,60)内的人数为0.006×10×50=3(人),设[40,50)内的两人分别为a1,a2,[50,60)内的三人为A1,A2,A3.则从[40,60)的受访职工中随机抽取2人,基本事件有(a1,a2),(a1,A1),(a1,A2),(a1,A3),(a2,A1),(a2,A2),(a2,A3),(A1,A2),(A1,A3),(A2,A3)共10种,其中2人评分都在[40,50)内的基本事件有(a1,a2)共1种,所求的概率为p=.考点:古典概型及其概率计算公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年湖北省黄冈中学高二(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是()A.B.C.D.2.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知向量=(1,1,0),=(﹣1,0,2),且与互相垂直,则k的值是()A.1 B.C.D.4.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是()A.直线l1和l2相交,但是交点未必是点(s,t)B.直线l1和l2有交点(s,t)C.直线l1和l2由于斜率相等,所以必定平行D.直线l1和l2必定重合5.“若a≠0或b≠0,则ab≠0”的否命题为()A.若a≠0或b≠0,则ab=0 B.若a≠0且b≠0,则ab=0C.若a=0或b=0,则ab=0 D.若a=0且b=0,则ab=06.若椭圆和双曲线的共同焦点为F1,F2,P是两曲线的一个交点,则|PF1|•|PF2|的值为()A.B.84 C.3 D.217.在一次歌手大奖赛上,七位评委为歌手打出的分数(满分10分)茎叶图如图:去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484 B.9.4,0.016 C.9.5,0.04 D.9.5,0.0168.巳知F1,F2是椭圆(a>b>0)的两焦点,以线段F1F2为边作正三角形PF1F2,若边PF1的中点在椭圆上,则该椭圆的离心率是()A.﹣1 B.+1 C.D.9.某人有5把钥匙,其中2把能打开门.现随机取钥匙试着开门,不能开门就扔掉.则恰好在第3次才能开门的概率为()A.B.C.D.10.已知双曲线的一条渐近线方程为3x﹣2y=0.F1、F2分别是双曲线的左、右焦点,过点F2的直线与双曲线右支交于A,B两点.若|AB|=10,则△F1AB的周长为()A.18 B.26 C.28 D.3611.如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)()A.B.C.D.12.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A. B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.阅读如图所示的程序,当输入a=2,n=4时,输出s=14.在半径为r的圆周上任取两点A,B,则|AB|≥r的概率为.15.已知三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S、A、B、C四点均在以O为球心的某个球面上,则点O到平面ABC的距离为.16.已知F是双曲线C:x2﹣y2=2的右焦点,P是C的左支上一点,A(0,2).当△APF周长最小时,该三角形的面积为.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].(Ⅰ)根据频率分布直方图,估计该企业的职工对该部门评分的平均值;(Ⅱ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.18.命题p:∃x∈R,ax2+ax﹣1≥0,q:>1,r:(a﹣m)(a﹣m﹣1)>0.(1)若¬p∧q为假命题,求实数a的取值范围;(2)若¬q是¬r的必要不充分条件,求m的取值范围.19.在棱长为1的正方体ABCD﹣A1B1C1D1中,E,F分别为A1D1和A1B1的中点.(Ⅰ)求二面角B﹣FC1﹣B1的余弦值;(Ⅱ)若点P在正方形ABCD内部及边界上,且EP∥平面BFC1,求|EP|的最小值.20.已知抛物线y2=2px(p>0)的焦点为F,准线为l,准线l与坐标轴交于点M,过焦点且斜率为的直线交抛物线于A,B两点,且|AB|=12.(I)求抛物线的标准方程;(Ⅱ)若点P为该抛物线上的动点,求的最小值.21.如图,在梯形ABCD中,AB∥CD,AB⊥AD,AD=4,点P在平面ABCD上的射影中点O,且,二面角P﹣AD﹣B为45°.(1)求直线OA与平面PAB所成角的大小;(2)若AB+BP=8求三棱锥P﹣ABD的体积.22.已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.2015-2016学年湖北省黄冈中学高二(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是()A.B.C.D.【考点】等可能事件的概率.【专题】计算题.【分析】用随机数表法从100名学生中抽选20人,属简单随机抽样,每人被抽到的概率都相等均为【解答】解:本抽样方法为简单随机抽样,每人被抽到的概率都相等均为,故某男学生被抽到的机率是故选C【点评】本题考查简单随机抽样、等可能事件的概率等知识,属基础知识的考查.2.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;平面与平面平行的判定.【专题】规律型.【分析】利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.【解答】解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.【点评】主要是考查了空间中面面平行的性质定理的运用,属于基础题.3.已知向量=(1,1,0),=(﹣1,0,2),且与互相垂直,则k的值是()A.1 B.C.D.【考点】数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】根据题意,易得k+,2﹣的坐标,结合向量垂直的性质,可得3(k﹣1)+2k﹣2×2=0,解可得k的值,即可得答案.【解答】解:根据题意,易得k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2).∵两向量垂直,∴3(k﹣1)+2k﹣2×2=0.∴k=,故选D.【点评】本题考查向量数量积的应用,判断向量的垂直,解题时,注意向量的正确表示方法.4.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是()A.直线l1和l2相交,但是交点未必是点(s,t)B.直线l1和l2有交点(s,t)C.直线l1和l2由于斜率相等,所以必定平行D.直线l1和l2必定重合【考点】变量间的相关关系.【专题】计算题;概率与统计.【分析】由题意知,两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,所以两组数据的样本中心点是(s,t),回归直线经过样本的中心点,得到直线l1和l2都过(s,t).【解答】解:∵两组数据变量x的观测值的平均值都是s,对变量y的观测值的平均值都是t,∴两组数据的样本中心点都是(s,t)∵数据的样本中心点一定在线性回归直线上,∴回归直线l1和l2都过点(s,t)∴两条直线有公共点(s,t)故选:B.【点评】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.5.“若a≠0或b≠0,则ab≠0”的否命题为()A.若a≠0或b≠0,则ab=0 B.若a≠0且b≠0,则ab=0C.若a=0或b=0,则ab=0 D.若a=0且b=0,则ab=0【考点】四种命题间的逆否关系.【专题】整体思想;定义法;简易逻辑.【分析】根据否命题的定义进行判断即可.【解答】解:同时否定条件和结论得否命题:若a=0且b=0,则ab=0,故选:D.【点评】本题主要考查四种命题的关系,比较基础.注意否命题和命题的否定的区别.6.若椭圆和双曲线的共同焦点为F1,F2,P是两曲线的一个交点,则|PF1|•|PF2|的值为()A.B.84 C.3 D.21【考点】圆锥曲线的共同特征.【分析】设|PF1|>|PF2|,根据椭圆和双曲线的定义可分别表示出|PF1|+|PF2|和|PF1|﹣|PF2|,进而可表示出|PF1|和|PF2|,根据焦点相同进而可求得|pF1|•|pF2|的表达式.【解答】解:由椭圆和双曲线定义不妨设|PF1|>|PF2|则|PF1|+|PF2|=10|PF1|﹣|PF2|=4所以|PF1|=7|PF2|=3∴|pF1|•|pF2|=21故选D.【点评】本题主要考查了圆锥曲线的共同特征,解答关键是正确运用椭圆和双曲线的简单的几何性质.7.在一次歌手大奖赛上,七位评委为歌手打出的分数(满分10分)茎叶图如图:去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484 B.9.4,0.016 C.9.5,0.04 D.9.5,0.016【考点】极差、方差与标准差;众数、中位数、平均数.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用茎叶图性质、平均数和方差公式求解.【解答】解:由茎叶图得去掉一个最高分和一个最低分后,所剩数据的平均值:,方差.故选:D.【点评】本题考查一组数据的平均值和方差的求法,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.8.巳知F1,F2是椭圆(a>b>0)的两焦点,以线段F1F2为边作正三角形PF1F2,若边PF1的中点在椭圆上,则该椭圆的离心率是()A.﹣1 B.+1 C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设边PF1的中点为Q,连接F2Q,Rt△QF1F2中,算出|QF1|=c且|QF2|=c,根据椭圆的定义得2a=|QF1|+|QF2|=(1+)c,由此不难算出该椭圆的离心率.【解答】解:由题意,设边PF1的中点为Q,连接F2Q在△QF1F2中,∠QF1F2=60°,∠QF2F1=30°Rt△QF1F2中,|F1F2|=2c(椭圆的焦距),∴|QF1|=|F1F2|=c,|QF2|=|F1F2|= c根据椭圆的定义,得2a=|QF1|+|QF2|=(1+)c∴椭圆的离心率为e===﹣1故选:A【点评】本题给出椭圆与以焦距为边的正三角形交于边的中点,求该椭圆的离心率,着重考查了解三角形、椭圆的标准方程和简单性质等知识,属于中档题.9.某人有5把钥匙,其中2把能打开门.现随机取钥匙试着开门,不能开门就扔掉.则恰好在第3次才能开门的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】计算题;转化思想;综合法;概率与统计.【分析】先求出基本事件总数,再求出恰好在第3次才能开门包含的基本事件个数,由此能求出恰好在第3次才能开门的概率.【解答】解:∵某人有5把钥匙,其中2把能打开门.现随机取钥匙试着开门,不能开门就扔掉.∴恰好在第3次才能开门的概率为.故选:B.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.10.已知双曲线的一条渐近线方程为3x﹣2y=0.F1、F2分别是双曲线的左、右焦点,过点F2的直线与双曲线右支交于A,B两点.若|AB|=10,则△F1AB的周长为()A.18 B.26 C.28 D.36【考点】双曲线的简单性质.【专题】计算题;规律型;转化思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】求出双曲线方程利用双曲线定义,转化求解三角形的周长即可.【解答】解:因为渐近线方程为3x﹣2y=0,所以双曲线的方程为.△F1AB的周长为|AF1|+|BF1|+|AB|=(|AF2|+2a)+(|BF2|+2a)+|AB|=2|AB|+4a=28.故选:B.【点评】本题考查双曲线的简单性质的应用,考查计算能力.11.如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)()A.B.C.D.【考点】轨迹方程.【专题】综合题;转化思想;综合法;空间位置关系与距离.【分析】在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.【解答】解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α,平面α与平面ABCD有一个公共点D,则它们有且只有一条过该点的公共直线.取特殊点B,可排除选项B,故选A.【点评】本题是轨迹问题与空间线面关系相结合的题目,有助于学生提高学生的空间想象能力.12.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A. B.C.D.【考点】直线与平面所成的角.【专题】计算题;空间角.【分析】由题意,可得当O、B、A、C四点共面时顶点A与点O的距离最大,设此平面为β.由面面垂直判定定理结合BO⊥α,证出β⊥α.过D作DE⊥α于E,连结CE,根据面面垂直与线面垂直的性质证出DH∥α,从而点D到平面α的距离等于点H到平面α的距离.设正四面体ABCD的棱长为1,根据BC 与平面α所成角为45°和正四面体的性质算出H到平面α的距离,从而在Rt△CDE中,利用三角函数的定义算出sin∠DCE=,即得直线CD与平面α所成角的正弦值.【解答】解:∵四边形OBAC中,顶点A与点O的距离最大,∴O、B、A、C四点共面,设此平面为β∵BO⊥α,BO⊂β,∴β⊥α过D作DH⊥平面ABC,垂足为H,设正四面体ABCD的棱长为1,则Rt△HCD中,CH=BC=∵BO⊥α,直线BC与平面α所成角为45°,∴∠BCO=45°,结合∠HCB=30°得∠HCO=75°因此,H到平面α的距离等于HCsin75°=×=过D作DE⊥α于E,连结CE,则∠DCE就是直线CD与平面α所成角∵DH⊥β,α⊥β且DH⊄α,∴DH∥α由此可得点D到平面α的距离等于点H到平面α的距离,即DE=∴Rt△CDE中,sin∠DCE==,即直线CD与平面α所成角的正弦值等于故选:A【点评】本题给出正四面体的一条棱与平面α成45°,在顶点A与B在平面α内的射影点O的距离最大时,求直线CD与平面α所成角的正弦值,着重考查了线面垂直、面面垂直的判定与性质和直线与平面所成角的定义与求法等知识,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.阅读如图所示的程序,当输入a=2,n=4时,输出s=2468【考点】程序框图.【专题】计算题;图表型;试验法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的p,s,i的值,当i=5时满足条件i>n,退出循环,输出s的值为2468.【解答】解:模拟执行程序,可得a=2,n=4,s=0,p=0,i=1p=2,s=2,i=2不满足条件i>n,p=22,s=24,i=3不满足条件i>n,p=222,s=246,i=4不满足条件i>n,p=2222,s=2468,i=5满足条件i>n,退出循环,输出s的值为2468.故答案为:2468.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的p,s,i的值是解题的关键,属于基础题.14.在半径为r的圆周上任取两点A,B,则|AB|≥r的概率为.【考点】几何概型.【专题】计算题;数形结合;转化法;概率与统计.【分析】根据题意,画出图形,结合图形,得出以A为正六边形的一个顶点作圆的内接正六边形,则正六边形的边长为半径r,当B点落在劣弧外时,有|AB|≥r,求出对应的概率即可.【解答】解:如图所示,选定点A后,以A为正六边形的一个顶点作圆的内接正六边形,则正六边形的边长为半径r,当B点落在劣弧外时,有|AB|≥r,则所求概率为P==.故答案为:.【点评】本题考查了几何概型的应用问题,也考查了数形结合的应用问题,解题的关键是根据题意画出对应的示意图形,是基础题目.15.已知三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S、A、B、C四点均在以O为球心的某个球面上,则点O到平面ABC的距离为.【考点】点、线、面间的距离计算.【专题】计算题;空间位置关系与距离.【分析】根据三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,可得S在面ABC 上的射影为AB中点H,SH⊥平面ABC,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC 的外接球球心,OH为O与平面ABC的距离,由此可得结论.【解答】解:∵三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,∴S在面ABC上的射影为AB中点H,∴SH⊥平面ABC.∴SH上任意一点到A、B、C的距离相等.∵SH=,CH=1,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心.∵SC=2∴SM=1,∠OSM=30°∴SO=,∴OH=,即为O与平面ABC的距离.故答案为:【点评】本题考查点到面的距离的计算,考查学生分析解决问题的能力,确定OHO与平面ABC的距离是关.键16.已知F是双曲线C:x2﹣y2=2的右焦点,P是C的左支上一点,A(0,2).当△APF周长最小时,该三角形的面积为3.【考点】双曲线的简单性质.【专题】计算题;方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积【解答】解:设左焦点为F1(﹣2,0),右焦点为F(2,0).△APF周长为|AF|+|AP|+|PF|=|AF|+|AP|+(|PF1|+2a)=|AF|+|AP|+|PF1|+2a≥|AF|+|AF1|+2a,当且仅当A,P,F1三点共线,即P位于P0时,三角形周长最小.此时直线AF1的方程为y=x+2,代入x2﹣y2=2中,可求得,故.故答案为:3.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].(Ⅰ)根据频率分布直方图,估计该企业的职工对该部门评分的平均值;(Ⅱ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.【考点】古典概型及其概率计算公式.【专题】计算题;转化思想;综合法;概率与统计.【分析】(Ⅰ)由频率分布直方图的性质能求出a,由此能估计该企业的职工对该部门评分的平均值.(Ⅱ)由频率分布直方图可知在[40,50)内的人数为2人,在[50,60)内的人数为3人,由此能求出此2人评分都在[40,50)的概率.【解答】解:(Ⅰ)∵(0.004+a+0.022+0.028+0.022+0.018)×10=1,∴a=0.006.估计该企业的职工对该部门评分的平均值:=0.04×45+0.06×55+0.22×65+0.28×75+0.22×85+0.18×95=76.2.(Ⅱ)由频率分布直方图可知:在[40,50)内的人数为0.004×40×50=2(人),在[50,60)内的人数为0.006×10×50=3(人),设[40,50)内的两人分别为a1,a2,[50,60)内的三人为A1,A2,A3.则从[40,60)的受访职工中随机抽取2人,基本事件有(a1,a2),(a1,A1),(a1,A2),(a1,A3),(a2,A1),(a2,A2),(a2,A3),(A1,A2),(A1,A3),(A2,A3)共10种,其中2人评分都在[40,50)内的基本事件有(a1,a2)共1种,所求的概率为p=.【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.18.命题p:∃x∈R,ax2+ax﹣1≥0,q:>1,r:(a﹣m)(a﹣m﹣1)>0.(1)若¬p∧q为假命题,求实数a的取值范围;(2)若¬q是¬r的必要不充分条件,求m的取值范围.【考点】复合命题的真假;必要条件、充分条件与充要条件的判断.【专题】转化思想;综合法;简易逻辑.【分析】分别求出p,q,r为真时的a的范围,(1)由¬p∧q为假命题,则p真q假,得到关于a的不等式组,解出即可;(2)问题转化为r是q的必要不充分条件,得到关于a的不等式,解出即可.【解答】解:关于命题p:∃x∈R,ax2+ax﹣1≥0,a>0时,显然成立,a=0时不成立,a<0时只需△=a2+4a≥0即可,解得:a<﹣4,故p为真时:a(0,+∞)∪(﹣∞,﹣4];关于q:>1,解得:﹣2<a<1,关于r:(a﹣m)(a﹣m﹣1)>0,解得:a>m+1或a<m,(1)若¬p∧q为假命题,则p真q假,∴,解得:a≥1或a≤﹣4;(2)若¬q是¬r的必要不充分条件,即r是q的必要不充分条件,即q⇒r,∴m+1≤﹣2或m>1,即m≤﹣3或m>1.【点评】本题考察了充分必要条件,考察复合命题的判断,考察二次函数的性质,是一道中档题.19.在棱长为1的正方体ABCD﹣A1B1C1D1中,E,F分别为A1D1和A1B1的中点.(Ⅰ)求二面角B﹣FC1﹣B1的余弦值;(Ⅱ)若点P在正方形ABCD内部及边界上,且EP∥平面BFC1,求|EP|的最小值.【考点】直线与平面平行的判定;二面角的平面角及求法.【专题】计算题;规律型;转化思想;空间位置关系与距离;空间角.【分析】以D为坐标原点,以DA,DC,DD1分别为x轴、y轴、z轴正方向建立空间直角坐标系.求出B,C1,E,F的坐标,(Ⅰ)求出面FC1B1的一个法向,面BFC1的法向量,利用空间向量的数量积求解二面角B﹣FC1﹣B1的余弦值.(Ⅱ)设P(x,y,0)(0≤x≤1,0≤y≤1),利用EP∥平面BFC1,推出,求出x,y的关系,利用空间距离结合二次函数的最值求解即可.【解答】解:以D为坐标原点,以DA,DC,DD1分别为x轴、y轴、z轴正方向建立空间直角坐标系.则.(Ⅰ)由图可取面FC1B1的一个法向量;,设面BFC1的法向量为,则,可取.所以,即二面角B﹣FC1﹣B1的余弦值为.(Ⅱ)因为P在正方形ABCD内部及边界上,所以可设P(x,y,0)(0≤x≤1,0≤y≤1),则.因为EP∥平面BFC1,所以,即(1,2,1)=0,所以,∵0≤x≤1,0≤y≤1,∴,∴,所以=,当时,.【点评】本题看v我没觉得平面角的求法,空间距离公式的应用,考查转化思想以及计算能力.20.已知抛物线y2=2px(p>0)的焦点为F,准线为l,准线l与坐标轴交于点M,过焦点且斜率为的直线交抛物线于A,B两点,且|AB|=12.(I)求抛物线的标准方程;(Ⅱ)若点P为该抛物线上的动点,求的最小值.【考点】抛物线的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(I)求出抛物线的焦点坐标,写出直线方程,与抛物线联立,利用弦长公式求出写出,即可求此抛物线方程;(Ⅱ)过点P作PA垂直于准线,A为垂足,则由抛物线的定义可得|PF|=|PA|,则==sin∠PMA,故当PA和抛物线相切时,最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【解答】解:(I)因焦点F(,0),所以直线l的方程为y=(x﹣),与抛物线y2=2px联立,消去y得4x2﹣20px+p2=0①设A(x1,y1),B(x2,y2),则x1+x2=5p,∴|AB|=x1+x2+p=6p=12,∴p=2,∴抛物线方程为y2=4x.(Ⅱ)由题意可得,焦点F(1,0),准线方程为x=﹣1过点P作PA垂直于准线,A为垂足,则由抛物线的定义可得|PF|=|PA|,则==sin∠PMA,∠PMA为锐角.故当∠PMA最小时,最小,故当PM和抛物线相切时,最小.设切点P(a,2),则PM的斜率为=(2)′=,求得a=1,可得P(1,2),∴|PA|=2|PM|=2sin∠PMA=【点评】本题考查抛物线与直线方程的综合应用,直线的斜率公式、导数的几何意义,考查转化思想以及计算能力.属于中档题.21.如图,在梯形ABCD中,AB∥CD,AB⊥AD,AD=4,点P在平面ABCD上的射影中点O,且,二面角P﹣AD﹣B为45°.(1)求直线OA与平面PAB所成角的大小;(2)若AB+BP=8求三棱锥P﹣ABD的体积.【考点】与二面角有关的立体几何综合题.【专题】空间位置关系与距离.【分析】(1)过O点作OH⊥AB,垂足为H,连接PH.过O点作OK⊥PH,连接AK,证明∠OAK就是OA与平面PAB所成的角,求出OK、OA的长,即可求直线OA与平面PAB所成角的大小;(2)利用AB+BP=8,求出AB的长,利用三棱锥P﹣ABD的体积V=,即可求三棱锥P﹣ABD 的体积.【解答】解:(1)过O点作OH⊥AB,垂足为H,连接PH.过O点作OK⊥PH,连接AK.∵PO⊥平面ABCD,∴PO⊥AB.∵OH⊥AB,∴AB⊥平面POH.∵OK⊂平面POH,∴AB⊥OK,∵OK⊥PH,∴OK⊥平面PAB.∴∠OAK就是OA与平面PAB所成角.∵PA=PD,∴P点在平面ABCD上的射影O在线段AD的中垂线上,设AD的中点为E,连接EP,EO,∴EO⊥AD,EP⊥AD,∴∠PEO为二面角P﹣AD﹣B的平面角,∴∠PEO=45°.在等腰△PAD中,∵AD=4,∴EA=ED=2,∵PA=PD=2.∴PE=2.在Rt△PEO中,OP=OE=2,∴OA=2,又∵OH=AE=2,PO=2,在Rt△POH中,可得OK=∴sin∠OAK==,∴∠OAK=30°,∴直线OA与平面PAB所成的角为30°.(2)设AB=x,则PB=8﹣x,连接OB.在Et△POB中,PB2=PO2+OB2,∵OE⊥AE,OE=AE,∴∠OAE=45°,∴∠OAB=45°.在△OAB中,OB2=AO2+AB2﹣2AO•AB•cos∠OAB=8+x2﹣4x∴4+8+x2﹣4x=(8﹣x)2,∴x=,即AB=∴三棱锥P﹣ABD的体积V==【点评】本题考查线面角,考查三棱锥体积的计算,考查学生的计算能力,正确作出线面角是关键.22.已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】开放型;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过C1方程可知a2﹣b2=1,通过C1与C2的公共弦的长为2且C1与C2的图象都关于y 轴对称可得,计算即得结论;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通过=可得(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l方程为y=kx+1,分别联立直线与抛物线、直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由C1方程可知F(0,1),∵F也是椭圆C2的一个焦点,∴a2﹣b2=1,又∵C1与C2的公共弦的长为2,C1与C2的图象都关于y轴对称,∴易得C1与C2的公共点的坐标为(±,),∴,又∵a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+=1;(Ⅱ)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),∵与同向,且|AC|=|BD|,∴=,∴x1﹣x2=x3﹣x4,∴(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的斜率为k,则l方程:y=kx+1,由,可得x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k,x1x2=﹣4,由,得(9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,∴16(k2+1)=+,化简得16(k2+1)=,∴(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.【点评】本题是一道直线与圆锥曲线的综合题,考查求椭圆方程以及直线的斜率,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.。