高中数学《立体几何的翻折问题》PPT教学课件

合集下载

翻折上课课件

翻折上课课件

考题呈现 例1 已知矩形ABCD的一条边AD=8,将矩形ABCD折 叠,使得顶点B落在CD边上的P点处. (2)若图中的点P恰好是CD 边的中点,求∠OAB的度数;
考题呈现 例2 如图在Rt△ABC中,∠C=90°,翻折∠C使点C 落在斜边AB上某一点D处,折痕为EF(点E,F分别在 边AC,BC上) ,且△CEF与△ABC相似 .
1.图形的翻折 部分在折叠前 和折叠后的形 状、大小不变, 是全等形; 【对应量相等】
2.图形的翻折 部分在折叠前 和折叠后关于 折痕成轴对称; 【轴对称图形 性质】
05
目标检测
目标检测
如图,在平面直角坐标系xOy中,矩形OABC的边OA、 OC分别在x轴和y轴上,OC=3,OA=2 6 ,D是BC的中点, 将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于 点E,连接DE,则点G的坐标为 . 点击此处
2
0
1
8
几何图形的操作与变换 翻折
01
翻折即轴对称 翻折的对象一般有三角 形、长方形、正方形等 基本图形;考查问题有 求角度、线段的长度、 点的位置、图形的面积、 判断线段之间关系等.
专题概述
02
知识回顾
知识回顾
如图,将三角形纸片A BC折叠,使点B与点C重合, 然后展开纸片,记折痕为DE,连接DC,你有什么发现? 翻折性质1:翻折前后的两个图形全等, 即对应边 相等,对应角相等.
添加文字
2
0
1
8
感谢聆听 敬请指导
( )当 AC =BC =2时, ( 21 )当 AC =3 ,BC =4时, AD的长为 试求出 AD的长. .
反思提升
翻折问题解题策略
3.充分挖掘图形的几何 性质,将其中的基本的 数量关系,用方程的形 式表达出来,并迅速求 解,这是解题时常用的 方法之一. 【勾股、相似、锐角三 角函数是常用的建立数 量关系的有效方法,将 形中问题量化】

高中数学精讲精练立体几何的翻折问题ppt课件

高中数学精讲精练立体几何的翻折问题ppt课件
A. ( 6 , 3 )
B. ( 6 , 2 ]
, ] ( C. 3 2
, 2 ) D. ( 3 3
Company Logo
定义法: 对于异面直线所成的角,如利用平 行线转化为平面角,把空间问题转化为平面问题
过 F 作 FH ∥ EB , 交 AD 于 H .设菱形 ABCD 的边长为 1,
3)D在底面上的投影一定在射线DF上;
4) 点D '的轨迹是以H为圆心,DH ' 为半径的圆;
5)面AD'E绕AE翻折形成两个同底的圆锥.
Company Logo
二、翻折问题题目呈现:
(一)翻折过程中的范围与最值问题
1、 (2016 联考试题)平面四边形 ABCD 中,AD=AB= 2 ,CD=CB= 现将△ABD 沿对角线 BD 翻折成 A ' BD , 则在 A ' BD 5 ,且 AD AB , 折起至转到平面 BCD 的过程中, 直线 A ' C 与平面 BCD 所成最大角的 正切值为_______
F M D
C
B N
Company Logo
二、翻折问题题目呈现:
5.(16 届金华十校一模· 理 17)如图,在矩形 ABCD 中, 已知 AB=2, AD=4, 点 E、 F 分别在 AD、 BC 上, 且 AE=1, BF=3, 将四边形 AEFB 沿 EF 折起, 使点 B 在平面 CDEF 上的射影 H 在直线 DE 上. (Ⅰ)求证: CD⊥BE; (Ⅱ)求线段 BH 的长度; (Ⅲ)求直线 AF 与平面 EFCD 所成角的正弦值.
【答案】C
Company Logo
Company Logo
8.(15 年上海高考题改编) 在 四 面 体 ABCD 中 , 已 知 AD BC , AD 6 ,

立体几何中的翻折问题

立体几何中的翻折问题

第三讲 立体几何中的翻折问题翻折问题包含折叠与展开两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现. 翻折问题是立体几何的一类典型问题,是实践能力与创新能力考查的好素材. 解答翻折问题的关键在于翻折前后的平面图形与立体图形,哪些发生了变化,哪些没有发生变化. 这些未变化的已知条件,往往就是我们分析问题和解决问题的依据. 例1(1)把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为_____.(2)如图所示,已知正方形纸片ABCD ,M 、N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则PBQ ∠=.QBD CA例2 (1)已知三棱锥A BCD -的底面是等边三角形,三条侧棱长都等于1,且6BAC π∠=,动点M ,N 分别在棱AC ,AD 上运动,则△BMN 周长最小值为.(2) 如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,090ACB ∠=,6AC =,1BC CC =P 是BC 1上一动点,则1CP PA +的最小值为_______.(3)二面角l αβ--的大小为0120,A α∈,B β∈,且l B A 两点在、上的射影分别A '、B ',321=''='='B A A A B B ,,其中,点上是lC 任一点,则BC AC +的最小值为.DB例3(1)矩形ABCD 与ADEF 所在的平面互相垂直,将DEF ∆沿FD 翻折,翻折后的点E 恰与BC 上的点P 重合.设1AB =,FA x =(1x >),AD = y ,则当x =时,y 有最小值.(2)如图所示,将正方形纸片ABCD 翻折,使点B 落在CD 边上点E 处(不与C ,D 重合),压平后得到折痕MN . 设1CE CD n =,则AMBN=.(用含n 的式子表示)例4(1)四边形ABCD 中,AD //BC ,AD = AB ,045BCD ∠=,090BAD ∠=,将△ABDADFEPEBDCAN沿对角线BD 折起,记折起后点A 的位置为P ,且使平面PBD ⊥平面BCD . ①求证:平面PBC ⊥平面PDC ;②求折叠后二面角P -BC -D 的平面角的正切值.变式【2009浙江理17】A BCBC如图,在长方形中,,,为的中点,为线段(端点除外)上一动点.现将沿折起,使平面平面.在平面内过点作,为垂足.设,则的取值范围是.第四讲圆锥曲线定义与几何性质1.椭圆ABCD 2AB =1BC =E DC F EC AFD ∆AF ABD ⊥ABC ABD D DK AB ⊥K AK t =t(1)概念:在平面内与两个定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹 (2(a >b >0)(a >b >0)-a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a2(1)概念:平面内动点P 与两个定点F 1、F 2(|F 1F 2|=2c >0)的距离之差的绝对值为常数2a (2a <2c ),则点P 的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距. a b a b x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a3.抛物线(1)概念:平面内与一个定点F 和一条定直线l (F ∉l )距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l 叫做抛物线的准线. (2p 的几何意义:焦点F 到准线l 的距离例1.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.变式1如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则127PF P F P F +++=___________.变式2已知F 1,F 2是椭圆2214x y +=的两个焦点,P 为椭圆上一动点,则使|PF 1|·|PF 2|取最大值时的点P坐标为___________.变式3若以椭圆上一点和两个焦点为顶点的三角形面积的最大值1,则椭圆长轴长的最小值为___________.例2.P是双曲线22:1412x yC-=右支上的一点,F1,F2分别为左右焦点.(1)双曲线渐近线方程为___________.(2) 与曲线C渐近线相同且经过点(2,的双曲线方程为___________.(3)焦半径1PF 的取值范围为,焦半径2PF 的取值范围为___________.(4)△12PF F 的内切圆的圆心的横坐标为___________.例3. 【2015·浙江卷】如图所示,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1变式4点P 是抛物线y 2=4x 上的动点,点Q 为圆x 2+(y -4)2=1上的动点,若P 点到y 轴的距离为d ,则|PQ |+d 的最小值为.例4. 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),过焦点2F 向12F PF ∠的外角平分线作垂线,垂足为T ,并延长2F T 交1F P 于点Q ,求点Q的轨迹方程以及点T的轨迹方程.。

2019高考研讨会资料——立体几何中的翻折问题(共14张PPT)

2019高考研讨会资料——立体几何中的翻折问题(共14张PPT)

q1 q2
q
由题知: q1 q2 DE DE tan q , tan q2 EF AE AE EF
定 量 求 角
所以 tan q2 tan q, 即q2 q.
cos q1 cos q2 cos DAE AE EF EF cos q2 sin EAB AD AE AD EA EA cos q cos q1 即q q1 DF AD
综上q2 q q1. 故答案:B
练一练
平面四边形 ABCD 中, AD=AB=
2 , CD=CB=
5 ,且
AD AB ,现将△ABD 沿对角线 BD 翻折成 A ' BD ,则在
A ' BD 折起至转到平面 BCD 的过程中,直线 A ' C 与平面
BCD 所成最大角的正切值为_______ .
立体几何中的 翻折问题
以浙江高考为例
年份
2016 2016
高考试题
考查内容
浙江· 理科· 14(填空压轴题) 翻折过程中体积最值 浙江· 文科· 14(填空压轴题) 翻折过程中线线角
2015
2012 2010 2010 2009 2005
浙江· 理科· 8(选择压轴题)
翻折过程中二面角
浙江· 理科· 10(选择压轴题) 翻折过程中对棱垂直 浙江· 理科· 20(解答题) 浙江· 文科· 20(解答题) 翻折过程中二面角及长度 翻折过程中线面角
33 所 以 0 sin q sin BEF . 6
例 4. (2018 年 11 月浙江省高中学业水平考试 18) 如图, 四边形 ABCD 为矩形, 沿 AC 将 D ADC 翻折成 D ADC .设二面角 D AB C 的平 面角为 q , 直线 AD 与直线 BC 所成角为 q1 , 直线 AD 与平面 ABC 所 成角为 q2 .当 q 为锐角时,有 A. q2 q1 q B. q2 q q1 C. q1 q2 q D. q q2 q1

高考研讨会资料——立体几何中的翻折问题(共14张PPT)

高考研讨会资料——立体几何中的翻折问题(共14张PPT)
故答案:D
例 3.正四面体 ABCD,CD 在平面 α 内,点 E 是线段 AC 的中 点,在该四面体绕 CD 旋转的过程中,直线 BE 与平面 α 所成 角正弦值的范围
F θ
定 面 求 角
cos BEF cos q cos BEF
所以
cos BEF cos q
0 q BEF .
B. ������ < ������ < ������ D. ������ < ������ < ������
θ
β
α
定 边 求 角
AO tan a OD AO tan b OC AO tan q OE

OE EF BF CF OC OD ,
所以 即:
tan a tan b tan q a b q.
小结
角度(线线角、线面角、二面角) 求解翻折问题前必做的两件事 作出翻折前后两幅图 找出翻折中的不变量和不变关系 角 线(射影) 面
不变
动中寻静
定量关系
天道酬勤
由Байду номын сангаас可得:
33 所 以 0 sin q sin BEF . 6
例 4. (2018 年 11 月浙江省高中学业水平考试 18) 如图, 四边形 ABCD 为矩形, 沿 AC 将 D ADC 翻折成 D ADC .设二面角 D AB C 的平 面角为 q , 直线 AD 与直线 BC 所成角为 q1 , 直线 AD 与平面 ABC 所 成角为 q2 .当 q 为锐角时,有 A. q2 q1 q B. q2 q q1 C. q1 q2 q D. q q2 q1
综上q2 q q1.
故答案:B

向量法解立体几何中的探索性问题与翻折问题PPT课件

向量法解立体几何中的探索性问题与翻折问题PPT课件
的射影垂直于AP,并证明你的结论。
D’
C’
A’
B’
D
A
第13页/共28页
C B
把一个平面图形按某种要求折起,转化为 空间图形,进而研究图形在位置关系和数量 关系上的变化,这就是翻折问题。
图形的展开与翻折问题就是一个由 抽象到直观,由直观到抽象的过程.在历年 高考中以图形的展开与折叠作为命题对 象时常出现,因此,关注图形的展开与折叠 问题是非常必要的.
一般情况下原图中的一部分仍在同一个半平面内与组成这部分图形的元素保持着原有的数量及位置关系抓住这些不变量和不变关系是解决折叠问题的关键
1、如图,在底面是菱形的四棱锥P-ABCD 中,∠ABC=600,PA⊥面ABCD,PA=AC=a, PB=PD= 2a ,点E在PD上,且PE:ED=2:1,在棱PC 上是否存在一点F,使BF//平面AEC?证明你的 结论。
(1)不论P在侧棱上任何位置,是否总有
BD⊥CP?说明你的理由; (2)若CC’=AB,是否存在
D’ A’
这样的点P,使得异面直线
CP与AB所成的角比异面直 P D
线AC与B’P所成的角大?并 A 说明理由。
第7页/共28页
C’ B’
C B
解:建立空间直角坐标 系,A(0,0,0),P(O,O,Z),B(1,0,0),D(0,1,0)
EF
AP
平面PEF
AP AP
PF PE
(2)设EF的中点为M, AE=AF,PE=PF
AMP为二面角A-EF-P的平面角
解得 AMP=arctan2 2
P(B,C,D)
A
第16页/共28页
F ·M E
小结:求解翻折问题的基本方法: (1)先比较翻折前后的图形,弄
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
F
B
B
变式:取BC中点K,连接EK, DK,则将ABD沿BD旋转
过程中,令二面角A - BD - C的平面角为,则( ) A. E ' FK B. E ' FK C. E ' DK D. E ' DK
D E A
F
B
E'
C
K
A'
E'
D
F C
K B
①特例法
立体几何的动态问题之 ———翻折问题
立体几何动态问题的基本类型:
点动问题;线动问题; 面动问题;体动问题;
多动问题等
一、面动问题(翻折问题)
(一)请学生们用草稿纸演示翻折过程:
一、面动问题(翻折问题)
(二)翻折问题的一线五结论
一线:垂直于折痕的线即DF AE.
五结论:
1)折线同侧的几何量和位置关系保持不变;折线两 侧的几何量和位置关系发生改变;
ADC 为正三角形,则 ED与平面 ADC 所成角
的余弦值是

M
二、翻折问题题目呈现:
(一)翻折过程中的范围与最值问题
行线转化为平面角,把空间问题转化为平面问题
过 F 作 FH ∥ EB,交 AD于 H .设菱形 ABCD的边长为 1, A
.

3 4

CH

21 4
, cos CFH

CF 2 FH 2 CH 2 2*CF * FH
E H
2
2


3
2



3
4

CH 2 15 CH 2 16
当 0时,EFK 0
E'DK
当 180 时, EFK 180 EDK 故答案为 B.
③从几何本质上讲, DEF 绕 BD旋转形成以圆 O 为底面的 两个圆锥 D O ,圆锥 F O ,
EFK EFE, EOE
课堂小结
2、方法层面:
(1)特殊法(极端情形),关注特殊位置、特殊图形 特殊点等.
(2)建立角或者边的关系的函数转化为函数的最值问题. (3)充分挖掘翻折过程中点、线、面的几何本质.
二、翻折问题题目呈现:
(二)翻折之后的求值问题
5.已知正方形 ABCD ,E 是边 AB 的中点,将
△ADE 沿 DE 折起至 ADE ,如图所示,若
1、特殊法(极端情形),关注特殊位置、特殊图形、特殊点等. 2、建立角或者边的关系的函数,转化为函数的最值问题. 3、充分挖掘翻折过程中点、线、面的几何本质.
二、翻折问题题目呈现:
(一)翻折过程中的范围与最值问题
4、如图在 Rt △ABC 中,AC=1,BC=x,D 是斜边 AB 的中点,将
△BCD 沿直线 CD 翻折,若在翻折过程中存在某个位置,使得 CB⊥
3 cosq
8

3 cosq
8

1
cosq
93* 3 16 16 2
3 4
2
q [0, ]cos BE, FC [ 1 , 1]
22,
向量 BE, FC 的夹
角范围是
[
3
,
2 3

] ∴异面直线
BE, CF
所成角的范围是

3
,

2
]
.
几何本质:圆锥
D H E
D H E
A
CA
C
E
则D( 1 ,0,0),C(0, 3 ,0), A(0, 3 cosq , 3 sinq )
D
2
2
2
2
B(1 ,0,0) 2
E( 1 , 3 cosq , 3 sinq )
44
4
F
C
y
BE ( 3 ,
3 cosq ,
3 sinq ), FC (0,
3B ,0)
44
4
2
cos BE, FC
D C
F
2* 3 * 3

5

4
2 CH 2
4 3 CH
3 4 21
B
cos CFH [ 1 , 1]
43
4
4
22
CFH
的取
值范围是
[
3
,
2 3

]
,但
异面直线
BE 与
CH
所成角的范围是(

3
, ]
2
向量法:建立空间直角坐标系
z
A
设二面角 A BD C 的大小为q ,
2)DHF是二面角D - AE - F的平面角;
3)D在底面上的投影一定在射线DF上;
4) 点D '的轨迹是以H为圆心,D'H为半径的圆;
5)面AD'E绕AE翻折形成两个同底的圆锥.
二、翻折问题题目呈现:
(一)翻折过程中的范围与最值问题
1、平面四边形 ABCD 中,AD=AB= 2 ,CD=CB= 5 ,且 AD AB , 现将△ABD 沿对角线 BD 翻折成A'BD ,则在A'BD 折起至转到平面 BCD 的过程中,直线 A'C 与平面 BCD 所成最大角的正切值为_______
翻折问题的一线五结论
一线:垂直于折痕的线即DF AE.
五结论:
1)折线同侧的几何量和位置关系保持不变;折线两 侧的几何量和位置关系发生改变;
2)DHF是二面角D - AE - F的平面角;
3)D在底面上的投影一定射线DF上;
4) 点D '的轨迹是以H为圆心,D'H为半径的圆; 5)面AD'E绕AE翻折形成两个同底的圆锥.
在等腰△ OEE与等腰△ FEE 中,;
边 EE共底,腰 FE FE OE OE ,D
∴ EFE EOE ,故 EFK E
O
A
E'
C
F
K
B
二、翻折问题题目呈现:
(一)翻折过程中的范围与最值问题
3、如图,已知 ABC ,D 是 AB 的中点,沿直线CD 将ACD 折成 ACD ,所 成二面 角 A CD B 的平 面角为 ,则 () A. ADB B. ADB C. ACB D. ACB 翻折过程中的范围与最值问题的破解方法:
AD,则 x 的取值范围是( )
A.(0, 3]
2,2 B. 2
C.( 3,2 3] D.(2,4]
二、翻折问题题目呈现:
(二)翻折之后的求值问题
5.如图,在矩形
中,

在线段 上且
,现分别沿
翻折,使得点 落在线段
则此时二面角
的余弦值为 (

上,
)
D'
M M
课堂小结
1、知识层面:
D A
B
A
C
D
E
B
C
二、翻折问题题目呈现:
(一)翻折过程中的范围与最值问题
2 如图,在菱形 ABCD 中,∠BAD=60°,线段 AD,BD 的中点分 别为 E,F。现将△ABD 沿对角线 BD 翻折,则异面直线 BE 与 C F 所成角的取值范围是
A.
B.
C.
D.
定义法: 对于异面直线所成的角,如利用平
相关文档
最新文档