2017届中考数学一轮复习第4讲二次根式教
中考数学一轮复习各章节复习有答案完美版
中考数学一轮复习第1讲:实数概念与运算一、夯实基础1、绝对值是6的数是________2、|21|-的倒数是________________。
3、2的平方根是_________.4、下列四个实数中,比-1小的数是( )A .-2 B.0 C .1 D .25、在下列实数中,无理数是( )二、能力提升 6、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( ) A .4℃ B .9℃ C .-1℃ D .-9℃ 7、定义一种运算☆,其规则为a ☆b =+,根据这个规则、计算2☆3的值是( ) A .65 B .C .5D .68、下列计算不正确的是( )(A ) (B ) (C ) (D 三、课外拓展9、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是________。
四、中考链接10、数轴上的点A 到原点的距离是6,则点A 表示的数为( )131a 1b 1531222-+=-21139⎛⎫-= ⎪⎝⎭33-==A. 6或6- B. 6 C. 6- D. 3或3-11、如果a与1互为相反数,则a等于().A.2 B.2- C.1 D.1-12、下列哪一选项的值介于0.2与0.3之间?()A、 4.84B、0.484C、0.0484D、0.0048413、― 2×63=14、在﹣2,2,2这三个实数中,最小的是15、写出一个大于3且小于4的无理数。
参考答案一、夯实基础1、6和-62、23、4、A5、C二、能力提升6、C7、A8、A三、课外拓展>9、a b四、中考链接10、A11、C12、C13、-214、﹣215、解:∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).第2讲:整式与因式分解一、夯实基础1.计算(直接写出结果)①a ·a 3=③(b 3)4=④(2ab )3=⑤3x 2y ·)223y x -(=2.计算:2332)()(a a -+-= .3.计算:)(3)2(43222y x y x xy -⋅⋅-= .4.1821684=⋅⋅n n n ,求n = .5.若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则二、能力提升6.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是()A .0B .5C .-5D .-5或57.若))(3(152n x x mx x ++=-+,则m 的值为()A .-5B .5C .-2D .28.若142-=y x ,1327+=x y ,则y x -等于()A .-5B .-3C .-1D .19.如果552=a ,443=b ,334=c ,那么()A .a >b >cB .b >c >aC .c >a >bD .c >b >a三、课外拓展10.①已知,2,21==mn a 求n m a a )(2⋅的值.②若的求n n n x x x 22232)(4)3(,2---=值11.若0352=-+y x ,求y x 324⋅的值.四、中考链接12.(龙口)先化简,再求值:(每小题5分,共10分)(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-13、(延庆)已知,求下列各式的值:(1); (2).14、(鞍山)已知:,.求:(1);(2).15、计算:;参考答案一、夯实基础1.a 4,b 4,8a 3b 3,-6x 5y 3;2.0;3.-12x 7y 9;4.2;5.4二、能力提升6.B ;7.C ;8.B ;9.B ;三、课外拓展10.①161;②56; 11.8;四、中考链接12.(1)-3x 2+18x-5,19;(2)m 9,-512;13.(1)45;(2)5714.(1)9;(2)115.第3讲:分式检测一、夯实基础1.下列式子是分式的是( )A .x 2B .x x +1C .x 2+yD .x 32.如果把分式2xy x +y 中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍C .扩大9倍D .不变3.当分式x -1x +2的值为0时,x 的值是( ) A .0 B .1 C .-1 D .-24.化简:(1)x 2-9x -3=__________. (2)aa -1+11-a=__________. 二、能力提升5.若分式2a +1有意义,则a 的取值范围是( ) A .a =0 B .a =1 C .a ≠-1 D .a ≠06.化简2x 2-1÷1x -1的结果是( ) A ..2x -1 B .2x 3-1 C .2x +1D .2(x +1) 7.化简m 2-163m -12得__________;当m =-1时,原式的值为__________. 三、课外拓展8.化简⎝ ⎛⎭⎪⎫m 2m -2+42-m ÷(m +2)的结果是( ) A .0 B .1 C .-1 D .(m +2)29.下列等式中,不成立的是( )A .x 2-y 2x -y =x -y B .x 2-2xy +y 2x -y =x -yC .xy x 2-xy =y x -yD .y x -x y =y 2-x 2xy10.已知1a -1b =12,则aba -b 的值是( )A .12B .-12C .2D .-211.当x =__________时,分式x -2x +2的值为零.12.计算(—)·的结果是( ) A . 4 B . -4 C .2a D .-2a13.分式方程的解是( )A .x=-2B .x=2C . x=±2 D.无解14.把分式中的,都扩大3倍,那么分式的值()A .扩大为原来的3倍B .缩小为原来的C .扩大为原来的9倍D .不变四、中考链接15.(临沂)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =-1.(2)3-x 2x -4÷⎝ ⎛⎭⎪⎫5x -2-x -2,其中x =3-3. 2-a a2+a aa a 24-2114339x x x +=-+-(0)xyx y x y +≠+x y 13参考答案一、夯实基础1.B B 项分母中含有字母.2.A 因为x 和y 都扩大3倍,则2xy 扩大9倍,x +y 扩大3倍,所以2xy x +y 扩大3倍.3.B 由题意得x -1=0且x +2≠0,解得x =1.4.(1)x +3 (2)1 (1)原式=(x +3)(x -3)x -3=x +3;(2)原式=a a -1-1a -1=a -1a -1=1.二、能力提升5.C 因为分式有意义,则a +1≠0,所以a ≠-1.6.C 原式=2(x +1)(x -1)·(x -1)=2x +1. 7.m +43 1 原式=(m +4)(m -4)3(m -4)=m +43.当m =-1时,原式=-1+43=1. 三、课外拓展8.B 原式=m 2-4m -2·1m +2=(m +2)(m -2)m -2·1m +2=1. 9.A x 2-y 2x -y =(x +y )(x -y )x -y=x +y . 10.D 因为1a -1b =12,所以b -a ab =12,所以ab =-2(a -b ),所以ab a -b =-2(a -b )a -b=-2.11.2 由题意得x -2=0且x +2≠0,解得x =2.12. B13. B14. A四、中考链接15.解:(1)⎝⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a =a -2a -1·a (a -1)(a -2)2=a a -2.当a =-1时,原式=a a -2=-1-1-2=13.(2)3-x2x-4÷⎝⎛⎭⎪⎫5x-2-x-2=3-x2(x-2)÷⎝⎛⎭⎪⎫5x-2-x2-4x-2=3-x2(x-2)÷9-x2x-2=3-x2(x-2)·x-2(3-x)(3+x)=12x+6.∵x=3-3,∴原式=12x+6=36.第4讲:二次根式一、夯实基础1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152 D .1523.下列二次根式中,与3是同类二次根式的是( ) A .18 B .27 C .23 D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 5.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 二、能力提升6.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是__________.7.有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)三、课外拓展8.若x +1+(y -2 012)2=0,则x y =__________.9.当-1<x<3时,化简:x-2+x2+2x+1=__________.10.如果代数式4x-3有意义,则x的取值范围是________.11、比较大小:⑴3 5 2 6 ⑵11 -10 -1312、若最简根式m2-3 与5m+3 是同类二次根式,则m= .13、若 5 的整数部分是a,小数部分是b,则a-1b= 。
中考数学第一轮复习教学案 第4课时 二次根式
的值为 3 ,则输出的数值为______。
▲6. 下面与 2 是同类二次根式的是( )
A. 3 B. 12 C. 8 D. 2 1 ▲7.(08,重庆)计算 8 2 的结果是( )
15.把二次根式 x 1 1 中根号外的因式移
1 x
到根号内,结果是__________。
A.6 B. 6
C.2 D. 2
) B.7 到 8 之间 D.9 到 10 之间
▲12(. 08,大连)若 x a b, y a b ,
(2) 3 +(5- 3 )=________ _.
则 xy 的值为 ( )
▲3.(08,黄冈)化简 5 x -2 x =__ ____。
▲4.(08,中山)下列根式中不是最简二次根式 的是( )
. ▲27.(08,长沙)已知 a、b 为两个连续整数,且
▲20.(08,宁夏)计算:5 2 8 =
.
▲21.二次根式 1 a 中,字母 a 的取值范围是 A. a 1 B.a≤1 C.a≥1 D. a 1
a< 7 <b,则 a b =
.
28.(07,烟台)观察下列各式:
1 1 2 1 , 2 1 3 1 , 3 1 4 1 ,....
33
44
55
▲22.函数 y 1 自变量 x 的取值范围是_ _. 1 x
▲23.下列各组二次根式中是同类二次根式的是
A. 12与 1 2
B. 18与 27
C. 3与 1 3
D. 45与 54
▲24.(07,邵阳)下列计算正确的是(
)
第3页
请你将发现的规律用含自然数 n(n≥1)的等式
表示出来_______________
29.(08,宁波)若实数 x,y 满足
2017年中考数学一轮复习二次根式讲学案
2017年中考数学一轮复习二次根式讲学案2017年中考数学一轮复习第4讲《二次根式》【考点解析】二次根式的意义及性质【例题】(2016广西桂林)若式子在实数范围内有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【变式】1.要使二次根式在实数范围内有意义,则x的取值范围是()A.x= B.x≠ C.x≥ D.x≤【答案】C.【解析】由题意得:5x﹣3≥0,解得:x≥ ,故选C.2.若x、y满足,则的值等于( )A. B. C. D.【答案】B.【解析】∵ ,∴.∴ .故选B.2. 最简二次根式与同类二次根式【例题】(2016四川南充)下列计算正确的是() A. =2 B. = C. =x D. =x【分析】直接利用二次根式的性质分别化简求出答案.【解答】A、 =2 ,正确;B、 = ,故此选项错误;C、 =﹣x ,故此选项错误;D、 =|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.【变式】下列各式与是同类二次根式的是() A. B. C. D.【答案】D.【解析】A、 =2 ,故不与是同类二次根式,故错误;B、 =2 ,故不与是同类二次根式,故错误;C、 =5 ,故不与是同类二次根式,故错误;D、 =2 ,故,与是同类二次根式,故正确;故选D.二次根式的运算例.(2015黑龙江哈尔滨)计算=【答案】【分析】原式先化为同类二次根式,然后再合并即可.【解析】原式=2 -3× =2 -【点评】本题考查了二次根式的加减法,正确把握运算法则是解题的关键。
【变式】化简:。
【答案】2.【解析】原式= =4-2=2【典例解析】【例题1】(2016湖北荆门)要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件进而得出x ﹣1≥0,求出答案.【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.【例题2】(2016山东潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a <0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【例题3】(2016内蒙古包头)计算:6 ﹣( +1)2= ﹣4 .【考点】二次根式的混合运算.【分析】首先化简二次根式,进而利用完全平方公式计算,求出答案.【解答】解:原式=6× ﹣(3+2 +1)=2 ﹣4﹣2=﹣4.故答案为:﹣4.【中考热点】1.(2016贵州安顺)在函数中,自变量x的取值范围是x≤1且x≠﹣2 .【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.(2014福建厦门,第22题6分)先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x= +1.【分析】二次根式的化简求值;整式的加减.根据去括号、合并同类项,可化简代数式,根据代数式的求值,可得答案.【解答】原式=x2﹣2x﹣4=(x﹣1)2﹣5,把x= +1代入原式,=( +1﹣1)2﹣5=﹣3.【点评】本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.3.(2016广西桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式(其中a,b,c是三角形的三边长,,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,∴∴事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.【考点】三角形的内切圆与内心;二次根式的应用.【分析】(1)先根据BC、AC、AB的长求出P,再代入到公式S= 即可求得S的值;(2)根据公式S= r(AC+BC+AB),代入可得关于r 的方程,解方程得r的值.【解答】解:(1)∵BC=5,AC=6,AB=9,∴p= = =10,∴S= = =10 ;故△ABC的面积10 ;(2)∵S= r(AC+BC+AB),∴10 = r(5+6+9),解得:r= ,故△ABC的内切圆半径r= .。
中考数学复习指导:二次根式运算的“四注意”
二次根式运算的“四注意”二次根式的运算可以说是前面学过的二次根式乘法、除法及加减法运算法则的综合运用,也是本章内容的落脚点,是前面几节内容的总结,在进行二次根式的运算时,请同学们还要注意以下几点:一、注意运算顺序问题二次根式的运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号里面的.例1(2.=.解:原式===33=+就说明:计算时注意运算顺序,另外,除法没有分配律,(21错了.二、注意运算法则问题在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式可以看作“多项式”,因此实数运算中的运算律(分配律、结合律、交换律),所有的乘法公式(平方差公式、完全平方公式、立方和、立方差公式等)在二次根式的运算中仍然适用.例2.计算:(2+3―6)(2―3―6).解:原式=〔(2―6)+3〕〔(2―6)―3〕=(2―6)2―(3)2=8―23―3=5―23.三、注意熟练进行二次根式计算和化简在理解二次根式基本概念基础上,掌握好二次根式的重要性质多做一些练习,就能达到熟练计算和化简二次根式的目的,除此之外还要掌握一些方法技巧. 1.因式分解法 例4.化简:yy ++χχ+χχχy y y+2解:原式=yy ++χχ+()yy y+χχχ2=yyy +++χχχ2=yy ++χχ2)(=χ+y2.观察法例5. 设等式y a a x a y a a x a -+-=-+-)()(在实数范围内成立,其中a ,x ,y 实数,则22223yxy x y xy x +--+的值为( ). 解:由二次根式定义知:a -y ≥0,x -a ≥0,a (x -a )≥0,a (y -a )≥0, ∴a ≥0且a ≤0∴a =0∴已知等式可化为o y x =-,∴x = -y . ∴222222)()(3y y y y y y ++----=223y y =31.3.凑零法 例6. 已知χ=132- 求2χ+1+χ的值.解:由χ=132-=13+,得31=-χ,两边平方后整理得0222=--χχ,∴原式=34313003)22(2=+++==-+--χχχ.4.倒数法例7. 当32-=χ时,求代数式3)32()347(2++++χχ的值. 解:由32-=χ,得321+=χ,∴原式=323113113)32()32(2222+=++=+⋅+⋅=+++⋅+χχχχχχ.5.整体代入法 例8. 已知2323-+=χ,2323+-=y ,求代数式22)()(y y y y +-++χχχχ的值.解:由已知得625+=χ,625-=y ,∴10=+y χ,1=y χ,∴原式=9910110110122-=-+. 6.换元法例9.已知11122=-+-a b b a ,求22b a +的值. 解:设=-21a χ>0,则122χ=-a ,由已知得χb b a -=-112两边平方得222221χχb b b a a +-=-,)(212222χχ++--a b b a =0, 0222=+-∴b b χχ,0)(2=-χb ,b =χ,b a =-∴21,122=+∴b a .四、探索与思考:1.(1)判断下列各式是否正确.你认为成立的,请在括号内打“∨”,不成立的打“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题之后,请猜测你发现的规律,用含n 的式子将其规律表示出来,并注明n 的取值范围: .(3)请用数学知识说明你所写式子的正确性.2.如图1,所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.图13.细心观察如图2,认真分析各式,然后解答问题.21)1(2=+ S 1=21; 31)2(2=+ S 2=22; 41)3(2=+ S 3=23…… (1)请用含有n (n 为正整数)的等式表示上述变化规律; (2)推算出OA 10的长.(3)求出210232221S S S S ++++ 的值. 4.先将23222xx xx x -÷--化简,然后自选一个合适的x 值,代入化简后的式子求值. 答案与提示:1.答案为①∨②∨③∨④×.(2)、(3)略。
中考数学(人教版)总复习 课件:第4课时 二次根式
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
答案:1
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
命题点1 命题点2 命题点3 命题点4 命题点5
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
答案:-1≤x<2
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
答案:B
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
解析:(1)A选项中的被开方数中含开得尽方的因式,C选项中的被 开方数中含开得尽方的因数,D选项中的被开方数中含有分母,故B 选项正确;
考点四 二次根式的运算
1.二次根式的加减法 合并同类二次根式:在二次根式的加减运算中,把几个二次根式 化为最简二次根式后,若有同类二次根式,则 可把同类二次根式合 并成一个
答案:A 答案:B
考点梳理 自主测试
基础自主导学
答案:C 答案:12 答案:11
命题点5 二次根式的非负性
规律方法探究
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
第4课时 二次根式
考点梳理 自主测试
基础自主导学
考点梳理 自主测试
基础自主导学
考点三 最简二次根式、同类二次根式
1.最简二次根式的概念:我们把满足被开方数不含分母,被开方数 中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
2017中考数学专题复习数与式因式分解+分式+二次根式
第四讲 因式分解【基础知识回顾】 一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是运算,即:多项式 整式的积【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】 二、因式分解常用方法: 1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】 2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= , ②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点, 找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】 【重点考点例析】考点一:因式分解的概念对应训练1.(2015•河北)下列等式从左到右的变形,属于因式分解的是( ) A .a (x-y )=ax-ay B .x 2+2x+1=x (x+2)+1 C .(x+1)(x+3)=x 2+4x+3 D .x 3-x=x (x+1)(x-1) 考点二:因式分解例2 (2015•无锡)分解因式:2x 2-4x= . 例3 (2015•南昌)下列因式分解正确的是( ) A .x 2-xy+x=x (x-y ) B .a 3-2a 2b+ab 2=a (a-b )2 C .x 2-2x+4=(x-1)2+3 D .ax 2-9=a (x+3)(x-3) 例4 (2015•湖州)因式分解:mx 2-my 2.( )( )对应训练2.(2015•温州)因式分解:m2-5m= .3.(2015•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)24.(2015•北京)分解因式:ab2-4ab+4a= .考点三:因式分解的应用例5 (2015•宝应县一模)已知a+b=2,则a2-b2+4b的值为.对应训练5.(2015•鹰潭模拟)已知ab=2,a-b=3,则a3b-2a2b2+ab3= .【2016中考名题赏析】1.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子2.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4 3.(2016•长春)把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)4.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2 5.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.226.(2016•滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【真题过关】一、选择题1.(2015•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9 2.(2015•佛山)分解因式a3-a的结果是()A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)3.(2015•恩施州)把x2y-2y2x+y3分解因式正确的是()A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)2二、填空题4.(2015•自贡)多项式ax2-a与多项式x2-2x+1的公因式是.5.(2015•太原)分解因式:a2-2a= .6.(2015•广州)分解因式:x2+xy= .7.(2015•盐城)因式分解:a2-9= .8.(2015•厦门)x2-4x+4=()2.第五讲分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做分式【名师提醒:①若则分式AB无意义②若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。
专题04 二次根式的核心知识点精讲-备战2024年中考数学一轮复习考点帮 (2)
专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。
中考数学第一轮复习资料(超全)
中考一轮复习第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲 尺规作图 第4讲 图形的相似 第5讲 解直角三角形第三部分 统计与概率第七章 统计与概率 第1讲 统计 第2讲 概率第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
中考数学一轮复习 第4课 二次根式导学案
二次根式【考点梳理】:1.二次根式:(1)定义:一般地,形如√a的代数式叫做二次根式.2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母(3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.5.二次根式的乘法、除法公式:(1a0b0≥≥,)(2a0b0≥,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】非负性的应用【考点一】:二次根式有意义的条件【例题赏析】(2015•浙江滨州,第4题3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是( )A. B.C. D.【答案】C【解析】:先根据二次根式的意义,其有意义的条件是被开方数大于等于02x+6≥0,可解不等式得x≥-3,因此可在数轴上表示为C.故选C考点:二次根式的意义,不等式的解集【考点二】:二次根式的性质【例题赏析】(2015•四川资阳,第14题3分)已知:()260a+=,则224b b--的值为_________.考点:非负数的性质:算术平方根;非负数的性质:偶次方..分析:首先根据非负数的性质可求出a的值,和2b2﹣2b=6,进而可求出2b2﹣4b﹣a解答:解:∵(a+6)2+=0,∴a+6=0,b2﹣2b﹣3=0,解得,a=﹣6,b2﹣2b=3,可得2b2﹣2b=6,则2b2﹣4b﹣a=6﹣(﹣6)=12,故答案为12.【考点三】:二次根式的运算【例题赏析】(1)(2015•安徽省,第2题,4分)计算8×2的结果是()A.10 B.4 C. 6 D.2考点:二次根式的乘除法..分析:直接利用二次根式的乘法运算法则求出即可.解答:解:×==4.故选:B.点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.(2)(2015•山东聊城,第14题3分)计算:(+)2﹣= 5 .考点:二次根式的混合运算分析:先利用完全平方公式计算,再把二次根式化为最简二次根式,合并同类项进行计算解答:原式=2+2+3﹣2=5.故答案为:5.点评:平方公式,再将二次根式化为最简二次根式的形式后再运算是解答此题的关键.(2)(2015·湖北省孝感市,第9题3分)已知32-=x,则代数3)32()347(2++++xx的值是A.0B.3C.32+D.32-考点:二次根式的化简求值..分析:未知数的值已给出,利用代入法即可求出.解答:解:把x=2﹣代入代数式(7+4)x2+(2+)x+得:=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+.故选C .点评:此题考查二次根式的化简求值,关键是代入后利用平方差公式进行计算.【考点四】:二次根式的化简求值 【例题赏析】(1)(2015•毕节市)(第16题)实数a ,b 在数轴上的位置如图所示,则﹣|a ﹣b|=﹣b .考点: 实数与数轴;二次根式的性质与化简.. 分析: 首先根据数轴即可确定a ,b 可化简.解答: 解:根据数轴可得:b >0,a <0,且|a|>|b|, ∴a ﹣b <0, 则﹣|a ﹣b|=﹣a ﹣(b ﹣a )=﹣a ﹣b+a=﹣b ,故答案为:﹣b .点评: 本题考查了实数与数轴,解决本题的关键是根据数轴即可确定a ,b 的符号. (2)(2015年陕西省,16,5分)计算:×(﹣)+|﹣2|+(12)﹣3. 考点:二次根式的混合运算;负整数指数幂. 专题:计算题.分析:根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8化简后合并即可. 解答:原式=﹣+2+8 =﹣3+2+8 =8﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,乘除运算,然后合并同类二次根式.也考查了负整数整数幂、【真题专练】1. (2015•绵阳第6题,3分)要使代数式有意义,则x 的( )A .最大值是23 B .最小值是23 C .最大值是32 D .最小值是32.点评:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键2.(2015•四川省内江市,第5题,3分)函数y=+中自变量x的取值范围是A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.(2015·湖南省益阳市,第8题5分)计算:= .4.(2015•山东日照,第13题3分))若=3﹣x,则x的取值范围是.5.(2015•黔南州)(第8题)函数y=+的自变量x的取值范围是()A.x≤3 B.x≠4 C.x≥3且x≠4 D.x≤3或x≠46.(2015•聊城)计算:(+)2﹣= .7.(2015•四川巴中,第13题3分)若a、b、c为三角形的三边,且a、b满足(b﹣2)2=0,则第三边c的取值范围是.8.(2015•衡阳, 第15题3分)计算:﹣= .9.(2015•四川攀枝花第13题4分)若y=++2,则x y= .10.(2015•黄石第18题7分)先化简,再求值:÷(﹣1),其中x=2﹣.11.(2014•湖北荆门,第18题4分)(1)计算:×﹣4××(1﹣)0;(2)(2014•湖北荆门,第8题4分)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.【真题演练参考答案】1.(2015•绵阳第6题,3分)要使代数式有意义,则x的()A.最大值是23B.最小值是23C.最大值是32D.最小值是32考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:∵代数式有意义,∴2﹣3x≥0,解得x≤23.故选:A.点评:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键2.(2015•四川省内江市,第5题,3分)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.点评:本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2015·湖南省益阳市,第8题5分)计算:= .考点:二次根式的乘除法.专题:计算题.分析:原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.解答:原式===4.故答案为:4点评:此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.4.(2015•山东日照,第13题3分))若=3﹣x,则x的取值范围是x≤3.考点:二次根式的性质与化简..分析:根据二次根式的性质得出3﹣x≥0,求出即可.解答:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.点评:本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.5.(2015•黔南州)(第8题)函数y=+的自变量x的取值范围是()A.x≤3 B.x≠4 C.x≥3且x≠4 D.x≤3或x≠4考点:函数自变量的取值范围.分析:首先根据当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零,可得3﹣x≥0;然后根据自变量取值要使分母不为零,可得x﹣4≠0,据此求出函数y=+的自变量x的取值范围即可.解答:解:要使函数y=+有意义,则所以x≤3,即函数y=+的自变量x的取值范围是:x≤3.故选:A.点评:此题主要考查了自变量的取值范围,解答此题的关键是要明确:(1)当表达式的分母不含有自变量时,自变量取全体实数.(2)当表达式的分母中含有自变量时,自变量取值要使分母不为零.(3)当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.(4)对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.6.(2015•聊城)计算:(+)2﹣= .考点:二次根式的混合运算.分析:先利用完全平方公式计算,再把二次根式化为最简二次根式,合并同类项进行计算解答:原式=2+2+3﹣2=5.故答案为:5.点评:本题考查的是二次根式的混合运算,在进行此类运算时,掌握运算顺序,先运用完全平方公式,再将二次根式化为最简二次根式的形式后再运算是解答此题的关键.7.(2015•四川巴中,第13题3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.考点:三角形三边关系;非负数的性质:偶次方;非负数的性质:算术平方根.分析:根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.解答:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.8.(2015•衡阳, 第15题3分)计算:﹣= .考点:二次根式的加减法.分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=2﹣=.故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.9.(2015•四川攀枝花第13题4分)若y=++2,则x y= .考点:二次根式有意义的条件..专题:计算题.分析:根据二次根式有意义的条件得出x﹣3≥0,3﹣x≥0,求出x,代入求出y即可.解答:解:y=有意义,必须x﹣3≥0,3﹣x≥0,解得:x=3,代入得:y=0+0+2=2,∴x y=32=9.[来#源~:中国*&教@育出版网]故答案为:9.点评:本题主要考查对二次根式有意义的条件的理解和掌握,能求出x y的值是解此题的关键.10.(2015•黄石第18题7分)先化简,再求值:÷(﹣1),其中x=2﹣.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:原式=÷=﹣•=﹣x+2,当x=2﹣时,原式=﹣2++2=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.11.(2014•湖北荆门,第18题4分)(1)计算:×﹣4××(1﹣)0;(2)(2014•湖北荆门,第8题4分)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.考点:二次根式的混合运算;非负数的性质:绝对值;非负数的性质:算术平方根;分式的化简求值;零指数幂.专题:计算题.分析:(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0,b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.解答:解:(1)原式=﹣4××1=2﹣=;(2)原式=[﹣]•=(﹣]•=•=,∵+|b﹣|=0,∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,原式=﹣=﹣点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、非负数的性质和分式的化简求值.。
2024中考数学一轮复习专题精练专题04 二次根式(学生版)
知识点01:二次根式的基本性质与化简【高频考点精讲】1.二次根式有意义的条件(1)二次根式中的被开方数必须是非负数;(2)如果所给式子中含有分母,那么除了保证被开方数为非负数外,还必须保证分母不为零。
2.二次根式的基本性质(1)≥0;a≥0(双重非负性)。
(2)()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式)。
(3)=a=3.二次根式的化简(1)利用二次根式的基本性质进行化简。
(2)利用积的算术平方根的性质和商的算术平方根的性质进行化简。
=•(a≥0,b≥0)=(a≥0,b>0)知识点02:同类二次根式及分母有理化【高频考点精讲】1.同类二次根式(1)一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,那么把这几个二次根式叫做同类二次根式。
(2)合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变。
2.分母有理化(1)分母有理化是指把分母中的根号化去,分母有理化是乘二次根式本身(分母只有一项)或与原分母组成平方差公式。
①==;②==.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式互为有理化因式。
知识点03:二次根式混合运算与化简求值【高频考点精讲】1.二次根式的混合运算顺序:先乘方再乘除,最后加减,有括号的先算括号里面的。
2.在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
3.二次根式的运算结果要化为最简二次根式。
四、二次根式的应用【高频考点精讲】二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念,性质和运算方法。
检测时间:90分钟试题满分:100分难度系数:0.61一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•烟台)下列二次根式中,与是同类二次根式的是()A.B.C.D.2.(2分)(2023•西宁)下列运算正确的是()A.B.C.D.3.(2分)(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.4.(2分)(2023•巴中)下列运算正确的是()A.x2+x3=x5B.×=C.(a﹣b)2=a2﹣b2D.|m|=m5.(2分)(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1 B.x>﹣1 C.x<﹣1 D.x≤﹣16.(2分)(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2 B.x≥0 C.x≥2 D.x≥0且x≠27.(2分)(2023•内蒙古)不等式x﹣1<的正整数解的个数有()A.3个B.4个C.5个D.6个8.(2分)(2023•内蒙古)下列运算正确的是()A.+2=2B.(﹣a2)3=a6C.+=D.÷=9.(2分)(2021•荆门)下列运算正确的是()A.(﹣x3)2=x5B.=xC.(﹣x)2+x=x3D.(﹣1+x)2=x2﹣2x+110.(2分)(2020•呼伦贝尔)已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•哈尔滨)计算的结果是.12.(2分)(2022•济宁)若二次根式有意义,则x的取值范围是.13.(2分)(2021•哈尔滨)计算﹣2的结果是.14.(2分)(2023•绥化模拟)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为.如果在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为.15.(2分)(2023•池州模拟)要使式子有意义,则x的取值范围为.16.(2分)(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.17.(2分)(2023•潍坊)从﹣,,中任意选择两个数,分别填在算式(□+〇)2÷里面的“□”与“〇”中,计算该算式的结果是.(只需写出一种结果)18.(2分)(2023•临汾模拟)计算:=.19.(2分)(2023•锦江区校级模拟)已知实数m=﹣1,则代数式m2+2m+1的值为.20.(2分)(2023•大同模拟)计算()()的结果等于.三.解答题(共8小题,满分60分)21.(6分)(2023•陕西)计算:.22.(6分)(2023•金昌)计算:÷×2﹣6.23.(8分)(2023•龙岩模拟)(1)计算:;(2)解不等式组:.24.(8分)(2023•晋城模拟)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响,g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg 的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)25.(8分)(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.26.(8分)(2023•晋城模拟)阅读与思考请仔细阅读下列材料,并完成相应的任务.=,===3+像上述解题过程中,与、﹣与+相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程被称为分母有理化.任务:(1)的有理化因式;﹣2的有理化因式是.(2)写出下列式子分母有理化的结果:①=;②=.(3)计算:+……+.27.(8分)(2023•晋城模拟)问题:先化简,再求值:2a+,其中a=3.小宇和小颖在解答该问题时产生了不同意见,具体如下.小宇的解答过程如下:解:2a+=2a+……(第一步)=2a+a﹣5……(第二步)=3a﹣5.……(第三步)当a=3时,原式=3×3﹣5=4.……(第四步)小颖为验证小宇的做法是否正确,她将a=3直接代入原式中:2a+=6+=6+2=8.由此,小颖认为小宇的解答有错误,你认为小宇的解答错在哪一步?并给出完整正确的解答过程.28.(8分)(2023•天山区校级模拟)计算:(1);(2).。
中考数学总复习课件(完整版)
第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
人教版初中数学中考复习 一轮复习-数的开方与二次根式
伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. 5
B.4
C.2 5
D.5
知识点四、二次根式-二次根式的运算
解:p a b c a b 4 5
2
2
所以a b 6, a 6 b
s pp ap bp c 55 a5 b5 4
55 (6 b)5 b1 5 b 15 b
3 的结果是______.
3 12
解: 3 1 1 1 3 12 1 4 1 2 3
5. 化简: 1 1 49
解: 1 1 9 4 13 13 4 9 36 36 36 6
知识点三、二次根式-二次根式的性质
D 1.[2019·济宁]下列计算正确的是 ( )
A. 3 2 3
解:原式 9 — 1 8 22
9 2 — 1 2 2 2 22 22
3 2 — 2 2 2 22
3 — 1 2 2 2 2
3 2
知识点四、二次根式-二次根式的运算
2、(2021. 铜仁)计算( 27 — 18)( 3 — 2)
解:原式 (3 3 - 3 2)( 3 - 2) 9-3 6 -3 6 6 15- 6 6
一轮复习
数的开方与二次根式
课标要求
1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方 根 、 .立方根。 2. 了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求
百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根. 3. 能用有理数估计一个无理数的大致范围. 4. 了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、
5 4 b3 2
中考数学第4讲二次根式复习教案1新版北师大版20170802290
课题:二次根式教学目标:1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.教学重难点:熟练掌握二次根式的计算.课前准备:多媒体课件.教学过程:一、课前热身,知识回现活动内容:题组训练热身1x 的取值范围是( )A .x ≥-12B .x ≥12C .x ≤-12D .x ≤122.下列根式中是最简二次根式的是( )A B C D 3.下列运算正确的是( )A B =C .21)31=-D .1=4= . 处理方式: 课前利用3~5分钟时间进行练习,学生结合导学案独立完成,然后公布答案,教师通过统计测试结果,针对学生出现的问题,适当调整本节课的复习侧重点.进行4道简单的题目测试,期中,第1题为“理解二次根式有意义的条件”,第2题为“理解最简二次根式的概念”,第3、4题为“了解二次根式加、减、乘、除运算法则,会用它们进行有管简单的四则运算”.设计意图:意在突出三方面作用:一、让学生对本节课所要回顾的内容有初步的感受,并引导学生根据自我认知情况构建知识体系;二、教师通过测试结果的反馈,及时了解学情并调整复习的侧重点;三、引出下列复习目标.二、目标引领,考纲解读1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.处理方式:多媒体显示,找学生朗读.其余学生默读目标.然后结合知识网络图建构知识.设计意图:站在中考的高度,让学生明确本课的考试要求,这样既引起了学生的重视,又能给学生起到很好的导航作用,复习就有了明确的目标.三、考点剖析,知识再现活动内容:以题引知识点知识点1:二次根式的有关概念及其有意义的条件课前测试:1x的取值范围是()A.x≥-12B.x≥12C.x≤-12D.x≤12一般地,形如()的形式叫做二次根式.知识点2:最简二次根式的概念课前测试2.下列根式中是最简二次根式的是()ABCD最简二次根式需满足以下两个条件:被开方数不含 ;被开方数不含 的因数或因式.知识点3:二次根式的运算课前测试3.下列运算正确的是( )A==C.21)31=- D.1=4= . 二次根式的运算法则:2= (a ≥0);=ab (0,0≥≥b a );=ba (0,0>≥b a ). 实数的运算法则、运算律在二次根式中仍然适用. 处理方式:结合课前测试的试题,引出知识点,并进行细致讲解.其中:知识点1学生直接回答并填空,注意强调被开方数的非负性.教师追问:“那么的结果会是负数吗?”,进而得出二次根式的双重非负性,即00a 且(≥)”,然后加入变式练习.练习:若实数x ,y2(0y =,则xy 的值是 .知识点2教师引导学生逐一分析,其中A 根号下含有分母,B 为最简二次根式,C 根号下小数可化为分数,D 中含有开方开的尽的因数.从而引出最简二次根式的概念,并由学生总结填空.知识点3对于第3题,教师需要引导学生逐一分析,其中A 渗透同类二次根式概念,B 为正确答案,C 和D 强调乘法运算公式仍然适用.对于第4题,教师可引导学生利用多种方法计算.从而引出二次根式的运算法则,并由学生总结填空.教师追问:“我们知道2a =(a ≥0)a 吗?a 可以是负数吗?如果a 是负数结果会怎样呢?”(0)||(0)a a a a a ⎧==⎨-⎩≥<”,然后追加变式练习.练习:实数a 、b的结果为 .设计意图:本环节为本节课的重点环节,意在以题目引出知识点,将课前测试的效果发挥出来,教师可以根据课前测试的结果有的放矢,随时调整讲课思路,让课堂更加高效.四、考点训练、能力提升活动内容:巩固基础,提升难度基础题:1.要使式子有意义,则m的取值范围是()1m-A.m>-1 B.m≥-1 C.m>-1且m≠1 D.m≥-1且m≠12.下列根式中属最简二次根式的是()A3提高题:4.已知a)A.-a B. a C. ±a D. 04(1506.如图,实数a、b在数轴上的位置,化简处理方式:学生自己独立完成基础题,学有余力的同学可以继续完成提高题,学生完成后可自由讨论.教师也可根据实际情况进行题目取舍.完成后学生可投影展示,学生讲解,教师补充.其中第1~3题对应三个知识点,4~6题对应其变式练习与综合应用.在讲解时,教师重点关注学生前面没掌握好的知识点的相关题目,和学生做错的题目.设计意图:通过巩固练习,让学生对于所学的内容进行再次巩固,并通过提高题目增加自己的解题能力以及提高对知识的理解,也可以再次查缺补漏,让全体学生再一次得到锻炼.五、课堂小结,内敛升华问题1:在本节课的学习中,你对二次根式有什么新的认识?问题2:本节课你还有哪些地方存在疑惑?处理方式:学生交流,教师点拨,达成共识在发挥学生的主观能动性的同时,不要忽略教师的主导作用.设计意图: 发挥学生的主观能动性,提高学生统计的意识和分析数据的能力,学会用数学的眼光看世界.六、课堂检测,布置作业必做题:1.(2014x 的取值范围是( )A . x <1B . x ≤1C . x >1D . x ≥12.(2014·泉州)已知:m 、n 为两个连续的整数,且m <n ,则m +n = .3.(201404(1. 选做题:4.实数A .2a +bB .-2a +bC .bD .2a -b5121()1)(14---+.课后作业:中考复习丛书P 17—— P 18设计意图:作业的设计突出层次性,满足不同层次学生的需要,另一方面巩固了本课所学的知识,同时也了解了学生对本课知识的掌握情况.以便为下一节课的教学做准备.板书设计。
中考数学一轮复习20讲:第4讲二次根式
【知识归纳】1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .(要使二次根式a 有意义,则a ≥0.)⑵ 最简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.2.二次根式的性质(1(a ≥0);(2))0()(2≥=a a a )0(≥a a(3)==a a 2)0(<-a a(4))0,0(≥≥•=b a b a ab(5))0,0(≥≥=b a ba b a 3.二次根式的运算(1).二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有 二次根式,可把同类二次根式合并成一个二次根式.(2).二次根式的乘除法二次根式的乘法:a ·b = (a ≥0,b ≥0).二次根式的除法:a b= (a ≥0,b >0). 【知识归纳答案】1.⑴非负数.⑵ 整数,因式是整式,不含能开得尽方的因数或因式(3)相同的二次根式的性质 (1)a ≥ 0(a ≥0);(2))0()(2≥=a a a )0(≥a a(3)==a a 2)0(<-a a(4))0,0(≥≥•=b a b a ab(5))0,0(≥≥=b a b ab a3.(1(2).ab b a2.二次根式中,x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <1【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x ﹣1≥0,∴x ≥1,3.下列运算正确的是()A.= B.2×=C.=a D.|a|=a(a≥0)【考点】73:二次根式的性质与化简;15:绝对值;83:等式的性质.【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.4.下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【考点】74:最简二次根式;24:立方根;E4:函数自变量的取值范围;P5:关于x轴、y轴对称的点的坐标.【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值范围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D 符合题意;5.下列根式是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.6.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【考点】7B:二次根式的应用.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.7.下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.4【考点】79:二次根式的混合运算.【分析】根据二次根式的性质对(1)、(2)、(3)进行判断;根据平方差公式对(4)进行判断.【解答】解::(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选D.二.填空题(共3小题)8.若在实数范围内有意义,则x的取值范围是x≥3.【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.9.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:10.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【考点】7B:二次根式的应用.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.三.解答题(共8小题)11.计算:(﹣)×+|﹣2|﹣()﹣1.【考点】79:二次根式的混合运算;6F:负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣312.计算:﹣16×cos45°﹣20170+3﹣1.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值结合零指数幂的性质以及负指数幂的性质分别化简求出答案.【解答】解:﹣16×cos45°﹣20170+3﹣1=﹣1+2×﹣1+=.13.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:( +)÷,其中a,b满足+|b﹣|=0.【考点】79:二次根式的混合运算;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;6D:分式的化简求值;6E:零指数幂.【分析】(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0,b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.【解答】解:(1)原式=﹣4××1=2﹣=;14.计算:﹣12017﹣丨1﹣丨+×()﹣2+0.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简求出答案.【解答】解:原式=﹣1﹣|1﹣×|+2×4+1=﹣1﹣0+8+1=8.15.计算:(1)|﹣2|﹣(2)(3﹣)(3+)+(2﹣)【考点】79:二次根式的混合运算.【分析】(1)根据负整数指数幂的意义和绝对值的意义计算;(2)利用平方差公式和二次根式的乘法法则运算.【解答】解:(1)原式=2﹣3=﹣1;(2)原式=9﹣7+2﹣2=2.16.计算、求值:(1)计算:|﹣2|+()﹣1﹣(+1)(﹣1);(2)已知单项式2x m﹣1y n+3与﹣x n y2m是同类项,求m,n的值.【考点】79:二次根式的混合运算;34:同类项;6F:负整数指数幂.【分析】(1)利用绝对值的定义结合平方差公式计算得出答案;(2)直接利用同类项的定义分析得出答案.【解答】解:(1)|﹣2|+()﹣1﹣(+1)(﹣1)=2﹣+2﹣(5﹣1)=﹣;学科网(2)∵单项式2x m﹣1y n+3与﹣x n y2m是同类项,∴,解得:.17.请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(﹣).【考点】79:二次根式的混合运算;4F:平方差公式.【分析】(1)把19化为20﹣1,把21化为20+1,然后利用平方差公式计算;(2)把第1个括号内提2017,然后利用平方差公式计算.【解答】解:(1)原式===;(2)原式=2017()(﹣)=2017×(3﹣2)=2017.18.如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.2m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过估算说明.(参考数据:≈1.7)【分析】首先在AB之间找一点F,且BF=2.5,过点F作GF⊥AB交CD于点G,只要求得GF的数值,进一步与货车高相比较得出答案即可.【解答】解:如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.2m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.4m,∵∠ECA=60°,∴tan60°=,∴GF=CAtan60°=1.4≈2.38m,∵2.38<3∴这辆货车在不碰杆的情况下,不能从入口内通过.11。
中考数学一轮复习精品讲义 二次根式 人教新课标版
中考数学一轮复习精品讲义二次根式人教新课标版本章小结小结本章学习重难点【本章重点】利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【本章难点】a≥0)是一个非负数的理解,对等式)2=a(a≥0)a(a≥0)的理解及应用,对二次根式乘、除法公式的条件的正确理解.小结3 学法指导1.注意观察、分析、归纳、探究等能力的培养,在本章知识的呈现方式上,重视体现“问题情境——数学活动——概括——巩固、应用和拓展”的模式.2.注重数学知识与现实生活的联系.无论是学习二次根式的概念,还是学习二次根式的性质和运算,都尽可能把所学的知识与现实生活联系,重视运用所学知识解决实际问题能力的培养.3.充分利用图形,使代数和几何有机结合.对于数与代数的内容,应重视有关内容的几何背景,运用几何直观帮助理解、解决有关代数问题是对数学的一种导向.4.运用类比思想.学习时注意回顾与类比,充分运用类比思想学习、理解算理和算法,提高运算能力.知识网络结构图a b(a≥0(a≥0,b一、知识性专题专题1 二次根式的最值问题【专题解读】涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.例1 当x3的值最小?最小值是多少?分析00,因为3是常数,3+的最小值为3.0,33≥,∴当9x+1=0,即19x=-3有最小值,最小值为3.0(a≥0).专题2 二次根式的化简及混合运算||a=这一性质,但应用性质时,要根据具体情况对有关字母的取值范围进行讨论.例2 下列计算正确的是()13=====分析根据具体选项,应先进行化简,再计算. A==B=,C选项逆用平方差公式可求得2+(=4-5=-1,而D选项=.故选A.例3计算200620071)1)的结果是()1分析本题可逆用公式(ab)m=a m b m及平方差公式,将原式化为20061)]1) 1.=故选D.例4 书知2228442142x x y x x x y x x++=--+,求的值. 分析 本题主要利用二次根式的定义及非负性确定x 的值,但要注意所得x 的值应使分式有意义.解:由二次根式的定义及分式性质,得2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠22222872442,22277214222142277142214214.22y x y x ++∴=--=+∴===【解题策略】 本题中所求字母x 的取值必须使原代数式有意义. 例5 223541294-202522a a a a a -++-(≤≤).22353252-302-502223)(25)|23||25|(23)(25)48.a a a a a a a a a a a ∴∴∴=--=---=-+-=-解:≤≤,≤≤,≥,≤,原式( 【解题策略】 2(0)||-(0).a a a a a a ⎧==⎨⎩≥,<例 6 已知实数,a ,b ,c 在数轴上的位置如图21-8所示,化简222||()().a a c c a b -+-解:由a ,b ,c 在数轴上的位置可知:0,00,0,||||||||()().c a b a c c a a a c c a b a a c c a b a a c c a b a b ∴+-∴=-++--=-++---=-++-+-=-<<><<原式【解题策略】 利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简. 专题2 二次根式的化简及混合运算图21-8127 |1||1||1||2|.10,201,2,-112,2x x x x x x x x x x x +=+=+--+=-==-=-例化简解:原式令,得于是实数集被分为<,≤<≥三部分,-110,-20,-(1)(-2)-3.-1210,-20(1)(2)2 1.x x x x x x x x x x x +∴=++=+∴=++-=-①当<时,<<原式②当≤<时,≥<.原式210,20,x x x +-③当≥时,>≥1)(2) 3.3(1)21(12)3(2).x x x x x x ∴=+--=--⎧⎪∴=--⎨⎪⎩原式(<,原式≤<,≥ 规律·方法 对于无约束条件的化简问题需要分类讨论,用这种方法解题分为以下步骤:首先,求出绝对值为零时未知数的值,这些未知数的值在数轴上的对应点称为零点;其次,以这些零点为分点,把数轴划分为若干部分,即把实数集划分为若干个集合,在每个集合中分别进行化简,简称“零点分区间法”.例8已知3,12,.a b ab +=-=求 分析 这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉,a ,b 的符号,但可从a +b =-3,ab =12中分析得到.解:∵a +b =-3,ab =12,∴a <0,b <0.b a ∴==-=-=- 【解题策略】 本题最容易出现的错误就是不考虑a ,b 的符号,把所求的式子化简,直接代入. 专题3 利用二次根式比较大小、进行计算或化简 例9的运算结果应在 ( ) A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间分析 本题应计算出所给算式的结果,原式4==+,由于,即2 2.5849+,所以<. 故选C.例10 已知mnm nm n-+的值.解:∵9<13<16,343,即m =3,3,即,∴m n m n -===+ 二、规律方法专题 专题4 配方法【专题解读】a |化简. 例11|=====规律·方法 一般地,对于a ±可采用观察法进行配方,即找出x ,y (x >y >0),使得xy =b ,x +y =a,则2a ±===.例12 若a ,b 为实数,且b15的值.分析 本题中根据b15可以求出a ,b. 解:由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><a b b aab ab==+-⎛=-⎝=当3215.55a b====,时,原式【解题策略】对于形如22b a b aa b a b++-+或形式的代数式都要变为2()a bab+或2()a bab-的形式,当它们作为被开方式进行化简时,要注意.a b a b ab+-和以及的符号专题5 换元法【专题解读】通过换元将根式的化简和计算问题转化为方程问题.例13解:令x22x=,∴x2=(3)(3x x∴==>,专题6 代入法【专题解读】通过代入求代数式的值.例14已知222400,5760,.a b ab==222332400,5760 2.42400, 2.42400,1000,10, 2.41024,26.a b ab b aa b aa a b====∴=∴=∴=∴=⨯====解:由,两式相除得,专题7 约分法【专题解读】通过约去分子和分母的公因式将第二次根式化简.例15======例16).x y ≠====解:原式三、思想方法专题 专题8 类比思想 【专题解读】 类比是根据两对象都具有一些相同或类似的属性,并且其中一个对象还具有另外某一些属性,从而推出另一对象也具有与该对象相同或相似的性质.本章类比同类项的概念,得到同类二次根式的概念,即把二次根式化简成最简二次根式后,若被开方数相同,则这样的二次根式叫做同类二次根式.我们还可以类比合并同类项去合并同类二次根式.例17 计算.12((解:(1)原式=(1+2(2)原式【解题策略】 对于二次根式的加减法,应先将各式化为最简二次根式,再类比合并同类项的方法去合同类二次根式.专题9 转化思想【专题解读】 当问题比较复杂难于解决时,一般应采取转化思想,化繁为简,化难为易,本章在研究二次根式有意义的条件及一些化简求值问题时,常转化为不等式或分式等知识加以解决.例18 函数y中,自变量x 的取值范围是 .分析 本题比较容易,主要考查函数自变量的取值范围的求法,是二次根式,所以被开方数2x -4≥0,所以x ≥2.故填x ≥2.例19 如图21-9所示的是一个简单的数值运算程序,若输入x,则输出的数值为 .图21-9分析 本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为21x -32-1=2.故填2.专题10 分类讨论思想【专题解读】 当遇到某些数学问题存在多种情况时,应进行分类讨论.2||a a =进行化简时,若字母的取值范围不确定,应进行分类讨论.例20 若化简2|1|816x x x ---+25x -,则x 的取值范围是 ( ) A. x 为任意实数 B. 1≤x ≤4 C. x ≥1 D. x ≤4分析 由题意可知|1||4|25x x x ---=-,由此可知|1|1x x -=-,且|4|4x x -=-,由绝对值的意义可知10x -≥,且40x -≥,所以14x x ≤≤,即的取值范围是14x ≤≤.故选B.【解题策略】 2a |a |形式的式子的化简都应分类讨论.例21 如图21-10所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?分析 这是一个求最短路径的问题,一个长方体有六个面,蚂蚁有三种不同的爬行方法,计算时要分类讨论各种方法,进而确定最佳方案.22(57)3153++=22(37)5125++=22(35)7113++=(cm). 113规律·方法 沿表面从长方体的一个顶点爬到相对的顶点去,共有三个爬行路线,每个路线长分别是它爬行两个展开图的对角线的长.2011中考真题精选 一、选择题1. 下列二次根式中,最简二次根式是( )A 、51B 、5.0C 、5D 、50 考点:最简二次根式.图21-10专题:计算题. 分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A 、51=55,被开方数含分母,不是最简二次根式;故此选项错误 B 、5.0= 22,被开方数含分母,不是最简二次根式;故此选项错误 C 、,是最简二次根式;故此选项正确;D. 50=52,被开方数,含能开得尽方的因数或因式,故此选项错误故选C .此题主要考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 2. (2011•江苏徐州,5,21x -x 的取值范围是( ) A 、x≥1 B 、x >1 C 、x <1 D 、x≤1 考点:二次根式有意义的条件。
中考数学一轮复习 第4讲 二次根式教案(2021学年)
2017届中考数学一轮复习第4讲二次根式教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届中考数学一轮复习第4讲二次根式教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届中考数学一轮复习第4讲二次根式教案的全部内容。
第4讲:二次根式一、复习目标1.掌握二次根式有意义的条件和基本性质(a)2=a(a≥0).2.能用二次根式的性质2a=|a|来化简根式.3.能识别最简二次根式、同类二次根式.4.能根据运算法则进行二次根式的加减乘除运算以及混合运算.二、课时安排1课时三、复习重难点1.掌握二次根式有意义的条件和基本性质( a)2=a(a≥0).2.能根据运算法则进行二次根式的加减乘除运算以及混合运算.四、教学过程(一)知识梳理二次根式概念1.形如________的式子叫做二次根式.2.二次根式有意义的条件要使二次根式错误!有意义,则a0.3、最简二次根式、同类二次根式概念我们把满足被开方数不含分母,被开方数中不含能开得尽方的______或______的二次根式,叫做最简二次根式.同类二次根式的概念几个二次根式化成________________以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.二次根式的性质1.(错误!)2=a(______).2.\r(a2)=|a|=错误!3.ab=______(a≥0,b≥0).4.错误!=______(a≥0,b>0).二次根式的运算1.二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.2.二次根式的乘除法(1)二次根式的乘法:错误!·错误!=____(a≥0,b≥0).(2)二次根式的除法:错误!=____(a≥0,b>0).3、把分母中的根号化去掉(1)错误!=(2)错误!=(二)题型、方法归纳考点1 二次根式概念技巧归纳:此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零等列不等式组,转化为求不等式组的解集.考点2 二次根式的性质技巧归纳:1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲:二次根式
一、复习目标
1.掌握二次根式有意义的条件和基本性质2
=a (a ≥0).
2=|a |来化简根式.
3.能识别最简二次根式、同类二次根式.
4.能根据运算法则进行二次根式的加减乘除运算以及混合运算. 二、课时安排
1课时
三、复习重难点
1.掌握二次根式有意义的条件和基本性质2
=a (a ≥0). 2.能根据运算法则进行二次根式的加减乘除运算以及混合运算.
四、教学过程
(一)知识梳理
二次根式概念
1.形如________的式子叫做二次根式.
2.二次根式有意义的条件 要使二次根式a 有意义,则a 0.
3、最简二次根式、同类二次根式
概念
我们把满足被开方数不含分母,被开方数中不含能开得尽方的______或______的二次根式,叫做最简二次根式.
同类二次根式的概念
几个二次根式化成________________以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.
二次根式的性质
1.(a)2=a(______).
2.a2=|a|=⎩⎪⎨⎪⎧ a≥0 , a<0 .
3.ab=______(a≥0,b≥0).
4.a
b
=______(a≥0,b>0).
二次根式的运算
1.二次根式的加减法
合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.
2.二次根式的乘除法
(1)二次根式的乘法:a·b=____(a≥0,b≥0).
(2)二次根式的除法:a
b
=____(a≥0,b>0).
3、把分母中的根号化去掉
(1)1
a
= (2)
1
a+b
=
(二)题型、方法归纳
考点1 二次根式概念
技巧归纳:此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零等列不等式组,转化为求不等式组的解集.
考点2 二次根式的性质
技巧归纳:1. 2.
3、比较两个二次根式大小时要注意:(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.
考点3 二次根式的运算
技巧归纳:1、二次根式的性质,两个重要公式,积的算术平方根,商的算术平方根;2、二次根式的加减乘除运算.2、此类分式与二次根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母没有根号的数或者是最简二次根式.
(三)典例精讲
例1 有意义的x的取值范围是_____
[解析]要使有意义,则1-x≥0,所以x≤1.
点析:此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分
母不为零等列不等式组,转化为求不等式组的解集.
例2 已知实数x ,y 满||x -4+y -8=,则以x ,y 的值为两边长的等腰三角形的周长是( )
A. 20或16 B .20 C .16 D .以上答案均不对
解析:根据题意 x-4=0,y+8=0 解得x=4,y=8
(1)若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;
(2)若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8+8=20故选B ; 例3、 12的负的平方根介于( )
A .-5与-4之间
B .-4与-3之间
C .-3与-2之间
D .-2与-1之间
答案:B
例4计算48÷3-12
×12+24 解析:先做二次根式的乘除运算,并化为最简二次根式,再合并同类二次根式.
解:48÷3-12
×12+24=16-6+24=4-6+26=4+ 6. 点析:利用二次根式的性质,先把每个二次根式化简,然后进行运算;在中考中二次根式常与零指数、负指数结合在一起考查.
例5 先化简,再求值⎝ ⎛⎭⎪⎫1x -1x +1·x x 2+2x +1()x +12-()x -12其中x =12
解:原式=1x ()x +1·x ||x +14x =||x +14x ()x +1. ①当x +1>0时,原式=14x ②当x +1<0时,原式=-14x
. ∵当x =12时,x +1>0,∴原式=12
. 点析:此类分式与二次根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母没有根号的数或者是最简二次根式.
例6 50-1
5+220-45+22
解:原式=52-
55+45-35+22 =⎝ ⎛
⎭⎪⎫52+22+⎝ ⎛⎭
⎪⎫45-35-55
=1122+455
. (四)归纳小结
本部分内容要求熟练掌握二次根式概念、性质及二次根式的运算。
(五)随堂检测
1、下列根式中,不是..
最简二次根式的是( )
A B C D
2 )
A 、
B -
C
D 、
3、已知a )
A 、 a
B 、 a -
C 、- 1
D 、 0 4、使代数式4
3--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠4
52的值在下列哪两个数之间 (
) A 、1和2 B 、2和3 C 、3和4 D 、4和5
6、若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭
的值为( )
A 、1
B 、1-
C 、2
D 、2- 五、板书设计
概念 性质 运算规律
六、作业布置
二次根式课时作业 七、教学反思
借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
采用启发、诱思、讲解和讨论相结合的方法使学生充分掌握知识。
进行多种题型的训练,使同学们能灵活运用本节重点知识。