北师大版七年级数学下册第一章整式的乘除整式的化简求值(无答案)
北师大版七年级(下册)数学知识点总结
北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
北师大版七年级下第一章 整式的乘除 第二节 整式除法及应用(word无答案)
北师大版七年级下第一章整式的乘除第二节整式除法及应用(word无答案)一、单选题(★) 1 . 若,则().A.,,B.,,C.,,D.,,(★) 2 . 下列计算中,正确的是().A.B.C.D.(★) 3 . 下列各数,,,,,中,负数的个数有()个.A.2B.3C.4D.5二、填空题(★) 4 . ________;________;________.(★) 5 . 用科学记数法表示:________.三、解答题(★★) 6 . 计算:(1)(2)(3)(4)(5)(★) 7 . 计算:(1)(2)( n为正整数)四、单选题(★) 8 . 如果3 a=5,3 b=10,那么9 a-b的值为( )A.B.C.D.不能确定五、填空题(★★) 9 . 若,则________.(★★) 10 . 已被除后余数为 a,则________.六、解答题(★) 11 . 知一个单项式乘以所得的积是,求这个单项式.(★★) 12 . 已知多项式的除式为,商式为,余式为1,求 a 、 b的值.(★★) 13 . 已知x=3 2m+2,y=5+9 m,请你用含x的代数式表示y.(★★) 14 . 已知8 m=12,4 n=6,求2 6m-2n+1的值.(★★) 15 . 化简求值:[4(xy-1) 2-(xy+2)(2-xy)]÷ xy,其中x=-2, y= .(★) 16 . 先化简,再求值:,其中,找一个你喜欢的 x值.(★) 17 . 已知长方体的体积为,它的长为,宽为.求:(1)它的高;(2)它的表面积.(★★) 18 . 求一个关于 x的二次三项式 y,它被除余2;被除余8,并且被整除.七、填空题(★★) 19 . 已知,是多项式,在计算时,小马虎同学把看成了,结果得,则__________.八、单选题(★★) 20 . 计算x 2(3x+8)除以x 3后,得商式和余式分别为何( )A.商式为3,余式为8x2B.商式为3,余式为8C.商式为3x+8,余式为8x2D.商式为3x+8,余式为0(★) 21 . 若,则的值为()A.B.C.D.九、解答题(★★) 22 . 小秋与小球同学遇到一道题目:求的值小球说:“这道题目我会做,我们可以逆用立方差公式就可以了”小秋说:“其实除了公式,我们还可以使用竖式除法来解此题”.小秋的计算过程如图所示.请你利用小秋的方法解下列问题:已知:,求代数式的值.(★★) 23 . 已知多项式能被整除,求的值.(★★) 24 . 已知能被10整除,求证:也能被10整除.。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)
考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题
☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。
幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。
底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1。
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。
在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。
北师大版数学七下第一章《整式的乘除》计算题专项训练
北师大版数学七下第一章《整式的乘除》计算题专项训练1、4(a+b)+2(a+b)-5(a+b)化简得:(4+2-5)(a+b)=a+b答案为:a+b2、(3mn+1)(3mn-1)-8mn化简得:9m^2n^2-1-8mn=9m^2n^2-8mn-1答案为:9m^2n^2-8mn-13、-2-3×(1-(-1)÷2^2)×22÷7化简得:-2-3×(1-(-1)÷4)×2= -2-3×(1+0.25)×2=-16.5答案为:-16.54、[(xy-2)(xy+2)-2xy+4]÷(xy)化简得:(x^2y-4+2xy+4)÷xy=(x^2y+2xy)÷xy=x+2答案为:x+25、(2a-1)^2+(2a-1)(a+4),其中a=-2化简得:(2(-2)-1)^2+(2(-2)-1)(-2+4)=(-5)^2+(-10)(2)=45答案为:456、(1÷2ab)×(-2ab^2)^2÷4÷(1÷2x)^3化简得:-2a^2b^4×8x^3=-16a^2b^4x^3答案为:-16a^2b^4x^37、2(x^2+5xy)-6(2xy-x^2)化简得:2x^2+10xy-12xy+6x^2=8x^2-2xy答案为:8x^2-2xy8、(x+2)(x-3)-(x+1)(x-2)化简得:x^2-x-6-x^2+x+2x-2=x-4答案为:x-410、(x+2y)^2-(x+y)(x-y),其中x=-2,y=3化简得:(2(-2)+6)^2-(2(-2)+3)(2(-2)-3)=16-(-13)=29 答案为:2911、(-x-y)(x-y)+(x+y)^2化简得:-x^2+xy+xy-y^2+x^2+2xy+y^2=4xy答案为:4xy13、x^2-(x+2)(x-2)化简得:x^2-(x^2-4)=4答案为:414、(-3x^3)^2-(-2x^2)^3化简得:9x^6-8x^6=x^6答案为:x^615、(2a+b)^4÷(2a+b)^2化简得:(2a+b)^2=4a^2+4ab+b^2答案为:4a^2+4ab+b^216、123-124×122利用乘法公式计算124×122=化简得:123-=-答案为:-17、[(x+1)(x+2)-2]÷(-x)化简得:-(x^2+3x)=-(x(x+3))答案为:-(x(x+3))18、(2xy)·(-7xy)÷(14xy)化简得:-1/2答案为:-1/219、[(2x+y)^2+(2x+y)(2x-y)-4xy]÷(-2x),其中x=2,y=1化简得:[(2(2)+1)^2+(2(2)+1)(2(2)-1)-4(2)]÷(-2(2))=-15 答案为:-1520、-2a(3a-4b^2)÷5化简得:6a^2-8b^2÷5=-8/5(5-3a)(5+3a)答案为:-8/5(5-3a)(5+3a)21、(a+2b)(a-2b)化简得:a^2-4b^2答案为:a^2-4b^222、(x-1)(2x+3)化简得:2x^2+x-3答案为:2x^2+x-323、(a-3b)^2-9b^2-3.14化简得:a^2-6ab+9b^2-9b^2-3.14=a^2-6ab-3.14答案为:a^2-6ab-3.1424、3x^2y(-4xy^2)+5xy(-6xy)^2,其中x=2,y=3化简得:-36x^4y^3+5(-216x^3y^3)=-36x^4y^3-1080x^3y^3 答案为:-36x^4y^3-1080x^3y^325、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:326、(9abc)÷(2ab)·(-abc)化简得:-18c答案为:-18c27、(15xy-12xy-3x)÷(-3x)化简得:-1答案为:-128、(a+b)-4(2a-3b)+(3a-2b)化简得:a+b-8a+12b+3a-2b=-4a+11b答案为:-4a+11b30、(x+2)^2-(x-1)(x+1)化简得:x^2+4x+4-(x^2-1)=5x+5答案为:5x+531、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:332、(a-b)(a+ab+b)+b(a+b)化简得:a^2+ab^2+2ab+b^2答案为:a^2+ab^2+2ab+b^21.题目中的符号应该使用正确的数学符号,比如乘号用*代替,除号用/代替。
北师大版七年级数学下册第一章整式的乘除。计算题专项练习题(无答案)
北师大版七年级数学下册第一章整式的乘除。
计算题专项练习题(无答案)北师大七年级下册数学第一章计算题专项练(无答案)1.(2ab2c)2÷(-2ab3c2)(an-2)2•[-(a3)2n+1](-2.5x3)2(-4x3)(-a2b3c4)(-xa2b)32a5-a2•a3+(2a4)2÷a3(-a2)3+(-a3)2-a2•a3(-x)3•x2n-1+x2n•(-x)2.2.(a3)2-(a2)33.[(a+2b)4]3•(-a-2b)(-a2b)3•(-ab)2•[-2(ab2)2]3;4.2[(x-y)3]2•3(y-x)3•2[(x-y)2]5.5.(-a)6÷a2( x2)3÷( x2)2( a-2b)7( a-2b)2÷(2b-a)66.(3a2b3c)÷(2a3b3)7.(-a3)2•(-a2)38.(x-y)2•(y-x)39.(-8)2009•(8)201010.(5a2b2c3)4÷(-5a3bc)211.(2a2b)4•3ab2c÷3ab2•4b.12.(2x-3)(2x+3)-(2x-1)213.(2m+5)(3m-1)(2x-5y)(3x-y)(x+y)(x2-2x-3)(x+1)2+x(x-2)(-2m+n)2(-2m-n)2:14.(2a+b)2-(2a-b)2xm+15•xm-1(m是大于1的整数)15.(-x)•(-x)6;16.(-m3)•m4.17.(4a-3b)2(-x2+3y2)2;18.(-a2-2b)2(0.2x+0.5y)2(x-y+4)(x+y+4)(2x-3y)2-(y+3x)(3x-y)(a-2b+3)(a+2b-3)19.(-2aa+1b2)2÷(-2anb2)2•(-5ambn)2[5a4(a2-4)+(-2a2)5÷(-a)2]÷(-2a2)220.(a-b)m+3•(b-a)2•(a-b)m•(b-a)5a(a-3b)+(a+b)2-a(a-b)a(a-3)-(-a+7)(-a-7)(2m+n)(2m-n)-(-m+2n)(-m-2n)(2m+n-p)(2m-n+p)21.2a2b•(-3b2c)÷(4ab3)(2x+y-3z)222.5ab5(-a3b)•(-ab3c)(-2x2yz2)2•xy2z•(-xyz2)2.23.(p-q)4÷(q-p)3•(p-q)224.(4x+3y)(3y-4x)-(4x+3y)21.计算:(2ab2c)2÷(-2ab3c2)(an-2)2•[-(a3)2n+1](-2.5x3)2(-4x3)(-a2b3c4)(-xa2b)32a5-a2•a3+(2a4)2÷a3(-a2)3+(-a3)2-a2•a3(-x)3•x2n-1+x2n•(-x)2.2.计算:(a3)2-(a2)3.3.计算:[(a+2b)4]3•(-a-2b)(-a2b)3•(-ab)2•[-2(ab2)2]3.4.计算:2[(x-y)3]2•3(y-x)3•2[(x-y)2]5.5.计算:(-a)6÷a2( x2)3÷( x2)2( a-2b)7( a-2b)2÷(2b-a)6.6.计算:(3a2b3c)÷(2a3b3)。
【冲刺满分必备】最新北师大版七年级数学下册易错题整理--《第一章整式的乘除》
七年级数学下册易错题整理—北师大版第一章整式的乘除【P1-提升4】M(1)=-2,M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),…,M(n)=(-2)×(-2)×…(-2)n个-2相乘(1)计算:M(5)+M(6)(2)求2M(2016)+M(2017)的值.(3)猜想2M(n)与M(n+1)的关系并说明理由【P2-基础2/7】【P3-提升5】(1)已知2a=3,2b=5,2c=30,试用a、b表示c;(2)已知2a=3,2b=6,2c=12,求2c-(a+b)的值;(3)已知2a=6,2b=5,2c=150,证明:c=a+2b。
【P3-模拟3】已知:x 2m =2,x n =5,求:x 4m+2n的值.【P5-提升3】一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储张这样的照片.【P5-提升4】如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.【P5-提升6】若3m=6,9n=2,求:32m﹣4n+1的值不能求出a和b的值,但是小红却利用它们【P6-核心2】根据现有知识,若10a=200,10b=15做出了4a ÷22b的值,你知道她是怎么计算的吗?写出计算过程?【P6-基础6】(1). -2a²(12ab+b²)-5a(a²b-ab)(2).(3x+5a)(a-3x) (3).(2x-5y)(3x-y)【P 7-核心3/2】 (1).先化简,再求值:(x+2y )(y+2x )-(2x-y )(2y+x ),其中x=9,y=12. (2).先化简,再求值:(2x-y )(y+2x )-(2y+x )(2y-x ),其中x=1,y=2.(3).先化简,再求代数式的值:2(a 2-2ab+b 2-1)-(2a 2+2b 2-3ab ),其中a=-1,b =12.【P 8-核心1】 化简 516[(a+b)(a-b)]6 · 415 (a+b) 6(b-a)7【P 10-核心1】 计算 (2+1)(22+1) (24+1) (28+1)+1 2.(3x-2y )2-(3x+2y )2【P 10-基础4】运用完全平方公式计算 (1). (-2x+5)2 (2). (-m-2n)2 (3). (34x-23y ) 2 (4). 9992 (5).(99 34)2【P 11-基础4】 计算 1.(2a+3b )(2a-3b )-(2a-3b )2 2. (a+2b-1)(a-2b+1)-(a+2b )(a-2b )【P 11-模拟3】若(2a-3b )2=(2a+3b )2-N,则N 表示的代数式是 。
北师大新版七年级下册《第1章 整式的乘除》2含解析版答案
北师大新版七年级下册《第1章整式的乘除》一、选择题1.(3分)下列等式不成立的是()A.(ab)2=a2b2B.a5÷a2=a3C.(a﹣b)2=(b﹣a)2D.(a+b)2=(﹣a+b)22.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±153.(3分)若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20 B.﹣16 C.16 D.204.(3分)如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b25.(3分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣86.(3分)若x2﹣x﹣m=(x﹣m)(x+1)且x≠0,则m等于()A.﹣1 B.0 C.1 D.27.(3分)若3x=18,3y=6,则3x﹣y=()A.6 B.3 C.9 D.128.(3分)下列各式中为完全平方式的是()A.x2+2xy+4y2B.x2﹣2xy﹣y2C.﹣9x2+6xy﹣y2D.x2+4x+169.(3分)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.403210.(3分)利用平方差公式计算(2x﹣5)(﹣2x﹣5)的结果是()A.4x2﹣5 B.4x2﹣25 C.25﹣4x2D.4x2+2511.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6 12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6二、填空题(题型注释)13.(3分)已知x m=3,y n=2,求(x2m y n)﹣1的值.14.(3分)若a2﹣4a+b2﹣10b+29=0,则a=,b=.15.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b216.(3分)99×101=()×()=.17.(3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为.18.(3分)若a+b=6,ab=4,则(a﹣b)2=.19.(3分)若a2+b2=5,ab=2,则(a+b)2=.20.(3分)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=.三、计算题21.化简求值.(a+b)(a﹣b)+(a+b)2,其中a=3,b=﹣.22.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)四、解答题23.若a2b+ab2=30,ab=6,求下列代数式的值:(1)a2+b2;(2)a﹣b.24.先化简,再求值:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a),其中a、b满足2a﹣8b﹣5=0.25.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.北师大新版七年级下册《第1章整式的乘除》参考答案与试题解析一、选择题1.(3分)下列等式不成立的是()A.(ab)2=a2b2B.a5÷a2=a3C.(a﹣b)2=(b﹣a)2D.(a+b)2=(﹣a+b)2【分析】分别根据幂的乘方及积的乘方法则、同底数幂的除法法则及完全平方公式对各选项进行逐一分析即可.【解答】解:A、(ab)2=a2b2,故本选项错误;B、a5÷a2=a3,故本选项错误;C、(a﹣b)2=(b﹣a)2,故本选项错误;D、(a+b)2=a2+b2+2ab≠(﹣a+b)2=a2+b2﹣2ab故本选项正确.故选:D.2.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±15【分析】本题考查的是完全平方公式的理解应用,式中首尾两项分别是3x和5的平方,所以中间项应为加上或减去3x和5的乘积的2倍,所以kx=±2×3x×5=±30x,故k =±30.【解答】解:∵(3x±5)2=9x2±30x+25,∴在9x2+kx+25中,k=±30.故选:B.3.(3分)若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20 B.﹣16 C.16 D.20【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,可得m=﹣20,故选:A.4.(3分)如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选:C.5.(3分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x的一次项就是含x项的系数等于0,求解即可.【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.6.(3分)若x2﹣x﹣m=(x﹣m)(x+1)且x≠0,则m等于()A.﹣1 B.0 C.1 D.2【分析】已知等式右边利用多项式乘以多项式法则化简,再利用多项式相等的条件求出m 的值即可.【解答】解:x2﹣x﹣m=(x﹣m)(x+1)=x2+(1﹣m)x﹣m,可得1﹣m=﹣1,解得:m=2.故选:D.7.(3分)若3x=18,3y=6,则3x﹣y=()A.6 B.3 C.9 D.12【分析】根据同底数幂除法法则进行计算即可.【解答】解:∵3x=18,3y=6,∴3x﹣y==3.故选:B.8.(3分)下列各式中为完全平方式的是()A.x2+2xy+4y2B.x2﹣2xy﹣y2C.﹣9x2+6xy﹣y2D.x2+4x+16【分析】完全平方式有a2+2ab+b2和a2﹣2ab+b2两个,根据以上内容逐个判断即可.【解答】解:A、x2+2xy+y2才是完全平方式,而x2+2xy+4y2不是完全平方式,故本选项错误;B、x2﹣2xy+y2才是完全平方式,而x2﹣2xy﹣y2不是完全平方式,故本选项错误;C、﹣9x2+6xy﹣y2=﹣(3x﹣y)2,是完全平方式,故本选项正确;D、x2+4x+4才是完全平方式,而x2+4x+16不是完全平方式,故本选项错误;故选:C.9.(3分)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.4032【分析】根据完全平方公式,即可解答.【解答】解:(m﹣n)2=32,m2﹣2mn+n2=32 ①,(m+n)2=4000,m2+2mn+n2=4000 ②,①+②得:2m2+2n2=4032m2+n2=2016.故选:C.10.(3分)利用平方差公式计算(2x﹣5)(﹣2x﹣5)的结果是()A.4x2﹣5 B.4x2﹣25 C.25﹣4x2D.4x2+25【分析】利用平方差公式进行计算即可得解.【解答】解:(2x﹣5)(﹣2x﹣5),=(﹣5)2﹣(2x)2,=25﹣4x2.故选:C.11.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6 【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b 的值即可.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.二、填空题(题型注释)13.(3分)已知x m=3,y n=2,求(x2m y n)﹣1的值.【分析】根据幂的乘方,可得负整数指数幂,再根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:x﹣2m=(x m)﹣2=3﹣2=,y﹣n=(y n)﹣1=.(x2m y n)﹣1=x﹣2m y﹣n=×=,故答案为:.14.(3分)若a2﹣4a+b2﹣10b+29=0,则a= 2 ,b= 5 .【分析】运用配方法把原式化为(a﹣2)2+(b﹣5)2=0,根据非负数的性质列出算式,求出a、b的值.【解答】解:∵a2﹣4a+b2﹣10b+29=0,∴(a﹣2)2+(b﹣5)2=0,∴a﹣2=0,b﹣5=0,解得a=2,b=5.15.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2【分析】根据平方差公式的逆用找出这两个数写出即可.【解答】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.16.(3分)99×101=(100﹣1 )×(100+1 )=9999 .【分析】直接利用平方差公式进行计算得出答案.【解答】解:99×101=(100﹣1)×(100+1)=9999.故答案为:9999.17.(3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .【分析】运用平方差公式,化简代入求值,【解答】解:因为a﹣b=1,a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.18.(3分)若a+b=6,ab=4,则(a﹣b)2=20 .【分析】根据完全平方公式,对已知的算式和各选项分别整理,得出a2+b2=28,然后再去括号即可得出答案.【解答】解:∵a+b=6,ab=4,∴(a+b)2=36,a2+b2+2ab=36,∴a2+b2=28,∴(a﹣b)2=a2+b2﹣2ab=28﹣8=20,故答案为:20.19.(3分)若a2+b2=5,ab=2,则(a+b)2=9 .【分析】根据完全平方公式直接代入解答即可.【解答】解:∵(a+b)2=a2+b2+2ab,∴把a2+b2与ab代入,得(a+b)2=5+2×2=9.20.(3分)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=±.【分析】根据新定义得到(x+1)2﹣(1﹣x)(x﹣1)=6,然后整理得到x2=2,再利用直接开平方法解方程即可.【解答】解:根据题意得(x+1)2﹣(1﹣x)(x﹣1)=6,整理得x2=2,x=±,所以x1=,x2=﹣.故答案为±.三、计算题21.化简求值.(a+b)(a﹣b)+(a+b)2,其中a=3,b=﹣.【分析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=3,b=﹣时,原式=18﹣2=16.22.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)【分析】(1)根据单项式除以单项式法则进行计算即可;(2)先算乘方,再算乘法即可;(3)根据完全平方公式进行计算即可;(4)先变形,再根据平方差公式进行计算,最后根据完全平方公式进行计算即可.【解答】解:(1)a3b2c÷a2b=abc;(2)(﹣x3)2•(﹣x2)3=x6•(﹣x6)=﹣x12;(3)(﹣4x﹣3y)2=16x2+24xy+9y2;(4)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.四、解答题23.若a2b+ab2=30,ab=6,求下列代数式的值:(1)a2+b2;(2)a﹣b.【分析】(1)已知等式左右两边相除,利用多项式除以单项式法则计算求出a+b的值,两边平方后利用完全平方公式化简,将ab的值代入计算即可求出所求式子的值;(2)将原式平方,利用完全平方公式化简,将各自的值代入计算,开方即可求出值.【解答】解:(1)由a2b+ab2=30,ab=6,得(a2b+ab2)÷ab=ab(a+b)÷ab=30÷6=5,即a+b=5,∴(a+b)2=25,即a2+2ab+b2=25,∴a2+b2=25﹣2ab=25﹣2×6=13;(2)(a﹣b)2=a2﹣2ab+b2=13﹣2×6=1,∴a﹣b=±1.24.先化简,再求值:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a),其中a、b满足2a﹣8b﹣5=0.【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【解答】解:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a)=[ab﹣3b2﹣3a2﹣2ab+6a2﹣9ab﹣2ab+3b2]÷(﹣3a)=(3a2﹣12ab)÷(﹣3a)=﹣a+4b,∵2a﹣8b﹣5=0,∴2a﹣8b=5,∴﹣a+4b =﹣,∴原式=﹣.25.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.11/ 11。
北师大版七年级数学下册 第一章 整式的乘除(二) 讲义(无答案)
第一章整式的乘除(二)一、整式的乘法1. 单项式与单项式相乘:法则:把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(-5a2b2)·(-4 b2c)·(-ab)= [(-5)×(-4)×(-1)]·(a2·a)·(b2·b2)·c=-30a3b4c2.单项式与多项式相乘法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.用字母表示:a(b+c+d)= ab + ac + ad例:= (-3x2)·(-x2)+(-3x2)·2 x一(-3x2)·1=3.多项式与多项式相乘法则:多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.用字母表示:( a+b)(c+d)= ac + ad + bc + bd例:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb二、乘法公式1. 平方差公式:两数和与这两数差的积,等于它们的平方差。
(a+b)(a-b)=a2-b2例:①(x-4)(x+4) = ( )2 - ( )2 =________;②(-m+n )( m+n ) = ( ) ( )=___________________;③=( ) ( )=___________;④(2a+b+3)(2a+b-3) =( )2-( )2=______________= ;⑤(2a—b+3)(2a+b-3)=()()=( )2-( )2⑥ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______; ⑦ (x +3y )( ) = 9y 2-x 22. 完全平方公式: 两数和(或差)的平方,等于它们的平方和,加上(或减去)们的 积的2倍。
北师版数学下册《整式的乘除》1.7.3整式的化简(练习题课件)
13.(1)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2, 其中 ab=-12.
解:原式=4-a2+a2-5ab+3a5b3÷a4b2=4-5ab+3ab=4-2ab. 当 ab=-12时,原式=4-2×-12=5.
(2)已知 x-2y=3,x2-2xy+4y2=13,求下列各式的值: ①xy;
除,且x+当2x或=x_+__3_____时,x2+5x+6=-02.或-3
(2)根据上述材料,已知多项式x2+mx-14能被x+2整除, 试求m的值.
解:因为多项式 x2+mx-14 能被 x+2 整除, 所以 x+2 是 x2+mx-14 的一个因式,且当 x=-2 时,x2+mx-14=0. 所以(-2)2-2m-14=0,解得 m=-5.
解:因为 x-2y=3,所以(x-2y)2=32, 即 x2-4xy+4y2=9. 又因为 x2-2xy+4y2=13,两式相减,得 2xy=4, 所以 xy=2.
②x2y-2xy2.
解:因为 x-2y=3,所以(x-2y)·xy=3xy, 即 x2y-2xy2=3xy. 又因为 xy=2,所以 x2y-2xy2=3×2=6.
使用 说明
此课件下载后
背
景 图 片 可 单击输入您的封面副标题
以
一键修改编辑
【提示】下载后此页用户可自行删除!
【提示】下载后此页用户可自行删除!
【提示】下载后此页用户可自行删除!
失量 图标
【提示】下载后此页用户可自行删除!
5.将式子x2+4x-1化成(x+p)2+q的形式为( C ) A.(x-2)2+3 B.(x+2)2-4 C.(x+2)2-5 D.(x+4)2+4
6.若 x2+ax=x+122+b,则 a,b 的值是( B ) A.a=1,b=14 B.a=1,b=-14 C.a=0,b=-12 D.a=2,b=12
北师大版七年级数学下册第一章整式的乘除整式的化简求值(无答案)
第1-3节综合训练
a+=___.
5、若2a=10,2b=5,则2b
7
8
9、阅读材料:
(1)1的任何次幂都为1;
(2)−1的奇数次幂为−1;
(3)−1的偶数次幂为1;
(4)任何不等于零的数的零次幂为1.
请问当x 为何值时,代数式(2x +3)
2020 x 的值为1.
整式的化简求值
化繁为简求值
1.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
2.先化简再求值:[(x+y)(x﹣2y)+(x﹣2y)2﹣x(x﹣3y)]÷(﹣x),其中x=2,y=2.3.先化简,再求值:[(2x+y)(x﹣y)+(x﹣y)2]÷(3x),其中x=3,y=﹣2020.
特征条件代入求值
4.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.
5.已知(a﹣2)2与|b+1|互为相反数,化简a2b+(﹣4a2b+5ab2)﹣2(3ab2﹣2a2b),并求此代数式的值.
整体代入求值
6.已知a+b=3,ab=,则a2+b2的值等于()
A.8B.7C.12D.6
7.(1)已知m+4n﹣3=0,求2m•16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.
8.(1)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.
9.已知x﹣2y=3,x2﹣2xy+4y2=13.求下列各式的值:
(1)xy;
(2)x2y﹣2xy2.。
北师大版七年级下册数学知识点总结
北师大版七年级下册数学知识点总结第一章:整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n=a^m + n(m,n 都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方与积的乘方。
- 幂的乘方:(a^m)^n=a^mn(m,n都是正整数)。
例如(3^2)^3=3^2×3=3^6。
- 积的乘方:(ab)^n=a^nb^n(n是正整数)。
例如(2×3)^2=2^2×3^2=4×9 = 36。
3. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m,n都是正整数,且m>n)。
例如3^5÷3^2=3^5 - 2=3^3。
- 零指数幂:a^0=1(a≠0)。
例如5^0=1。
- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p是正整数)。
例如2^-3=(1)/(2^3)=(1)/(8)。
4. 整式的乘法。
- 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如2x^2·3x^3=(2×3)(x^2·x^3) = 6x^5。
- 单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
例如a(b + c)=ab+ac。
- 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如(a + b)(c + d)=ac+ad+bc+bd。
5. 平方差公式。
- 公式:(a + b)(a - b)=a^2-b^2。
例如(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。
6. 完全平方公式。
- (a + b)^2=a^2+2ab + b^2;(a - b)^2=a^2-2ab + b^2。
七年级数学北师大版下册初一数学--第一单元 整式的除法《整式的化简》课件
知2-讲
解:(1)由题意,5月份甲超市的销售额为a(1+x%)2,
乙超市的销售额为a(1-x% )2,
则甲、乙两超市的销售额的差为
a(1+x%)2- a(1-x% )2
a
1
2x 100
x2 10000
a
1
2x 100
x2 10000
ax . 25
解:(m+n)2+(m+n)(m-3n) =(m2+2mn+n2)+(m2-3mn+mn-3n2) =m2+2mn+n2+m2-3mn+mn-3n2 =2m2-2n2. 当m= 2, n=1时, 原式=2×( 2 )2-2×12=2×2-2×1=2.
总结
知1-讲
化简时能用乘法公式的要用乘法公式,要注意解 题格式的规范性.
答:甲超市的销售额比乙超市多 ax 万元. 25
知2-讲
(2)当a=150,x=2时, ax 150 2 12. 25 25
答:甲超市的销售额比乙超市多12万元.
总结
知2-讲
在解答实际问题时,如果题目有字母就注意整式 的化简,化简后再代入数值.
知2-讲
例4 如图,某市有一块长为(3a+b)米,宽为(2a+b)米 的长方形地块,规划部门计划将该长方形地块进 行绿化,中间留出一块边长为(a+b)米的正方形区 域修建凉亭,则阴影部分的面积是多少平方米? 并求出当a=3,b=2时,阴影部分的面积.
A.0
B.2
C.-2
D.不能确定
3 若代数式x2+ax+9-(x-3)2的值等于零,则a的
值为( C )
A.0
B.-3
word版北师大版七年级教学下册数学第一章节整式乘除附答案
word整理版七年级数学下册——第一章整式的乘除(复习)单项式整式多项式整同底数幂的乘法幂的乘方式积的乘方的幂运算同底数幂的除法零指数幂运负指数幂整式的加减算单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完整平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题(共10小题,每题3分,共30分)1.以下运算正确的选项是()A .a4a5a9 B.a3a3a33a3C. 2a43a56a9D.a34a7 2012320122 .5()135A.1B.1 C.0D.19973 .设5a3b25a3b2A,则A=()A.30abB.60abC.15abD.12ab4 .已知x y 5,xy3,则x2y2()A.25.B2519、195 .已知x a3,x b5,则x3a2b()、27B 、9C、3D、52215506 ..如图,甲、乙、丙、丁四位同学给出了四a b种表示该长方形面积的多项式:m学习参照资料nword整理版①(2a+b)(m+n); ②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b); ④2am+2an+bm+bn,你以为此中正确的有A 、①②B、③④C、①②③D、①②③④()7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A 、–3B、3C、0D、18.已知.(a+b)=9,ab=-12,则a2+b的值等于()A 、84、78C、12D、64)9.计算(a-b)(a+b)(a+b)(a-b)的结果是(A.a8+2a4 b4+b8B.a8-2a4b4+b8.a8+b8D.a8-b81 0.已知P m 1,Qm28m(m为随意实数),则P、Q的大小关系为1515()A、P Q B 、P Q、PQ D、不可以确立二、填空题(共6小题,每题4分,共24分)1 1.设4x2mx121是一个完整平方式,则m=_______。
北师大版七年级数学下册第一章整式的乘除PPT课件全套
(1) (-y)3÷(-y)2 ; (2) x12÷x-4 ;
(2)由 (ab)3=a3b3 出发, 你能想到更为一 般的公式吗?
猜想 (ab)n= anbn
n个ab
(ab)n = ab·ab·……·ab (
幂的意) 义
n个a
n个b
=(a·a·……·a) (b·b·……·b) (
乘法交换律、结合律
)
=an·b ( 幂的意义 )
积的乘方法则
(ab)n = an·bn (m,n都是正整数)
解 :am an (a a a)(a a a)
m个a
n个a
aa a 不变 m n个a
=am+n
相加
am ·an =am+n(m,n都是正整数)
同底数幂相乘,底数 不变 ,指数相加 .
指数相加
即 am an amn
底数不变
例1.计 算 : (1)(3)7 (3)6; (3) x3 x5;
公示逆用
(ab)n = an·bn(m,n都是正整数)
反向使用: an·bn = (ab)n
计算:
(1) 23×53 ; (3) (-5)16 × (-2)15 ; (5)0.25100×4100
(2) 28×58 ; (4) 24 × 44 ×(-0.125)4 ; (6)812×0.12513
课堂小结
1. am an amn m, n都是正整数
同底数幂相乘,底数不变,指数相加.
2. (am)n=amn (m,n都是正整数)
幂的乘方,底数不变,指数相乘.
课后作业
完成课本习题1.2中1、2 拓展作业:
你能尝试运用今天所学的知识解决下面 的问题吗
北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法
北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法一. 教材分析北师大版七年级数学下册第一章整式的乘除4整式的乘法,这部分内容是学生在学习了整式的加减法之后,进一步深化对整式的运算法则的理解。
本节内容主要包括整式乘法的基本概念、运算法则以及具体的运算方法。
通过这部分的学习,使学生能够熟练掌握整式的乘法运算,为后续学习分式的乘除法和函数的初步概念打下基础。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,例如整式的加减法、有理数的乘除法等。
但是,对于整式的乘法,学生可能还存在着一定的困惑,例如整式乘法的运算法则、如何快速准确地进行计算等。
因此,在教学过程中,需要结合学生的实际情况,用学生熟悉的生活实例引入整式的乘法,让学生在理解的基础上掌握整式的乘法运算。
三. 说教学目标1.知识与技能目标:使学生理解整式乘法的概念,掌握整式乘法的运算法则,能够熟练地进行整式的乘法运算。
2.过程与方法目标:通过合作交流、自主探究的学习过程,培养学生解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:整式乘法的概念、运算法则以及运算方法。
2.教学难点:整式乘法的运算方法,尤其是如何正确地合并同类项。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、自主探究法等,引导学生主动参与学习,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、教学卡片等辅助教学,使学生更直观地理解整式的乘法运算。
六. 说教学过程1.引入新课:通过生活实例,引导学生思考如何计算两个多项式的乘积,激发学生的学习兴趣。
2.讲解整式乘法的概念和运算法则:引导学生通过合作交流、自主探究的方式,总结整式乘法的运算法则。
3.演示整式乘法的运算方法:通过多媒体课件或教学卡片,展示整式乘法的具体运算过程,让学生更直观地理解。
完整word版北师大版七年级下册数学第一章整式的乘除附答案
word整理版七年级数学下册——第一章整式的乘除〔复习〕单项式整式多项式整同底数幂的乘法幂的乘方式积的乘方的幂运算同底数幂的除法零指数幂运负指数幂整式的加减算单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题〔共10小题,每题3分,共30分〕1.以下运算正确的选项是〔〕A.a4a5a9B.a3a3a33a3C.2a43a56a9D.a34a720213202 12.52〔〕135A.1B.1C.0D.19973.设5a3b25a3b2A,那么A=〔〕A.30abB.60abC.15abD.12ab4.x y5,xy3,那么x2y2〔〕A.25.B25C19D、195.x a3,x b 5,那么x3a2b〔〕A、27B、9C、3D、52251056..如图,甲、乙、丙、丁四位同学给出了四a b a种表示该长方形面积的多项式:m学习参考资料nword 整理版①(2a+b)(m+n); ②2a(m+n)+b(m+n); ③m(2a+b)+n(2a+b); ④2am+2an+bm+bn ,你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④〔 〕7.如(x+m)与(x+3) 的乘积中不含 x 的一次项,那么m 的值为〔〕A 、–3B 、3C 、0D 、12128..(a+b)=9,ab=-12,那么a2+b 的值等于〔〕A 、84B、78C 、12D 、62 244〕9.计算〔a -b 〕〔a+b 〕〔a+b 〕〔a -b 〕的结果是〔A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810. P7 m 1,Qm 28m 〔m 为任意实数〕,那么P 、Q 的大小关系为15 15〔〕A 、PQB 、P QC 、PQD、不能确定二、填空题〔共 6小题,每题4分,共 24分〕11. 设4 x 2mx 121 是一个完全平方式,那么m=_______。
北师版七年级下册数学第1章 整式的乘除 目标三 整式的化简求值
5 已知x2-2x-2=0,求式子(x-1)2+(x+3)(x-3)+ (x-3)(x-1)的值.
解:原式=x2-2x+1+x2-9+x2-4x+3=3x2-6x -5. 因为x2-2x-2=0,所以x2-2x=2, 所以原式=3x2-6x-5=3(x2-2x)-5=6-5=1.
6 题目:已知(x-1)5=a1x5+a2x4+a3x3+a4x2+a5x+a6, 求a6的值. 解这类题目时,可根据等式的性质,取x的特殊值,如 令x=0,1,-1……代入等式两边即可求得有关代数 式的值.此题中令x=0,则(0-1)5=a6,即a6=-1. 请你求出下列式子的值:
(1)a1+a2+a3+a4+a5; 解:令x=1,则(1-1)2=a1+a2+a3+a4+a5+a6. 因为a6=-1, 所以a1+a2+a3+a4+a5=0-(-1)=1.
(2)a1-a2+a3-a4+a5. 解:令x=-1,则(-1-1)5=-a1+a2-a3+a4-a5+ a6,即-a1+a2-a3+a4-a5+a6=-32.因为a6=-1,
所以a1-a2+a3-a4+a5=31.
7 先 化 简 , 再 求 值 : (x + 3y)2 - 2x(x - 2y) + (x + y)·(x-y),其中|x+1|+y2+2y+1=0.
北师版七年级下
第1章整式的乘除
1.6. 完全平方公式的应用 2
目标三整式的化简求值
习题链接
温馨提示:点击 进入讲评
15263 Nhomakorabea7
4
8
答案呈现
1 【教材 P34 复习题 T7 变式】先化简,再求值:
(-a)3·2a·12a2-313a-1,其中 a=12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1-3节综合训练
a+=___.
5、若2a=10,2b=5,则2b
7
8
9、阅读材料:
(1)1的任何次幂都为1;
(2)−1的奇数次幂为−1;
(3)−1的偶数次幂为1;
(4)任何不等于零的数的零次幂为1.
请问当x 为何值时,代数式(2x +3)
2020 x 的值为1.
整式的化简求值
化繁为简求值
1.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
2.先化简再求值:[(x+y)(x﹣2y)+(x﹣2y)2﹣x(x﹣3y)]÷(﹣x),其中x=2,y=2.3.先化简,再求值:[(2x+y)(x﹣y)+(x﹣y)2]÷(3x),其中x=3,y=﹣2020.
特征条件代入求值
4.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.
5.已知(a﹣2)2与|b+1|互为相反数,化简a2b+(﹣4a2b+5ab2)﹣2(3ab2﹣2a2b),并求此代数式的值.
整体代入求值
6.已知a+b=3,ab=,则a2+b2的值等于()
A.8B.7C.12D.6
7.(1)已知m+4n﹣3=0,求2m•16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.
8.(1)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.
9.已知x﹣2y=3,x2﹣2xy+4y2=13.求下列各式的值:
(1)xy;
(2)x2y﹣2xy2.。