高三数学周测28《随机变量及其分布》

合集下载

(必考题)高中数学选修三第二单元《随机变量及其分布》检测题(答案解析)(1)

(必考题)高中数学选修三第二单元《随机变量及其分布》检测题(答案解析)(1)
2.B
解析:B
【分析】
记事件 为“至少有一个女孩”,事件 为“另一个也是女孩”,分别求出 、 的结果个数,问题是求在事件 发生的情况下,事件 发生的概率,即求 ,由条件概率公式求解即可.
【详解】
解:一个家庭中有两个小孩只有4种可能: 男,男 , 男,女 , 女,男 , 女,女 .
记事件 为“至少有一个女孩”,事件 为“另一个也是女孩”,则 (男,女),(女,男),(女,女) , (男,女),(女,男),(女,女) , (女,女) .
(1)求抽取的5辆单车中有3辆是蓝色单车的概率;
(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机抽取一辆送技术部门作进一步抽样检测并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车数量用 表示,求 的分布列及数学期望.
(1)如果按照上届高三理科生60%的二本率来估计一检的模拟二本线,请问一检考试的模拟二本线应该是多少;
(2)若甲同学每次质量检测考试,物理、化学、生物及格的概率分别为 , , ,请问甲同学参加三次质量检测考试,物理、化学、生物三科中至少2科及格的次数 分布列及期望.
21.一黑色袋里装有除颜色不同外其余均相同的8个小球,其中白色球与黄色球各3个,红色球与绿色球各1个.现甲、乙两人进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,以得分高获胜.比赛规则如下:①只能一个人摸球;②摸出的球不放回;③摸球的人先从袋中摸出1球;若摸出的是绿色球,则再从袋子里摸出2个球;若摸出的不是绿色球,则再从袋子里摸出3个球,他的得分为两次摸出的球的记分之和;④剩下的球归对方,得分为剩下的球的记分之和.

(必考题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)

(必考题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)

一、选择题1.现有一条零件生产线,每个零件达到优等品的概率都为p .某检验员从该生产线上随机抽检50个零件,设其中优等品零件的个数为X .若()8D X =,(20)P X =(30)P X <=,则p =( ) A .0.16B .0.2C .0.8D .0.842.已知随机变量X 的分布列则对于任意01a b c <<<<,()E X 的取值范围是( )A .10,3⎛⎫ ⎪⎝⎭B .1,13⎛⎫ ⎪⎝⎭C .()0,1D .1,3⎛+∞⎫ ⎪⎝⎭3.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( ) A .12B .13C .14D .164.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .75.设01p <<,随机变量ξ的分布列是则当p 在()0,1内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ增大,()D ξ增大6.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( ) A .38B .1340C .1345D .347.已知随机变量~X N ()22,σ,(0)0.84P X=,则(04)P X <<=( )A .0.16B .0.32C .0.66D .0.688.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件A ,“摸得的两球不同色”为事件B ,则概率()|P B A 为( ) A .14B .23C .13D .129.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( )A .3+B .6+C .3+D .6+10.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .5911.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A .313B .413C .14D .1512.10张奖券中有3张是有奖的,某人从中依次抽取两张.则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率是( ) A .27B .29C .310D .15二、填空题13.游乐场某游戏设备是一个圆盘,圆盘被分成红色和绿色两个区域,圆盘上有一个可以绕中心旋转的指针,且指针受电子程序控制,前后两次停在相同区域的概率为14,停在不同区域的概率为34,某游客连续转动指针三次,记指针停在绿色区域的次数为X ,若开始时指针停在红色区域,则()E X =______.14.由“0,1,2”组成的三位数密码中,若用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,则(|)P A B =__________.15.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________. 16.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2K 是用来判断两个分类变量是否相关的随机变量,当2K 的值很小时可以推断两个变量不相关;④某项测量结果ξ服从正态分布()21,N a,则(5)0.81P ξ≤=,则(3)0.19P ξ≤-=.17.已知某随机变量X 的分布列如下(,p q R ∈):且X 的数学期望()12E X =,那么X 的方差()D X =__________. 18.(1)10件产品,其中3件是次品,任取2件,若ξ表示取到次品的个数,则()E ξ=_______;(2)设随机变量ξ的分布列为()P k ξ==21C ()()33k k n kn -,k =0,1,2,…,n ,且()24E ξ=,则()D ξ= _______;(3)设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回地抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,X 表示三次中红球被摸中的次数(每个小球被抽取的概率相同,每次抽取相互独立),则方差()D X =______.三、解答题19.已知某射手射中固定靶的概率为34,射中移动靶的概率为23,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.(1)求“该射手射中固定靶且恰好射中移动靶1次”的概率; (2)求该射手的总得分X 的分布列和数学期望.20.某校拟举办“成语大赛”,高一(1)班的甲、乙两名同学在本班参加“成语大赛”选拔测试,在相同的测试条件下,两人5次测试的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更好?并说明理由;(2)若从甲、乙两人5次的成绩中各随机抽取1次进行分析,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望()E X .21.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩ξ近似服从正态分布()70,100N .已知成绩在90分以上(含90分)的学生有12名.(1)此次参赛的学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,则设奖的分数线约为多少分? 说明:对任何一个正态分布()2~,X Nμσ来说,通过1X Z μσ-=转化为标准正态分布()~0,1Z N ,从而查标准正态分布表得到()()1P X X Z <=Φ. 参考数据:可供查阅的(部分)标准正态分布表()Z Φ Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.2 0.8849 0.869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.10.98210.98260.98300.98340.98380.98420.98460.98500.98540.985722.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数; (2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 23.为检测某种抗病毒疫苗的免疫效果,某药物研究所科研人员随机选取100只小白鼠,并将该疫苗首次注射到这些小白鼠体内.独立环境下试验一段时间后检测这些小白鼠的某项医学指标值并制成如下的频率分布直方图(以小白鼠医学指标值在各个区间上的频率代替其概率):(1)根据频率分布直方图,估计100只小白鼠该项医学指标平均值x (同一组数据用该组数据区间的中点值表示);(2)若认为小白鼠的该项医学指标值X 服从正态分布()2,N μσ,且首次注射疫苗的小白鼠该项医学指标值不低于14.77时,则认定其体内已经产生抗体;进一步研究还发现,对第一次注射疫苗的100只小白鼠中没有产生抗体的那一部分群体进行第二次注射疫苗,约有10只小白鼠又产生了抗体.这里μ近似为小白鼠医学指标平均值x ,2σ近似为样本方差2s .经计算得2 6.92s =,假设两次注射疫苗相互独立,求一只小白鼠注射疫苗后产生抗体的概率p (精确到0.01). 附:参考数据与公式6.92 2.63≈,若()2~,X N μσ,则①()0.6827P X μσμσ-<≤+=;②()220.9545P X μσμσ-<≤+=;③()330.9973P X μσμσ-<≤+=. 24.甲、乙两人进行乒乓球比赛,规定比赛进行到有一人比对方多赢2局或打满6局时比赛结束.设甲、乙在每局比赛中获胜的概率均为12,各局比赛相互独立,用X 表示比赛结束时的比赛局数(1)求比赛结束时甲只获胜一局的概率; (2)求X 的分布列和数学期望.25.现有编号为1,2,3的三只小球和编号为1,2,3的三个盒子,将三只小球逐个随机地放入三个盒子中,每只球的放置相互独立. (1)求恰有一个空盒的概率;(2)求三只小球在三个不同盒子中,且每只球编号与所在盒子编号不同的概率; (3)记录所有至少有一只球的盒子,以X 表示这些盒子编号的最小值,求()E X . 26.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由(20)(30)p X P X =<=求出的范围,再由方差公式求出值.【详解】∵(20)(30)p X P X =<=,∴2020303030205050(1)(1)C p p C p p -<-,化简得1p p -<,即12p >,又()850(1)D X p p ==-,解得0.2p =或0.8p =,∴0.8p =,故选C . 【点睛】 本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.2.B解析:B 【分析】由题易得222()E X a b c =++,结合题中条件再由基本不等式可得2222()133a b c a b c ++++>=,即1()3E X >;再由2222()2()12()1a b c a b c ab bc ca ab bc ca ++=++-++=-++<,即()1E X <,最后得出()E X 的取值范围. 【详解】由随机变量的期望定义可得出222()E X a b c =++, 因为01a b c <<<<,且1a b c ++=,所以222222222a b aba c acbc bc ⎧+>⎪+>⎨⎪+>⎩,三式相加并化简可得222a b c ab bc ac ++>++,故2222222222()2222()3()a b c a b c ac bc ab a b c ac bc ab a b c ++=+++++=+++++<++,即2222()133a b c a b c ++++>=,所以2()1()33a b c E X ++>=,又因为2()()2()12()1E X a b c ab bc ca ab bc ca =++-++=-++<,所以1()13E X <<. 故选:B . 【点睛】本题考查随机变量的期望,考查基本不等式的应用,考查逻辑思维能力和运算求解能力,属于常考题.3.B解析:B 【分析】记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,分别求出A 、B 的结果个数,问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式求解即可. 【详解】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,则{A =(男,女),(女,男),(女,女)},{B =(男,女),(女,男),(女,女)},{AB =(女,女)}.于是可知3()4P A =,1()4P AB =. 问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式,得()114334P B A ==.故选:B . 【点睛】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:()()()P AB P B A P A =,等可能事件的概率的求解公式:()mP M n=(其中n 为试验的所有结果,m 为基本事件的结果).4.B解析:B 【分析】 由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.故选:B. 【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.5.B解析:B 【分析】根据题意计算随机变量ξ的分布列和方差,再判断p 在(0,1)内增大时,()E ξ、()D ξ的单调性即可. 【详解】解:设01p <<,随机变量ξ的分布列是1131()01222222p p E p ξ-=⨯+⨯+⨯=-, 方差是22231311311()(0)(1)(2)222222222p p D p p p ξ-=-+⨯+-+⨯+-+⨯ 21144p p =-++ 215(2)44p =--+,当p 在(0,1)内增大时,()E ξ减小,()D ξ增大.故选:B . 【点睛】本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力.6.B【分析】由条件概率的定义()(|)()P A B P B A P A =,分别计算(),()P A B P A 即得解.【详解】 由题意5()9P A = 事件AB 为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有223313⨯+⨯=个事件1313()9872P A B ==⨯由条件概率的定义:()13(|)()40P A B P B A P A ==故选:B 【点睛】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.7.D解析:D 【分析】先由对称性求出(X 4)P ≥,再利用(04)12(4)P X P X <<=-≥即得解. 【详解】由于随机变量~X N ()22,σ,关于2X =对称,故(4)(0)1(0)10.840.16P X P X P X ≥=≤=-≥=-= (04)12(4)10.320.68P X P X ∴<<=-≥=-=故选:D 【点睛】本题考查了正态分布在给定区间的概率,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.8.B解析:B 【分析】根据题目可知,求出事件A 的概率,事件AB 同时发生的概率,利用条件概率公式求得()|P B A ,即可求解出答案.【详解】依题意,()1214C 1C 2P A ==,()11221143C C 1C C 3P AB ==,则条件概率()()()123|132P AB P B A P A ===.故答案选B . 【点睛】本题主要考查了利用条件概率的公式计算事件的概率,解题时要理清思路,注意()P AB 的求解.9.D解析:D 【分析】利用正态密度曲线的对称性得出12m n +=,再将代数式22m n +与12m n +相乘,展开后可利用基本不等式求出12m n+的最小值. 【详解】 由于()210,XN σ,由正态密度曲线的对称性可知,()()128P X P X m >=<=,所以,()()188102P X P X <+≤≤=,即12m n +=,221m n ∴+=, 由基本不等式可得()1212422266m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭6=, 当且仅当()420,0m n m n n m=>>,即当n =时,等号成立, 因此,12m n +的最小值为6+,故选D. 【点睛】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.10.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.11.A解析:A 【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果. 【详解】设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件B 为“学生丙第一个出场”则()41134333555578A C C A P A A A +==,()1333555518C A P AB A A == 则()()()1837813P AB P B A P A === 本题正确选项:A 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.12.B解析:B 【分析】根据第一次抽完的情况下重新计算总共样本数和满足条件样本数,再由古典概型求得概率. 【详解】在第一次抽中奖后,剩下9张奖券,且只有2张是有奖的,所以根据古典概型可知,第二次中奖的概率为29P =.选B. 【点睛】事件A 发生的条件下,事件B 发生的概率称为“事件A 发生的条件下,事件B 发生的条件概率”,记为(|)P B A ;条件概率常有两种处理方法: (1)条件概率公式:()(|)()P AB P B A P A =. (2)缩小样本空间,即在事件A 发生后的己知事实情况下,用新的样本空间的样本总数和满足特征的样本总数来计算事件B 发生的概率.二、填空题13.【分析】依题意画出数形图即可求出的分布列即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则的分布列如下:0 1 2 3 故故答案为:【点睛】本题考查概率的计算随机解析:27 16【分析】依题意画出数形图,即可求出X的分布列,即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则X的分布列如下:X0123P 16421643964364故()01236464646416 E X=⨯+⨯+⨯+⨯=.故答案为:27 16【点睛】本题考查概率的计算,随机变量的分布列和数学期望,解答的关键是画出树形图. 14.【分析】利用古典摡型的概率计算公式分别求得结合条件概率的计算公式即可求解【详解】由012组成的三位数密码共有个基本事件又由用A表示第二位数字是2的事件用B表示第一位数字是2的事件可得所以故答案为:【解析:1 3【分析】利用古典摡型的概率计算公式,分别求得(),()P B P A B,结合条件概率的计算公式,即【详解】由“0,1,2”组成的三位数密码,共有33327⨯⨯=个基本事件,又由用A表示“第二位数字是2”的事件,用B表示“第一位数字是2”的事件,可得33131 (),()273279P B P A B⨯====,所以1()19 (|)1()33P A BP A BP B===.故答案为:1 3 .【点睛】本题主要考查了条件概率的计算与求解,其中解答中熟记条件概率的计算公式,准确运算时解答得关键,属于基础题.15.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:1 3【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n=3,这时另一个也是女孩包含的基本事件个数m=1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率.【详解】一个家庭有两个小孩,假设生男生女是等可能的,基本事件有: {男,男},{男,女},{女,男},{女,女},已知这个家庭有一个女孩的条件下,基本事件总数n=3 ,这时另一个也是女孩包含的基本事件个数m=1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13mpn==,故答案为:1 3【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.16.②④【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④【详解】回归直线恒过点但不一定要过样本点故①错误;由得有99的把握认为两个分类变量有关系故②正确;的值很小解析:②④ 【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④. 【详解】回归直线ˆˆˆybx a =+恒过点(),x y ,但不一定要过样本点,故①错误; 由2 6.635K ≥,得有99%的把握认为两个分类变量有关系,故②正确;2K 的值很小时,只能说两个变量的相关程度低,不能说明两个变量不相关,故③错误;(5)0.81P ξ≤=,(5)(3)10.810.19P P ξξ∴>=<-=-=,故④正确;故答案为:②④ 【点睛】本题主要考查了正态分布求指定区间的概率等,属于中等题.17.【解析】根据题意可得解得故的方差解析:34【解析】根据题意可得112p q p q +=⎧⎪⎨-=⎪⎩,解得34p =,14q =,故X 的方差()22131131124244D X ⎛⎫⎛⎫=-⨯+--⨯= ⎪ ⎪⎝⎭⎝⎭.18.8【解析】(1)由题意得随机变量的可能取值为012所以(2)由题意可知所以解得所以(3)每次取球时取到红球的概率为黑球的概率为所以服从二项分布即所以解析:358 23 【解析】(1)由题意得,随机变量ξ的可能取值为0,1,2,()27210C 70C 15P ξ===,()1P ξ=1173210C C 7C 15==, ()23210C 12C 15P ξ===,所以()77130121515155E ξ=⨯+⨯+⨯=. (2)由题意可知2,3B n ξ⎛⎫ ⎪⎝⎭~,所以()2243n E ξ==,解得36n =,所以()D ξ= 22361833⎛⎫⨯⨯-= ⎪⎝⎭.(3)每次取球时,取到红球的概率为23、黑球的概率为13,所以X 服从二项分布,即23,3X B ⎛⎫~ ⎪⎝⎭,所以()22231333D X ⎛⎫=⨯⨯-= ⎪⎝⎭.三、解答题19.(1)13;(2)分布列答案见解析,数学期望:4112. 【分析】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D ,得到D ABC BC A =+,结合互斥事件和相互独立事件的概率计算公式,即可求解;(2)随机变量X 的可能取值为0,1,2,3,4,5,根据互斥事件和相互独立事件的概率计算公式,求得相应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D , 则()34P A =,()()23P B P C ==, D ABC BC A =+,其中ABC C AB +互斥,,,,,A B C B C 相互独立,从而()()()()322114336P ABC P A P B P C ⎛⎫==⨯-= ⎪⎝⎭, 则()()()()13P D P ABC ABC P ABC P ABC =+=+=, 所以该射手射中固定靶且恰好射中移动靶1次的概率为13. (2)随机变量X 的可能取值为0,1,2,3,4,5, 则()()()()()3221011143336P X P ABC P A P B P C ⎛⎫⎛⎫⎛⎫====---=⎪⎪⎪⎝⎭⎝⎭⎝⎭, ()()()()()3111143312P X P ABC P A P B P C ====⨯⨯=,1211121(2)()()()()()()()4334339P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=,()()()()()()()()321312134334333P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=()()()()()122144339P X P ABC P A P B P C ====⨯⨯=,3221(5)()()()()4333P X P ABC P A P B P C ====⨯⨯=,该射手的总得分X 的分布列为随机变量X 的数学期望()012345.3612939312E X =⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解.20.(1)选派乙参赛更好,理由见解析;(2)分布列见解析,()25E X =. 【分析】(1)计算出甲、乙两人5次测试的成绩的平均分与方差,由此可得出结论;(2)由题意可知,随机变量X 的取值有0、1、2,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可计算得出()E X . 【详解】(1)甲5次测试成绩的平均分为555876889236955x ++++==甲,方差为22222213693693693693695704555876889255555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲,乙5次测试成绩的平均分为658287859541455x ++++==乙,方差为22222214144144144144142444658285879555555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙,所以,x x <甲乙,22s s >甲乙,因此,选派乙参赛更好;(2)由题意可知,随机变量X 的可能取值有0、1、2,()24160525P X ⎛⎫=== ⎪⎝⎭,()148125525P X ==⨯⨯=,()2112525P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:因此,()0122525255E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(1)526(人);(2)83分. 【分析】(1)由题意知9070(90)(2)10P ξ-⎛⎫<=Φ=Φ ⎪⎝⎭,则(90)1(90)P P ξξ=-<可求,结合对应人数可得总人数;(2)假定设奖的分数线为x 分,由题意知7050()10.095110526x P x ξ-⎛⎫=-Φ== ⎪⎝⎭,查表得x 值.【详解】 (1)由题意知9070(90)1(90)11(2)10.97720.022810P P ξξ-⎛⎫=-<=-Φ=-Φ=-= ⎪⎝⎭,故此次参赛的学生总数约为125260.0228≈(人).(2)假定设奖的分数线为x 分,由题意知7050()1()10.095110526x P x P x ξξ-⎛⎫=-<=-Φ== ⎪⎝⎭, 即700.904910x -⎛⎫Φ=⎪⎝⎭,查表得70 1.3110x -=, 解得83.1x =,故设奖的分数线约为83分.【点睛】本题关键在于正确理解正态分布概率计算公式及运用. 22.(1)240人;(2)分布列见解析,2;(3)2212s s >. 【分析】(1)由折线图分析可得20名学生中有12名学生每天学习不足4小时,把频率当概率可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4;利用组合知识,由古典概型公式计算可得X =0,1,2,3,4的概率,进而可得随机变量X 的分布列;(3)根据折线图,看出男生、女生的学习时间的集中与分散程度,根据方差的实际意义可得答案. 【详解】(1)由折线图可得共抽取了20人,其中男生中学习时间不足4小时的有8人,女生中学习时间不足4小时的有4人.故可估计全校学生中每天学习时间不足4小时的人数为400×1220=240. (2)学习时间不少于4小时的学生共8人,其中男生人数为4, 故X 的所有可能取值为0,1,2,3,4. 由题意可得P (X=0)=4448170C C =,P (X=1)=1344481687035C C C ==, P (X=2)=22444836187035C C C ==, P (X=3)=3144481687035C C C ==, P (X=4)=4448170C C =.∴均值E (X )=0×170+1×835+2×1835+3×835+4×170=2.(3)由折线图可得2212s s >. 【点睛】方法点睛:本题考查了折线统计图和超几何分布,考查了离散型随机变量分布列和数学期望的计算,求解离散型随机变量分布列的步骤是: 首先确定随机变量X 的所有可能取值;计算X 取得每一个值的概率,可通过所有概率和为1来检验是否正确; 进行列表,画出分布列的表格;最后扣题,根据题意求数学期望或者其它. 23.(1)17.4;(2)0.94. 【分析】(1)利用每一个小矩形的面积乘以对应的底边中点的横坐标之和即为x ;(2)先计算第一次注射疫苗后产生抗体的概率()()14.77P x P x μσ≥=≥-,即可计算第一次注射疫苗后100只小白鼠中产生抗体的数量,加上第二次注射疫苗10只小白鼠又产生了抗体,可以得出两次注射疫苗产生抗体的总数,即可求概率. 【详解】(1)0.021220.061420.141620.181820.05202x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.032220.0224217.4+⨯⨯+⨯⨯= (2)17.40 2.6314.77μσ-=-=∴()10.68270.68270.84142P x μσ-≥-=+= 记事件A 表示首先注射疫苗后产生抗体,则()()()14.770.8414P A P x P x μσ=≥=≥-=,因此100只小鼠首先注射疫苗后有1000.841484⨯≈只产生抗体,有1008416-=只没有产生抗体.故注射疫苗后产生抗体的概率84100.94100P +==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1; ②直方图中每组样本的频数为频率乘以总数; ③最高的小矩形底边中点横坐标即是众数; ④中位数的左边和右边小长方形面积之和相等;⑤平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 24.(1)18;(2)分布列见解析,()72E X =.【分析】(1)先分析出甲只获胜一局的所有情况,然后根据对应的情况去计算概率;(2)先分析X 的可能取值,然后根据取值列出对应的比赛获胜情况,由此计算出对应的概率,可得X 的分布列,根据分布列可计算出数学期望.【详解】(1)因为比赛结束时甲只获胜一局,所以一共比赛了4局,且甲在第1局或第2局赢了,当甲在第1局赢了,则乙在后面3局都赢了,此事件的概率为:31112216⎛⎫⋅= ⎪⎝⎭,当甲在第2局赢了,则乙在第1,3,4局赢了,此事件的概率为:2111122216⎛⎫⋅⋅= ⎪⎝⎭,记“比赛结束时甲只获胜一局”为事件A ,则()112168P A =⨯=; (2)根据条件可知:X 可取2,4,6,当2X =时,包含甲或乙前2局连胜,此时2种情况:{甲,甲},{乙,乙};当4X =时,包含甲或乙前2局赢了1局,后2局都没赢,此时4种情况:{甲,乙,乙,乙},{乙,甲,乙,乙},{乙,甲,甲,甲},{甲,乙,甲,甲}(大括号中,按顺序为各局的获胜者);()2112222P X ⎛⎫==⋅= ⎪⎝⎭,()4114424P X ⎛⎫==⋅= ⎪⎝⎭,()()()161244P X P X P X ==-=-==, 所以X 的分布列为:所以()2462442E X =⨯+⨯+⨯=. 【点睛】思路点睛:求离散型随机变量X 的数学期望的一般步骤: (1)先分析X 的可取值,根据可取值求解出对应的概率; (2)根据(1)中概率值,得到X 的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X 的数学期望. 25.(1)23;(2)227;(3)43. 【分析】(1)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率; 方法二:用排列组合数表示;(2)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;(3)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;【详解】解:方法一:记三个球分别为①,②,③,试验的全部基本事件如下表:共27种.根据古典概型公式()182 273P A==.(2)记“三只小球在三个不同盒子中,且每只球的编号与所在盒子编号不同”为事件B,事件B包含的基本事件数有2种.根据古典概型公式2 ()27 P B=.(3)X的可能取值为1,2,3.。

随机变量及其分布函数习题

随机变量及其分布函数习题

第2章 随机变量及其分布习题 21.设有函数⎩⎨⎧≤=其它,,0,0,sin )(πx x x F试说明)(x F 能否是某随机变量的分布函数。

解:不能,易知对21x x <,有:),()(}1{}{}{12221x F x F x X P x X P x X x P -=<-<=<<又)()(,0}{1221x F x F x X x P ≥≥<<,因此)(x F 在定义域内必为单调递增函数。

然而)(x F 在),0(π上不是单调递增函数,所以不是某随机变量的分布函数。

2.-筐中装有7只蓝球,编号为1,2.3,4,5,6,7。

在筐中同时取3只,以X 表示取出的3只当中的最大号码,写出随机变量X 的分布列。

解:X 的可能值为3,4,5,6,7。

在7只篮球中任取3个共有37C 种取法。

}3{=X 表示取出的3只篮球以3为最大值,其余两个数是1,2,仅有这一种情况,故3515673211)3(37=⋅⋅⋅⋅===C X P}4{=X 表示取出的3只篮球以4为最大值,其余两个数可以在1,2,3中任取两个,共有23C 种取法,故35356732113)4(3723=⋅⋅⋅⋅===C C X P 。

}5{=X 表示取出的3只篮球以5为最大值,其余两个数可在1,2,3,4中任取2个,共有24C 种取法,故3565673212134)5(3724=⋅⋅⋅⋅⋅⋅===C C X P , }6{=X 表示取出的3只篮球以6为最大值,其余两个数可在1,2,3,4,5中任取2个,共有25C 种取法,故35105673212145)6(3725=⋅⋅⋅⋅⋅⋅===C C X P ,}7{=X 表示取出的3只篮球以7为最大值,其余两个数可在1,2,3,4,5,6中任取2个,共有26C 种取法,故35155673212156)7(3726=⋅⋅⋅⋅⋅⋅===C C X P 。

3. 设X 服从)10(-分布,其分布列为,)1(}{1kkp p k X P --== ,1,0=k 求X 的分布函数,并作出其图形。

最新人教版高中数学选修三第二单元《随机变量及其分布》测试题(包含答案解析)(2)

最新人教版高中数学选修三第二单元《随机变量及其分布》测试题(包含答案解析)(2)

一、选择题1.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .72.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52273.随机变量X 的取值为0,2,3,若1(0),()26P X E X ===,则(23)D X -=( ) A .2B .3C .4D .54.随机变量X 的分布列如下:其中a ,b ,成等差数列,则D X 的最大值为( ) A .29B .59C .34D .235.设01p <<,随机变量ξ的分布列是则当p 在()0,1内变化时,( ) A .()D ξ增大 B .()D ξ减小 C .()D ξ先增大后减小D .()D ξ先减小后增大6.已知随机变量ξ的取值为()0,1,2i i =.若()105P ξ==,()1E ξ=,则( )A .()()1P D ξξ=<B .()()1P D ξξ==C .()()1PD ξξ=>D .()()115P D ξξ==7.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为() A .12B .25C .35D .458.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件=A {两次掷的玩具底面图案不相同},B ={两次掷的玩具底面图案至少出现一次小狗},则()P B A =( )A .712B .512C .12D .11129.已知三个正态分布密度函数()()2221e2i i x i ix μσϕπσ--=(, 1,2,3i =)的图象如图所示则( )A .123123==μμμσσσ<>,B .123123==μμμσσσ><,C .123123μμμσσσ=<<=,D .123123==μμμσσσ<<,10.已知离散型随机变量X 的分布列如下:X0 1 2Px4x5x由此可以得到期望()E X 与方差()D X 分别为( ) A .() 1.4E X =,()0.2D X =B .()0.44E X =,() 1.4D X =C .() 1.4E X =,()0.44D X =D .()0.44E X =,()0.2D X =11.已知随机变量X 的分布列如下表所示则(25)E X -的值等于 A .1B .2C .3D .412.已知随机变量ξ服从正态分布()21,N σ,若()20.66P ξ≤=,则()0P ξ≤=( )A .0.84B .0.68C .0.34D .0.16二、填空题13.世卫组织就新型冠状病毒感染的肺炎疫情称,新型病毒可能造成“持续人传人”.通俗点说就是存在A 传B ,B 又传C ,C 又传D ,这就是“持续人传人”.那么A 、B 、C 就会被称为第一代、第二代、第三代传播者.假设一个身体健康的人被第一代、第二代、第三代传播者感染的概率分别为0.9,0.8,0.7,健康的小明参加了一次多人宴会,事后知道,参加宴会的人有5名第一代传播者,3名第二代传播者,2名第三代传播者,试计算,小明参加聚会,仅和感染的10个人其中一个接触,感染的概率有多大________.14.已知随机变量~(2,)(01)B p p ξ<<,当()()E D ξξ⋅取最大值时,p =________. 15.随机变量ξ的取值为0,1,2,若()104P ξ==,()1E ξ=,则()D ξ=______. 16.有10张纸币,其中有4张假币,从中取出两张,已知其中一张是假币,则另一张也是假币的概率为____.17.下列说法正确的有________(填序号).①离散型随机变量ξ的期望E (ξ)反映了ξ取值的概率的平均值; ②离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平; ③离散型随机变量ξ的期望E (ξ)反映了ξ取值的波动水平; ④离散型随机变量ξ的方差D (ξ)反映了ξ取值的波动水平.18.袋中有20个大小相同的球,其中标号为0的有10个,标号为(1,2,3,4)n n =的有n 个.现从袋中任取一球,ξ表示所取球的标号.若2,()1a E ηξη=-=,则()D η的值为_____.参考答案三、解答题19.上饶市正在创建全国文明城市,我们简称创文.全国文明城市是极具价值的无形资产和重要城市品牌.创文期间,将有创文检查人员到学校随机找学生进行提问,被提问者之间回答问题相互独立、互不影响.对每位学生提问时,创文检查人员将从规定的5个问题中随机抽取2个问题进行提问.某日,创文检查人员来到A 校,随机找了三名同学甲、乙、丙进行提问,其中甲只能答对这规定5个问题中的3个,乙能答对其中的4个,而丙能全部答对这5个问题.计一个问题答对加10分,答错不扣分,最终三人得分相加,满分60分,达到50分以上(含50分)时该学校为优秀. (1)求甲、乙两位同学共答对2个问题的概率;(2)设随机变量X 表示甲、乙、丙三位同学共答对的问题总数,求X 的分布列及数学期望,并求出A 校为优秀的概率.20.某班级以“评分的方式”鼓励同学们以骑自行车或步行方式“绿色出行”,培养学生的环保意识.“十一黄金周”期间,组织学生去A 、B 两地游玩,因目的地A 地近,B 地远,特制定方案如下:目的地A 地出行方式 绿色出行 非绿色出行概率 34 14得分1 0目的地B 地出行方式 绿色出行 非绿色出行概率 23 13得分1若甲同学去A 地玩,乙、丙同学去B 地玩,选择出行方式相互独立. (1)求恰有一名同学选择“绿色出行”方式的概率; (2)求三名同学总得分X 的分布列及数学期望EX .21.2020年某市教育主管部门为了解近期举行的数学竞赛的情况,随机抽取500名参赛考生的数学竞赛成绩进行分析,并制成如下的频率分布直方图:(1)求这500名考生的本次数学竞赛的平均成绩x (精确到整数); (2)由频率分布直方图可认为:这次竞赛成绩X 服从正态分布()2,N μσ,其中μ近似等于样本的平均数x ,σ近似等于样本的标准差s ,并已求得18s ≈.用该样本的频率估计总体的概率,现从该市所有考生中随机抽取10名学生,记这次数学竞赛成绩在(86,140]之外的人数为Y ,求(2)P Y =的值(精确到0.001). 附:(1)当()2,XN μσ时,()0.6827,(22)0.9545P X P X μσμσμσμσ-<+=-<+=;(2)820.81860.18140.0066⨯≈.22.2020年8月,教育部发布《关于深化体教融合,促进青少年健康发展的意见》,要求体育纳入高中学业水平考试范围.《国家学生体质健康标准》规定高三男生投掷实心球6.9米达标,高三女生6.2米达标.某地初步拟定投掷实心球的考试方案为每生可以投掷3次,一旦通过无需再投,为研究该方案的合理性,到某校任选4名学生进行测试,如果有2人不达标的概率超过0.1,该方案需要调整;否则就定为考试方案.已知该校男生投掷实心球的距离1ξ服从()6.9,0.25N ,女生投掷实心球的距离2ξ服从()6.2,0.16N (1ξ,2ξ的单位:米).(1)请你通过计算,说明该方案是否需要调整;(2)为提高学生考试达标率,该校决定加强训练.以女生为例,假设所有女生经训练后,投掷距离的增加值相同.问:女生投掷实心球的距离至少增加多少米,可使达标率不低于99%.附:①2.15=;②若()~ 6.516,0.16X N ,则()6.8320.785P X ≤=.23.国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.武汉市在实施垃圾分类之前,从本市人口数量在两万人左右的320个社区中随机抽取50个社区,对这50个社区某天产生的垃圾量(单位:吨)进行了调查,得到如下频数分布表,并将人口数量在两万人左右的社区垃圾数量超过28吨/天的确定为“超标”社区:(1)通过频数分布表估算出这50个社区这一天垃圾量的平均值x (精确到0.1); (2)若该市人口数量在两万人左右的社区这一天的垃圾量大致服从正态分布()2,N μσ,其中μ近似为(1)中的样本平均值x ,2σ近似为样本方差2s ,经计算得 5.2s =.请利用正态分布知识估计这320个社区中“超标”社区的个数.(3)通过研究样本原始数据发现,抽取的50个社区中这一天共有8个“超标”社区,市政府决定对这8个“超标”社区的垃圾来源进行跟踪调查.现计划在这8个“超标”社区中任取5个先进行跟踪调查,设Y 为抽到的这一天的垃圾量至少为30.5吨的社区个数,求Y 的分布列与数学期望.(参考数据:()0.6827P X μσμσ-<≤+≈;()220.9545P X μσμσ-<≤+≈;()330.9974P X μσμσ-<≤+≈)24.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有()|P A C 0.95=,()|0.95P A C =.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即()0.005P C =,试求()|P C A .25.甲、乙两人按如下规则进行射击比赛,双方对同一目标轮流射击,若一方未击中,另一方可继续射击,甲先射,直到有人击中目标或两人总射击次数达4次为止.若甲击中目标的概率为23,乙击中目标的概率为12.(1)求甲在他第二次射击时击中目标的概率;(2)求比赛停止时,甲、乙两人射击总次数X 的分布列和期望.26.某中学举办的校园文化周活动中,从周一到周五的五天中,每天安排一项内容不同的活动供学生选择参加,要求每位学生参加三项活动,其中甲同学必须参加周一的活动,不参加周五的活动,其余三天的活动随机选择两项参加,乙同学和丙同学可以在周一到周五中随机选择三项参加.(1)求甲同学选周三的活动且乙同学未选周三的活动的概率;(2)用X 表示甲、乙、丙三名同学选择周三活动的人数之和,求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.【详解】 根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=, ()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.故选:B. 【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.2.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.3.C解析:C 【分析】首先设23(2),(3)P X P P X P ====,根据概率和为1以及()2E X =求2P 和3P ,再求()D X ,最后根据公式()()2D aX b a D X +=求解.【详解】记23(2),(3)P X P P X P ====,则2356P P +=,由23()232E X P P =+=,解得2311,23P P ==,故222111()(0())(2())(3())1623D X E X E X E X =-+-+-=,所以(23)4()4D X D X -==.故选:C 【点睛】本题考查离散型随机变量的分布列及期望、方差的计算,属于基础题型.解决本题应掌握结论:(1)离散型随机变量的概率和为1;(2)期望1122()n n E X x P x P x P =++⋯+,()()E aX b aE X b +=+;(3)方差()()()2221122()()()()n n D X x E X P x E X P x E X P =-+-++-,2()()D aX b a D X +=.4.D解析:D 【分析】分别运用等差数列的中项性质和概率的性质,以及离散型随机变量的期望和方差公式,结合二次函数的最值求法,可得所求最大值. 【详解】解:因为a ,b ,c 成等差数列,∴2b a c =+,∵1a b c ++=,∴13b =,23c a =-, ∴()823E X a =-,2422()4969833E X a b c a a a =++=++-=-则()()()22D XE XE X =-22821224439333a a a ⎛⎫=-++=--+≤ ⎪⎝⎭,当13a b c ===时取等号. 则()D X 的最大值为23. 故选:D. 【点睛】本题考查离散型随机变量的期望和方差的求法,考查等差数列的中项性质,考查运算求解能力,考查函数与方程思想,属于中档题.5.A解析:A 【分析】计算出()E ξ和()2E ξ,根据()()()22D E E ξξξ=-将()D ξ表示成关于p 的函数,研究函数的单调性即可得出结论. 【详解】()()()()222112nni i i i i i i D E p E E p ξξξξξξξ==⎡⎤=-⋅=-+⋅⎡⎤⎣⎦⎣⎦∑∑()()()()()()()2222222122ni i i i i p p E E E E E E E ξξξξξξξξξ=⎡⎤=-+=-+=-⎣⎦∑, 由分布列得()1111012222p p p E ξ--=-⨯+⨯+⨯=,()211110222p p p E ξ+-+=⨯+⨯=, 所以,()()()()222221111152224444p p D E E p p p ξξξ+-⎛⎫=-=-=-++=--+ ⎪⎝⎭, 所以,当()0,1p ∈时,()D ξ随着p 的增大而增大. 故选:A. 【点睛】本题考查离散型随机变量的期望和方差,考查二次函数的单调性,属于中等题.6.C解析:C 【分析】设()1P x ξ==,根据()f x ,()1E ξ=列方程求出x ,进而求出()D ξ,即可比较大小. 【详解】 设()1P x ξ==, 则()425P x ξ==-,则()1480121555x x E x ξ⎛⎫=⨯+⨯+-⨯=-= ⎪⎝⎭,解得()315P ξ==,()125P ξ==, 则()()()()22213120111215555D ξ=⨯-+⨯-+⨯-=, 故()()1P D ξξ=>, 故选:C. 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的性质等基础知识,考查运算求解能力,是中档题.7.B解析:B【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.8.C解析:C 【分析】利用条件概率公式得到答案. 【详解】336()1616P AB +== 412()11616P A =-= ()()1()2P AB P B A P A == 故答案选C 【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.9.D解析:D 【分析】正态曲线关于x =μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果. 【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为()()2221ei i x i ix μσϕ--=,则对应的函数的图像的对称轴为:i μ,∵正态曲线关于x =μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A ,D 两个答案中选一个, ∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,第一个和第二个的σ相等 故选D . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.10.C解析:C 【分析】由离散型随机变量X 的分布列的性质求出x =0.1,由此能求得结果 【详解】由x +4x +5x =1得x =0.1, E(X)=0×0.1+1×0.4+2×0.5=1.4,D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44. 故选C 【点睛】本题主要考查了离散型随机变量的分布列的性质,由已知先求出x 的值,然后运用公式求得期望和方差,属于基础题.11.A解析:A 【分析】先求出b 的值,再利用期望公式求出E(X),再利用公式求出()25E X -. 【详解】由题得0.1+0.2+0,20.11,0.4,b b ++=∴=,所以()10.120.230.440.250.13E X =⨯+⨯+⨯+⨯+⨯= 所以(25)2()52351E X E X -=-=⨯-=. 故答案为A 【点睛】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 若a b ηξ=+(a 、b 是常数),ξ是随机变量,则η也是随机变量,E η=()E a b aE b ξξ+=+,2()D a b a D ξξ+=.12.C解析:C 【解析】分析:先根据正态分布得(12)0.16,P ξ≤≤=再求(01)0.16,P ξ≤≤=最后求得() 0P ξ≤=0.34.详解:由正态分布曲线得(12)0.660.50.16,P ξ≤≤=-= 所以(01)0.16,P ξ≤≤=所以()0P ξ≤=0.5-0.16=0.34. 故答案为C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.二、填空题13.【分析】求出小明与第一代第二代第三代传播者接触的概率利用独立事件互斥事件的概率公式求解即可【详解】设事件为第一代第二代第三代传播者接触事件为小明被感染由已知得:(A )(B )(C )(D )(A )(B )( 解析:0.83【分析】求出小明与第一代、第二代、第三代传播者接触的概率,利用独立事件、互斥事件的概率公式求解即可. 【详解】设事件A ,B ,C 为第一代、第二代、第三代传播者接触, 事件D 为小明被感染,由已知得:P (A )0.5=,P (B )0.3=,P (C )0.2=,(|)0.9P D A =,(|)0.8P D B =,(|)0.7P D C =,P (D )(|)P D A P =(A )(|)P D B P +(B )(|)P D C P +(C )0.90.50.80.30.70.2=⨯+⨯+⨯ 0.83=.∴小明参加聚会,仅和感染的10个人其中一个接触,感染的概率为0.83.故答案为:0.83. 【点睛】本题考查概率的求法,考查独立事件、互斥事件的概率公式以及条件概率的性质等基础知识,考查运算求解能力,是基础题.14.【分析】利用二项分布数学期望方差的计算公式先列出然后构造函数利用导数求解最大值及取得最值时的值【详解】因为所以故设函数则令得或(舍)故当时当所以在上递增上递减故在处取最大值其最大值为故答案为:【点睛解析:23【分析】利用二项分布数学期望、方差的计算公式先列出()()E D ξξ⋅,然后构造函数,利用导数求解最大值及取得最值时p 的值. 【详解】因为~(2,)(01)B p p ξ<<,所以()2E p ξ=,()()21D p p ξ=-, 故()2()()41E D p p ξξ⋅=-,设函数()()()232414401f p p p p pp =-=-+<<,则()2128f p p p '=-+,令()0f p '=得,23p =或0p =(舍), 故当()0f p '>时,203p <<,当()0f p '<,213p <<,所以()f p 在20,3⎛⎫ ⎪⎝⎭上递增,2,13⎛⎫⎪⎝⎭上递减,故()f p 在23p =处取最大值,其最大值为32222164433327f ⎛⎫⎛⎫⎛⎫=-⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:23. 【点睛】本题考查二项分布的数学期望、方差的运算,考查利用导数分析函数的最值,难度一般.15.【分析】根据计算得到再计算得到答案【详解】则;故故答案为:【点睛】本题考查了方差的计算意在考查学生的计算能力 解析:12【分析】根据()()3124P P ξξ=+==,()()()1221P E P ξξξ=+===计算得到 ()()111,224P P ξξ====,再计算()D ξ得到答案.【详解】()104P ξ==,则()()3124P P ξξ=+==;()()()1221P E P ξξξ=+===故()()111,224P P ξξ====.()()()()22211111011214242D ξ=-+-+-=故答案为:12【点睛】本题考查了方差的计算,意在考查学生的计算能力.16.【解析】分析:记抽出的两张有一张是假币为事件A 抽出的两张都是假币为事件B 利用条件概率计算公式能求出其中1张放到验钞机上检验发现是假钞则另一张也是假钞的概率详解:记抽出的两张有一张是假币为事件A 抽出的解析:15【解析】分析:记“抽出的两张有一张是假币”为事件A ,“抽出的两张都是假币”为事件B ,利用条件概率计算公式能求出其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率. 详解:记“抽出的两张有一张是假币”为事件A ,“抽出的两张都是假币”为事件B , 则将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为:24210211446210()1(|)()5C C P AB P B A C C C P A C ===+. 点睛:本题主要考查了条件的求解以及组合数的应用,正确理解条件概率的计算公式是解答的关键,着重考查了推理与论证能力,以及转化与化归思想的应用,试题比较基础,属于基础题.17.4【解析】①错误因为离散型随机变量ξ的期望反映了ξ取值的平均水平②错误因为离散型随机变量ξ的方差反映了随机变量偏离于期望的平均程度③错误因为离散型随机变量的方差反映了ξ取值的波动水平而随机变量的期望解析:4 【解析】①错误.因为离散型随机变量ξ的期望()E ξ反映了ξ取值的平均水平.②错误.因为离散型随机变量ξ的方差()D ξ反映了随机变量偏离于期望的平均程度. ③错误.因为离散型随机变量的方差()D ξ反映了ξ取值的波动水平,而随机变量的期望()E ξ反映了ξ取值的平均水平.④正确.由方差的意义可知正确.18.【解析】根据题意得出随机变量ξ的分布列: 0 1 2 3 4 P ∵∴即a=2∴∵故答案为11 解析:11【解析】根据题意得出随机变量ξ的分布列:()01234220102052E ξ=⨯+⨯+⨯+⨯+⨯= ,∵2,()1a E ηξη=-= ,∴3122a =⨯- , 即a=2,∴22,()1E ηξη=-= ,22222131113331311()234222021022020524D ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯-+⨯-+⨯-+⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,∵11()4()4114D D ηξ==⨯= . 故答案为11.三、解答题19.(1)310;(2)分布列见解析,期望值245,3350. 【分析】(1)首先事件甲、乙两位同学共答对2个问题,分为两人各答对1题,或是乙答对2题,再求互斥事件和的概率;(2)由条件可知3,4,5,6X =,再根据随机变量对应的事件,分别求概率,再列出分布列,并计算数学期望,根据分布列,列出该学校为优秀的概率. 【详解】(1)记“甲、乙两位同学共答对2题”为事件A ,则()()111122324124225310C C C C C C P M C ⋅⋅⋅+⋅==(2)由题意可知随机变量X 的可能取值为3、4、5、6,()()211224153251325C C C C P X C ⋅⋅⋅===()()3410P X P M ===()()211211223415324532512525C C C C C C C C P X C ⋅⋅⋅+⋅⋅⋅===()()2223453259650C C C P X C ⋅⋅===所以,随机变量X 的分布列如下表所示:13129243456251025505EX =⨯+⨯+⨯+⨯= A 校为优秀的概率()()1293356255050P X P X =+==+=. 【点睛】关键点点睛:本题的关键是分清随机变量代表的事件,其中容易错的是乙同学会5题中的四个题,所以两个题,至少会一题. 20.(1)736;(2)分布列见解析,1225=EX . 【分析】(1)分析恰有一个同学选择“绿色出行”方式的情况,利用相互独立事件的概率计算公式求解;(2)根据题意得,X 的所有可能取值为0,1,2,3,分别计算概率,列出分布列,代入公式求解EX . 【详解】(1)恰有一名同学选择绿色出行方式的概率2123111274343336P C ⎛⎫=⋅+⋅⋅⋅= ⎪⎝⎭.(2)根据题意,X 的所有可能取值为0,1,2,3,根据事件的独立性和互斥性得:1111(0)43336P X ==⨯⨯=;1231112173(1)4334363==⨯⨯+⨯⨯⨯=P X C ;21221124(2)4393343⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭P X C ;3221(3)4333==⨯⨯=P X .故X 的分布列为:所以360123369312=⨯+⨯+⨯+⨯=EX . 【点睛】本题考查了随机变量分布列问题,一般列分布列时先判断变量的可能取值,遇到比较复杂的情况可以采用列表格的方式能更直观的判断出可能取值有哪些,然后计算不同取值下的概率,需要分析清楚不同取值对应的所有情况,注意是二项分布还是超几何分布问题. 21.(1)104(分);(2)0.298. 【分析】(1)根据频率分布直方图,利用平均数公式求解.(2)由104,18μσ==,求得(86140)(2)P X P X μσμσ<=-<+,进而得到(P X μσ-或2)X μσ>+,然后由()10,0.1814Y B ~求解.【详解】(1)10(650.0028750.01850.01950.0181050.02x =⨯+⨯+⨯+⨯+⨯,1150.0181250.0121350.008+⨯+⨯+⨯1450.0012)+⨯1010.416104.16104(=⨯=≈分).(2)由题意知()2,,X Nμσ~且104,18μσ==,所以8610418,1401041822μσμσ=-=-=+⨯=+, 所以0.68270.9545(86140)(2)0.81862P X P X μσμσ+<=-<+==,所以(P X μσ-或2)10.81860.1814X μσ>+=-=, 所以()10,0.1814Y B ~,所以()228102C 0.18140.8186450.006630.298P Y ==⨯⨯≈⨯≈.【点睛】结论点睛:(1)若X 服从正态分布,即X ~N (μ,σ2),要充分利用正态曲线的关于直线X =μ对称和曲线与x 轴之间的面积为1.(2)二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有重要的地位.①判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n 次. ②对于二项分布,如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P (X =k )=kk n kn p q C -.其中k =0,1,…,n ,q =1-p .22.(1)需要调整,(2)0.316米 【分析】(1)由于每个人不达标的概率均为12,由此可得4名学生中有2个不达标的概率为22241122C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,再与0.1比较大小可得答案; (2)设女生投掷实心球的距离至少增加x 米,则有'2ξ()6.2,0.16N x +,由()~ 6.516,0.16X N 可得0.316x =,由已知条件和正态分布的对称性可得( 6.2)0.215P X <=,此时女生达标率为310.21510.010.99-≈-=,从而可得结论【详解】(1)因为每个人不达标的概率均为12,所以4名学生中有2个不达标的概率为 22241130.1228C ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭ 所以该方案需要调整;(2)设女生投掷实心球的距离至少增加x 米, 此时'2ξ()6.2,0.16N x +,当()~ 6.516,0.16X N 时,此时6.2 6.516x +=,得0.316x =, 且()6.8320.785P X ≤=,所以( 6.832)10.7850.215P X >=-=,因为点(6.832,0)关于 6.516X =的对称点恰好为(6.2,0), 所以( 6.2)0.215P X <=,此时女生达标率为310.21510.010.99-≈-=,达标率刚好为99%, 所以使达标率不低于99%,投掷实心球的距离至少增加0.316米,【点睛】关键点点睛:此题考查正态分布的有关知识,独立重复试验的概率问题,解题的关键是正利用正态分布的对称性求解,考查分析问题的能力,考查计算能力,属于中档题 23.(1)22.8吨;(2)51;(3)分布列见解析,52. 【分析】(1)直接利用平均数公式求解;(2)由(1)知22.8μ=, 由题意可知()()28P X P X μσ>=>+,利用3σ原则求解;(3)Y 的可能取值为1,2,3,4,利用超几何分布求概率,列出分布列,并求数学期望. 【详解】(1)由频数分布表得:1451762092312268296322.7622.8542x ⨯+⨯+⨯+⨯+⨯=+≈⨯⨯=+,所以这50个社区这一天垃圾量的平均值为22.8吨.(2)由(1)知22.8μ=, 5.2s =, 5.2s σ∴==, ()()10.6827280.158652P X P X μσ-∴>=>+==, 3200.1586550.76851⨯=≈,所以这320个社区中“超标”社区的个数为51.(3)由频数分布表知:8个“超标”社区中这一天的垃圾量至少为30.5吨的社区有4个,所以Y 的可能取值为1,2,3,4,且()1444581114C C P Y C ===,()234458327C C P Y C ===,()324458337C C P Y C ===,()4144581414C C P Y C ===, 所以Y 的分布列为:Y1 2 3 4P11437 37 114()12341477142E Y ∴=⨯+⨯+⨯+⨯=. 【点睛】关键点点睛:本题的关键首先要理解题意,并能转化为熟悉的概率类型,本题第二问是正态分布,求概率时,注意是否满足“3σ”原则,第三问关键知道8个超标社区,其中垃圾量至少为30.5吨的社区有4个,这样就满足超几何分布类型,按公式求解.24.19218【分析】根据条件概率和全概率公式可求得结果. 【详解】因为()|0.95P A C =,所以()|1P A C =-()|0.05P A C =, 因为()0.005P C =,所以()0.995P C =,所以由全概率公式可得()()()()()||P A P A C P C P A C P C =⋅+⋅, 因为()P AC =()|P C A ()P A ()()|P A C P C = 所以()|P C A ()()()|()0.950.005190.950.0050.050.995218|()|()P A C P C P A C P C P A C P C ⨯===⨯+⨯+.【点睛】关键点点睛:掌握条件概率和全概率公式是解题关键. 25.(1)19;(2)分布列见解析,()149E X =. 【分析】(1)根据甲在第二次射击时击中目标,说明甲第一次未击中目标,乙第一次也未击中目标,由此利用概率的乘法公式计算出目标事件的概率;(2)先分析X 的可能取值,然后求解出X 的可能取值对应的概率,由此得到X 的分布列并计算出期望值. 【详解】记甲在第i ()1,2i =次射击击中目标为事件i A ,乙在第i ()1,2i =次射击击中目标为事件i B ,(1)记“甲在他第二次射击时击中目标”为事件M ,所以()()()()11211213239P M P A P B P A ==⨯⨯=; (2)由题意可知:X 可取1,2,3,4,()()1213P X P A ===,()()()111112326P X P A P B ===⨯=, ()()()()112112133239P X P A P B P A ===⨯⨯=,()()()()1121111432318P X P A P B P A ===⨯⨯=,所以X 的分布列如下:所以()1141234369189E X =⨯+⨯+⨯+⨯=. 【点睛】 关键点点睛:解答本题的关键是理解对立事件的概率计算以及概率乘法公式,同时注意分析每次击中目标之前对应的情况. 26.(1)415;(2)2815. 【分析】(1)利用相互独立事件概率公式,可求甲同学选周三的活动且乙同学未选周三的活动的概率;(2)由题意可以知道随机变量X 的可能值为0,1,2,3,利用独立事件概率公式即可求得随机变量每一个值对应的概率,并列出其分布列,再由期望公式求解.【详解】(1)设A 表示事件“甲同学选周三的活动”, B 表示事件“乙同学选周三的活动”,则P (A )122323C C ==,P (B )243535C C ==, 事件A ,B 相互独立,∴甲同学选周三的活动且乙同学未选周三的活动的概率为()P AB P =(A )234()(1)3515P B =⨯-=; (2)设C 表示事件“丙同学选周三的活动”,则P (C )243535C C ==, X 的可能取值为0,1,2,3,则1224(0)35575P X ==⨯⨯=; 2221321234(1)35535535515P X ==⨯⨯+⨯⨯+⨯⨯=; 23222313311(2)35535535525P X ==⨯⨯+⨯⨯+⨯⨯=; 2336(3)35525P X ==⨯⨯=. X 的分布列EX=⨯+⨯+⨯+⨯=.数学期望01237515252515【点睛】求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.。

最新人教版高中数学选修三第二单元《随机变量及其分布》检测卷(含答案解析)(1)

最新人教版高中数学选修三第二单元《随机变量及其分布》检测卷(含答案解析)(1)

一、选择题1.某校一次高三年级数学检测,经抽样分析,成绩ξ占近似服从正态分布()295,N σ,且(9195)0.25P ξ<≤=.若该校有700人参加此次检测,估计该校此次检测数学成绩不低于99分的人数为( ) A .100B .125C .150D .1752.若随机变量X 的分布列为则X 的数学期望()E X =( ) A .2a b +B .2+a bC .2D .33.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2154.已知随机变量ξ的取值为()0,1,2i i =.若()105P ξ==,()1E ξ=,则( ) A .()()1P D ξξ=< B .()()1P D ξξ== C .()()1P D ξξ=>D .()()115P D ξξ==5.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( ) A .8225B .12C .38D .346.在一个袋子中装有6个除颜色外完全相同的球,设有1个红球,2个黄球,3个黑球,从中依次不放回地抽取2个球,则在第一个球是红球的条件下,第二个球是黄球的概率为( ) A .15B .25C .35D .457.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于3”;事件B :“甲、乙两骰子的点数之和等于7”,则P (B /A )的值等于( )A .118B .19C .16D .138.在由直线1x =,y x =和x 轴围成的三角形内任取一点(,)x y ,记事件A 为3y x >,B为2y x >,则(|)P B A =( )A .16B .14C .13D .239.如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,事件A 表示“豆子落在正方形EFGH 内”,事件B 表示“豆子落在扇形OHE(阴影部分)内”,则P(B|A)等于( )A .18B .14C .12D .3810.吸烟有害健康,远离烟草,珍惜生命.据统计一小时内吸烟5支诱发脑血管病的概率为0.02,一小时内吸烟10支诱发脑血管病的概率为0.16.已知某公司职员在某一小时内吸烟5支未诱发脑血管病,则他在这一小时内还能继吸烟5支不诱发脑血管病的概率为( ) A .67B .2125C .4950D .不确定11.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( ) A .6 B .9 C .3 D .412.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.8,0.5,现已知目标被击中,则它是被甲击中的概率是( ) A .0.8B .0.9C .58D .89二、填空题13.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________. 14.已知随机变量X 的分布列为:X-1 0 1()P X q13 16则随机变量X 的方差()V X 的值为______.15.由“0,1,2”组成的三位数密码中,若用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,则(|)P A B =__________.16.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率(A |B)P 等于______.17.已知1 000名考生的某次成绩X 近似服从正态分布2(530,50)N ,则成绩在630分以上的考生人数约为_______.(注:正态总体2(,)N μσ)在区间(,),(2,2),(3,3)μσμσμσμσμσμσ-+-+-+内取值的概率分别为0.683,0.954,0.997)18.已知随机变量X 服从正态分布2(1,)N σ,且(01)0.35P X ≤≤=,则(2)P X >=_______.三、解答题19.某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为34,第二、第三种产品受欢迎的概率分别为p ,()q p q >,且不同种产品是否受欢迎相互独立,记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为:(2)求p ,q 的值; (3)求数学期望()E ξ.20.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同. (1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论)21.2020年5月1日起,北京市实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类. 生活垃圾中有一部分可以回收利用,回收1吨废纸可再造出0.8吨好纸,降低造纸的污染排放,节省造纸能源消耗.某环保小组调查了北京市房山区某垃圾处理场2020年6月至12月生活垃圾回收情况,其中可回收物中废纸和塑料品的回收量(单位:吨)的折线图如图:(Ⅰ)现从2020年6月至12月中随机选取1个月,求该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的概率;(Ⅱ)从2020年6月至12月中任意选取2个月,记X 为选取的这2个月中回收的废纸可再造好纸超过3.0吨的月份的个数. 求X 的分布列及数学期望;(Ⅲ)假设2021年1月该垃圾处理场可回收物中塑料品的回收量为a 吨. 当a 为何值时,自2020年6月至2021年1月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明)(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)22.“花开疫散,山河无恙,心怀感恩,学子归来,行而不缀,未来可期”,为感谢全国人民对武汉的支持,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者参与网络云直播.将这20名志愿者的身高编成如下茎叶图(单位:厘米).若身高在175cm 及其以上定义为“高个子”,否则定义为“非高个子”,且只有文学院的“高个子”才能担任兼职主持人.(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数.(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则从这5人中选2人,那么至少有一人是“高个子”的概率是多少;(3)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职主持人”的人数,试写出ξ的分布列,并求ξ的数学期望.23.某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.24.根据国家《环境空气质量》规定:居民区中的PM 2.5(PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM 2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM 2.5的24小时平均浓度的监测数据,数据统计如下: 组别 PM 2.5/(微克/立方米) 频数/天 频率 第一组 [0,15) 4 0.1 第二组 [15,30) 12 0.3 第三组 [30,45) 8 0.2 第四组 [45,60) 8 0.2 第五组 [60,75) 4 0.1 第六组[75,90]40.1(2)求该样本的平均数,并根据样本估计总体的思想,从PM 2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;(3)将频率视为概率,监测去年的某2天,记这2天中该居民区PM 2.5的24小时平均浓度符合环境空气质量标准的天数为ξ,求ξ的分布列及均值E (ξ)和方差D (ξ).25.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回.试求: (1)顾客买下该箱的概率α;(2)在顾客买下的一箱中,求无残次品的概率β.26.某工厂生产甲、乙两种电子产品,甲产品的正品率为p (p 为常数且00.9p <<),乙产品的正品率为0.1p +.生产1件甲产品,若是正品,则可盈利4万元,若是次品,则亏损1万元;生产1件乙产品,若是正品,则可盈利6万元,若是次品,则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,若()8.2E X =,求p ;(2)在(1)的条件下,求生产4件甲产品所获得的利润不少于11万元的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意,成绩X 近似服从正态分布()295,N σ,则正态分布曲线的对称轴为95X =,根据正态分布曲线的对称性,求得()199[12(9195)]2P X P X ≥=⨯-⨯<≤,进而可求解,得到答案. 【详解】由题意,成绩X 近似服从正态分布()295,N σ,则正态分布曲线的对称轴为95X =, 又由(9195)0.25P ξ<≤=, 根据正态分布曲线的对称性,可得()()1199[12(9195)]120.250.2522P X P X ≥=⨯-⨯<≤=-⨯=,所以该市某校有700人中,估计该校数学成绩不低于99分的人数为7000.25175⨯=人, 故选:D. 【点睛】关键点点睛:该题主要考查了正态分布曲线的性质的应用,其中解答中熟练应用正态分布曲线的对称性,求得成绩不低于99分的概率是解答的关键.2.C解析:C 【分析】由期望公式可知()2(2)E X a b =+,而总体的概率21a b +=,即可求得()E X 【详解】由1122()()()...()n n E X X P X X P X X P X =+++ ∴()1232(2)E X a b a a b =⨯+⨯+⨯=+,而21a b += ∴()2E X = 故选:C 【点睛】本题考查了概率,理解期望的含义,利用期望公式求离散型变量的期望,并根据样本总体概率为1求期望值3.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.4.C解析:C 【分析】设()1P x ξ==,根据()f x ,()1E ξ=列方程求出x ,进而求出()D ξ,即可比较大小. 【详解】 设()1P x ξ==, 则()425P x ξ==-,则()1480121555x x E x ξ⎛⎫=⨯+⨯+-⨯=-= ⎪⎝⎭,解得()315P ξ==,()125P ξ==, 则()()()()22213120111215555D ξ=⨯-+⨯-+⨯-=, 故()()1P D ξξ=>, 故选:C.【点睛】本题考查离散型随机变量的分布列、数学期望、方差的性质等基础知识,考查运算求解能力,是中档题.5.C解析:C 【分析】利用条件概率公式,即可求得结论. 【详解】该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110, ∵设A 事件为下雨,B 事件为刮风,由题意得,P (A )415=,P (AB )110=, 则P (B |A )()()13104815P AB P A ===, 故选C . 【点睛】本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.6.B解析:B 【分析】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,所求概率为()()()|P AB P B A P A =,求解即可.【详解】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,则()16P A =,()1216515P AB =⨯=,则所求概率为()()()25P AB P B A P A |==. 故选B. 【点睛】本题考查了条件概率的计算,考查了学生对条件概率知识的掌握,属于基础题.7.C解析:C 【分析】利用古典概型的概率公式计算出()P AB 和()P A ,然后利用条件概率公式()P B A =()()P AB PA 可计算出结果. 【详解】事件:AB 甲的骰子的点数大于3,且甲、乙两骰子的点数之和等于7,则事件AB 包含的基本事件为()4,3、()5,2、()6,1,由古典概型的概率公式可得()316612==⨯P AB , 由古典概型的概率公式可得()3162P A ==, 由条件概率公式得()()()112126P AB P B A P A ==⨯=,故选C. 【点睛】本题考查条件概率的计算,解题时需弄清楚各事件的基本关系,并计算出相应事件的概率, 解题的关键在于条件概率公式的应用,考查运算求解能力,属于中等题.8.D解析:D 【分析】由所求问题可知,本题是求条件概率,因此可以运用公式求解.同时本题又是一个几何概型,这就涉及到求面积,三角形面积可以直接使用三角形面积公式,而对于不规则图形的面积可以采用定积分的方法来求解. 【详解】 图形如下图所示:直线1x =,y x =和x 轴围成的三角形的面积为111122⨯⨯=; 直线1x =,3y x y x =>,和x 轴围成的三角形的面积为1321410111()244x x dx x x -=-=⎰; 直线1x =,2y x y x =>,和x 轴围成的三角形的面积为1221310111()236x x dx x x -=-=⎰;114()122P A == ,116()132P AB == 1()23()1()32P AB P B A P A ∴===故本题选D. 【点睛】 本题考查了几何概型、条件概率、定积分的应用.9.B解析:B 【分析】由几何概型概率计算公式可得P(A)=2π,再根据条件概率的计算公式,即可求解. 【详解】由几何概型概率计算公式可得P(A)=S 2S π=正圆;事件AB 表示“豆子落在△EOH 内”, 则P(AB)=2EOH11S12.S π2π圆⨯==由条件概率的计算公式可得P(B|A)=1P(AB)12π2P(A)4π==,故选B. 【点睛】本题主要考查了几何概型及其概率的计算,以及条件概率的计算问题,其中解答中正确理解题意,合理利用几何概型及其概率的计算公式和条件概率的计算公式,合理、准确求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10.A解析:A 【分析】直接利用条件概率公式计算出该事件的概率. 【详解】记事件A :某公司职员一小时内吸烟5支未诱发脑血管病, 记事件B :某公司职员一小时内吸烟10支未诱发脑血管病,则事件B |A :某公司职员在某一小时内吸烟5支未诱发脑血管病,在这一小时内还能继吸烟5支不诱发脑血管病, 则B ⊂A ,AB =A ∩B =B , P (A )=1﹣0.02=0.98,P (B )=1﹣0.16=0.84, 因此,P (B |A )()()()()0.8460.987P AB P B P A P A ====, 故选A . 【点睛】本题考查的是条件概率.条件概率一般有两种求解方法:(1)定义法:先求P (A )和P (AB ),再由P (B |A )=()()P AB P A ,求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=()()n AB n A .11.A解析:A 【分析】直接利用方差的性质()()2D a b a D ξξ+=⨯求解即可.【详解】 由题意得()()112323E ξ=⨯++=, ()()()()2221212223233D ξ⎡⎤∴=-+-+-=⎣⎦,()()23536D D ξξ+=⨯=,故选A.【点睛】本题主要考查方差的性质与应用,意在考查对基本性质掌握的熟练程度,属于中档题.12.D解析:D 【解析】分析:根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而由条件概率的公式,计算可得答案.详解:根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C , 则P (C )=1﹣P (A )P (B )=1﹣(1﹣0.8)(1﹣0.5)=0.9; 则目标是被甲击中的概率为P=0.880.99=. 故答案为D.点睛:(1)本题主要考查独立事件的概率和条件概率,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 条件概率的公式:()(|)()P AB P B A P A =,(|)P B A =()()n AB n A .条件概率一般有“在A 已发生的条件下”这样的关键词,表明这个条件已经发生, 发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.二、填空题13.【分析】设事件为一瓶是蓝色事件为另一瓶是红色事件为另一瓶是黑色事件为另一瓶是红色或黑色可得利用条件概率公式可求得所求事件的概率【详解】设事件为一瓶是蓝色事件为另一瓶是红色事件为另一瓶是黑色事件为另一解析:67【分析】设事件A 为“一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,可得D B C =⋃,利用条件概率公式可求得所求事件的概率. 【详解】设事件A 为“一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D B C =⋃,且B 与C 互斥,又()11223225710C C C P A C +==,()122515C P AB C ==,()11222525C C P AC C ==, 故()()()()()()()()()67P AB P AC P D A P B C A P B A P C A P A P A =⋃=+=+=. 故答案为:67. 【点睛】方法点睛:求条件概率的常用方法: (1)()()()P AB P B A P B =;(2)()()()n AB P B A n B =;(3)转化为古典概型求解.14.【分析】由分布列求出然后由方差公式计算方差【详解】由题意故答案为:【点睛】本题考查随机变量的概率分布列考查随机变量的方差根据分布列计算出期望再由方差公式计算即得考查了学生的运算求解能力解析:65216【分析】由分布列求出q ,然后由方差公式计算方差. 【详解】 由题意1111362q =--=, 111()11263E X =-⨯+⨯=-,222111111165()(1)(0)()2333663216V X =⨯-++⨯++⨯+=.故答案为:65216. 【点睛】本题考查随机变量的概率分布列,考查随机变量的方差.根据分布列计算出期望,再由方差公式计算即得.考查了学生的运算求解能力.15.【分析】利用古典摡型的概率计算公式分别求得结合条件概率的计算公式即可求解【详解】由012组成的三位数密码共有个基本事件又由用A 表示第二位数字是2的事件用B 表示第一位数字是2的事件可得所以故答案为:【解析:13【分析】利用古典摡型的概率计算公式,分别求得(),()P B P A B ,结合条件概率的计算公式,即可求解. 【详解】由“0,1,2”组成的三位数密码,共有33327⨯⨯=个基本事件,又由用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件, 可得33131(),()273279P B P A B ⨯====, 所以1()19(|)1()33P A B P A B P B ===. 故答案为:13.【点睛】本题主要考查了条件概率的计算与求解,其中解答中熟记条件概率的计算公式,准确运算时解答得关键,属于基础题.16.【分析】本题利用条件概率公式求解【详解】至少出现一个5点的情况有:至少出现一个5点的情况下三个点数之和等于15有一下两类:①恰好一个5点则另两个点数只能是4和6共有;②恰好出现两个5点则另一个点数也 解析:113【分析】本题利用条件概率公式()(|)()n AB P A B n B =求解. 【详解】至少出现一个5点的情况有:336591-=,至少出现一个5点的情况下,三个点数之和等于15有一下两类:①恰好一个5点,则另两个点数只能是4和6,共有11326C C ⨯=;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况.()611(|)()9113n AB P A B n B +∴===, 故答案为:113. 【点睛】本题考查条件概率的公式,需要求出基本事件的个数,运用正难则反的思想.17.23【分析】根据正态分布的对称性求得成绩在分以上的概率为进而可求得成绩在分以上的考生人数得到答案【详解】由题意某次成绩X 近似服从正态分布即所以在区间的概率为所以成绩在分以上的概率为则成绩在分以上的考解析:23 【分析】根据正态分布的对称性,求得成绩在630分以上的概率为0.023,进而可求得成绩在630分以上的考生人数,得到答案. 【详解】由题意,某次成绩X 近似服从正态分布2(530,50)N ,即530,50μσ==,所以在区间(430,630)的概率为0.954, 所以成绩在630分以上的概率为10.9540.0232-=, 则成绩在630分以上的考生人数约为10000.02323⨯=人. 【点睛】本题主要考查了正态分布的性质的应用,以及3σ原则的应用,其中解答中熟记正态分布的对称性,合理应用是解答的关键,着重考查了推理与运算能力,属于基础题.18.015【解析】分析:求出P (1≤X≤2)于是P (X >2)=P (X >1)﹣P (1≤X≤2)详解:P (1≤X≤2)=P (0≤X≤1)=035∴P (X >2)=P (X >1)﹣P (1≤X≤2)=05﹣035=解析:0.15. 【解析】分析:求出P (1≤X≤2),于是P (X >2)=P (X >1)﹣P (1≤X≤2). 详解:P (1≤X≤2)=P (0≤X≤1)=0.35,∴P (X >2)=P (X >1)﹣P (1≤X≤2)=0.5﹣0.35=0.15. 故答案为0.15点睛:本题主要考查了正态分布的对称性,意在考查学生对这些基础知识的掌握水平.三、解答题19.(1)1920;(2)23p =,25q =;(3)10960. 【分析】(1)根据对立事件的概率公式计算可得结果; (2)由1(0)20P ξ==与1(3)5P ξ==联立可解得结果; (3)求出,a b 后,根据数学期望公式可求得结果. 【详解】(1)设事件i A 表示“该公司第i 种产品受欢迎”,1i =,2,3.由题意可知()134P A =,()2P A p =,()3P A q =. 由于事件“该公司至少有一种产品受欢迎”与事件“0ξ=”是对立的,所以该公司至少有一种产品受欢迎的概率是()1191012020P ξ-==-=. (2)由题意可知,()()()()12311011420P P A A A p q ξ===--=, 且()()12331345P P A A A pq ξ====, 所以整理得,415pq =,且1615p q +=,结合p q >解得23p =,25q =.(3)由题意可知,()()()()1231231231a P P A A A P A A A P A A A ξ===++()()()()3111111444p q p q p q =--+-+- 313123112435435435=⨯⨯+⨯⨯+⨯⨯ 1760=, ()()()()21013b P P P P ξξξξ===-=-=-=1171120605=--- 715=, 因此,()()()()00112233E P P P P ξξξξξ=⨯=+⨯=+⨯=+⨯=1771012360155=+⨯+⨯+⨯ 10960=.【点睛】关键点点睛:利用独立事件的乘法公式求出,a b 是解题关键. 20.(1)12;(2)分布列见解析;(3)15次. 【分析】(1)利用组合数公式和古典概型的概率公式可求得所求事件的概率; (2)由题意可知,34,4B ξ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量ξ的分布列; (3)根据独立重复试验的概率公式可得出结论. 【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,由古典概型的概率公式可知,所求事件的概率为232412C P C ==;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34, 这样摸球4次,则34,4B ξ⎛⎫ ⎪⎝⎭, 所以,()4110=4256P ξ⎛⎫== ⎪⎝⎭,()3143131=4464P C ξ⎛⎫==⋅⋅ ⎪⎝⎭,()22243127244128P C ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()334312734464P C ξ⎛⎫==⋅⋅=⎪⎝⎭,()438144256P ξ⎛⎫===⎪⎝⎭. 因此,随机变量ξ的分布列如下表所示:【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(Ⅰ)17;(Ⅱ)分布列见解析,67;(Ⅲ) 4.4a =. 【分析】(Ⅰ)这是一个古典概型,共有7个月,该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的只有8月份,然后代入公式求解.(Ⅱ)先得到6月至12月回收的废纸可再造好纸超过3.0吨的月份有:7月、8月、10月,共3个月,则X 的所有可能取值为0,1,2,再分别求得相应的概率,列出分布列,再求期望.(Ⅲ)根据添加的新数a 等于原几个数的平均值时,方差最小求解. 【详解】(Ⅰ)记“该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨”为事件A 由题意,只有8月份的可回收物中废纸和塑料品的回收量均超过4.0吨 所以1()7P A =. (Ⅱ)因为回收利用1吨废纸可再造出0.8吨好纸所以6月至12月回收的废纸可再造好纸超过3.0吨的月份有:7月、8月、10月,共3个月.X 的所有可能取值为0,1,2. 023427(0)62217C P X C C ==== 113427(1)124217C C P X C ⋅==== 203427(2)31217C P X C C ==== 所以X 的分布列为:()0127777E X =⨯+⨯+⨯=;(Ⅲ) 4.4a =当添加的新数a 等于原几个数的平均值时,方差最小. 【点睛】方法点睛:(1)求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.(2)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.22.(1)168.5cm ;(2)710;(3)分布列见解析,98. 【分析】(1)根据茎叶图得到文学院志愿者身高,再根据中位数的定义可求得结果;(2)根据分层抽样得到5人中“高个子”和“非高个子”的人数,再根据对立事件的概率公式可求得结果;(3)ξ的可能取值为0、1、2、3,根据超几何分布的概率公式可得ξ的可能取值的概率,从而可得分布列和数学期望. 【详解】(1)根据志愿者的身高茎叶图知文学院志愿者身高为:158,159,161,162,165,168,169,173,174,176,180,181,其升高的中位数为:168169168.52+=cm ; (2)由茎叶图可知,“高个子”有8人,“非高个子”有12人, ∴按照分层抽样抽取的5人中“高个子”为85220⨯=人,“非高个子”为125320⨯=人, 则从这5人中选2人,至少有1人为高个子的概率23257110C P C =-=;(3)由题可知:文学院的高个子只有3人,则ξ的可能取值为0、1、2、3,故305338105(0)5628C C P C ξ⋅====,2153383015(1)5628C C P C ξ⋅====, 12533815(2)56C C P C ξ⋅===,0353381(3)56C C P C ξ⋅===, 即ξ的分布列为:所以19()0123282856568E ξ=⨯+⨯+⨯+⨯=. 【点睛】关键点点睛:掌握中位数的定义、分层抽样的特点以及超几何分布的概率公式是本题的解题关键.23.(1)甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大,乙同学做解答题相对稳定些;(2)分布列见解析,38.【分析】(1)根据平均数公式和方差公式计算结果,并根据平均数和方差的意义,得到结论;(2)甲和乙失分超过15分的概率分别为P 1=38,P 2=12,并计算123138216PP =⨯=,由条件可知32,16X B ⎛⎫⎪⎝⎭,根据二项分布计算分布列和均值. 【详解】(1) 1=8x 甲(7+9+11+13+13+16+23+28)=15, 1=8x 乙(7+8+10+15+17+19+21+23)=15,21=8s 甲 [(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,21=8s 乙[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12, 两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2.依题意,32,16XB ⎛⎫ ⎪⎝⎭, ()22313,0,1,21616k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则X 的分布列为X 的均值E (X )=2168⨯=. 【点睛】关键点点睛:本题第二问的关键是判断X 服从二项分布,并计算在每次周练两人失分均超过15分的概率,这样就容易写错分布列.24.(1)22.5微克/立方米, 37.5微克/立方米;(2)40.5(微克/立方米), 需要改进,理由见解析;(3)分布列见解析,1.8,0.18. 【分析】(1)根据表中数据即可得出;(2)直接计算出平均数即可判断; (3)可得ξ的可能取值为0,1,2,且92,10B ξ⎛⎫⎪⎝⎭,由此的可得出分布列,求出均值和方差. 【详解】(1)由表可知众数在第二组,为15+3022.52=微克/立方米, 因为前两组的频率之和为0.4,前三组的频率之和为0.6,故中位数在第三组,设为x , 则0.1300.24530x -=-,解得37.5x =微克/立方米, 所以众数为22.5微克/立方米,中位数为37.5微克/立方米. (2)去年该居民区PM 2.5的年平均浓度为7.5×0.1+22.5×0.3+37.5×0.2+52.5×0.2+67.5×0.1+82.5×0.1=40.5(微克/立方米). ∵40.5>35,∴去年该居民区PM 2.5的年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.(3)记事件A 表示“一天PM 2.5的24小时平均浓度符合环境空气质量标准”,则P (A )=910. 随机变量ξ的可能取值为0,1,2,且92,10B ξ⎛⎫ ⎪⎝⎭. ∴2299()11010kkk P k C ξ-⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭(k=0,1,2),即∴()2 1.810E np ξ==⨯=, 91()(1)20.181010D np p ξ=-=⨯⨯=. 【点睛】本题考查样本数据众数、中位数、平均数的求解,考查二项分布的分布列和均值、方差的求解,解题的关键是正确分析数据,得出92,10B ξ⎛⎫ ⎪⎝⎭. 25.(1)0.94;(2)0.85. 【分析】(1)先求出一箱中有i 件残次品的概率,再求查看的有i 件残次品的概率,进而由条件概率求出顾客买下该箱玻璃杯的概率;(2)由(1)可得顾客买下该箱玻璃杯的条件下没有残次品的概率.【详解】设A =‘顾客买下该箱’,B =‘箱中恰有i 件残次品’,i =0,1,2,(1)α=P (A )=P (B 0)P (A |B 0)+P (B 1)P (A |B 1)+P (B 2)P (A |B 2)=0.8+0.1×419420C C +0.1×418420C C ≈0.94. (2)β=P (B 0|A )=()()00.80.94P AB P A =≈0.85. 【点睛】 结论点睛:应用条件概率时弄清概率P (B |A )和P (AB ) 的区别与联系:(1)联系:事件A 和B 都发生了;(2)区别: a 、P (B | A )中,事件A 和B 发生有时间差异,A 先B 后;在P (AB )中,事件A 、B 同时发生.b 、样本空间不同,在P (B |A )中,样本空间为A ,事件P (AB )中,样本空间仍为Ω. 26.(1)0.8p =;(2)0.8192.【分析】(1)先确定X 的可能取值,进而利用独立事件概率公式求得分布列,然后利用期望值定义列出期望值,根据已知得到关于p 的方程,求解即得;(2)先根据题意求得4件产品中正品的件数,利用独立重复事件概率公式求得结果.【详解】(1)由题设知,X 的可能取值为10,5,2,-3,且(10)(0.1)P X p p ==+,(5)(1)(0.1)P X p p ==-+,(2)(10.1)(0.9)P X p p p p ==--=-,(3)(1)(10.1)(1)(0.9)P X p p p p =-=---=--.所以X 的分布列为:()3(1)(0.9)2(0.9)E X p p p p =---+⨯-5(1)(0.1)10(0.1)13 2.2p p p p p +⨯-++⨯+=-,因为()8.2E X =,所以13 2.28.2p -=,解得0.8p =.(2)设生产的4件甲产品中正品有n 件,则次品有4n -件,由题意知,()4411n n --≥,则3n =或4n =.所以33440.80.20.80.8192P C =⨯⨯+=.故所求概率为0.8192.【点睛】。

(易错题)高中数学选修三第二单元《随机变量及其分布》检测(有答案解析)(1)

(易错题)高中数学选修三第二单元《随机变量及其分布》检测(有答案解析)(1)

一、选择题1.在一个箱子中装有大小形状完全相同的有4个白球和3个黑球,现从中有放回地摸取5次,每次随机摸取一球,设摸得的白球个数为X ,黑球个数Y ,则( ) A .()()()(),E X E Y D X D Y >> B .()()()(),E X E Y D X D Y => C .()()()(),E X E Y D X D Y >=D .()()()(),E X E Y D X D Y ==2.在市高二下学期期中考试中,理科学生的数学成绩()2~90,X N σ,已知(7090)0.35P X <=,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为( ) A .0.15 B .0.50C .0.70D .0.853.设103p <<,随机变量ξ的分布列如下:当p 在10,3⎛⎫ ⎪⎝⎭内增大时,下列结论正确的是( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小4.已知随机变量X 的取值为1,2,3,若()136P X ==,()53E X =,则()D X =( ) A .19B .39C .59D .795.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16216.元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X 的期望值()E X =( ) A .25B .24C .22D .207.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于3”;事件B :“甲、乙两骰子的点数之和等于7”,则P (B /A )的值等于( ) A .118B .19C .16D .138.8张卡片上分别写有数字12345678、、、、、、、,从中随机取出2张,记事件A =“所取2张卡片上的数字之和为偶数”,事件B =“所取2张卡片上的数字之和小于9”,则()|=P B A ( ) A .16B .13C .12D .239.已知某随机变量X 的概率密度函数为0,0,(),0,xx P x e x -≤⎧=⎨>⎩则随机变量X 落在区间(1,3)内在概率为( )A .21e e+B .231e e-C .2e e -D .2e e +10.下列关于正态分布2(,)(0)N μσσ>的命题: ①正态曲线关于y 轴对称;②当μ一定时,σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”; ③设随机变量~(2,4)X N ,则1()2D X 的值等于2;④当σ一定时,正态曲线的位置由μ确定,随着μ的变化曲线沿x 轴平移. 其中正确的是( ) A .①②B .③④C .②④D .①④11.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( ) A .13B .0C .1D .2312.将两枚骰子各掷一次,设事件A ={两个点数都不相同},B ={至少出现一个3点},则(|)P B A =( )A .13B .518C .1011D .12二、填空题13.某品牌的一款纯电动车单次最大续航里程X (千米)服从正态分布2(2000,10)N .任选一辆该款电动车,则它的单次最大续航里程恰在1970(千米)到2020(千米)之间的概率为___________.(参考公式:随机变量ξ服从正态分布2(,)N μσ,则()0.6826P μσξμσ-<<+=,(22)0.9544P μσξμσ-<<+=,(33)0.9974P μσξμσ-<<+=.)14.已知随机变量X 的分布列为(0,0)a b >>,当D(X)最大时,E(X)=_______________.15.假设每天从甲地去乙地的旅客人数X 是服从正态分布()2800,50N 的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p ,则0p 的值为________. (参考数据:若2),(X N μσ~,则()0.6826P X μσμσ-<≤+=;2()2P X μσμσ-<≤+=0.9544;(33)0.9974P X μσμσ-<+=≤.)16.已知X 服从二项分布()100,0.2B ,则()32E X --= ________. 17.已知随机变量X 服从正态分布2(1,)N σ,且(01)0.35P X ≤≤=,则(2)P X >=_______.18.下表是随机变量X 的分布列,其中a ,b ,c 成等比数列,23a c b +=,且a ,b ,c 互不相等.则()D X =__________.三、解答题19.甲、乙两人进行投篮比赛,要求他们站在球场上的A ,B 两点处投篮,已知甲在A ,B 两点的命中率均为12,乙在A 点的命中率为p ,在B 点的命中率为212p -,且他们每次投篮互不影响.(1)若甲投篮4次,求他至多命中3次的概率;(2)若甲和乙每人在A ,B 两点各投篮一次,且在A 点命中计2分,在B 点命中计1分,未命中则计0分,设甲的得分为X ,乙的得分为Y ,写出X 和Y 的分布列,若EX EY =,求p 的值.20.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色单车的投放比例为1:2.监管部门为了解两种颜色单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同. (1)求抽取的5辆单车中有3辆是蓝色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机抽取一辆送技术部门作进一步抽样检测并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车数量用ξ表示,求ξ的分布列及数学期望.21.在某市举办的“中华文化艺术节”知识大赛中,大赛分预赛与复赛两个环节.预赛有4000人参赛.先从预赛学生中随机抽取100人成绩得到如下频率分布直方图:(1)若从上述样本中预赛成绩不低于60分的学生中随机抽取2人,求至少1人成绩不低于80分的概率;(2)由频率分布直方图可以认为该市全体参加预赛的学生成绩Z 服从正态分布()2,N μσ,其中μ可以近似为100名学生的预赛平均成绩,2362σ=,试估计全市参加预赛学生中成绩不低于91分的人数;(3)预赛成绩不低于91分的学生可以参加复赛.复赛规则如下:①每人复赛初始分均为100分;②参赛学生可在开始答题前自行选择答题数量()1n n >,每答一题需要扣掉一定分数来获取答题资格,规定回答第()1,2,,k k n =题时扣掉0.2k 分;③每答对一题加2分,答错既不加分也不扣分;④答完n 题后参赛学生的最后分数即为复赛分数.已知学生甲答对每题的概率为0.75,且各题答对与否相互独立,若甲期望得到最佳复赛成绩,则他的答题数量n 应为多少? 36219≈,若()2~,z Nμσ,则()0.6826P x μσμσ-<≤+=,()220.9544P x μσμσ-<≤+=,()330.9974P x μσμσ-<≤+=).22.已知一个袋中装有3个白球和3个红球,这些球除颜色外完全相同.(1)每次从袋中取一个球,取出后不放回,直到取到一个红球为止,求取球次数ξ的分布列和数学期望()E ξ;(2)每次从袋中取一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数η的分布列、数学期望()E η和方差()D η.23.某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X 表示抽到“极满意”的人数,求X 的分布列及数学期望.24.三个罐子分别编号为1,2,3,其中1号罐中装有2个红球和1个黑球,2号罐中装有3个红球和1个黑球,3号罐中装有2个红球和2个黑球,若某人从中随机取一罐,再从中任意取出一球,求取得红球的概率.25.A 口袋中有大小相同编号不同的4个黄色乒乓球和2个白色乒乓球,B 口袋中有大小相同编号不同的3个黄色乒乓球和3个白色乒乓球,现从A 、B 两个口袋中各摸出2个球 (1)求摸出的4个球中有3个黄色兵乓球和1个白色乒乓球的概率; (2)求摸出的4个球中黄球个数ξ的数学期望.26.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7XB ,3(5,)7YB ,由二项分布的均值与方差公式计算后可得结论.【详解】 有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7XB ,3(5,)7YB ,∴420()577E X =⨯=,315()577E Y =⨯=, 4360()57749D X =⨯⨯=,3460()57749D Y =⨯⨯=.故选:C 【点睛】结论点睛:本题考查二项分布,掌握二项分布的概念是解题关键.变量(,)XB n p ,则()E X np =,()(1)D X np p =-.2.D解析:D 【分析】根据正态密度曲线的对称性得出()()()110700.57090P X P X P X ≥=≤=-<≤,于是可计算出()()1101110P X P X <=-≥,于此可得出结果. 【详解】 由于()2~90,X N σ,由正态密度曲线的对称性可得()()()110700.570900.15P X P X P X ≥=≤=-<≤=,因此,()()110111010.150.85P X P X <=-≥=-=,故选D. 【点睛】本题考查正态分布在指定区间上的概率的计算,解题的关键在于利用正态密度曲线的对称性将所求概率转化为已知区间概率进行计算,属于基础题.3.A【分析】根据方差公式得出211()64D p ξ⎛⎫=-++ ⎪⎝⎭,结合二次函数的性质,即可得出答案. 【详解】122()01333E p p p ξ⎛⎫⎛⎫=⨯-+⨯+=+ ⎪ ⎪⎝⎭⎝⎭ 222122()013333D p p p p ξ⎛⎫⎛⎫⎛⎫⎛⎫=+--++-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⨯2212113964p p p ⎛⎫=--+=-++ ⎪⎝⎭当p 在10,3⎛⎫ ⎪⎝⎭内增大时,()D ξ∴减小 故选:A 【点睛】本题主要考查了求离散型随机变量的方差,涉及了二次函数性质的应用,属于中档题.4.C解析:C 【分析】设(1)P X p ==,(2)P X q ==,则由1(3)6P X ==,5()3E X =,列出方程组,求出p ,q ,即可求得()D X .【详解】设(1)P X p ==,(2)P X q ==,1563()23E X p q =++⨯=——①,又161p q ++=——② 由①②得,12p =,13q =,222111()(1)(25555333(9))2336D X ∴=-+-+-=故选:C. 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.5.C【分析】根据题意,求出()P A 和()P AB ,由公式()()()|P AB P B A P A =即可求出解答.【详解】解:因为事件A 为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以()213363393357198428C C C P A C +=== 事件A 发生且事件B 发生概率为:()12213336392363847C C C C P AB C +=== 故()()()3127|191928P AB P B A P A ===. 故选:C. 【点睛】本题考查条件概率求法,属于中档题.6.A解析:A 【分析】设剩余10题答对题目为Y 道,则可表示出总的得分情况为202X Y =+.由二项分布可先求得()E Y ,即可得所得积分X 的期望值()E X 【详解】设剩余10题答对题目为Y 个,有10道题目会做,则总得分为202X Y =+,且1~10,4Y B ⎛⎫ ⎪⎝⎭由二项分布的期望可知()110 2.54E Y =⨯= 所以()()2202 2.52025E X E Y =+=⨯+= 故选:A 【点睛】本题考查了离散型随机变量的简单应用,二项分布的数学期望求法,属于中档题.7.C解析:C 【分析】利用古典概型的概率公式计算出()P AB 和()P A ,然后利用条件概率公式()P B A =()()P AB P A 可计算出结果. 【详解】事件:AB 甲的骰子的点数大于3,且甲、乙两骰子的点数之和等于7,则事件AB 包含的基本事件为()4,3、()5,2、()6,1,由古典概型的概率公式可得()316612==⨯P AB , 由古典概型的概率公式可得()3162P A ==, 由条件概率公式得()()()112126P AB P B A P A ==⨯=,故选C. 【点睛】本题考查条件概率的计算,解题时需弄清楚各事件的基本关系,并计算出相应事件的概率, 解题的关键在于条件概率公式的应用,考查运算求解能力,属于中等题.8.C解析:C 【分析】利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概率公式()P B A =()()P AB P A 可得出答案. 【详解】事件AB 为“所取2张卡片上的数字之和为小于9的偶数”,以(),a b 为一个基本事件,则事件AB 包含的基本事件有:()1,3、()1,5、()1,7、()2,4、()2,6、()3,5,共6个, 由古典概型的概率公式可得()286314P AB C ==, 事件A 为“所取2张卡片上的数字之和为偶数”,则所取的两个数全是奇数或全是偶数,由古典概型的概率公式可得()2428237C P A C ==,因此,()()()3711432P AB P B A P A ==⨯=, 故选C . 【点睛】本题考查条件概率的计算,数量利用条件概率公式,是解本题的关键,同时也考查了古典概型的概率公式,考查运算求解能力,属于中等题.9.B解析:B 【分析】求概率密度函数在(1,3)的积分,求得概率. 【详解】由随机变量X 的概率密度函数的意义得3233111d xx e P e x ee---==-=⎰,故选B . 【点睛】随机变量X 的概率密度函数在某区间上的定积分就是随机变量X 在这一区间上概率.10.C解析:C 【解析】分析:根据正态分布的定义,及正态分布与各参数的关系结合正态曲线的对称性,逐一分析四个命题的真假,可得答案.详解:①正态曲线关于x μ=轴对称,故①不正确,②当μ一定时,σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”;正确;③设随机变量()~2,4X N ,则12D X ⎛⎫⎪⎝⎭的值等于1;故③不正确; ④当σ一定时,正态曲线的位置由μ确定,随着μ的变化曲线沿x 轴平移.正确.故选C.点睛:本题以命题的真假判断为载体考查了正态分布及正态曲线,熟练掌握正态分布的相关概念是解答的关键.11.D解析:D 【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X .详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.12.A解析:A【解析】分析:利用条件概率求(|)P B A .详解:由题得2265()30,()3010,n A A n AB A ===-=所以(|)P B A =()101.()303n AB n A ==故答案为A. 点睛:(1)本题主要考查条件概率,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 条件概率的公式:()(|)()P AB P B A P A =, (|)P B A =()()n AB n A . 二、填空题13.【分析】由题意知X ~N (2000102)计算P (1970<X <2020)的值即可【详解】由X ~N (2000102)知则μ=2000σ=10;所以P (1970<X <2020)=P (μ﹣3σ<X <μ+2 解析:0.9759【分析】由题意知X ~N (2000,102),计算P (1970<X <2020)的值即可. 【详解】由X ~N (2000,102)知,则μ=2000,σ=10; 所以P (1970<X <2020)=P (μ﹣3σ<X <μ+2σ) =P (μ﹣3σ<ξ<μ+3σ)12-[P (μ﹣3σ<ξ<μ+3σ)﹣P (μ﹣2σ<ξ<μ+2σ)] =0.997412-⨯[0.9974﹣0.9544]=0.9759.故答案为:0.9759.【点睛】本题主要考查了正态分布的概率计算问题,考查正态分布的性质,也考查了运算求解能力,是基础题.14.【分析】先计算再计算当时最大得到答案【详解】由题知故当时最大此时故答案为【点睛】本题考查了期望和方差意在考查学生的计算能力解析:54【分析】先计算13b a =-,再计算()24E X a =-,2()166D X a a =-+,当316a =时()D X 最大,得到答案. 【详解】由题知13()22(13)24b a E X a a a=-∴=+-=-,2222()(42)(41)2(4)(13)166D X a a a a a a a a =-⋅+-⋅+⋅-=-+,故当316a =时()D X 最大, 此时5()4E X = 故答案为54【点睛】本题考查了期望和方差,意在考查学生的计算能力.15.09772【分析】由X 是服从正态分布知μ=800σ=50故结合正态分布的对称性可知根据即可求解【详解】由于随机变量X 服从正态分布故有μ=800σ=50则由正态分布的对称性可得【点睛】本题主要考查了正解析:0.9772 【分析】由X 是服从正态分布()2800,50N 知μ=800,σ=50,故()7009000.9544P X <=≤,结合正态分布的对称性可知()01=800290P X <≤()700900P X <≤,根据()()()0900800800900p P X P X P X ≤≤+≤==<即可求解.【详解】由于随机变量X 服从正态分布()2800,50N ,故有μ=800,σ=50,则()7009000.9544P X <=≤. 由正态分布的对称性, 可得()()()090080080019200p P X P X P X ==≤<≤=≤++()17009000.97722P X =<≤. 【点睛】本题主要考查了正态分布,利用正态曲线的对称性解题,属于中档题.16.【解析】分析:先根据二项分布数学期望公式得再求详解:因为服从二项分布所以所以点睛:本题考查二项分布数学期望公式考查基本求解能力 解析:62-【解析】分析:先根据二项分布数学期望公式得()E X ,再求()32E X --.详解:因为X 服从二项分布()100,0.2B ,所以()1000.220,E X =⨯= 所以()32320262.E X --=-⨯-=-点睛:本题考查二项分布数学期望公式,考查基本求解能力.17.015【解析】分析:求出P (1≤X≤2)于是P (X >2)=P (X >1)﹣P (1≤X≤2)详解:P (1≤X≤2)=P (0≤X≤1)=035∴P (X >2)=P (X >1)﹣P (1≤X≤2)=05﹣035=解析:0.15. 【解析】分析:求出P (1≤X≤2),于是P (X >2)=P (X >1)﹣P (1≤X≤2). 详解:P (1≤X≤2)=P (0≤X≤1)=0.35,∴P (X >2)=P (X >1)﹣P (1≤X≤2)=0.5﹣0.35=0.15. 故答案为0.15点睛:本题主要考查了正态分布的对称性,意在考查学生对这些基础知识的掌握水平.18.【解析】分析:由题意首先求得实数abc 的值然后利用期望公式求得期望值最后结合求得的期望值求解方差即可详解:由题意可得:解得:或互不相等则:分布列为: 故其方差为:点睛:本题主要考查 解析:5249【解析】分析:由题意首先求得实数a ,b ,c 的值,然后利用期望公式求得期望值,最后结合求得的期望值求解方差即可.详解:由题意可得:2231b ac a c b a b c ⎧=⎪+=⎨⎪++=⎩,解得:131313a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩或472717a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.a ,b ,c 互不相等,则:421,,777a b c ===,分布列为:故()4220777E X =-++=-,其方差为: ()2222422215210277777749D X ⎛⎫⎛⎫⎛⎫=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 点睛:本题主要考查离散型随机变量的期望和方差的计算及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题19.(1)1516;(2)分布列答案见解析,12p =. 【分析】(1)根据相互独立事件的概率计算“甲4次全部命中”的概率,用1减去“甲4次全部命中”的概率即可得出答案;(2)由题意得,X Y 的可能取值均为0,1,2,3,依据题意算出其概率,列出其分布列分布列,根据数学期望公式算出,EX EY ,由EX EY =建立方程解出p . 【详解】解:(1)“甲至多命中3次”的对立事件为“甲4次全部命中”,所以甲至多命中3次的概率为41151216⎛⎫-= ⎪⎝⎭.(2)X ,Y 的可能取值均为0,1,2,3. X 的分布列为所以31234442EX =⨯+⨯+⨯=. Y 的分布列为2322(1)124312122EY p p p p p p p =--++-=+-.由231222p p +-=,解得12p =.【点睛】离散型随机变量的均值与方差的常见类型及解题策略:(1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布列,然后利用均值、方差公式直接求解;(2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的方程(组),解方程(组)即可求出参数值;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断. 20.(1)80243;(2)分布列答案见解析,数学期望:4081. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列和期望. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为23,用X 表示“抽取的5辆单车中蓝色单车的个数”,则X 服从二项分布,即2~5,3X B ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有3辆是蓝色单车的概率为3235218033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4.()203p ξ==,()1221339p ξ==⨯=,()212223327p ξ⎛⎫==⨯= ⎪⎝⎭, ()312233381p ξ⎛⎫==⨯= ⎪⎝⎭,()4114381p ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:()012343927818181E ξ=⨯+⨯+⨯+⨯+⨯=.【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.21.(1)813,(2)91,(3)若学生甲期望获得最佳复赛成绩,则他的答题量n 应该是7. 【分析】(1)求出样本中成绩不低于60分的学生共有40人,其中成绩不低于80分的人数为15人,由此能求出至少有1人成绩不低于80分的概率.(2)样本中的100名学生预赛成绩的平均值为:53,则53μ=,由2362σ=,得19σ=,从而(91)(2)P Z P Z μσ=+,由此能求出估计全市参加参赛的全体学生中成绩不低于91分的人数.(3)以随机变量ξ表示甲答对的题数,则~(,0.75)B n ξ,求出E ξ,记甲答完n 题所加的分数为随机变量X ,则2X ξ=,求出EX ,为了获取答n 题的资格,甲需要扣掉的分数为:20.1()n n +,设甲答完n 题的分数为()M n ,则2()1000.1() 1.5M n n n n =-++,由此能求出学生甲期望获得最佳复赛成绩的答题量n 的值. 【详解】解:(1)样本成绩不低于60分的学生有()0.01250.00752010040+⨯⨯=人 其中成绩不低于80分的有0.00752010015⨯⨯=人则至少有1人成绩不低于80分的概率2252408113C P C =-=(2)由题意知样本中100名学生成绩平均分为100.1300.2500.3700.25900.1553⨯+⨯+⨯+⨯+⨯=,所以53μ=,2362σ=,所以19σ=所以()~53,362Z N ,则()()()191210.95440.02282P Z P Z μσ≥=≥+≈-= 故全市参加预赛学生中成绩不低于91分的人数为0.022*******⨯≈人 (3)以随机变量ξ表示甲答对的题数,则~(,0.75)B n ξ,且0.75E n ξ=, 记甲答完n 题所加的分数为随机变量X ,则2X ξ=, 2 1.5EX E n ξ∴==,依题意为了获取答n 题的资格,甲需要扣掉的分数为:20.2(123)0.1()n n n ⨯+++⋯+=+, 设甲答完n 题的分数为()M n ,则22()1000.1() 1.50.1(7)104.9M n n n n n =-++=--+,由于*n N ∈,∴当7n =时,()M n 取最大值104.9,即复赛成绩的最大值为104.9.∴若学生甲期望获得最佳复赛成绩,则他的答题量n 应该是7.【点睛】本题考查概率、频数、数学期望的求法及应用,考查频率分布直方图、二项分布等基础知识,考查运算求解能力.22.(1)分布列见解析;期望为74;(2)分布列见解析;3()2E η=,3()4D η=.【分析】(1)取到一个红球为止,取球次数ξ所有可能1、2、3、4,求对应次数的概率即可列分布列,求()E ξ;(2)取出后放回,每次取到红球的概率相同,相当于做了三次独立重复试验13,2B η⎛⎫⎪⎝⎭,利用二项分布概率公式和期望、方差公式即可求解. 【详解】(1)ξ的可能取值为1、2、3、4,31(1)62P ξ===,333(2)6510P ξ==⨯=, 3233(3)65420P ξ==⨯⨯=,32131(4)654320P ξ==⨯⨯⨯=,故ξ的分布列为:17()123421020204E ξ=⨯+⨯+⨯+⨯=;(2)取出后放回,取球3次,每次取到红球的概率为3162=,可看作3次独立重复试验,所以13,2B η⎛⎫ ⎪⎝⎭, η的可能取值为0、1、2、3,303111(0)228P C η⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,1213113(1)228P C η⎛⎫⎛⎫==⋅⋅= ⎪ ⎪⎝⎭⎝⎭, 2123113(2)228P C η⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,333111(4)228P C η⎛⎫⎛⎫==⋅⋅= ⎪ ⎪⎝⎭⎝⎭, 故ξ的分布列为:∴()322E η=⨯=,113()3224D η=⨯⨯=.【点睛】思路点睛:求离散型随机变量的分布列及期望的一般步骤: (1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算) 23.(1)1728;(2)分布列见解析,()34E X =. 【分析】(1)先求出抽出的3人都不满意的概率,再利用对立事件的概率公式即可求解; (2)X 的所有可能取值为0,1,2,3则13,4X B ⎛⎫~ ⎪⎝⎭,利用二项分布的概率公式求出每一个X 的取值对应的概率,即可列出X 的分布列求出数学期望.【详解】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫=== ⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=. 【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤: (1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算)24.2336【分析】记i B ={球取自i 号罐}(1,2,3)i =,A ={取得红球},则123A AB AB AB =++,且123,,AB AB AB 两两互斥,由条件概率公式计算出123,,AB AB AB 的概率可得结论.【详解】记i B ={球取自i 号罐}(1,2,3)i =,A ={取得红球},显然A 的发生总是伴随着123,,B B B 之一同时发生,即123A AB AB AB =++,且123,,AB AB AB 两两互斥,()()()123231,,342P A B P A B P A B ===∣∣∣,所以()()()()()3123112131123()33343236i i i P A P AB P AB P AB P B P A B ==++===⨯+⨯+⨯=∑∣.【点睛】关键点点睛:本题考查条件概率,互斥事件的概率公式.解题关键是把取得红球这个事件拆分成三个互斥事件的和:记i B ={球取自i 号罐}(1,2,3)i =,A ={取得红球},123A AB AB AB =++,而由条件概率公式可得123,,AB AB AB 的概率.25.(1)2675;(2)73. 【分析】(1)总的基本事件数为2266C C ⋅,所求事件包含A 中摸出1个黄色乒乓球和1个白色乒乓球,B 中摸出2个黄色乒乓球和A 中摸出2个黄色乒乓球,B 中摸出1个黄色乒乓球和1个白色乒乓球,将组合数运算和古典概型结合可得结果;(2)黄球个数ξ可能取的值为0,1,2,3,4,分别求出对应的概率,再求出期望值即可. 【详解】(1)解:总的基本事件数为22661515225C C ⋅=⨯=,摸出的4个球中有3个黄色兵乓球和1个白色乒乓球分为两种情况: ①A 中摸出1个黄色乒乓球和1个白色乒乓球,B 中摸出2个黄色乒乓球:11242324C C C ⋅⋅=.②A 中摸出2个黄色乒乓球,B 中摸出1个黄色乒乓球和1个白色乒乓球:21143354C C C ⋅⋅=.∴24542622575P +==. (2)黄球个数ξ可能取的值为0,1,2,3,4,()22231022575C C P ξ⋅===. ()11221142323311122575C C C C C C P ξ⋅⋅+⋅⋅===, ()232211114323423331222575C C C C C C C C P ξ⋅+⋅+⋅⋅⋅===, ()21111243342326322575C C C C C C P ξ⋅⋅+⋅⋅===, ()22436422575C C P ξ⋅===, 即ξ的分布列为:∴1234757575753E ξ=⨯+⨯+⨯+⨯=. 【点睛】 关键点点睛:(1)理解所求事件包含两种情况;(2)准确求出随机变量的取值以及取每个值时对应的概率. 26.(1)35;(2)分布列见解析,127. 【分析】(1)先求出甲班的总人数,再利用频率分布直方图求出甲班在[0,1),[1,2)的人数,从而可以计算出抽取 3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)首先计算出甲,乙两班中数学平均时间在区间[5,6]的人数,从而可以得到随机变量ξ的取值,并计算出对应的概率,写出随机变量ξ的分布列,即可计算出随机变量ξ的数学期望.【详解】(1)因为乙班学生的总人数为2+5+10+16+14+3=50,所以甲班中学习平均时间在[0,1)内的人数为50×0.04=2,甲班中学习平均时间在[1,2)内的人数为50×0.08=4.设“3人中恰有1人学习数学的平均时间在[0,1)范围内”为事件A , 则122436263()205C C P A C ⋅⨯===; (2)甲班学习数学平均时间在区间[5,6]的人数为50×0.08=4.由频数分布表知乙班学习数学平均时间在区间[5,6]的人数为3,两班中学习数学平均时间不小于5小时的同学共7人,ξ的所有可能取值为0,1,2,3.0434471(0)35C C P C ξ===, 13344712(1)35C C P C ξ===, 22344718(2)35C C P C ξ===, 3134474(3)35C C P C ξ===. 所以ξ的分布列为()0123353535357E ξ=⨯+⨯+⨯+⨯=. 【点睛】 思路点睛:离散型随机变量分布列:(1)明取值;(2)求概率;(3)画表格;(4)做检验.。

(典型题)高中数学选修三第二单元《随机变量及其分布》检测(答案解析)

(典型题)高中数学选修三第二单元《随机变量及其分布》检测(答案解析)

一、选择题1.抛掷两枚均匀骰子,观察向上的点数,记事件A 为“两个点数不同”,事件B 为“两个点数中最大点数为4”,则()P B A =( )A .112B .16C .15D .562.若随机变量X 的分布列为则X 的数学期望()E X =( ) A .2a b +B .2+a bC .2D .33.已知随机变量X 的分布列表如下表,且随机变量23Y X =+,则Y 的期望是( )A .73B .53C .13D .164.已知随机变量ξ,η的分布列如下表所示,则( )A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη=D .E E ξη=,D D ξη=5.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .596.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件=A {两次掷的玩具底面图案不相同},B ={两次掷的玩具底面图案至少出现一次小狗},则()P B A =( )A .712B .512C .12D .11127.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有23的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率( ) A .1320B .920C .15D .1208.已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲,乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则E ξ=( ) A .145B .135C .73D .839.某市一次高三年级数学统测,经抽样分析,成绩X 近似服从正态分布2(84,)N σ,且(7884)0.3P X <≤=.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为( ) A .60 B .80 C .100D .12010.已知一组数据12,,,n x x x 的平均数3x =,方差24s =,则数据1232,32,,32n x x x +++的平均数、方差分别为( )A .9,12B .9,36C .11,12D .11,3611.随机变量()~1,4X N ,若()20.2p x ≥=,则()01p x ≤≤为( ) A .0.2B .0.3C .0.4D .0.612.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .34D .38二、填空题13.一个口袋中有7个大小相同的球,其中红球3个,黄球2个,绿球2个.现从该口袋中任取3个球,设取出红球的个数为ξ,则()E ξ=______.14.如图,EFGH 是圆O 的内接正方形,将一颗豆子随机扔到圆O 内,记事件A :“豆子落在正方形EFGH 内”,事件B :“豆子落在扇形OEH (阴影部分)内”,则条件概率(|)P B A =__.15.以下4个命题中,所有正确命题的序号是______. ①已知复数()12i z i i +=-,则105z =;②若()727012731x a a x a x a x -=+++⋅⋅⋅+,则1234567127a a a a a a a ++++=++ ③一支运动队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽取一个容量为28的样本,则样本中男运动员有16人;④若离散型随机变量X 的方差为()3D X =,则()2112D X -=. 16.假设每天从甲地去乙地的旅客人数X 是服从正态分布()2800,50N 的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p ,则0p 的值为________. (参考数据:若2),(X N μσ~,则()0.6826P X μσμσ-<≤+=;2()2P X μσμσ-<≤+=0.9544;(33)0.9974P X μσμσ-<+=≤.)17.已知随机变量2(1,)XN σ,若(01)0.3P X <<=,则(2)P X >=__________.18.设随机变量X 的概率分布如下表所示,且随机变量X 的均值()E X 为2.5 ,X1 2 3 4Pab38316则随机变量X 的方差()V X 为__________.三、解答题19.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望. 20.为检测某种抗病毒疫苗的免疫效果,某药物研究所科研人员随机选取100只小白鼠,并将该疫苗首次注射到这些小白鼠体内.独立环境下试验一段时间后检测这些小白鼠的某项医学指标值并制成如下的频率分布直方图(以小白鼠医学指标值在各个区间上的频率代替其概率):(1)根据频率分布直方图,估计100只小白鼠该项医学指标平均值x (同一组数据用该组数据区间的中点值表示);(2)若认为小白鼠的该项医学指标值X 服从正态分布()2,N μσ,且首次注射疫苗的小白鼠该项医学指标值不低于14.77时,则认定其体内已经产生抗体;进一步研究还发现,对第一次注射疫苗的100只小白鼠中没有产生抗体的那一部分群体进行第二次注射疫苗,约有10只小白鼠又产生了抗体.这里μ近似为小白鼠医学指标平均值x ,2σ近似为样本方差2s .经计算得2 6.92s =,假设两次注射疫苗相互独立,求一只小白鼠注射疫苗后产生抗体的概率p (精确到0.01). 附:参考数据与公式6.92 2.63≈,若()2~,X N μσ,则①()0.6827P X μσμσ-<≤+=;②()220.9545P X μσμσ-<≤+=;③()330.9973P X μσμσ-<≤+=. 21.某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(1)现从去年的消费金额超过3 200元的消费者中随机抽取2人,求至少有1位消费者去年的消费金额在(3 200,4 000]内的概率;(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:会员等级消费金额普通会员 2 000银卡会员 2 700金卡会员 3 200(1 600,3 200]内的消费者都将会申请办理银卡会员,消费金额在(3 200,4 800]内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.22.2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作[20,40)、9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100),例如:10点04分,记作时刻64.(Ⅰ)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(Ⅱ)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列;(Ⅲ)根据大数据分析,车辆在每天通过该收费站点的时刻T 服从正态分布()2~,N μσ,其中μ可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,2σ用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).附:若随机变量T 服从正态分布()2,N μσ,则()0.6827P T μσμσ-<≤+=,(22)0.9545P T μσμσ-<≤+=,(33)0.9973P T μσμσ-<≤+=.23.近年来,我国肥胖人群的规模不断扩大,肥胖人群有很大的心血管安全隐患,目前,国际上常用身体质量指数(Bodv Mass Index ,缩写BMI )来衡量人体胖瘦程度以及是否健康,其计算公式是BMI =体重(单位:千克)÷身高2(单位:2m ),中国成人的BMI 数值标准为:BMI <18.5为偏瘦;18.5≤BMI <24为正常;24≤BMI <28为偏胖;BMI ≥28为肥胖.某单位随机调查了100名员工,测量身高、体重并计算出BMI 值.(1)根据调查结果制作了如下2×2列联表,请将2×2列联表补充完整,并判断是否有99%的把握认为肥胖与不经常运动有关;人中“经常运动且不肥胖”的人数为X ,求随机变量X 的分布列和数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.24.山竹,原产于马鲁古,具有清热泻火、生津止渴的功效,其含有丰富的蛋白质与脂类,对体弱、营养不良的人群都有很好的调养作用,因此被誉为夏季的“水果之王”,受到广大市民的喜爱.现将某水果经销商近一周内山竹的销售情况统计如下表所示:(1)根据表格中数据,完善频率分布直方图;(2)求近一周内采购量在286箱以下(含286箱)的人数以及采购数量x的平均值;(3)以频率估计概率,若从所有采购者中随机抽取4人,记采购量不低于260箱的采购人数为X,求X的分布列以及数学期望()E X.25.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.26.为研究一种新药的耐受性,要对白鼠进行连续给药后观察是否出现F症状的试验,该试验的设计为:对参加试验的每只白鼠每天给药一次,连续给药四天为一个给药周期,试验共进行三个周期.假设每只白鼠给药后当天出现F症状的概率均为13,且每次给药后是否出现F症状与上次给药无关.(1)从试验开始,若某只白鼠连续出现2次F症状即对其终止试验,求一只白鼠至少能参加一个给药周期的概率;(2)若在一个给药周期中某只白鼠至少出现3次F症状,则在这个给药周期后,对其终止试验,设一只白鼠参加的给药周期数为X,求X的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】抛掷两枚均匀骰子,构成的基本事件的总数共有36种,其中记事件A 为“两个点数不同”的基本事件共有30种,再由“两个点数不同且最大点数为4”的基本事件共有6种,利用条件概率的计算公式,即可求解. 【详解】由题意,抛掷两枚均匀骰子,构成的基本事件的总数共有36种, 其中记事件A 为“两个点数不同”的基本事件共有36630-=种,又由事件“两个点数不同且最大点数为4”的基本事件为:(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),共有6种,所以6()136()30()536P A B P B A P A ⋂===,故选C . 【点睛】本题主要考查了条件概率的计算,其中解答中熟记条件概率的计算方法,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.2.C解析:C 【分析】由期望公式可知()2(2)E X a b =+,而总体的概率21a b +=,即可求得()E X 【详解】由1122()()()...()n n E X X P X X P X X P X =+++ ∴()1232(2)E X a b a a b =⨯+⨯+⨯=+,而21a b += ∴()2E X = 故选:C 【点睛】本题考查了概率,理解期望的含义,利用期望公式求离散型变量的期望,并根据样本总体概率为1求期望值3.A解析:A 【分析】由随机变量X 的分布列求出m ,求出()E X ,由23Y X =+,得()()23E Y E X =+,由此能求出结果. 【详解】由随机变量X 的分布列得:11123m ++=, 解得16m =, ()11111012363E X ∴=-⨯+⨯+⨯=-,23Y X =+,()()2723333E Y E X ∴=+=-+=.故选:A . 【点睛】本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的分布列、数学期望的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.C解析:C 【分析】由题意分别求出E ξ,D ξ,E η,D η,由此能得到E ξ<E η,D ξ>D η. 【详解】 由题意得: E ξ111123326=⨯+⨯+⨯=116, D ξ22211111111151(1)(2)(3)636108266=-⨯+-⨯+-⨯=. E η111131236236=⨯+⨯+⨯=, D η=(1316-)216⨯+(2136-)212⨯+(3136-)21513108⨯=, ∴E ξ<E η,D ξ=D η. 故选:C . 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.5.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.6.C解析:C 【分析】利用条件概率公式得到答案. 【详解】336()1616P AB +== 412()11616P A =-= ()()1()2P AB P B A P A == 故答案选C 【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.7.C解析:C 【分析】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B ,利用二项分布的知识计算出()P A ,再计算出()P AB ,结合条件概率公式求得结果. 【详解】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B则()2323332122033327P A C C ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()122433327P AB =⨯⨯= ()()()15P AB P B A P A ∴== 本题正确选项:C 【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.8.A解析:A 【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122i i E p p p ξξξξ=++++可求得数学期望. 【详解】ξ的可能取值为2,3,4.2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故()33925525P ξ==⨯=.3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故()3223123555525P ξ==⨯+⨯=.4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故()22445525P ξ==⨯=.所以9124142342525255E ξ=⨯+⨯+⨯=.故选A. 【点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布(),B n p ,也可以直接利用公式E np ξ=求期望.9.B解析:B 【分析】由题意,成绩X 近似服从正态分布()284,N σ,则正态分布曲线的对称轴为84X =,根据正态分布曲线的对称性,求得()190[12(7884)]2P X P X ≥=⨯-⨯<≤,进而可求解,得到答案. 【详解】由题意,成绩X 近似服从正态分布()284,N σ,则正态分布曲线的对称轴为84X =,又由(7884)0.3P X <≤=, 根据正态分布曲线的对称性,可得()()1190[12(7884)]10.60.222P X P X ≥=⨯-⨯<≤=-=,所以该市某校有400人中,估计该校数学成绩不低于90分的人数为4000.280⨯=人, 故选B. 【点睛】本题主要考查了正态分布曲线的性质的应用,其中解答中熟练应用正态分布曲线的对称性,求得成绩不低于90分的概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.D解析:D 【解析】分析:由题意结合平均数,方程的性质即可求得新数据的平均数和方差. 详解:由题意结合平均数,方程的性质可知: 数据1232,32,,32n x x x +++的平均数为:3211x +=,方差为22336s ⨯=.本题选择D 选项.点睛:本题主要考查平均数的性质,方差的性质等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B 【解析】分析:根据正态分布的整体对称性计算即可得结果. 详解:(0)(2)0.2,P X P X ≤=≥=10.22(01)0.3,2P X -⨯∴≤≤== 故选B.点睛:该题考查的是有关正态分布的问题,在解题的过程中,涉及到的知识点有正态分布曲线的对称性,从而求得结果.12.D解析:D 【解析】分析:根据条件概率求结果.详解:因为在下雨天里,刮风的概率为既刮风又下雨的概率除以下雨的概率,所以在下雨天里,刮风的概率为13104815=, 选D.点睛:本题考查条件概率,考查基本求解能力.二、填空题13.【分析】先确定随机变量的取值再分别计算对应的概率最后利用期望的计算公式即得结果【详解】依题意设取出红球的个数为则而口袋中有红球3个其他球4个故故故答案为:【点睛】方法点睛:求离散型随机变量的期望的步解析:97【分析】先确定随机变量的取值0,1,2,3ξ=,再分别计算对应的概率,最后利用期望的计算公式即得结果. 【详解】依题意,设取出红球的个数为ξ,则0,1,2,3ξ=,而口袋中有红球3个,其他球4个,故()34374035C P C ξ===,()12343718135C C P C ξ===,()21343712235C C P C ξ===,()33375313C C P ξ===,故()418121459012335353535357E ξ=⨯+⨯+⨯+⨯==. 故答案为:97. 【点睛】 方法点睛:求离散型随机变量的期望的步骤:(1)先确定随机变量的取值12,,...,n x x x ξ=;(2)再计算每个变量所对应的概率(),1,2,3,...,i i P x p i n ξ===; (3)利用公式()112233...n n E x p x p x p x p ξ=++++,计算得到期望即可.14.【分析】利用与面积有关的几何概型公式求出然后代入条件概率公式即可求解【详解】如图设正方形边长为由几何概型的概率公式可得(A )由条件概率公式可得故答案为:【点睛】本题考查与面积有关的几何概型和条件概率解析:14【分析】利用与面积有关的几何概型公式求出()(),P A P AB ,然后代入条件概率公式()()()P AB P B A P A =即可求解.【详解】如图,设正方形边长为a ,由几何概型的概率公式可得,P (A)22π==,11()2a a P AB π⨯==, ∴由条件概率公式可得,1()12(|)2()4P AB P B A P A ππ===. 故答案为:14【点睛】本题考查与面积有关的几何概型和条件概率的求解;熟练掌握概率公式是求解本题的关键;属于中档题、常考题型.15.①③④【分析】根据复数的模的运算可知①正确;代入所得式子作差即可知②正确;利用分层抽样原则计算可知③正确;根据方差的性质可知④正确【详解】①则①正确;②令则;令则②错误;③抽样比为:则男运动员应抽取解析:①③④ 【分析】根据复数的模的运算可知5z z ==,①正确;代入0x =,1x =,所得式子作差即可知②正确;利用分层抽样原则计算可知③正确;根据方差的性质可知④正确. 【详解】①()11212i i z i i i ++==-+,则1112125i i z z i i ++=====++,①正确; ②令0x =,则()7011a =-=-;令1x =,则0123456772a a a a a a a a +++++=++1234567721129a a a a a a a ∴+++++=+=+,②错误;③抽样比为:28256427=+,则男运动员应抽取:256167⨯=人,③正确;④由方差的性质可知:()()2143412D X D X -==⨯=,④正确. 本题正确结果:①③④ 【点睛】本题考查命题的真假性的判断,涉及到复数模长运算、二项式系数和、分层抽样、方差的性质等知识,属于中档题.16.09772【分析】由X 是服从正态分布知μ=800σ=50故结合正态分布的对称性可知根据即可求解【详解】由于随机变量X 服从正态分布故有μ=800σ=50则由正态分布的对称性可得【点睛】本题主要考查了正解析:0.9772【分析】由X 是服从正态分布()2800,50N 知μ=800,σ=50,故()7009000.9544P X <=≤,结合正态分布的对称性可知()01=800290P X <≤()700900P X <≤,根据()()()0900800800900p P X P X P X ≤≤+≤==<即可求解.【详解】由于随机变量X 服从正态分布()2800,50N ,故有μ=800,σ=50,则()7009000.9544P X <=≤. 由正态分布的对称性, 可得()()()090080080019200p P X P X P X ==≤<≤=≤++()17009000.97722P X =<≤. 【点睛】本题主要考查了正态分布,利用正态曲线的对称性解题,属于中档题.17.02【分析】随机变量得到曲线关于称根据曲线的对称性得到根据概率的性质得到结果【详解】随机变量∴曲线关于对称∴故答案为02【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义函数图象对称性的应用等解析:0.2 【分析】随机变量()21,X N σ~,得到曲线关于1x =称,根据曲线的对称性得到200.501P X P X P X >=<=-<<()()(),根据概率的性质得到结果. 【详解】随机变量()21,X N σ~,∴曲线关于1x =对称,∴200.5010.2P X P X P X >=<=-<<=()()(),故答案为0.2. 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题18.【解析】分析:根据分布列的性质求出的值然后再根据方差的定义求解即可得到结论详解:由题意得即解得∴点睛:(1)离散型随机变量的分布列中所有概率和为1这一性质为求概率和检验分布列是否正确提供了工具(2)解析:98【解析】分析:根据分布列的性质求出,a b 的值,然后再根据方差的定义求解即可得到结论.详解:由题意得3318163352348162a b a b ⎧+++=⎪⎪⎨⎪++⨯+⨯=⎪⎩,即716528a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14316a b ⎧=⎪⎪⎨⎪=⎪⎩.∴()2222515353539123424216282168V X ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.点睛:(1)离散型随机变量的分布列中所有概率和为1,这一性质为求概率和检验分布列是否正确提供了工具.(2)求分布列的期望和方差时可根据定义直接求解即可.三、解答题19.(1)0.28;(2)分布列见解析,()0.6E X =. 【分析】(1)由题意利用对立事件概率公式即可求得满足题意的概率值;(2)首先确定X 可能的取值,然后分别求解其概率值,最后确定其分布列并求解数学期望即可. 【详解】(1)设部件1需要调整为事件A ,部件2需要调整为事件B ,部件3需要调整为事件C , 由题意可知:()()()0.1,0.2,0.3P A P B P C ===. 部件1,2中至少有1个需要调整的概率为:()()11110.90.810.720.28P A P B ⎡⎤⎡⎤---=-⨯=-=⎣⎦⎣⎦.(2)由题意可知X 的取值为0,1,2,3.且:()()()()0111P X P A P B P C ⎡⎤⎡⎤⎡⎤==---⎣⎦⎣⎦⎣⎦()()()10.110.210.3=-⨯-⨯-0.504=,()()()()111P X P A P B P C ⎡⎤⎡⎤==--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦0.10.80.7=⨯⨯0.90.20.7+⨯⨯0.90.80.3+⨯⨯ 0.398=,()()()()21P X P A P B P C ⎡⎤==-⎣⎦()()()1P A P B P C ⎡⎤+-⎣⎦()()()1P A P C P B ⎡⎤+-⎣⎦0.10.20.7=⨯⨯0.10.80.3+⨯⨯0.90.20.3+⨯⨯0.092=.()()()()30.10.20.30.006P X P A P B P C ===⨯⨯=,故X 的分布列为:其数学期望:0.50400.39810.09220.00630.6E X =⨯+⨯+⨯+⨯=. 【点睛】 思路点晴:求离散型随机变量X 的数学期望的一般步骤:(1)先分析X 的可取值,根据可取值求解出对应的概率; (2)根据(1)中概率值,得到X 的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X 的数学期望. 20.(1)17.4;(2)0.94. 【分析】(1)利用每一个小矩形的面积乘以对应的底边中点的横坐标之和即为x ;(2)先计算第一次注射疫苗后产生抗体的概率()()14.77P x P x μσ≥=≥-,即可计算第一次注射疫苗后100只小白鼠中产生抗体的数量,加上第二次注射疫苗10只小白鼠又产生了抗体,可以得出两次注射疫苗产生抗体的总数,即可求概率. 【详解】(1)0.021220.061420.141620.181820.05202x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.032220.0224217.4+⨯⨯+⨯⨯= (2)17.40 2.6314.77μσ-=-=∴()10.68270.68270.84142P x μσ-≥-=+= 记事件A 表示首先注射疫苗后产生抗体,则()()()14.770.8414P A P x P x μσ=≥=≥-=,因此100只小鼠首先注射疫苗后有1000.841484⨯≈只产生抗体,有1008416-=只没有产生抗体.故注射疫苗后产生抗体的概率84100.94100P +==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1; ②直方图中每组样本的频数为频率乘以总数; ③最高的小矩形底边中点横坐标即是众数; ④中位数的左边和右边小长方形面积之和相等;⑤平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 21.(1)1011;(2)方案2投资较少,理由见解析. 【分析】(1)去年的消费金额超过3 200元的消费者有12人,随机抽取2人,消费金额在(3 200,4 000]的范围内的概率满足超几何分布)(2)方案1:计算“幸运之星”中的普通会员,银卡会员,金卡会员的人数,求奖励总金额,方案2:设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300,列出其分布列,求期望. 【详解】(1)去年的消费金额超过3 200元的消费者有12人,随机抽取2人,消费金额在(3 200,4 000]的范围内的人数为X ,可能取值为0,1,2,2421210(1)1(0)111C P X P X C ≥=-==-=,所以至少有1位消费者去年的消费金额在(3 200,4 000]的范围内的概率为1011. (2)方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员,银卡会员,金卡会员的人数分别为28257100⨯=,602515100⨯=,12253100⨯=. 按照方案1奖励的总金额1=7500+15600+3800=14900ξ⨯⨯⨯(元).方案2:设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.摸到红球的概率121525C P C ==, 所以031233232381(0)()()()5555125P C C η==⋅⋅+⋅⋅=, 2232336(200)()55125P C η==⋅⋅=,3303238(300)()()55125P C η==⋅⋅=.η的分布列为数学期望81368()020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额2=(28+260+312)76.814131.2ξ⨯⨯⨯=(元), 由12ξξ>知,方案2投资较少. 【点睛】超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X 的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.22.(Ⅰ)10:04;(Ⅱ)答案见解析;(Ⅲ)819. 【分析】(Ⅰ)结合频率分布直方图,利用平均数公式求解.(Ⅱ)结合频率分布直方图,利用分层抽样的方法可知,抽取的10辆车中,在[20,60)这一区间内的车辆数为(0.0050.015)20104+⨯⨯=,则X 的可能的取值为0,1,2,3,4,再分别求得相应的概率,列出分布列.(Ⅲ)由(1)得64μ=,再利用频率分布直方图求得σ,然后利用3σ原则求解. 【详解】(Ⅰ)这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为:(300.005500.015700.020900.010)2064⨯+⨯+⨯+⨯⨯=,即10∶04(Ⅱ)由频率分布直方图和分层抽样的方法可知,抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在20,60这一区间内的车辆数, 即(0.0050.015)20104+⨯⨯=, 所以X 的可能的取值为0,1,2,3,4.所以()464101014C P X C ===,()31644108121C C P X C ===,()2264410327C C P X C ===, ()136********C C P X C ===,()4441014210C P X C ===.所以X 的分布列为:(Ⅲ)由(1)得,22222(3064)0.1(5064)0.3(7064)0.4(9064)0.2324σ=-⨯+-⨯+-⨯+-⨯=车辆所以18σ=,估计在9:46~10:40之间通过的车辆数也就是在46,100通过的车辆数,由()2~64,18T N ,得()(22)(641864218)0.818622P T P T P T μσμσμσμσ-<≤+-<≤+-≤≤+⨯=+=,所以估计在在9:46~10:40之间通过的车辆数为10000.8186819⨯≈. 【点睛】方法点睛:(1)求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.(2)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.23.(1)列联表见解析,有;(2)分布列见解析,65. 【分析】(1) 根据调查结果数据直接填入22⨯列联表,并代入公式,计算出2k 的值,与独立性检验判断表比较作出判断.(2). 先计算经常运动且不肥胖的概率p 和变量X 的可能种数,判断随机变量X 服从二项分布,用二项分布概率公式计算,再利用分布列求期望. 【详解】 (1)2100(20164024) 6.93 6.63560404456K ⋅⨯-⨯==>⨯⨯⨯∴有99%的把握认为肥胖与不经常运动有关; (2)经常运动且不肥胖的概率为:4021005= X 的所有可能取值为0,1,2,30312333272354(0)(),(1)()512555125P X C P X C =====⨯⨯=223335233628(2)(),(3)()551255125P X C P X C ==⨯===⨯=X 的分布列:。

(好题)高中数学选修三第二单元《随机变量及其分布》测试题(有答案解析)(1)

(好题)高中数学选修三第二单元《随机变量及其分布》测试题(有答案解析)(1)

一、选择题1.2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .351282.某地区共有高二学生5000人,该批学生某次数学考试的成绩服从正态分布()260,8N ,则成绩在7684分的人数大概是( )附:()0.6827P Z μσμσ-<<+=,()220.9545P Z μσμσ-<<+=,()330.9973P Z μσμσ-<<+=.A .107B .679C .2493D .23863.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52274.设103p <<,随机变量ξ的分布列如下: ξ1当p 在10,3⎛⎫ ⎪⎝⎭内增大时,下列结论正确的是( ) A .()D ξ减小 B .()D ξ增大 C .()D ξ先减小后增大D .()D ξ先增大后减小5.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( )A .38B .1340C .1345D .346.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2157.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( ) A .0.75B .0.6C .0.52D .0.488.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( )A .3+B .6+C .3+D .6+9.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .5910.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件=A {两次掷的玩具底面图案不相同},B ={两次掷的玩具底面图案至少出现一次小狗},则()P B A =( )A .712B .512C .12D .111211.从装有大小形状完全相同的3个白球和7个红球的口袋内依次不放回地取出两个球,每次取一个球,在第一次取出的球是白球的条件下,第二次取出的球是红球的概率为( )A.715B.12C.710D.7912.某校1 000名学生的某次数学考试成绩X服从正态分布,其密度函数2222()xf x e-μ-σ=π⋅σ()x∈R()曲线如图所示,正态变量X在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内取值的概率分别是68.3%,95.4%,99.7%,则成绩X位于区间(52,68]的人数大约是()A.997B.954C.683D.341二、填空题13.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为X,则X的数学期望为___________.14.设10件产品中含有3件次品,从中抽取2件进行调查,则查得次品数的数学期望为__________.15.一个口袋中有7个大小相同的球,其中红球3个,黄球2个,绿球2个.现从该口袋中任取3个球,设取出红球的个数为ξ,则()Eξ=______.16.随机变量110,2X B⎛⎫⎪⎝⎭,变量204Y X=+,则()E Y=__________.17.设01P<<,若随机变量ξ的分布列是:则当P变化时,()Dξ的极大值是______.18.已知某随机变量X的分布列如下(,p q R∈):且X 的数学期望()12E X =,那么X 的方差()D X =__________. 三、解答题19.某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为34,第二、第三种产品受欢迎的概率分别为p ,()q p q >,且不同种产品是否受欢迎相互独立,记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为:(2)求p ,q 的值; (3)求数学期望()E ξ.20.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同. (1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论)21.某软件是一款自营生鲜平台以及提供配送服务的生活类APP .某机构为调查顾客对该软件的使用情况,在某地区随机抽取了100人,调查结果整理如下:(1)现随机抽取1名顾客,试估计该顾客年龄在且未使用这款APP 的概率;(2)从被抽取的年龄在[50,70]且使用这款APP 的顾客中,随机抽取2人进一步了解情况,用X 表示这2人中年龄在[50,60)的人数,求随机变量X 的分布列及数学期望; (3)为鼓励居民使用,该机构拟对使用这款APP 的居民赠送1张5元的代金劵.若某区预计有6000人具有购物能力,试估计该机构至少应准备多少张代金券.22.学校趣味运动会上增加了一项射击比赛,比赛规则如下:向A 、B 两个靶子进行射击,先向A 靶射击一次,命中得1分,没有命中得0分;再向B 靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练,甲同学的射击水平显著提高,目前的水平是:向A 靶射击,命中的概率是23;向B靶射击,命中的概率为34.假设甲同学每次射击结果相互独立.(1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X的分布列及数学期望.23.某学校工会积极组织学校教职工参与“日行万步”健身活动,规定每日行走不足8千步的人为“不健康生活方式者”,不少于14千步的人为“超健康生活方式者”,其他为“一般健康生活方式者”.某日,学校工会随机抽取了该校300名教职工的“日行万步”健身活动数据,统计出他们的日行步数(单位:千步,且均在[4,20]内),按步数分组,得到频率分布直方图如图所示.(1)求被抽取的300名教职工日行步数的平均数(每组数据以区间的中点值为代表,结果四舍五入保留整数).(2)由直方图可以认为该校教职工的日行步数ξ服从正态分布()2,Nμσ,其中,μ为(1)中求得的平均数标准差σ的近似值为2,求该校被抽取的300名教职工中日行步数(14,18)ξ∈的人数(结果四舍五入保留整数).(3)用样本估计总体,将频率视为概率.若工会从该校教职工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:“不健康生活方式者”给予精神鼓励,奖励金额每人0元;“一般健康生活方式者”奖励金额每人100元;“超健康生活方式者”奖励金额每人200元,求工会慰问奖励金额X的分布列和数学期望.附:若随机变量ξ服从正态分布()2,Nμσ,则()0.6827Pμσξμσ-<+≈,(22)0.9545Pμσξμσ-<+≈,(33)0.9973Pμσξμσ-<+≈.24.某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X 表示抽到“极满意”的人数,求X 的分布列及数学期望.25.时值金秋十月,秋高气爽,我校一年一度的运动会拉开了序幕.为了增加运动会的趣味性,大会组委会决定增加一项射击比赛,比赛规则如下:向甲、乙两个靶进行射击,先向甲靶射击一次,命中得2分,没有命中得0分;再向乙靶射击两次,如果连续命中两次得3分,只命中一次得1分,一次也没有命中得0分.小华同学准备参赛,目前的水平是:向甲靶射击,命中的概率是35;向乙靶射击,命中的概率为23.假设小华同学每次射击的结果相互独立.(1)求小华同学恰好命中两次的概率; (2)求小华同学获得总分X 的分布列及数学期望.26.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有()|P A C 0.95=,()|0.95P A C =.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即()0.005P C =,试求()|P C A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】小球从起点到第③个格子一共跳了7次,其中要向右边跳动2次,由二项分布概率即可求解. 【详解】小球从起点到第③个格子一共跳了7次,其中要向左边跳动5次,向右边跳动2次,而向左或向右的概率均为12,则向右的次数服从二项分布,所以所求的概率为2527112122128P C ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭ 故答案为:C. 【点睛】本题的解题关键是判断小球向右边跳动的次数服从二项分布.2.A解析:A【分析】由已知结合2σ与3σ原则求得P (76<Z <84),乘以5000得答案. 【详解】由学生某次数学考试的成绩服从正态分布N (60,82),得μ=60,σ=8,(7684)(23)P Z P Z μσμσ∴<<=+<<+1[(33)(22)]2P Z P Z μσμσμσμσ=-<<+--<<+ 1(0.99730.9545)0.02142=-= ∴成绩在76~84分的人数大概是5000×0.0214=107. 故选:A . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.3.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.4.A解析:A 【分析】根据方差公式得出211()64D p ξ⎛⎫=-++ ⎪⎝⎭,结合二次函数的性质,即可得出答案. 【详解】122()01333E p p p ξ⎛⎫⎛⎫=⨯-+⨯+=+ ⎪ ⎪⎝⎭⎝⎭ 222122()013333D p p p p ξ⎛⎫⎛⎫⎛⎫⎛⎫=+--++-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⨯2212113964p p p ⎛⎫=--+=-++ ⎪⎝⎭当p 在10,3⎛⎫ ⎪⎝⎭内增大时,()D ξ∴减小 故选:A 【点睛】本题主要考查了求离散型随机变量的方差,涉及了二次函数性质的应用,属于中档题.5.B解析:B 【分析】由条件概率的定义()(|)()P A B P B A P A =,分别计算(),()P A B P A 即得解.【详解】 由题意5()9P A = 事件AB 为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有223313⨯+⨯=个事件1313()9872P A B ==⨯由条件概率的定义:()13(|)()40P A B P B A P A ==故选:B 【点睛】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.6.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.7.A解析:A 【分析】记事件:A 该元件使用寿命超过1年,记事件:B 该元件使用寿命超过2年,计算出()P A 和()P AB ,利用条件概率公式可求出所求事件的概率为()()()P AB P B A P A =.【详解】记事件:A 该元件使用寿命超过1年,记事件:B 该元件使用寿命超过2年, 则()0.8P A =,()()0.6P AB P B ==,因此,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为()()()0.60.750.8P AB P B A P A ===,故选A. 【点睛】本题考查条件概率的计算,解题时要弄清楚两个事件的关系,并结合条件概率公式进行计算,考查分析问题和计算能力,属于中等题.8.D解析:D 【分析】利用正态密度曲线的对称性得出12m n +=,再将代数式22m n +与12m n +相乘,展开后可利用基本不等式求出12m n+的最小值. 【详解】 由于()210,XN σ,由正态密度曲线的对称性可知,()()128P X P X m >=<=,所以,()()188102P X P X <+≤≤=,即12m n +=,221m n ∴+=, 由基本不等式可得()1212422266m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭6=, 当且仅当()420,0m n m n n m=>>,即当n =时,等号成立, 因此,12m n +的最小值为6+,故选D. 【点睛】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.9.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.10.C解析:C 【分析】利用条件概率公式得到答案. 【详解】336()1616P AB +==412()11616P A =-= ()()1()2P AB P B A P A == 故答案选C 【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.11.D解析:D 【分析】运用条件概率计算公式即可求出结果 【详解】令事件A 为第一次取出的球是白球,事件B 为第二次取出的球是红球,则根据题目要求得()()()377109|3910P AB P B A P A ⨯===, 故选D 【点睛】本题考查了条件概率,只需运用条件概率的公式分别计算出事件概率即可,较为基础.12.C解析:C 【解析】分析:先由图得,μσ,再根据成绩X 位于区间(52,68]的概率确定人数.详解:由图得8μσ=== 因为60852,60868-=+=,所以成绩X 位于区间(52,68]的概率是68.3%, 对应人数为68.3%1000683⨯=, 选C.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.二、填空题13.【分析】由题意可知抽得三球编号和为4812三种情况的基本事件有31种而总事件有125种即三个球编号之和恰为4的倍数的概率为则有根据二项分布的期望公式求期望即可【详解】三个球编号之和恰为4的倍数的基本 解析:93125【分析】由题意可知抽得三球编号和为4,8,12三种情况的基本事件有31种,而总事件有125种,即三个球编号之和恰为4的倍数的概率为31125,则有31~(3,)125X B ,根据二项分布的期望公式求期望即可. 【详解】三个球编号之和恰为4的倍数的基本事件:(1,1,2)有3种、(1,2,5)有6种、(1,3,4)有6种、(2,2,4)有3种、(2,3,3)有3种、(2,5,5)有3种、(3,4,5)有6种、(4,4,4)有1种,而总共有555125⨯⨯=, ∴三个球编号之和恰为4的倍数的概率为31125,由题意31~(3,)125X B , ∴X 的数学期望:3193()3125125E X =⨯=. 故答案为:93125. 【点睛】关键点点睛:根据编号和分组得到三个球编号之和恰为4的倍数的基本事件数,进而确定其概率,由人数为X 服从31(3,)125B 的二项分布,求期望. 14.【分析】设抽得次品数为列出随机变量的分布列进而可求得的值【详解】设抽得次品数为则随机变量的可能取值有则所以随机变量的分布列如下表所示: 所以故答案为:【点睛】方法点睛:求离散型随机解析:35【分析】设抽得次品数为X ,列出随机变量X 的分布列,进而可求得()E X 的值. 【详解】设抽得次品数为X ,则随机变量X 的可能取值有0、1、2,则()272107015C P X C ===,()11372107115C C P X C ===,()232101215C P X C ===, 所以,随机变量X 的分布列如下表所示:所以,()0121515155E X =⨯+⨯+⨯=.故答案为:35. 【点睛】方法点睛:求离散型随机变量均值与方差的基本方法: (1)已知随机变量的分布列求它的均值、方差,按定义求解.(2)已知随机变量X 的均值、方差,求X 的线性函数Y aX b =+的均值、方差,可直接用X 的均值、方差的性质求解;(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.15.【分析】先确定随机变量的取值再分别计算对应的概率最后利用期望的计算公式即得结果【详解】依题意设取出红球的个数为则而口袋中有红球3个其他球4个故故故答案为:【点睛】方法点睛:求离散型随机变量的期望的步解析:97【分析】先确定随机变量的取值0,1,2,3ξ=,再分别计算对应的概率,最后利用期望的计算公式即得结果. 【详解】依题意,设取出红球的个数为ξ,则0,1,2,3ξ=,而口袋中有红球3个,其他球4个,故()34374035C P C ξ===,()12343718135C C P C ξ===,()21343712235C C P C ξ===,()33375313C C P ξ===,故()418121459012335353535357E ξ=⨯+⨯+⨯+⨯==. 故答案为:97. 【点睛】 方法点睛:求离散型随机变量的期望的步骤:(1)先确定随机变量的取值12,,...,n x x x ξ=;(2)再计算每个变量所对应的概率(),1,2,3,...,i i P x p i n ξ===; (3)利用公式()112233...n n E x p x p x p x p ξ=++++,计算得到期望即可.16.【解析】分析:先根据二项分布得再根据得详解:因为所以因为所以点睛:二项分布)则此随机变量的期望可直接利用这种典型分布的期望公式 解析:40【解析】分析:先根据二项分布得()E X ,再根据204Y X =+,得().E Y 详解:因为1~10,2X B ⎛⎫ ⎪⎝⎭,所以1()1052E X =⨯=, 因为204Y X =+,所以()204()202040.E Y E X =+=+= 点睛:二项分布(,)XB n p ),则此随机变量的期望可直接利用这种典型分布的期望公式()E X np =.17.【解析】分析:先求出再求利用二次函数的图像求的极大值详解:由题得所以所以当时的极大值是故答案为点睛:(1)本题主要考查离散型随机变量的方差的计算意在考查学生对这些知识的掌握水平和基本的计算能力(2) 解析:12【解析】分析:先求出()E ξ,再求()D ξ,利用二次函数的图像求()D ξ的极大值. 详解:由题得113()0122222p p E p ξ-=⨯+⨯+⨯=-, 所以2222311111()()()()(01)2222224p p D p p p p p p ξ-=-+-++=-++<< 所以当12p =时,() D ξ的极大值是12. 故答案为12. 点睛:(1)本题主要考查离散型随机变量的方差的计算,意在考查学生对这些知识的掌握水平和基本的计算能力.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅18.【解析】根据题意可得解得故的方差解析:34【解析】根据题意可得112p q p q +=⎧⎪⎨-=⎪⎩,解得34p =,14q =,故X 的方差()22131131124244D X ⎛⎫⎛⎫=-⨯+--⨯= ⎪ ⎪⎝⎭⎝⎭.三、解答题19.(1)1920;(2)23p =,25q =;(3)10960. 【分析】(1)根据对立事件的概率公式计算可得结果; (2)由1(0)20P ξ==与1(3)5P ξ==联立可解得结果; (3)求出,a b 后,根据数学期望公式可求得结果. 【详解】(1)设事件i A 表示“该公司第i 种产品受欢迎”,1i =,2,3.由题意可知()134P A =,()2P A p =,()3P A q =. 由于事件“该公司至少有一种产品受欢迎”与事件“0ξ=”是对立的,所以该公司至少有一种产品受欢迎的概率是()1191012020P ξ-==-=. (2)由题意可知,()()()()12311011420P P A A A p q ξ===--=, 且()()12331345P P A A A pq ξ====, 所以整理得,415pq =,且1615p q +=,结合p q >解得23p =,25q =.(3)由题意可知,()()()()1231231231a P P A A A P A A A P A A A ξ===++()()()()3111111444p q p q p q =--+-+- 313123112435435435=⨯⨯+⨯⨯+⨯⨯ 1760=, ()()()()21013b P P P P ξξξξ===-=-=-=1171120605=--- 715=, 因此,()()()()00112233E P P P P ξξξξξ=⨯=+⨯=+⨯=+⨯=1771012360155=+⨯+⨯+⨯10960=. 【点睛】关键点点睛:利用独立事件的乘法公式求出,a b 是解题关键. 20.(1)12;(2)分布列见解析;(3)15次. 【分析】(1)利用组合数公式和古典概型的概率公式可求得所求事件的概率; (2)由题意可知,34,4B ξ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量ξ的分布列; (3)根据独立重复试验的概率公式可得出结论. 【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,由古典概型的概率公式可知,所求事件的概率为232412C P C ==;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34, 这样摸球4次,则34,4B ξ⎛⎫ ⎪⎝⎭, 所以,()4110=4256P ξ⎛⎫== ⎪⎝⎭,()3143131=4464P C ξ⎛⎫==⋅⋅ ⎪⎝⎭,()22243127244128P C ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()334312734464P C ξ⎛⎫==⋅⋅=⎪⎝⎭,()438144256P ξ⎛⎫===⎪⎝⎭. 因此,随机变量ξ的分布列如下表所示:【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(1)750;(2)分布列见解析,43;(3)2820张.【分析】(1)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有2+12=14人,由概率公式即可得到所求值;(2)X 所有的可能取值为0,1,2,求出相应的概率值,即可得到分布列与期望; (3)随机抽取的100名顾客中,使用自由购的有47人,计算可得所求值. 【详解】(1)在随机抽取的100名顾客中,年龄在[30, 50)且未使用这款APP 的共有2+12=14人,所以随机抽取1名顾客,估计该顾客年龄在[30, 50)且未使用这款APP 的概率为14710050P ==. (2)X 的所有可能取值为0,1,2,则()22261015C P X C ===, ()1142268115C C P X C ===, ()24266215C P X C === .所以X 的分布列为()18640121515153E X =⨯+⨯+⨯=. (3)在随机抽取的100名顾客中,使用自助结算机的共有5101884247+++++=人, 所以该机构至少应准备张代金券的张数估计为:4760002820100⨯=张. 【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,求X 的分布列,关键点是求出X 所有可能取值对应的概率可得,是一道综合题. 22.(1)16;(2)分布列见解析;期望为20348. 【分析】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,然后利用互斥事件概率的求解方法求解即可.(2)随机变量X 的可能取值为:0,1,2,3,5,6,求出概率,列出分布列,然后求解期望. 【详解】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,由题意可知()23P D =,()()34P E P F ==.由于C DEF DEF DEF =++,()()21111313134434413446P C P DEF DEF DEF =++=⨯⨯+⨯⨯+⨯⨯=.(2)随机变量X 的可能取值为:0,1,2,3,5,6.()1111034448P X ==⨯⨯=()2111134424P X ==⨯⨯=()12113123448P X C ==⨯⨯⨯=()12231334144P X C ==⨯⨯⨯=()1333534416P X ==⨯⨯=()233363448P X ==⨯⨯=()48E X =. 【点睛】 关键点点睛:古典概型及其概率计算公式的应用,求离散型随机变量的分布列及其期望的求法,解题的关键为正确求出X =0,1,2,3,5,6,所对应的概率. 23.(1)12;(2)47;(3)分布列答案见解析,数学期望:216. 【分析】(1)根据频率分布直方图,利用平均数求解. (2)根据()2~12,2N ξ,由(1418)P ξ<<1[(618)(1014)]2P P ξξ=<<-<<求得概率,然后再乘以300求解.(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,易得X 的可能取值为0,100,200,300,400,分别求得其相应的概率,列出分布例,再求期望. 【详解】 (1)依题意得0.0150.0170.0890.5811x =⨯+⨯+⨯+⨯0.22130.06150.03170.011911.6812+⨯+⨯+⨯+⨯=≈.(2)因为()2~12,2N ξ,所以(1418)(1221232)P P ξξ<<=+<<+⨯,1[(618)(1014)]0.15732P P ξξ=<<-<<≈ 所以走路步数(14,18)ξ∈的总人数为3000.157347⨯≈.(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1. 由题意知X 的可能取值为0,100,200,300,400.2(0)0.020.0004P X ===;12(100)0.020.880.0352P X C ==⨯⨯=; 122(200)0.020.10.880.7784P X C ==⨯⨯+=;12(300)0.10.880.176P X C ==⨯⨯=;2(400)0.10.01P X ===.所以X 的分布列为.【点睛】方法点睛:(1)求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.(2)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识. 24.(1)1728;(2)分布列见解析,()34E X =. 【分析】(1)先求出抽出的3人都不满意的概率,再利用对立事件的概率公式即可求解; (2)X 的所有可能取值为0,1,2,3则13,4X B ⎛⎫~ ⎪⎝⎭,利用二项分布的概率公式求出每一个X 的取值对应的概率,即可列出X 的分布列求出数学期望.【详解】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫=== ⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=. 【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤: (1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算) 25.(1)49;(2)分布列答案见解析,数学期望:13445. 【分析】(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B ,“小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 则有A BCD BCD BCD =++,由互斥事件与独立事件的概率公式可得;(2)随机变量X 的取值可能为0,1,2,3,5,求出它们的概率可得分布列,由期望公式可计算出期望.【详解】解:(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B ,“小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 由题意可知3()5P B =,2()()3P C P D ==, 由于A BCD BCD BCD =++, ∴3213122224()()5335335339P A P BCD BCD BCD =++=⨯⨯+⨯⨯+⨯⨯=, 故甲同学恰好命中一次的概率为49. (2)X =0,1,2,3,5. 2212(0)5345P X ⎛⎫==⨯= ⎪⎝⎭,122218(1)53345P X C ==⨯⨯⨯=, 2311(2)5315P X ⎛⎫==⨯= ⎪⎝⎭,123212224(3)5335339P X C ==⨯⨯⨯+⨯⨯=, 2324(5)5315P X ⎛⎫==⨯= ⎪⎝⎭,()0123545451591545E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】 本题考查互斥事件与相互独立事件的概率公式,考查随机变量的概率分布列和数学期望,解题关键是把事件“小华恰好命中两次”拆成一些互斥事件的和,确定随机变量的可能值并计算出概率.26.19218【分析】根据条件概率和全概率公式可求得结果.【详解】因为()|0.95P A C =,所以()|1P A C =-()|0.05P A C =,。

数学-随机变量及其分布 试题版

数学-随机变量及其分布 试题版

第七章随机变量及其分布目录第七章随机变量及其分布 27.1条件概率与全概率公式 27.1.1条件概率 27.1.2全概率公式 3习题7.1 47.2离散型随机变量及其分布列 5习题7.2 67.3离散型随机变量的数字特征 77.3.1离散型随机变量的均值 77.3.2离散型随机变量的方差 9习题7.3 107.4二项分布与超几何分布 117.4.1二项分布 117.4.2超几何分布 13习题7.4 147.5正态分布 15习题7.5 16复习参考题7 17随机变量及其分布7.1条件概率与全概率公式7.1.1条件概率思考原理一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B∣A)=P(AB) P(A)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率(conditional probability ).思考原理由条件概率的定义,对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)P(B∣A)我们称上式为概率的乘法公式(multiplication formula).1在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,抽出的题不再放回.求:(1)第1次抽到代数题目第2次抽到几何题的概率;(2)在第1次抽到代数题的条件下,第2次抽到几何题的概率.2已知3张奖券中只有1张有奖,甲、乙、丙3名同学依次无放回地各抽一张.他们中奖的概率与抽奖的次序有关吗?3银行储蓄卡的密码由6位数字组成.某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,求:(1)任意按最后1位数字,不超过2次就按对的概率;(2)如果记得密码的最后1位是偶数,不超过2次就按对的概率.练习1.设A⊆B,且P(A)=0.3,P(B)=0.6.根据事件包含关系的意义及条件概率的意义,直接写出P(B∣A)和P(A∣B)的值再由条件概率公式进行验证.2.从一副不含大小王的52张扑克牌中,每次从中随机抽出1张扑克牌,抽出的牌不再放回.已知第1次抽到A牌,求第2次抽到A牌的概率.3.袋子中有10个大小相同的小球,其中7个白球,3个黑球.每次从袋子中随机摸出1个球,摸出的球不再放回.求:(1)在第1次摸到白球的条件下,第2次摸到白球的概率;(2)两次都摸到白球的概率.7.1.2全概率公式探究公式一般地,设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,有P (B )=ni =1 P A i P B ∣A i .我们称上面的公式为全概率公式(t otalprobability formula ).4某学校有A ,B 两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A 餐厅,那么第2天去A 餐厅的概率为0.6;如果第1天去B 餐厅,那么第2天去A 餐厅的概率为0.8.计算王同学第2天去A 餐厅用餐的概率.5有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率;(2)如果取到的零件是次品,计算它是第式£=1,2,3)台车床加工的概率.探究公式贝叶斯公式(Bayes formula ):设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,贝叶斯公式是由英国数学家贝叶斯(T .Bayes ,1702-1761)发现的,它用来描述两个条件概率之间的关系.P (B )>0,有P A i ∣B =P A i P B ∣A iP (B )=P A i P B ∣A ink =1P A k P B ∣A k,i =1,2,⋯,n6在数字通信中心信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.(1)分别求接收的信号为0和1的概率;(2)已知接收的信号为0,求发送的信号是1的概率.练习1.现有12道四选一的单选题,学生张君对其中9道题有思路,3道题完全没有思路.有思路的题做对的概率为0.9,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25.张君从这12道题中随机选择1题,求他做对该题的概率.2.两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取1件.(1)求这件产品是合格品的概率;(2)已知取到的是合格品,求它取自第一批产品的概率.习题7.1复习巩固1.为了研究不同性别学生患色盲的比例,调查了某学校2000名学生,数据如下表所示.男女合计色盲60262非色盲11407981938合计12008002000从这2000人中随机选择1个人.(1)已知选到的是男生,求他患色盲的概率;(2)已知选到的学生患色盲,求他是男生的概率.2.从人群中随机选出1人,设B=“选出的人患有心脏病”,C=“选出的人是年龄大于50岁的心脏病患者”,请你判断P(B)和P(C)的大小,并说明理由.3.甲、乙两人同时向一目标射击,已知甲命中目标的概率为0.6,乙命中目标的概率为0.5.已知目标至少被命中1次,求甲命中目标的概率.4.甲和乙两个箱子中各装有10个球,其中甲箱中有5个红球、5个白球,乙箱中有8个红球、2个白球.掷一枚质地均匀的骰子,如果点数为1或2,从甲箱子随机摸出1个球;如果点数为3,4,5,6,从乙箱子中随机摸出1个球.求摸到红球的概率.5.在A、B、C三个地区爆发了流感,这三个地区分别有6%、5%、4%的人患了流感假设这三个地区的人口数的比为5:7:8,现从这三个地区中任意选取一个人.(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A地区的概率.6.已知P(A)>0,P(B)>0,P(B∣A)=P(B),证明:P(A∣B)=P(A).综合运用7.一批产品共有100件,其中5件为不合格品.收货方从中不放回地随机抽取产品进行检验,并按以下规则判断是否接受这批产品:如果抽检的第1件产品不合格,则拒绝整批产品;如果抽检的第1件产品合格,则再抽1件,如果抽检的第2件产品合格,则接受整批产品,否则拒绝整批产品.求这批产品被拒绝的概率.8.在孟德尔豌豆试验中,子二代的基因型为DD、Dd、dd,其中D为显性基因,d为隐性基因,且这三种基因型的比为1:2:1.如果在子二代中任意选取2颗豌豆作为父本杂交,那么子三代中基因型为dd的概率是多大?9.证明条件概率的性质(1)和(2).拓广探索10.证明:当P(AB)>0时,P(ABC)=P(A)P(B∣A)P(C∣AB).据此你能发现计算P A1A2⋅⋅⋅A n的公式吗?7.2离散型随机变量及其分布列思考原理一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X (ω)与之对应,我们称X 为随机变量(random var iable ).思考原理可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量(discrete random var iable ).通常用大写英文字母表示随机变量,例如X ,Y ,Z ;用小写英文字母表示随机变量的取值,例如x ,y ,z .思考原理一般地,设离散型随机变量X 的可能取值为x 1,x 2,⋯,x n ,我们称X 取每一个值x i 的概率P X =x i =p i ,i =1,2,⋯,n为X 的概率分布列(list of probability distribution ),简称分布列.探究公式对于只有两个可能结果的随机试验,用A 表示“成功”,A表示“失败”,定义X =1,A 发生,0,A发生.如果P (A )=p ,则P (A)=1-p ,那么X 的分布列如表7.2-3所示.表7.2-3X 01P1-pp我们称X 服从两点分布(two -po int distribution )或0-1分布.1一批产品中次品率为5%,随机抽取1件,定义X =1,抽到次品,0,抽到正品. 求X 的分布列.2某学校高二年级有200名学生,他们的体育综合测试成绩分5个等级,每个等级对应的分数和人数如表7.2-4所示.表7.2-4等级不及格及格中等良优分数12345人数2050604030从这200名学生中任意选取1人,求所选同学分数X 的分布列,以及P (X ≥4).3一批笔记本电脑共有10台,其中A 品牌3台,B 品牌7台.如果从中随机挑选2台,求这2台电脑中A 品牌台数的分布列.练习1.举出两个离散型随机变量的例子.2.下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)抛掷2枚骰子,所得点数之和;(2)某足球队在5次点球中射进的球数;(3)任意抽取一瓶标有1500mL的饮料,其实际含量与规定含量之差.3.篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,求他罚球1次的得分的分布列.4.抛掷一枚质地均匀的硬币2次,写出正面向上次数X的分布列.习题7.2复习巩固1.张同学从学校回家要经过4个红绿灯路口,每个路口可能遇到红灯或绿灯.(1)写出随机试验的样本空间;(2)设他可能遇到红灯的次数为X,写出X的可能取值,并说明这些值所表示的随机事件.2.某位同学求得一个离散型随机变量的分布列为:X0123P0.20.30.150.45试说明该同学的计算结果是否正确.3.在某项体能测试中,跑1km时间不超过4min为优秀.某位同学跑1km所花费的时间X是离散型随机变量吗?如果只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?4.某位射箭运动员命中目标的环数X的分布列为:X678910P0.050.150.250.350.20如果命中9环或10环为优秀,那么他一次射击成绩为优秀的概率是多少?综合运用5.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格,某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列;(2)他能及格的概率.6.某种资格证考试,每位考生一年内最多有3次考试机会.一旦某次考试通过,便可领取资格证书.不再参加以后的考试,否则就继续参加考试,直到用完3次机会.李明决定参加考试,如果他每次参加考试通过的概率依次为0.6,0.7,0.8,且每次考试是否通过相互独立,试求:(1)李明在一年内参加考试次数X的分布列;(2)李明在一年内领到资格证书的概率.7.3离散型随机变量的数字特征7.3.1离散型随机变量的均值探究公式一般地,若离散型随机变量X的分布列如表7.3-2所示,表7.3-2X x1x2⋯x nP p1p2⋯p n则称E(X)=x1p1+x2p2+⋯+x n p nn=x i p ii=1为随机变量X的均值(m ean)或数学期望(mathematical exp ectation),数学期望简称期望.1在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.8.那么他罚球1次的得分X的均值是多少?2抛掷一枚质地均匀的骰子,设出现的点数为X,求X的均值.3猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如表7.3-3所示.表7.3-3歌曲A B:C 猜对的概率0.80.60.4获得的公益基金额/元100020003000规则如下:按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首.求嘉宾获得的公益基金总额X的分布列及均值.探究公式一般地,下面的结论成立:E(aX+b)=aE(X)+b.4根据天气预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60600元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案:方案1运走设备,搬运费为3800元;方案2建保护围墙,建设费为2000元,但围墙只能防小洪水;方案3不采取措施.工地的领导该如何决策呢?练习1.已知随机变量X的分布列为:X12345P0.10.30.40.10.1(1)求E(X);(2)求E(3X+2).2.抛掷一枚硬币,规定正面向上得1分,反面向上得-1分,求得分X的均值.3.甲、乙两台机床生产同一种零件,它们生产的产量相同,在1h内生产出的次品数分别为X1,X2其分布列分别为:甲机床次品数的分布列X10123P0.40.30.20.1乙机床次品数的分布列X2012P0.30.50.2哪台机床更好?请解释你所得出结论的实际含义?7.3.2离散型随机变量的方差探究公式我们称D (X )=x 1-E (X ) 2p 1+x 2-E (X ) 2p 2+⋯+x n -E (X ) 2p n=ni =1 x i -E (X ) 2p i为随机变量X 的方差(va r iance ),有时也记为V ar (X ),并称D (X )为随机变量X 的标准差(s ta n dard deviation ),记为σ(X ).探究公式在方差的计算中,利用下面的结论经常可以使计算简化.D (X )=ni =1 x i -E (X ) 2p i=n i =1 x 2i -2E (X )x i +(E (X ))2p i=ni =1x 2i p i -2E (X )ni =1x i p i +(E (X ))2ni =1p i=ni =1x 2i p i -(E (X ))2.5抛掷一枚质地均匀的骰子,求掷出的点数X 的方差.6投资A ,B 两种股票,每股收益的分布列分别如表7.3-9和表7.3-10所示.表7.3-9股票A 收益的分布列收益X /元-102概率0.10.30.6表7.3-10股票B 收益的分布列收益Y /元012概率0.30.40.3(1)投资哪种股票的期望收益大?(2)投资哪种股票的风险较高?练习1.已知随机变量X 的分布列为:X 1234P0.20.30.40.1求D (X )和σ(2X +7).2.若随机变量X 满足P (X =c )=1,其中c 为常数,求D (X ).3.甲、乙两个班级同学分别目测数学教科书的长度,其误差(精确到1cm )X 和Y 的分布列如下:甲班的目测误差分布列X-2-1012P0.10.20.40.20.1乙班的目测误差分布列Y-2-1012P0.050.150.60.150.05先直观判断X和Y的分布哪一个离散程度大,再分别计算X和Y的方差,验证你的判断.!习题7.3复习巩固1.某品牌手机投放市场,每部手机可能发生按定价售出、打折后售出、没有售出而收回三种情况.按定价售出每部利润100元,打折后售出每部利润0元,没有售出而收回每部利润-300元.据市场分析,发生这三种情况的概率分别为0.6,0.3,0.1.求每部手机获利的均值和方差.2.现要发行10000张彩票,其中中奖金额为2元的彩票1000张,10元的彩票300张,50元的彩票100张,100元的彩票50张,1000元的彩票5张.1张彩票可能中奖金额的均值是多少元?3.随机变量X的分布列为P(X=0)=0.2,P(X=1)=a,P(X=2)=b,若E(X)=1,求a和b.4.在单项选择题中,每道题有4个选项,其中仅有一个选项正确.如果从四个选项中随机选一个,选对的概率为0.25.请给选对和选错分别赋予合适的分值,使得随机选择时得分的均值为0.5.证明:D(aX+b)=a2D(X).综合运用6.有A和B两道谜语,张某猜对A谜语的概率为0.8,猜对得奖金10元;猜对B谜语的概率为0.5,猜对得奖金20元,规则规定:只有在猜对第一道谜语的情况下,才有资格猜第二道.如果猜谜顺序由张某选择,他应该选择先猜哪一道谜语?7.甲、乙两种品牌的手表,它们的日走时误差分别为X和Y(单位:s),其分布列为:甲品牌的走时误差分布列X-101P0.10.80.1乙品牌的走时误差分布列Y-2-1012P0.10.20.40.20.1试比较甲、乙两种品牌手表的性能.拓广探索8.设E(X)=μ,a是不等于μ的常数,探究X相对于μ的偏离程度与X相对于a的偏离程度的大小,并说明结论的意义.7.4二项分布与超几何分布7.4.1二项分布思考原理我们把只包含两个可能结果的试验叫做伯努利试验(Bernoulli trials ).思考原理我们将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验.显然,n 重伯努利试验具有如下共同特征:(1)同一个伯努利试验重复做n 次;(2)各次试验的结果相互独立.探究公式一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,⋯,n如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布(binomialdistribution ),记作X ∼B (n ,p ).1将一枚质地均匀的硬币重复抛掷10次,求:(1)恰好出现5次正面朝上的概率;(2)正面朝上出现的频率在0.4,0.6 内的概率.2如图是一块高尔顿板的示意图.在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中.格子从左到右分别编号为0,1,2,⋯,10,用X 表示小球最后落入格子的号码,求X 的分布列.3甲、乙两选手进行象棋比赛,如果每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,那么采用3局2胜制还是采用5局3胜制对甲更看利?归纳一般地,确定一个二项分布模型的步骤如下:(1)明确伯努利试验及事件A的意义,确定事件A发生的概率p;(2)确定重复试验的次数n,并判断各次试验的独立性;(3)设X为n次独立重复试验中事件A发生的次数,则X∼B(n,p).探究公式一般地,可以证明:如果X∼B(n,p),那么E(X)=np,D(X)=np(1-p).练习1.将一枚质地均匀的硬币连续抛掷4次,X表示“正面朝上”出现的次数.(1)求X的分布列;(2)E(X)=,D(X)=.2.鸡接种一种疫苗后,有80%不会感染某种病毒.如果5只鸡接种了疫苗,求:(1)没有鸡感染病毒的概率;(2)恰好有1只鸡感染病毒的概率.3.判断下列表述正确与否,并说明理由:(1)12道四选一的单选题,随机猜结果,猜对答案的题目数X~B(12,0.25);(2)100件产品中包含10件次品,不放回地随机抽取6件,其中的次品数Y~B(6,0.1).4.举出两个服从二项分布的随机变量的例子.7.4.2超几何分布探究公式一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X 表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C k M C n-k N-kC n N,k=m,m+1,m+2,⋯,r其中n,N,M∈N∗,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布(hypergeometric distribution).探究公式随机变量X服从超几何分布,则E(X)=nM N4从50名学生中随机选出5名学生代表,求甲被选中的概率.5一批零件共有30个,其中有3个不合格.随机抽取10个零件进行检测,求至少有1件不合格的概率.6一个袋子中有100个大小相同的球,其中有40个黄球、60个白球,从中随机地摸出20个球作为样本.用X表示样本中黄球的个数.(1)分别就有放回摸球和不放回摸球,求X的分布列;(2)分别就有放回摸球和不放回摸球,用样本中黄球的比例估计总体中黄球的比例,求误差不超过0.1的概率:练习1.一箱24罐的饮料中4罐有奖券,每张奖券奖励饮料一罐,从中任意抽取2罐,求这2罐中有奖券的概率.2.学校要从12名候选人中选4名同学组成学生会,已知有4名候选人来自甲班.假设每名候选人都有相同的机会被选到,求甲班恰有2名同学被选到的概率.3.举出两个服从超几何分布的随机变量的例子.习题7.4复习巩固1.抛掷一枚骰子,当出现5点或6点时,就说这次试验成功,求在30次试验中成功次数X的均值和方差.2.若某射手每次射击击中目标的概率为0.9,每次射击的结果相互独立,则在他连续4次的射击中,恰好有一次未击中目标的概率是多大.3.如图,一个质点在随机外力的作用下,从原点0出发,每隔1s等可能地向左或向右移动一个单位,共移动6次.求下列事件的概率.(1)质点回到原点;(2)质点位于4的位置.4.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有2张A牌的概率(精确到0.00001).综合运用5.某射手每次射击击中目标的概率为0.8,共进行10次射击,求(精确到0.01):(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.6.有一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同,一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率(精确到0.001).7.一个车间有3台车床,它们各自独立工作.设同时发生故障的车床数为X,在下列两种情形下分别求X的分布列.(1)假设这3台车床型号相同,它们发生故障的概率都是20%;(2)这3台车床中有A型号2台,B型号1台,A型车床发生故障的概率为10%,B型车床发生故障的概率为20%.拓广探索8.某药厂研制一种新药,宣称对治疗某种疾病的有效率为90%.随机选择了10个病人,经过使用该药治疗后,治愈的人数不超过6人,你是否怀疑药厂的宣传.7.5正态分布思考原理取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续型随机变量(continuous random var iable).思考原理对任意的x∈R,f(x)>0,它的图象在x轴的上方.可以证明x轴和曲线之间的区域的面积为1.我们称f(x)为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如图7.5-4所示.若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布(normal distribution ),记为X∼Nμ,σ2.特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.思考原理由X的密度函数及图象可以发现,正态曲线还有以下特点:(1)曲线是单峰的,它关于直线x=μ对称;(2)曲线在x=μ处达到峰值1;σ2π(3)当|x|无限增大时,曲线无限接近x轴.探究公式若X∼Nμ,σ2,则E(X)=μ,D(X)=σ2.1李明上学有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30min,样本方差为36;骑自行车平均用时34min,样本方差为4.假设坐公交车用时X和骑自行车用时Y都服从正态分布.(1)估计X,Y的分布中的参数;(2)根据(1)中的估计结果,利用信息技术工具画出X和Y的分布密度曲线;(3)如果某天有38min可用,李明应选择哪种交通工具?如果某天只有34min可用,又应该选择哪种交通工具?请说明理由.练习1.设随机变量X~N(0,1),则X的密度函数为,P X≤0≈,P X ≤1≈,P X≤1≈,P(X>1)≈.(精确到0.0001.)2.设随机变量X~N0,22,随机变量Y~N0,32,画出分布密度曲线草图,并指出P(X≤-2)与P(X≤2)的关系,以及P(|X|≤1)与P(|Y|≤1)之间的大小关系.3.举出两个服从正态分布的随机变量的例子.习题7.5复习巩固1.对某地区数学考试成绩的数据分析,男生成绩X服从正态分布N72,82,女生成绩Y服从正态分布N74,62.请你从不同角度比较男、女生的考试成绩.2.某市高二年级男生的身高X(单位:cm)近似服从正态分布N170,52,随机选择一名本市高二年级的男生,求下列事件的概率:(1)165<X≤175;(2)X≤165;(3)X>175.3.若X~Nμ,σ2,则X位于区域[μ,μ+σ]内的概率是多少?综合运用4.袋装食盐标准质量为400g,规定误差的绝对值不超过4g就认为合格.假设误差服从正态分布,随机抽取100袋食盐,误差的样本均值为0,样本方差为4.请你估计这批袋装食盐的合格率.复习参考题7复习巩固1.举例说明P(B)与P(B∣A)没有确定的大小关系.2.抛掷两枚质地均匀的骰子,求:(1)两个点数都出现偶数的概率;(2)已知第一枚骰子的点数是偶数的条件下,第二枚骰子的点数也是偶数的概率.3.假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件.(1)求取出的零件是次品的概率;(2)已知取出的是次品,求它是从第一箱取出的概率.4.已知离散型随机变量X的分布列如下表所示:X012P0.361-2q q2求:(1)常数q的值;(2)E(X)和D(X).5.已知随机变量X取可能的值1,2,⋯,n是等可能的,且E(X)=10,求n的值.6.已知每门大炮击中目标的概率都是0.3,现存n门大炮同时对某一目标各射击一次.(1)当n=10时,求恰好击中目标3次的概率(精确到0.001);(2)如果使目标至少被击中一次的概率超过95%,至少需要多少门大炮?综合运用7.长时间玩手机可能影响视力.据调查,某校学生大约40%的人近视,而该校大约有20%的学生每天玩手机超过1h,这些人的近视率约为50%.现从每天玩手机不超过1h的学生中任意调查一名学生,求他近视的概率.8.某商场要在国庆节开展促销活动,促销活动可以在商场内举行,也可以在商场外举行.统计资料表明,每年国庆节商场内的促销活动可获得利润2万元;商场外的促销活动,如果不遇到有雨天气可获得利润8万元,如果遇到有雨天气则会带来经济损失3万元.9月30日气象台预报国庆节当地的降水概率是40%,商场应该选择哪种促销方式?9.一份某种意外伤害保险费为20元,保险金额为50万元.某城市的一家保险公司一年能销售10万份保单,而需要赔付的概率为10-5.利用计算工具求(精确到0.0001):(1)这家保险公司亏本的概率;(2)这家保险公司一年内获利不少于100万元的概率.拓广探索10.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,求n次传球后球在甲手中的概率.11.某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者.假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验.如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就。

(压轴题)高中数学选修三第二单元《随机变量及其分布》测试(包含答案解析)(1)

(压轴题)高中数学选修三第二单元《随机变量及其分布》测试(包含答案解析)(1)

一、选择题1.2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .351282.在市高二下学期期中考试中,理科学生的数学成绩()2~90,X N σ,已知(7090)0.35P X <=,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为( ) A .0.15B .0.50C .0.70D .0.853.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52274.设103p <<,随机变量ξ的分布列如下: ξ1当p 在10,3⎛⎫ ⎪⎝⎭内增大时,下列结论正确的是( ) A .()D ξ减小 B .()D ξ增大 C .()D ξ先减小后增大D .()D ξ先增大后减小5.某种疾病的患病率为0.5%,已知在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为( ) A .0.495%B .0.940 5%C .0.999 5%D .0.99%6.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为( ) A .110B .14C .310D .257.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( ) A .8225B .12C .38D .348.已知随机变量i X 满足()1i i P X p ==,()01,1,2i i P X p i ==-=,若21211p p <<<,则( ) A .()()12E X E X < , ()()12D X D X < B .()()12E X E X > , ()()12D X D X < C .()()12E X E X < , ()()12D X D X > D .()()12E X E X > , ()()12D X D X >9.一个口袋中装有若干个除颜色外都相同的黑色、白色的小球,从中取出一个小球是白球的概率为35,连续取出两个小球都是白球的概率为25,已知某次取出的小球是白球,则随后一次取出的小球为白球的概率为( )A .35B .23C .25D .1510.已知离散型随机变量X 的分布列如下:由此可以得到期望()E X 与方差()D X 分别为( ) A .() 1.4E X =,()0.2D X = B .()0.44E X =,() 1.4D X = C .() 1.4E X =,()0.44D X =D .()0.44E X =,()0.2D X =11.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.8,0.5,现已知目标被击中,则它是被甲击中的概率是( ) A .0.8B .0.9C .58D .8912.已知随机变量ξ服从正态分布()21,N σ,若()20.66P ξ≤=,则()0P ξ≤=( )A .0.84B .0.68C .0.34D .0.16二、填空题13.一批产品的一等品率为0.9,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的一等品件数,则D()X =__________。

(必考题)高中数学选修三第二单元《随机变量及其分布》测试(答案解析)(4)

(必考题)高中数学选修三第二单元《随机变量及其分布》测试(答案解析)(4)

一、选择题1.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .72.将两颗骰子各掷一次,设事件A =“两个点数都不相同”,B =“至少出现一个5点”,则概率()P A B =( ) A .1011B .511C .518D .5363.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则D X 的最大值为( ) A .29B .59C .34D .234.设01p <<,随机变量ξ的分布列是则当p 在()0,1内变化时,( ) A .()D ξ增大 B .()D ξ减小 C .()D ξ先增大后减小 D .()D ξ先减小后增大5.已知随机变量()2,1XN ,其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( ) 附:若随机变量()2,N ξμσ,则()0.6826P μσξμσ-≤≤+=,()220.9544P μσξμσ-≤≤+=.A.0.1359 B.0.7282 C.0.6587 D.0.86416.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A.12B.25C.35D.457.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是()A.17B.18C.114D.3148.在一个袋子中装有6个除颜色外完全相同的球,设有1个红球,2个黄球,3个黑球,从中依次不放回地抽取2个球,则在第一个球是红球的条件下,第二个球是黄球的概率为()A.15B.25C.35D.459.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A,2A,3A表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B表示由乙罐取出的球是红球的事件,下列结论中不正确...的是()A.事件B与事件1A不相互独立B.1A,2A,3A是两两互斥的事件C.()3 5P B=D.()17|11P B A=10.已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲,乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则Eξ=()A.145B.135C.73D.8311.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A.14B.13C.12D.112.将两枚骰子各掷一次,设事件A={两个点数都不相同},B={至少出现一个3点},则(|)P B A=()A .13B .518C .1011D .12二、填空题13.一位篮球运动员投篮一次得3分概率为a ,得2分概率为b ,不得分概率为c ,(),,0,1a b c ∈.若他投篮一次得分的期望为1,则12a b+的最小值为______.14.甲、乙等4人参加4100⨯米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是______.15.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中胜的概率为23,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了3局的概率为______.16.已知离散型随机变量X 的分布列如下表所示.若()()0,1E X D X ==,则a b -的值为__________.17.已知X 服从二项分布()100,0.2B ,则()32E X --= ________.18.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80<ξ<120)=0.70,若按成绩分层抽样的方式取100份试卷进行分析.则应从120分以上的试卷中抽取________份.三、解答题19.魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974 年发明的.魔方与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议,而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,为333⨯⨯的正方体结构,由26个色块组成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.截至2020年,三阶魔方还原官方世界纪录是由中国的杜宇生在2018年11月24日于芜湖赛打破的纪录,单次3.475秒.(1)某魔方爱好者进行一段时间的魔方还原训练,每天魔方还原的平均速度y (秒) 与训练天数x (天)有关,经统计得到如下数据:y (秒)99 99 4532 3024 21现用y a x=+作为回归方程类型,请利用表中数据,求出该回归方程,并预测该魔方爱好者经过长期训练后最终每天魔方还原的平均速度y 约为多少秒(精确到1) ?参考数据(其中1i iz x =) 71i ii z y =∑z72217i i zz =-⨯∑184.50.37 0.55对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆva u β=+的斜率和截距的最小二乘估计公式分别为:1221ˆˆˆ,ni i i nii u vnuv av u unu ββ==-==--∑∑. (2)现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面.某人按规定将魔方随机扭动两次,每次均顺时针转动90︒,记顶面白色色块的个数为X ,求X 的分布列及数学期望()E X .20.为了推进分级诊疗,实现“基层首诊,双向转诊,急慢分治、上下联动”的诊疗模式,某地区自2016年起全面推行家庭医生签约服务.已知该地区居民约为2000万.从1岁到101岁的居民年龄结构的频率分布直方图如图甲所示.为了解各年龄段居民签约家庭医生的情况,现调查了1000名年满18周岁以上的居民,各年龄段被访者签约率如图乙所示.(1)估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)若以图中年龄在71~80岁居民签约率作为此地区该年龄段每个居民签约家庭医生的概率,则从该地区年龄在71~80岁居民中随机抽取三人,以已签约家庭医生的居民为变量X,求这三人中恰有二人已签约家庭医生的概率;并求变量X的数学期望和方差.21.某企业为了解职工A款APP和B款APP的用户量情况,对本单位职工进行简单随机抽样,获得数据如下表:男职工女职工使用不使用使用不使用A款APP72人48人40人80人B款APP60人60人84人36人(1)分别估计该企业男职工使用A款APP的概率、该企业女职工使用A款APP的概率;(2)从该企业男,女职工中各随机抽取1人,记这2人中使用A款APP的人数为X,求X的分布列及数学期望;(3)据电商行业发布的市场分析报告显示,A款APP的用户中男性占52.04%、女性占47.96%;B款APP的用户中男性占38.92%、女性占61.08%.试分析该企业职工使用A款APP的男、女用户占比情况和使用B款APP的男、女用户占比情况哪一个与市场分析报告中的男、女用户占比情况更相符.22.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表:送餐单数3839404142天数101510105送餐单数 38 39 40 41 42 天数51010205(1)记乙公司送餐员日工资为X (单位:元),求X 的分布列和数学期望;(2)小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.23.某单位有车牌尾号为2的汽车A 和尾号为6的汽车B ,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率0.6,B 车日出车频率0.5.该地区汽车限行规定如下: 车尾号 0和51和62和73和84和9限行日 星期一 星期二 星期三 星期四 星期五. (1)求该单位在星期一恰好出车一台的概率;(2)设X 表示该单位在星期一与星期二两天的出车台数之和,求X 的分布列及其数学期望()E X .24.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.25.某种子公司培育了一个豌豆的新品种,新品种豌豆豆荚的长度比原来有所增加,培育人员在一块田地(超过1亩)种植新品种,采摘后去掉残次品,将剩下的豆荚随机按每20个一袋装袋密封.现从中随机抽取5袋,测量豌豆豆荚的长度(单位:dm ),将测量结果按)0.6,0.8⎡⎣,)0.8,1.0⎡⎣,)1.0,1.2⎡⎣,)1.2,1.4⎡⎣,[]1.41.6,分为5组,整理得到如图所示的频率分布直方图.(1)求a 的值并估计这批新品种豌豆豆荚长度的平均数x -(不含残次品,同一组中的数据用该组区间的中点值作代表);(2)假设这批新品种豌豆豆荚的长度X 服从正态分布()2,N μσ,其中μ的近似值为豌豆豆荚长度的平均数x -,0.23σ=,试估计采摘的100袋新品种豌豆豆荚中,长度位于区间()0.88,1.57内的豆荚个数;(3)如果将这批新品种豌豆中豆荚长度超过1.4dm 的豆荚称为特等豆荚,以频率作为概率,随机打开一袋新品种豌豆豆荚,记其中特等豆荚的个数为ξ,求1ξ≤的概率和ξ的数学期望.附:19170.04620⎛⎫≈ ⎪⎝⎭,若随机变量()2,X N μσ,则()0.6827P X μσμσ-<<+=,(22)0.9545P X μσμσ-<<+=.26.为研究一种新药的耐受性,要对白鼠进行连续给药后观察是否出现F 症状的试验,该试验的设计为:对参加试验的每只白鼠每天给药一次,连续给药四天为一个给药周期,试验共进行三个周期.假设每只白鼠给药后当天出现F 症状的概率均为13,且每次给药后是否出现F 症状与上次给药无关.(1)从试验开始,若某只白鼠连续出现2次F 症状即对其终止试验,求一只白鼠至少能参加一个给药周期的概率;(2)若在一个给药周期中某只白鼠至少出现3次F 症状,则在这个给药周期后,对其终止试验,设一只白鼠参加的给药周期数为X ,求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.【详解】 根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.故选:B. 【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.2.A解析:A 【分析】根据条件概率的含义,(A |B)P 其含义为在B 发生的情况下,A 发生的概率,即在“至少出现一个5点”的情况下,“两个点数都不相同”的概率,分别求得“至少出现一个5点”与“两个点数都不相同”的情况数目,进而相比可得答案. 【详解】根据条件概率的含义,(A |B)P 其含义为在B 发生的情况下,A 发生的概率, 即在“至少出现一个5点”的情况下,“两个点数都不相同”的概率, “至少出现一个5点”的情况数目为665511⨯-⨯=, “两个点数都不相同”则只有一个5点,共12510C ⨯=种, 故10(|)11P A B =. 故选:A . 【点睛】本题考查条件概率,注意此类概率计算与其他的不同,(A |B)P 其含义为在B 发生的情况下,A 发生的概率.3.D解析:D 【分析】分别运用等差数列的中项性质和概率的性质,以及离散型随机变量的期望和方差公式,结合二次函数的最值求法,可得所求最大值. 【详解】解:因为a ,b ,c 成等差数列,∴2b a c =+,∵1a b c ++=,∴13b =,23c a =-, ∴()823E X a =-,2422()4969833E X a b c a a a =++=++-=-则()()()22D XE XE X =-22821224439333a a a ⎛⎫=-++=--+≤ ⎪⎝⎭,当13a b c ===时取等号. 则()D X 的最大值为23. 故选:D. 【点睛】本题考查离散型随机变量的期望和方差的求法,考查等差数列的中项性质,考查运算求解能力,考查函数与方程思想,属于中档题.4.A解析:A 【分析】计算出()E ξ和()2E ξ,根据()()()22D E E ξξξ=-将()D ξ表示成关于p 的函数,研究函数的单调性即可得出结论. 【详解】()()()()222112nni i i i i i i D E p E E p ξξξξξξξ==⎡⎤=-⋅=-+⋅⎡⎤⎣⎦⎣⎦∑∑()()()()()()()2222222122ni i i i i p p E E E E E E E ξξξξξξξξξ=⎡⎤=-+=-+=-⎣⎦∑, 由分布列得()1111012222p p p E ξ--=-⨯+⨯+⨯=,()211110222p p p E ξ+-+=⨯+⨯=, 所以,()()()()222221111152224444p p D E E p p p ξξξ+-⎛⎫=-=-=-++=--+ ⎪⎝⎭,所以,当()0,1p ∈时,()D ξ随着p 的增大而增大. 故选:A. 【点睛】本题考查离散型随机变量的期望和方差,考查二次函数的单调性,属于中等题.5.D解析:D 【分析】根据正态分布密度曲线的对称性和性质,再利用面积比的几何概型求解概率,即得解. 【详解】由题意,根据正态分布密度曲线的对称性,可得:()()1(01)(22)0.13592P X P P μσξμσμσξμσ≤≤=-≤≤+--≤≤+=故所求的概率为10.13590.86411P -==, 故选:D 【点睛】本题考查了正态分布的图像及其应用,考查了学生概念理解,转化与划归的能力,属于基础题.6.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.7.A解析:A 【分析】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择,计算()P AB 和()P A ,再利用条件概率公式得到答案.【详解】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择331()39P AB == 3337()139A P A =-=()1()()7P AB P B A P A == 故答案选A 【点睛】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.8.B解析:B 【分析】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,所求概率为()()()|P AB P B A P A =,求解即可.【详解】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,则()16P A =,()1216515P AB =⨯=,则所求概率为()()()25P AB P B A P A |==. 故选B. 【点睛】本题考查了条件概率的计算,考查了学生对条件概率知识的掌握,属于基础题.9.C解析:C 【分析】依次判断每个选项得到答案. 【详解】A.乙罐取出的球是红球的事件与前面是否取出红球相关,正确B. 1A ,2A ,3A 两两不可能同时发生,正确C. ()5756131011101122P B =⨯+⨯=,不正确 D. ()11117()7211|1()112P BA P B A P A ⨯===,正确 故答案选C【点睛】本题考查了独立事件,互斥事件,条件概率,综合性强,意在考查学生的综合应用能力和计算能力.10.A解析:A 【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122i i E p p p ξξξξ=++++可求得数学期望. 【详解】ξ的可能取值为2,3,4.2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故()33925525P ξ==⨯=.3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故()3223123555525P ξ==⨯+⨯=.4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故()22445525P ξ==⨯=.所以9124142342525255E ξ=⨯+⨯+⨯=.故选A. 【点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布(),B n p ,也可以直接利用公式E np ξ=求期望.11.C解析:C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.12.A解析:A 【解析】分析:利用条件概率求(|)P B A .详解:由题得2265()30,()3010,n A A n AB A ===-=所以(|)P B A =()101.()303n AB n A ==故答案为A. 点睛:(1)本题主要考查条件概率,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 条件概率的公式:()(|)()P AB P B A P A =, (|)P B A =()()n AB n A . 二、填空题13.;【分析】推导出从而利用基本不等式能求出的最小值【详解】一位篮球运动员投篮一次得3分概率为得2分概率为不得分概率为他投篮一次得分的期望为1当且仅当时取等号的最小值为故答案为:【点睛】本题考查代数式的解析:7+; 【分析】推导出321a b +=,从而121262()(32)7a ba b a b a b b a+=++=++,利用基本不等式能求出12a b +的最小值. 【详解】一位篮球运动员投篮一次得3分概率为a ,得2分概率为b , 不得分概率为c ,a ,b ,(0,1)c ∈,他投篮一次得分的期望为1, 321a b ∴+=,∴1212626()(32)7727a b a a b a b a b b a b +=++=+++=+ 当且仅当62a bb a=时取等号,∴12a b+的最小值为7+.故答案为:7+ 【点睛】本题考查代数式的最小值的求法,考查离散型随机变量的分布列、数学期望、均值不等式等基础知识,考查运算求解能力,是中档题.14.【分析】根据古典概型的概率计算公式先计算总的基本事件数:甲不跑第一棒的基本事件数:再确定所求事件:甲不跑第一棒的条件下乙不跑第二棒的的基本事件数:即可得到答案【详解】由题得甲不跑第一棒的总的基本事件解析:79【分析】根据古典概型的概率计算公式,先计算总的基本事件数:甲不跑第一棒的基本事件数:1333C A ,再确定所求事件:甲不跑第一棒的条件下,乙不跑第二棒的的基本事件数:13123322C A A A -,即可得到答案.【详解】由题得甲不跑第一棒的总的基本事件数:133318C A =,甲不跑第一棒,乙跑第二棒的基本事件有12224A A =,所以甲不跑第一棒,乙不跑第二棒的基本事件有1312332214C A A A -=,所以由古典概型的概率公式得:在甲不跑第一棒的条件下,乙不跑第二棒的概率是:147189P ==. 故答案为:79. 【点睛】本题考查古典概型概率公式的应用、利用排列组合计算基本事件数,解题关键在于求甲不跑第一棒,乙不跑第二棒的基本事件数时,利用正难则反的思想,先计算甲不跑第一棒,乙跑第二棒的基本事件数,再用总的基本事件数减去这个结果即为所求.15.【分析】求出甲获得冠军的概率比赛进行了局的概率根据条件概率公式得到答案【详解】根据题意甲获得冠军的概率为其中比赛进行了局的概率为所以在甲获得冠军的条件下比赛进行了3局的概率为故答案为【点睛】本题考查解析:25【分析】求出甲获得冠军的概率,比赛进行了3局的概率,根据条件概率公式,得到答案. 【详解】根据题意,甲获得冠军的概率为22212122203333333327⋅+⋅⋅+⋅⋅=, 其中,比赛进行了3局的概率为212122833333327⋅⋅+⋅⋅=,所以,在甲获得冠军的条件下,比赛进行了3局的概率为822720527P ==.故答案为25.【点睛】本题考查条件概率,相互独立事件概率公式,属于中档题.16.【分析】根据题目条件中给出的分布列可以知道和之间的关系根据期望为0和方差是1又可以得到两组关系这样得到方程组解方程组得到要求的值【详解】由题知由题得则故选【点睛】本题考查期望方差和分布列中各个概率之解析:16【分析】根据题目条件中给出的分布列,可以知道a 、b 、c 和112之间的关系,根据期望为0和方差是1,又可以得到两组关系,这样得到方程组,解方程组得到要求的值. 【详解】 由题知1112a b c ++=,106a c -++=, 由题得2221(10)(10)(20)112a c --⨯+-⨯+-⨯=, 512a ∴=,14b =. 则5111246a b -=-=. 故选A . 【点睛】本题考查期望、方差和分布列中各个概率之间的关系,通过关系列出方程组,本题的运算量不大,解题时要认真.17.【解析】分析:先根据二项分布数学期望公式得再求详解:因为服从二项分布所以所以点睛:本题考查二项分布数学期望公式考查基本求解能力 解析:62-【解析】分析:先根据二项分布数学期望公式得()E X ,再求()32E X --. 详解:因为X 服从二项分布()100,0.2B ,所以()1000.220,E X =⨯=所以()32320262.E X --=-⨯-=-点睛:本题考查二项分布数学期望公式,考查基本求解能力.18.15【解析】分析:根据正态分布概率计算可求出120分以上的概率;根据分层抽样可求出120分以上抽取样本的数量详解:根据正态分布所以根据分层抽样中概率值可得120分以上抽取份数为点睛:本题考查了利用正解析:15. 【解析】分析:根据正态分布概率计算,可求出120分以上的概率;根据分层抽样,可求出120分以上抽取样本的数量. 详解:根据正态分布()2100,N σ ,100μ= ,()801200.7P ξ<<=所以()10.71200.152P ξ-<== 根据分层抽样中概率值,可得120分以上抽取份数为1200.1515⨯=点睛:本题考查了利用正态分布的概率特征,计算特定范围内的概率,结合分层抽样求出抽取样本的数数量,属于简单题.三、解答题19.(1)100ˆ13yx=+,每天魔方还原的平均速度y 约为13秒;(2)分布列见解析,509. 【分析】(1)利用题设中的数据清除y 的平均值,进而可以求出ˆb的值和ˆa 的值,即可求解; (2)写出随机变量X 的可能取值,求出对应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)由题意,根据表格中的数据,可得99994532302421507y ++++++==,可得7172217184.570.375055ˆ1000.550.557i ii i i z y z ybz z==-⋅-⨯⨯====-∑∑,所以501000.3713a y bz =-=-⨯=,因此y 关于x 的回归方程为:100ˆ13yx=+, 所以最终每天魔方还原的平均速度y 约为13秒(2)由题意,可得随机变量X 的取值为3,4,6,9,可得141(3)669A P X ===⨯,1422(4)669A P X ⨯===⨯,()111142241205(6)66369A A A A P X ++====⨯,11221(9)669A A P X ⨯===⨯, 所以X 的分布列为所以()346999999E X =⨯+⨯+⨯+⨯=. 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解.20.(1)56万;(2)这三人中恰有二人已签约庭医生的概率为0.441,数学期望2.1,方差0.63. 【分析】(1)根据频率分布直方图可直接计算该组的频率,故可估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)由题知此地区年龄段在71~80的每个居民签约家庭医生的概率为0.7P =,“从该地区年龄在71~80岁居民中随机抽取三人”为事件B ,随机变量为X ,满足二项分布,进而可求概率,期望及方差. 【详解】(1)由题知该地区居民约为2000万,由图1知,该地区年龄在71~80岁的居民人数为0.00410200080⨯⨯=万.由图2知.年龄在71~80岁的居民签概率为0.7.所以该地区年龄在71~80岁且已签约家庭医生的居民人数为800.756⨯=万.(2)由题知此地区年龄段在71~80的每个居民签约家庭医生的概率为0.7P =,且每个居民之间是否签约是独立的,所以设“从该地区年龄在71~80岁居民中随机抽取三人”为事件B ,随机变量为X ,这三人中恰有二人已签约庭医生的概率为()()()212320.710.70.441P X C ==-=.数学期()30.7 2.1E X =⨯=,方差()30.70.30.63D X =⨯⨯=.21.(1)13;(2)分布列答案见解析,数学期望:1415;(3)该企业职工使用B APP 的情况与官方发布的男、女用户情况更相符 【分析】(1)根据题中数据,用频率估计概率,即可求出;(2)先确定X 的取值,再计算出对应的概率,即求出X 的分布列及数学期望;(3)分别计算出A 款,B 款APP 的男、女用户总人数,再计算对应的男用户,女用户的概率,再根据题意判断即可. 【详解】解:(1)由所给数据可知,男职工使用A 款APP 的人数为72, 用频率估计概率,可得男职工使用京东APP 的概率约为7231205=, 同理,女职工使用A 款APP 的概率约为4011203=; (2)X 的可能取值为0,1,2,()3140115315P X ⎛⎫⎛⎫∴==-⨯-= ⎪ ⎪⎝⎭⎝⎭;()31318111535315P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭;()3112535P X ==⨯=.∴X 的分布列为:X 的数学期望()0121515515E X =⨯+⨯+⨯=; (3)样本中,A 款APP 的男、女用户为7240112+=(人),其中男用户占7264.3112≈%;女用户占4035.7112≈%, 样本中,B 款APP 的男、女用户为6084144+=(人),其中男用户占6041.7144≈%;女用户占8458.3144≈%, ∴该企业职工使用B APP 的情况与官方发布的男、女用户情况更相符.【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算).22.(1)详见解析;(2)推荐小王去乙公司应聘,理由见解析. 【分析】(1)本题首先可以设乙公司送餐员送餐单数为a ,然后依次求出38a =、39a =、40a =、41a =、42a =时的工资X 以及概率p ,即可列出X 的分布列并求出数学期望;(2)本题可求出甲公司送餐员日平均工资,然后与乙公司送餐员日平均工资进行对比,即可得出结果. 【详解】(1)设乙公司送餐员送餐单数为a , 当38a =时,386228X =⨯=,515010p ; 当39a =时,396234X =⨯=,101505p ; 当40a =时,406240X =⨯=,101505p; 当41a =时,40617247X =⨯+⨯=,202505p ; 当42a=时,40627254X =⨯+⨯=,515010p,故X 的所有可能取值为228、234、240、247、254, 故X 的分布列为:故()228234240247254241.81055510E X =⨯+⨯+⨯+⨯+⨯=. (2)甲公司送餐员日平均送餐单数为:380.2390.3400.2410.2420.139.7⨯+⨯+⨯+⨯+⨯=,则甲公司送餐员日平均工资为80439.7238.8+⨯=元, 因为乙公司送餐员日平均工资为241.8元,238.8241.8<, 所以推荐小王去乙公司应聘. 【点睛】关键点点睛:(1)求分布列的关键是根据题意确定随机变量的所有可能取值和取每一个值时的概率,然后列成表格的形式后即可,(2)根据统计数据做出决策时,可根据实际情况从平均数、方差等的大小关系作出比较后得到结论.23.(1)0.5;(2)分布列见解析,1.7. 【分析】(1)设A 车在星期i 出车的事件为i A ,B 车在星期i 出车的事件为i B ,1i =,2,3,4,5,设该单位在星期一恰好出一台车的事件为C ,根据()()1111P C P A B A B =+计算可得结果;(2)X 的可能取值为0,1,2,3,求出X 的各个取值的概率可得分布列和数学期望. 【详解】(1)设A 车在星期i 出车的事件为i A ,B 车在星期i 出车的事件为i B ,1i =,2,3,4,5由已知可得()0.6i P A =,()0.5i P B = 设该单位在星期一恰好出一台车的事件为C ,因为A ,B 两车是否出车相互独立,且事件11A B ,11A B 互斥, 所以()()()()()()()()111111111111P C P A B A B P A B P A B P A P B P A P B =+=+=+()()0.610.510.60.5=⨯-+-⨯0.5=所以该单位在星期一恰好出一台车的概率为0.5. (2)X 的可能取值为0,1,2,3()()()11200.40.50.40.08P X P A B P A ===⨯⨯=()()()()()211210.50.40.40.50.60.32P X P C P A P A B P A ==+=⨯+⨯⨯= ()()()()()112220.60.50.40.50.60.42P X P A B P A P C P A ==+=⨯⨯+⨯=()()()11230.60.50.60.18P X P A B P A ===⨯⨯=所以X 的的分布列为00.0810.3220.4230.18 1.7E X =⨯+⨯+⨯+⨯=.【点睛】关键点点睛:第二问分析出X 的可能取值,搞清楚X 的每个取值对应的事件是解题关键.。

(压轴题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)(2)

(压轴题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)(2)

一、选择题1.将3个球(形状相同,编号不同)随机地投入编号为1、2、3、4的4个盒子,以ξ表示其中至少有一个球的盒子的最小号码(3ξ=表示第1号,第2号盒子是空的,第3个盒子至少1个球),则()E ξ、(21)E ξ+分别等于( ) A .2516、258B .2516、338 C .32、3 D .32、4 2.在市高二下学期期中考试中,理科学生的数学成绩()2~90,X N σ,已知(7090)0.35P X <=,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为( ) A .0.15B .0.50C .0.70D .0.853.红外线自动测温门能有效避免测温者与被测温者的近距离接触,降低潜在的病毒感染风险.为防控新冠肺炎,某厂生产的红外线自动测温门,其测量体温误差服从正态分布()20.1,0.3N ,从已经生产出的测温门中随机取出一件,则其测量体温误差在区间()0.4,0.7内的概率为( )(附:若随机变量ξ服从正态分布()2,Nμσ,则()68.27%P μσξμσ-<<+=,()2295.45%P μσξμσ-<<+=)A .31.74%B .27.18%C .13.59%D .4.56%4.某人射击一发子弹的命中率为0.8,现他射击19发子弹,理论和实践都表明,这19发子弹中命中目标的子弹数n 的概率()f n 如下表,那么在他射击完19发子弹后,其中击中目标的子弹数最大可能是( )A .14发B .15发C .16发D .15或16发5.已知随机变量X 的分布列:若()1E X =,(21)2D X +=,则p =( ) A .13B .14C .15D .166.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16217.已知随机变量ξ的取值为()0,1,2i i =.若()105P ξ==,()1E ξ=,则( ) A .()()1P D ξξ=< B .()()1P D ξξ== C .()()1P D ξξ=>D .()()115P D ξξ==8.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .459.在一个袋子中装有6个除颜色外完全相同的球,设有1个红球,2个黄球,3个黑球,从中依次不放回地抽取2个球,则在第一个球是红球的条件下,第二个球是黄球的概率为( ) A .15B .25C .35D .4510.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A .313 B .413C .14D .1511.已知ξ是离散型随机变量,则下列结论错误的是( ) A .21133P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B .()()()22E E ξξ≤C .()()1D D ξξ=-D .()()()221D D ξξ=-12.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( ) A .0.2B .0.6C .0.8D .0.9第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________. 14.随机变量X 的概率分布为2()(1,2,3)aP X n n n n===+,其中a 是常数,则()D aX =__________.15.有10张纸币,其中有4张假币,从中取出两张,已知其中一张是假币,则另一张也是假币的概率为____.16.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为__________. 17.给出如下四个结论:①若随机变量ξ服从正态分布N (1,σ2)且P (ξ≤4)=0.84,则P (ξ≤-2)=0.16;②∃a ∈R +,使得f (x )=21xx x e--+-a 有三个零点; ③设线性回归方程为y =3-2x ,则变量x 每增加一个单位时,y 平均减少2个单位; ④若命题p :∀x ∈R ,e x >x +1,则¬p 为真命题;以上四个结论正确的是________.(把你认为正确的结论都填上) 18.下列说法正确的有________(填序号).①离散型随机变量ξ的期望E (ξ)反映了ξ取值的概率的平均值; ②离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平; ③离散型随机变量ξ的期望E (ξ)反映了ξ取值的波动水平; ④离散型随机变量ξ的方差D (ξ)反映了ξ取值的波动水平.三、解答题19.李雷、韩梅梅两人进行象棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满4局时停止.设李雷在每局中获胜的概率为12P P ⎛⎫> ⎪⎝⎭,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为58. (1)求P 的值;(2)设ξ表示比赛停止时李雷的总得分,求随机变量ξ的分布列和数学期望()E ξ. 20.学校趣味运动会上增加了一项射击比赛,比赛规则如下:向A 、B 两个靶子进行射击,先向A 靶射击一次,命中得1分,没有命中得0分;再向B 靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练,甲同学的射击水平显著提高,目前的水平是:向A 靶射击,命中的概率是23;向B 靶射击,命中的概率为34.假设甲同学每次射击结果相互独立. (1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X 的分布列及数学期望.21.我市某大学组建了A 、B 、C 、D 、E 五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须且只能参加一个社团,假定某寝室的甲、乙、丙三名学生对这五个社团的选择是等可能的.(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;(2)设随机变量ξ为甲、乙、丙这三个学生参加A 或B 社团的人数,求ξ的分布列、数学期望及方差.22.教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚﹐扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,郑州市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共3分批次进行,每次支教需要同时派送2名教师,且每次派送人员均从5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验. (1)求5名优秀教师中的“甲”,在这3批次活动中有且只有一次被抽选到的概率﹔ (2)求第二次抽选时,选到没有支教经验的教师的人数最有可能是几人﹖请说明理由; (3)现在需要2名支教教师完成某项特殊教学任务,每次只能派一个人,且每个人只派一次,如果前一位教师一定时间内不能完成教学任务,则再派另一位教师.若有A B 、两个教师可派,他们各自完成任务的概率分别为12p p 、,假设121p p >>,且假定各人能否完成任务的事件相互独立.若按某种指定顺序派人,这两个人各自能完成任务的概率依次为12,q q ,其中12,q q 是12p p 、的一个排列,试分析以怎样的顺序派出教师,可使所需派出教师的人员数目的数学期望达到最小.23.国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.武汉市在实施垃圾分类之前,从本市人口数量在两万人左右的320个社区中随机抽取50个社区,对这50个社区某天产生的垃圾量(单位:吨)进行了调查,得到如下频数分布表,并将人口数量在两万人左右的社区垃圾数量超过28吨/天的确定为“超标”社区:(1)通过频数分布表估算出这50个社区这一天垃圾量的平均值x (精确到0.1); (2)若该市人口数量在两万人左右的社区这一天的垃圾量大致服从正态分布()2,N μσ,其中μ近似为(1)中的样本平均值x ,2σ近似为样本方差2s ,经计算得 5.2s =.请利用正态分布知识估计这320个社区中“超标”社区的个数.(3)通过研究样本原始数据发现,抽取的50个社区中这一天共有8个“超标”社区,市政府决定对这8个“超标”社区的垃圾来源进行跟踪调查.现计划在这8个“超标”社区中任取5个先进行跟踪调查,设Y 为抽到的这一天的垃圾量至少为30.5吨的社区个数,求Y 的分布列与数学期望.(参考数据:()0.6827P X μσμσ-<≤+≈;()220.9545P X μσμσ-<≤+≈;()330.9974P X μσμσ-<≤+≈)24.高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排铁钉数目都比上一排多一个,一排中各个铁钉恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗铁钉间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.(1)理论上,小球落入4号容器的概率是多少?(2)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球的个数为X ,求X 的分布列.25.某单位招聘员工时,要求参加笔试的考生从5道A 类题和3道B 类题共8道题中任选3道作答.(1)求考生甲至少抽到2道B 类题的概率;(2)若答对A 类题每道计1分,答对B 类题每道计2分,若不答或答错,则该题计0分.考生乙抽取的是1道A 类题,2道B 类题,且他答对每道A 类题的概率为23,答对每道B 类题的概率是12,各题答对与否相互独立,用X 表示考生乙的得分,求X 的分布列和数学期望.26.出于“健康、养生”的生活理念.某地的M 炊具有限公司的传统手工泥模工艺铸造的平底铁锅一直受到全国各地消费者的青睐.M 炊具有限公司下辖甲、乙两个车间,甲车间利用传统手工泥模工艺铸造T 型双耳平底锅,乙车间利用传统手工泥模工艺铸造L 型双耳平底锅,每一口双耳平底锅按照综合质量指标值(取值范围为[50,100])划分为:综合质量指标值不低于70为合格品,低于70为不合格品.质检部门随机抽取这两种平底锅各100口,对它们的综合质量指标值进行测量,由测量结果得到如下的频率分布直方图:将此样本的频率估计为总体的概率.生产一口T 型双耳平底锅,若是合格品可盈利40元,若是不合格品则亏损10元;生产一口L 型双耳平底锅,若是合格品可盈利50元,若是不合格品则亏损20元.(1)记X 为生产一口T 型双耳平底锅和一口L 型双耳平底锅所得的总利润,求随机变量X 的数学期望;(2)M 炊具有限公司生产的T 和L 型双耳平底锅共计1000口,并且两种型号获得的利润相等,若将两种型号的合格品再按质量综合指标值分成3个等级,其中[70,80)为三级品,[80,90)为二级品,[90,100]为一级品,试判断生产的这1000口两种型号的双耳平底锅中哪种型号的一级品多?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意可知,随机变量的可能取值有1、2、3、4,计算出随机变量ξ在不同取值下的概率,可求得()E ξ,利用数学期望的性质可求得(21)E ξ+. 【详解】由题意可知,随机变量的可能取值有1、2、3、4,()1223333333371464C C C P ξ⨯+⨯+===,()1223333322192464C C C P ξ⨯+⨯+===, ()123333373464C C C P ξ++===,()3114464P ξ===, 所以,()3719712512346464646416E ξ=⨯+⨯+⨯+⨯=,因此,()()2533212121168E E ξξ+=+=⨯+=. 故选:B. 【点睛】方法点睛:求随机变量的期望和方差的基本方法如下:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求(),aX b a b R +∈的期望与方差,利用期望和方差的性质(()()E aX b aE X b +=+,()()2D aX b a D X +=)进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算.2.D解析:D 【分析】根据正态密度曲线的对称性得出()()()110700.57090P X P X P X ≥=≤=-<≤,于是可计算出()()1101110P X P X <=-≥,于此可得出结果. 【详解】 由于()2~90,X N σ,由正态密度曲线的对称性可得()()()110700.570900.15P X P X P X ≥=≤=-<≤=,因此,()()110111010.150.85P X P X <=-≥=-=,故选D. 【点睛】本题考查正态分布在指定区间上的概率的计算,解题的关键在于利用正态密度曲线的对称性将所求概率转化为已知区间概率进行计算,属于基础题.3.C解析:C 【分析】由题意可知0.1,0.3μσ==,结合题意得出(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<=,再由()(0.50.7)(0.20.4)0.40.72P P P ξξξ-<<--<<<<=,即可得出答案.【详解】由题意可知0.1,0.3μσ==则(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<= 即()(0.50.7)(0.20.4)95.45%68.27%0.40.713.59%22P P P ξξξ-<<--<<-<<===故选:C【点睛】本题主要考查了利用正态分布对称性求概率,属于中档题.4.D解析:D 【分析】设第k 发子弹击中目标的概率最大,根据题意,可以表示第1k -、k 、1k +发子弹击中目标的概率,进而可得()()1f k f k ≥+且()()1f k f k ≥-,即可得关于k 的不等式组,求解可得答案. 【详解】根据题意,设第k 发子弹击中目标的概率最大,而19发子弹中命中目标的子弹数n 的概率()19190.80.2k k k P n k C -⋅⋅==(0k =,1,2,,19),则有()()1f k f k ≥+且()()1f k f k ≥-,即191118191919112019190.80.20.80.20.80.20.80.2k k k k k kkk k k k kC C C C -++-----⎧⋅⋅≥⋅⋅⎨⋅⋅≥⋅⋅⎩ ,解可得1516k ≤≤ , 即第15或16发子弹击中目标的可能性最大,则他射完19发子弹后,击中目标的子弹最可能是第15或16发. 故选:D . 【点睛】本题考查n 次独立重复试验中发生k 次的概率问题,考查逻辑思维能力和运算求解能力,属于常考题.5.B解析:B 【分析】由(21)4()D X D X +=,可得1()2D X =,由随机变量分布列的期望、方差公式,联立即得解. 【详解】由题意,11()0()2121222aE X p a p p =⨯-+⨯+⨯=∴+= 且(21)2D X +=,又1(21)4()()2D X D X D X +=∴=22211()(01)()(1)(21)222D X p a p ∴=-⨯-+-⨯+-⨯=联立可得:11,4a p == 故选:B 【点睛】本题考查了随机变量分布列的期望和方差,考查了学生概念理解,数学运算的能力,属于中档题.6.C解析:C 【分析】根据题意,求出()P A 和()P AB ,由公式()()()|P AB P B A P A =即可求出解答.【详解】解:因为事件A 为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以()213363393357198428C C C P A C +=== 事件A 发生且事件B 发生概率为:()12213336392363847C C C C P AB C +=== 故()()()3127|191928P AB P B A P A ===. 故选:C. 【点睛】本题考查条件概率求法,属于中档题.7.C解析:C 【分析】设()1P x ξ==,根据()f x ,()1E ξ=列方程求出x ,进而求出()D ξ,即可比较大小. 【详解】 设()1P x ξ==, 则()425P x ξ==-,则()1480121555x x E x ξ⎛⎫=⨯+⨯+-⨯=-= ⎪⎝⎭,解得()315P ξ==,()125P ξ==, 则()()()()22213120111215555D ξ=⨯-+⨯-+⨯-=, 故()()1P D ξξ=>, 故选:C. 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的性质等基础知识,考查运算求解能力,是中档题.8.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.9.B解析:B 【分析】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,所求概率为()()()|P AB P B A P A =,求解即可.【详解】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,则()16P A =,()1216515P AB =⨯=,则所求概率为()()()25P AB P B A P A |==. 故选B. 【点睛】本题考查了条件概率的计算,考查了学生对条件概率知识的掌握,属于基础题.10.A解析:A 【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果. 【详解】设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件B 为“学生丙第一个出场”则()41134333555578A C C A P A A A +==,()1333555518C A P AB A A == 则()()()1837813P AB P B A P A === 本题正确选项:A 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.11.D解析:D 【分析】利用概率、数学期望、方差的性质直接求解. 【详解】 在A中,211113333P P P P ξξξξ⎛⎛⎫⎛⎫⎛⎫≤=-≤≤≤≤=≤≤ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,故A 正确;在B 中,由数学期望的性质得()()()22E E ξξ≤,故B 正确;在C 中,由方差的性质得()()1D D ξξ=-,故C 正确; 在D 中,()()()()()22214D D D D ξξξξ≠-=+,故D 错误.故选D. 【点睛】本题考查命题真假的判断,考查概率、数学期望、方差的性质等基础知识,考查运算求解能力,是基础题.12.C解析:C 【解析】分析:由题意可知()()0.5,0.4P A P AB ==,利用条件概率公式可求得()|P B A 的值. 详解: 设第一个路口遇到红灯的事件为A , 第二个路口遇到红灯的事件为B , 则()()0.5,0.4P A P AB ==, 则()()()|0.8P AB P B A P A ==,故选C.点睛:本题考查条件概率公式()()()/=P AB P B A P A ,属于基础题.计算条件概率时一定要注意区分条件概率与独立事件同时发生的概率的区别与联系.二、填空题13.05【解析】分析:利用条件概率求解详解:设第一道工序出废品为事件则第二道工序出废品为事件则根据题意可得故在第一道工序出废品的条件下第二道工序又出废品的概率即答案为05点睛:本题考查条件概率的求法属基解析:0.5 【解析】分析:利用条件概率求解.详解:设第一道工序出废品为事件,A 则()0.4P A = ,第二道工序出废品为事件B ,则根据题意可得()0.2P AB =,故在第一道工序出废品的条件下,第二道工序又出废品的概率()()()1.2P AB P B A P A == 即答案为0.5点睛:本题考查条件概率的求法,属基础题.14.【分析】根据随机变量分布列概率和为1求出求出再由方差性质即可求解【详解】由题意得则∴则∴故答案为:【点睛】本题考查离散型随机变量分布列性质期望方差以及方差的性质考查计算求解能力属于中档题 解析:608729【分析】根据随机变量分布列概率和为1求出a ,求出(),()E X D X ,再由方差性质,即可求解. 【详解】 由题意得11111311122334223344a a a a a ⎛⎫++=-+-+-== ⎪⨯⨯⨯⎝⎭, 则43a =,∴()213P X ==,()229P X ==,()139P X ==,则24113()3939E X =++=,222132********()12393999981D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴2608()()729D aX a D X ==. 故答案为:608729【点睛】本题考查离散型随机变量分布列性质、期望、方差以及方差的性质,考查计算求解能力,属于中档题.15.【解析】分析:记抽出的两张有一张是假币为事件A 抽出的两张都是假币为事件B 利用条件概率计算公式能求出其中1张放到验钞机上检验发现是假钞则另一张也是假钞的概率详解:记抽出的两张有一张是假币为事件A 抽出的解析:15【解析】分析:记“抽出的两张有一张是假币”为事件A ,“抽出的两张都是假币”为事件B ,利用条件概率计算公式能求出其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率. 详解:记“抽出的两张有一张是假币”为事件A ,“抽出的两张都是假币”为事件B , 则将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为:24210211446210()1(|)()5C C P AB P B A C C C P A C ===+. 点睛:本题主要考查了条件的求解以及组合数的应用,正确理解条件概率的计算公式是解答的关键,着重考查了推理与论证能力,以及转化与化归思想的应用,试题比较基础,属于基础题.16.【解析】记事件为第一次取到黑球事件为第二次取到白球则事件为第一次取到黑球第二次取到白球根据题意知∴在第一次取到黑球的条件下第二次取到白球的概率是故答案为解析:34【解析】记事件A 为“第一次取到黑球”,事件B 为“第二次取到白球”,则事件AB 为“第一次取到黑球、第二次取到白球”,根据题意知,2()5P A =,23()54P AB =⨯,∴在第一次取到黑球的条件下,第二次取到白球的概率是()3(|)()4P AB P B A P A ==,故答案为34. 17.①③④【解析】由正态分布曲线得①正确;令得当时单调递增当时单调递减当时单调递增得且时的图象如图所示函数有两个零点故②错误;由回归直线方程的定义知③正确;④中当时错误故为假命题为真命题④正确故答案为①解析:①③④ 【解析】由正态分布曲线得()()()24140.16P P P ξξξ≤-=≥=-≤=,①正确;令()21x x x g x e --+=,得()22'xx x g x e--=,当(),1x ∈-∞-时,()()'0,g x g x >单调递增,当()1,2x ∈-时,()()'0,g x g x <单调递减,当()2,x ∈+∞时,()()'0,g x g x >单调递增,得()()21,25g e g e --==-,且150,22g x ⎛⎫-±=→+∞ ⎪ ⎪⎝⎭时,()()'0,g x g x <∴的图象如图所示函数有两个零点,故②错误;由回归直线方程的定义知③正确;④中当0x =时,01e >错误,故p 为假命题,p ⌝为真命题,④正确,故答案为①③④.18.4【解析】①错误因为离散型随机变量ξ的期望反映了ξ取值的平均水平②错误因为离散型随机变量ξ的方差反映了随机变量偏离于期望的平均程度③错误因为离散型随机变量的方差反映了ξ取值的波动水平而随机变量的期望解析:4 【解析】①错误.因为离散型随机变量ξ的期望()E ξ反映了ξ取值的平均水平.②错误.因为离散型随机变量ξ的方差()D ξ反映了随机变量偏离于期望的平均程度. ③错误.因为离散型随机变量的方差()D ξ反映了ξ取值的波动水平,而随机变量的期望()E ξ反映了ξ取值的平均水平.④正确.由方差的意义可知正确.三、解答题19.(1)34p =;(2)分布列见解析,3316. 【分析】(1)第二局比赛结束时比赛停止等价于李雷连胜2局或韩梅梅连胜2局,由此列式可解得结果;(2)ξ的所有可能值为0,1,2,3,求出ξ的每个取值的概率可得分布列,根据期望公式可得所求期望值. 【详解】(1)依题意,当李雷连胜2局或韩梅梅连胜2局时,第二局比赛结束时比赛结束, ∴有225(1)8p p +-=,解得34p =或14p =,∵12p >,∴34p =(2)依题意知,ξ的所有可能值为0,1,2,3,∴111(0)4416P ξ==⨯= ∴1213116(1)4444256P C ξ==⨯⨯⨯⨯=∴112233131345(2)44444464P C C ξ==⨯+⨯⨯⨯⨯⨯=∴12133354(3)4444256P C ξ==⨯⨯⨯⨯=∴随机变量ξ的分布列为:故232566425616E ξ=+⨯+⨯=. 【点睛】关键点点睛:求出随机变量ξ的所有可能取值的概率是解题关键.20.(1)16;(2)分布列见解析;期望为20348. 【分析】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,然后利用互斥事件概率的求解方法求解即可.(2)随机变量X 的可能取值为:0,1,2,3,5,6,求出概率,列出分布列,然后求解期望. 【详解】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,由题意可知()23P D =,()()34P E P F ==.由于C DEF DEF DEF =++,()()21111313134434413446P C P DEF DEF DEF =++=⨯⨯+⨯⨯+⨯⨯=.(2)随机变量X 的可能取值为:0,1,2,3,5,6.()1111034448P X ==⨯⨯=()2111134424P X ==⨯⨯=()12113123448P X C ==⨯⨯⨯=()12231334144P X C ==⨯⨯⨯=()1333534416P X ==⨯⨯=()233363448P X ==⨯⨯=()48E X =. 【点睛】 关键点点睛:古典概型及其概率计算公式的应用,求离散型随机变量的分布列及其期望的求法,解题的关键为正确求出X =0,1,2,3,5,6,所对应的概率. 21.(1)1325;(2)分布列见解析;期望为1.2;方差0.72. 【分析】(1)先求出甲、乙、丙三名学生参加社团的总的方法数为35,再求出三名学生选择不同社团35A种,求出三名学生选择不同社团概率为35312525A =,然后由12125-得出答案. (2)由题意得ξ的可能值为0、1、2、3,每个学生参加A 或B 社团的概率都是20.45=,且相互独立,符合二项分布~(30.4)B ξ,,由二项分布可得答案. 【详解】(1)甲、乙、丙三名学生每人选择五个社团的方法是5种,故共有35125=种可能,甲、乙、丙三名学生选择不同社团概率为35312525A =,则至少有两人参加同一社团概率为121312525-=; (2)由题意得ξ的可能值为0、1、2、3, 甲、乙、丙三个学生每人参加A 或B 社团的概率都是20.45=, 且相互独立,符合二项分布~(30.4)B ξ,,3(0)0.60.216P ξ===,1123(1)0.40.60.432P C ξ==⨯⨯=, 2213(2)0.40.60.288P C ξ==⨯⨯=,3(3)0.40.064P ξ===,ξ的分布列为:()(1)30.40.60.72D np p ξ=-=⨯⨯=. 【点睛】关键点睛:本题考查古典概率和对立事件的概率以及二项分布的期望和方程,解答本题的关键是将问题化为二项分布问题,即根据甲、乙、丙三个学生每人参加A 或B 社团的概率都是20.45=, 且相互独立,符合二项分布~(30.4)B ξ,,从而根据二项分布求解,属于中档题. 22.(1)54125;(2)第二次抽取到的无支教经验的教师人数最有可能是1人,理由见解析;(3)按照先A 后B 的顺序所需人数期望最小. 【分析】(1)在每轮抽取中,甲被抽中的概率为25,则三次抽取中,“甲”恰有一次被抽取到的概率为2132355P C ⎛⎫= ⎪⎝⎭(2)设ξ表示第二次抽取到的无支教经验的教师人数,可能的取值有0,1,2,分别求出各种情况的概率,从而得出答案.(3)设X 表示先A 后B 完成任务所需人员数目,求出的X 期望,设Y 表示B 先后A 完成任务所需人员数目,求出的Y 期望,从而得出结论. 【详解】(1)5名优秀教师中的“甲”在每轮抽取中,被抽取到概率为142525C C =,则三次抽取中,“甲”恰有一次被抽取到的概率为213235455125P C ⎛⎫== ⎪⎝⎭(2)第二次抽取到的没有支教经验的教师人数最有可能是1人.设ξ表示第二次抽取到的无支教经验的教师人数,可能的取值有0,1,2,则有:()11222222332222222222555555370,100C C C C C C C P C C C C C C ξ==⋅+⋅+⋅=()11111122112323233241222222555555541,100C C C C C C C C C C P C C C C C C ξ==⋅+⋅+⋅=()2112223233322222255555920,100C C C C C C P C C C C C ξ==⋅+⋅+⋅=因为()()()102P P P ξξξ=>=>=,故第二次抽取到的无支教经验的教师人数最有可能是1人. (3)按照先A 后B 的顺序所需人数期望最小. 设X 表示先A 后B 完成任务所需人员数目,则111212E X p p p =+-=-设Y 表示B 先后A 完成任务所需人员数目,则22212212,0()E Y p p p E Y E X p p =+-=-=->-.故按照先A 后B 的顺序所需人数期望最小. 【点睛】关键点睛:本题考查求概率和求离散型随机变量的数学期望,解答本题的关键是设X 表示先A 后B 完成任务所需人员数目,得出()()111212E X p p p =+-=-,设Y 表示B 先后A 完成任务所需人员数目,则()()111212E X p p p =+-=-,相减得出大小,属于中档题.23.(1)22.8吨;(2)51;(3)分布列见解析,52. 【分析】(1)直接利用平均数公式求解;(2)由(1)知22.8μ=, 由题意可知()()28P X P X μσ>=>+,利用3σ原则求解;(3)Y 的可能取值为1,2,3,4,利用超几何分布求概率,列出分布列,并求数学期望. 【详解】(1)由频数分布表得:1451762092312268296322.7622.8542x ⨯+⨯+⨯+⨯+⨯=+≈⨯⨯=+,所以这50个社区这一天垃圾量的平均值为22.8吨.(2)由(1)知22.8μ=, 5.2s =, 5.2s σ∴==, ()()10.6827280.158652P X P X μσ-∴>=>+==, 3200.1586550.76851⨯=≈,。

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测题(包含答案解析)

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测题(包含答案解析)

一、选择题1.设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=( )附:若()2,N ξμσ,则()0.6826P X μσμσ-<≤+≈,()220.9544P X μσμσ-<≤+≈.A .0.1587B .0.1359C .0.2718D .0.34132.现有一条零件生产线,每个零件达到优等品的概率都为p .某检验员从该生产线上随机抽检50个零件,设其中优等品零件的个数为X .若()8D X =,(20)P X =(30)P X <=,则p =( ) A .0.16B .0.2C .0.8D .0.843.将两颗骰子各掷一次,设事件A =“两个点数都不相同”,B =“至少出现一个5点”,则概率()P A B =( ) A .1011B .511C .518D .5364.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( )A .37B .1237C .1219D .16215.在一次期中考试中,数学不及格的人数占20%,语文不及格占10%,两门都不及格占5%,若一名学生语文及格,则该生数学不及格的概率为( ) A .16B .14C .29D .9506.设01p <<,随机变量ξ的分布列是则当p 在()0,1内变化时,( ) A .()D ξ增大 B .()D ξ减小 C .()D ξ先增大后减小D .()D ξ先减小后增大7.元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X 的期望值()E X =( ) A .25B .24C .22D .208.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2159.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件A ,“摸得的两球不同色”为事件B ,则概率()|P B A 为( ) A .14B .23C .13D .1210.8张卡片上分别写有数字12345678、、、、、、、,从中随机取出2张,记事件A =“所取2张卡片上的数字之和为偶数”,事件B =“所取2张卡片上的数字之和小于9”,则()|=P B A ( ) A .16B .13C .12D .2311.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有23的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率( ) A .1320B .920C .15D .12012.已知三个正态分布密度函数()()2221e2i i x i ix μσϕπσ--=(, 1,2,3i =)的图象如图所示则( )A .123123==μμμσσσ<>,B .123123==μμμσσσ><,C .123123μμμσσσ=<<=,D .123123==μμμσσσ<<,二、填空题13.游乐场某游戏设备是一个圆盘,圆盘被分成红色和绿色两个区域,圆盘上有一个可以绕中心旋转的指针,且指针受电子程序控制,前后两次停在相同区域的概率为14,停在不同区域的概率为34,某游客连续转动指针三次,记指针停在绿色区域的次数为X ,若开始时指针停在红色区域,则()E X =______. 14.下列说法正确的是________①设回归方程为ˆ33yx =-,则变量x 增加一个单位时,y 平均增加3个单位; ②两个随机变量的线性相关性越强,则相关系数r 的绝对越接近于1; ③随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()3316P X ==; ④若()03f x '=-,则()()000lim6x f x x f x x x∆→+∆--∆=-∆;⑤()()2323E X E X +=+,()()232D X D X +=15.在产品质量检测中,已知某产品的一项质量指标X~N (100,100),且110120X <<的产品数量为5436件,请估计该批次检测的产品数量是________件.参考数据,若()2~,X Nμσ,则()0.6827P X μσμσ-<<+=,(22)0.9545P X μσμσ-<<+=,(33)0.9973P X μσμσ-<<+=.16.甲队和乙队进行乒乓球决赛,采取七局四胜制(当一队贏得四局胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队每局取胜的概率为0.8.且各局比赛结果相互独立,则甲队以4:1获胜的概率是_____17.随机变量X 服从于正态分布N (2,σ2)若P (X≤0)=a ,则P (2<X <4)=_____ 18.袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出两球,设“第一次摸得红球”为事件A ,“摸得的两球同色”为事件B ,则概率P(B|A)=________.三、解答题19.疫情防控期间,为了让大家有良好的卫生习惯某校组织了健康防护的知识测试(百分制)活动,活动结束后随机抽取了200名学生的成绩,并计算得知这200个学生的平均成绩为65,其中5个低分成绩分别是30、33、35、38、38;而产生的10个高分成绩分别是90、91、91、92、92、93、95、98、100、100.(1)为了评估该校的防控是否有效,以样本估计总体,将频率视为概率,若该校学生的测试得分近似满足正态分布()2,N μσ(μ和2σ分别为样本平均数和方差),则认为防控有效,否则视为效果不佳.经过计算得知样本方差为210,请判断该校的疫情防控是否有14.5≈)规定:若()220.9544P X μσμσ-<<+>,()330.9974P X μσμσ-<<+>,则称变量X “近似满足正态分布()2,N μσ的概率分布”.(2)学校为了鼓励学生对疫情防控的配合,决定对90分及以上的同学通过抽奖的方式进行奖励,得分低于94分的同学只有一次抽奖机会,不低于94分的同学有两次抽奖机会.每次抽奖获得50元奖金的概率是34,获得100元的概率是14.现在从这10个高分学生中随机选一名,记其获奖金额为Y ,求Y 的分布列和数学期望.20.为了推进分级诊疗,实现“基层首诊,双向转诊,急慢分治、上下联动”的诊疗模式,某地区自2016年起全面推行家庭医生签约服务.已知该地区居民约为2000万.从1岁到101岁的居民年龄结构的频率分布直方图如图甲所示.为了解各年龄段居民签约家庭医生的情况,现调查了1000名年满18周岁以上的居民,各年龄段被访者签约率如图乙所示.(1)估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)若以图中年龄在71~80岁居民签约率作为此地区该年龄段每个居民签约家庭医生的概率,则从该地区年龄在71~80岁居民中随机抽取三人,以已签约家庭医生的居民为变量X ,求这三人中恰有二人已签约家庭医生的概率;并求变量X 的数学期望和方差. 21.某软件是一款自营生鲜平台以及提供配送服务的生活类APP .某机构为调查顾客对该软件的使用情况,在某地区随机抽取了100人,调查结果整理如下:顾客年龄20岁以下[20,30)[30,40)[40,50)[50,60)[60,70]70岁以上使用人数510188420未使用人数002123630()现随机抽取名顾客,试估计该顾客年龄在且未使用这款的概率;(2)从被抽取的年龄在[50,70]且使用这款APP的顾客中,随机抽取2人进一步了解情况,用X表示这2人中年龄在[50,60)的人数,求随机变量X的分布列及数学期望;(3)为鼓励居民使用,该机构拟对使用这款APP的居民赠送1张5元的代金劵.若某区预计有6000人具有购物能力,试估计该机构至少应准备多少张代金券.22.我市某大学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须且只能参加一个社团,假定某寝室的甲、乙、丙三名学生对这五个社团的选择是等可能的.(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;(2)设随机变量ξ为甲、乙、丙这三个学生参加A或B社团的人数,求ξ的分布列、数学期望及方差.23.2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作[20,40)、9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100),例如:10点04分,记作时刻64.(Ⅰ)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(Ⅱ)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列;(Ⅲ)根据大数据分析,车辆在每天通过该收费站点的时刻T服从正态分布()2~,Nμσ,其中μ可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,2σ用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).附:若随机变量T 服从正态分布()2,N μσ,则()0.6827P T μσμσ-<≤+=,(22)0.9545P T μσμσ-<≤+=,(33)0.9973P T μσμσ-<≤+=.24.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城2009年11月11日举办的网络促销活动,双十一已成为中国电子商务行业的年度盛事,开且逐渐影响到国际电子商务行业,某网络促销平台从去年的双十一当天的消费者中随机抽取500名,调查他们的消费金额(单位:百元)情况,根据调查的结果绘制了频数分布表,其中消费金额在[)9,11,[)1,13,[]13,15的频数成等比数列.组区间的中点值为代表);(2)用分层抽样的方法从消费金额在[)3,5,[)5,7,[)9,11内的消费者中抽13人,再从这13人中随机抽取3人,记抽取的3人中消费金额超过平均数的人数为X ,求X 的分布列和数学期望.25.甲、乙两人按如下规则进行射击比赛,双方对同一目标轮流射击,若一方未击中,另一方可继续射击,甲先射,直到有人击中目标或两人总射击次数达4次为止.若甲击中目标的概率为23,乙击中目标的概率为12.(1)求甲在他第二次射击时击中目标的概率;(2)求比赛停止时,甲、乙两人射击总次数X 的分布列和期望.26.随着如今人们生活水平的不断提高,旅游成了一种生活时尚,尤其是老年人的旅游市场在不断扩大.为了了解老年人每年旅游消费支出(单位:元)的情况,相关部门抽取了某地区1000名老年人进行问卷调查,并把所得数据列成如下所示的频数分布表:(2)根据样本数据,可近似地认为老年人的旅游费用支出X 服从正态分布()23000,1000N ,若该地区共有老年人95000人,试估计有多少位老年人旅游费用支出在5000元以上;(3)已知样本数据中旅游费用支出在[)5000,6000范围内的10名老人中有7名女性,3名男性.现想选其中3名老人回访,记选出的男生人数为ξ,求ξ的分布列. 附:若()2~,X Nμσ,()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据函数()f x 没有零点求出ξ的取值范围,再根据()f x 没有零点的概率是0.5,得到(1)0.5P ξ<-=,再根据正态曲线的性质得到μ的值;然后再根据正态曲线的对称性求出()01P ξ<≤的值即可.【详解】 解:函数()22f x x x ξ=+-没有零点,∴二次方程220x x ξ+-=无实根,44()0ξ∴∆=--<,1ξ∴<-,又()22f x x x ξ=+-没有零点的概率是0.5,(1)0.5P ξ∴<-=,由正态曲线的对称性知:1μ=-,()1,1N ξ∴-,1,1μσ∴=-=,2,0,23,21μσμσμσμσ∴-=-+=-=-+=, (20)0.6826P ξ∴-<<=,(31)0.9544P ξ-<<=,[][]11(01)(31)(20)0.95440.68260.135922P P P ξξξ∴<≤=-<<--<<=-=, 故选:B. 【点睛】本题主要考查正态分布的曲线的性质,二次方程的解等知识点,考查运算求解能力;解本题的方法是根据()f x 没有零点得到1ξ<-,再结合正态分布的图像的对称性得到μ值,然后再利用正态分布函数图像的性质求解即可;解题的关键点是要熟知正态分布函数图像的对称性.2.C解析:C 【分析】由(20)(30)p X P X =<=求出的范围,再由方差公式求出值.【详解】∵(20)(30)p X P X =<=,∴2020303030205050(1)(1)C p p C p p -<-,化简得1p p -<,即12p >,又()850(1)D X p p ==-,解得0.2p =或0.8p =,∴0.8p =,故选C . 【点睛】 本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.3.A解析:A 【分析】根据条件概率的含义,(A |B)P 其含义为在B 发生的情况下,A 发生的概率,即在“至少出现一个5点”的情况下,“两个点数都不相同”的概率,分别求得“至少出现一个5点”与“两个点数都不相同”的情况数目,进而相比可得答案. 【详解】根据条件概率的含义,(A |B)P 其含义为在B 发生的情况下,A 发生的概率, 即在“至少出现一个5点”的情况下,“两个点数都不相同”的概率, “至少出现一个5点”的情况数目为665511⨯-⨯=, “两个点数都不相同”则只有一个5点,共12510C ⨯=种, 故10(|)11P A B =. 故选:A . 【点睛】本题考查条件概率,注意此类概率计算与其他的不同,(A |B)P 其含义为在B 发生的情况下,A 发生的概率.4.C解析:C 【分析】根据题意,求出()P A 和()P AB ,由公式()()()|P AB P B A P A =即可求出解答.【详解】解:因为事件A 为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以()213363393357198428C C C P A C +===事件A 发生且事件B 发生概率为:()12213336392363847C C C C P AB C +=== 故()()()3127|191928P AB P B A P A ===. 故选:C. 【点睛】本题考查条件概率求法,属于中档题.5.A解析:A 【分析】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为(|)P B A ,根据条件概率的计算公式,和题设数据,即得解. 【详解】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为:()20%5%151(|)()110%906P A B P B A P A -====-故选:A 【点睛】本题考查了条件概率的计算,考查了学生概念理解,实际应用,数学运算的能力,属于基础题.6.A解析:A 【分析】 计算出()E ξ和()2Eξ,根据()()()22D E E ξξξ=-将()D ξ表示成关于p 的函数,研究函数的单调性即可得出结论. 【详解】()()()()222112nni i i i i i i D E p E E p ξξξξξξξ==⎡⎤=-⋅=-+⋅⎡⎤⎣⎦⎣⎦∑∑()()()()()()()2222222122ni i i i i p p E E E E E E E ξξξξξξξξξ=⎡⎤=-+=-+=-⎣⎦∑, 由分布列得()1111012222p p p E ξ--=-⨯+⨯+⨯=,()211110222p p p E ξ+-+=⨯+⨯=, 所以,()()()()222221111152224444p p D E E p p p ξξξ+-⎛⎫=-=-=-++=--+ ⎪⎝⎭,所以,当()0,1p ∈时,()D ξ随着p 的增大而增大. 故选:A. 【点睛】本题考查离散型随机变量的期望和方差,考查二次函数的单调性,属于中等题.7.A解析:A 【分析】设剩余10题答对题目为Y 道,则可表示出总的得分情况为202X Y =+.由二项分布可先求得()E Y ,即可得所得积分X 的期望值()E X 【详解】设剩余10题答对题目为Y 个,有10道题目会做,则总得分为202X Y =+,且1~10,4Y B ⎛⎫ ⎪⎝⎭由二项分布的期望可知()110 2.54E Y =⨯= 所以()()2202 2.52025E X E Y =+=⨯+= 故选:A 【点睛】本题考查了离散型随机变量的简单应用,二项分布的数学期望求法,属于中档题.8.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.9.B解析:B 【分析】根据题目可知,求出事件A 的概率,事件AB 同时发生的概率,利用条件概率公式求得()|P B A ,即可求解出答案.【详解】依题意,()1214C 1C 2P A ==,()11221143C C 1C C 3P AB ==,则条件概率()()()123|132P AB P B A P A ===.故答案选B . 【点睛】本题主要考查了利用条件概率的公式计算事件的概率,解题时要理清思路,注意()P AB 的求解.10.C解析:C 【分析】利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概率公式()P B A =()()P AB P A 可得出答案. 【详解】事件AB 为“所取2张卡片上的数字之和为小于9的偶数”,以(),a b 为一个基本事件,则事件AB 包含的基本事件有:()1,3、()1,5、()1,7、()2,4、()2,6、()3,5,共6个, 由古典概型的概率公式可得()286314P AB C ==, 事件A 为“所取2张卡片上的数字之和为偶数”,则所取的两个数全是奇数或全是偶数,由古典概型的概率公式可得()2428237C P A C ==,因此,()()()3711432P AB P B A P A ==⨯=, 故选C . 【点睛】本题考查条件概率的计算,数量利用条件概率公式,是解本题的关键,同时也考查了古典概型的概率公式,考查运算求解能力,属于中等题.11.C解析:C 【分析】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B ,利用二项分布的知识计算出()P A ,再计算出()P AB ,结合条件概率公式求得结果. 【详解】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B则()2323332122033327P A C C ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()122433327P AB =⨯⨯= ()()()15P AB P B A P A ∴==本题正确选项:C 【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.12.D解析:D 【分析】正态曲线关于x =μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果. 【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为()()2221ei i x i ix μσϕ--=,则对应的函数的图像的对称轴为:i μ,∵正态曲线关于x =μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等, 只能从A ,D 两个答案中选一个, ∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,第一个和第二个的σ相等 故选D . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.二、填空题13.【分析】依题意画出数形图即可求出的分布列即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则的分布列如下:0 1 2 3 故故答案为:【点睛】本题考查概率的计算随机解析:27 16【分析】依题意画出数形图,即可求出X的分布列,即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则X的分布列如下:X0123P 16421643964364故()01236464646416 E X=⨯+⨯+⨯+⨯=.故答案为:27 16【点睛】本题考查概率的计算,随机变量的分布列和数学期望,解答的关键是画出树形图. 14.(2)(4)【分析】对各个命题分别判断【详解】①回归方程为则变量增加一个单位时平均减少3个单位;②两个随机变量的线性相关性越强则相关系数的绝对值越接近于1;③随机变量服从二项分布则;④若则;⑤综上所解析:(2)(4)【分析】对各个命题分别判断. 【详解】①回归方程为ˆ33yx =-,则变量x 增加一个单位时,y 平均减少3个单位; ②两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1; ③随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()366153()216P X C ===; ④若()03f x '=-,则()()()()()()0000000limlimlimx x x f x x f x x f x x f x f x f x x xx x∆→∆→∆→+∆--∆+∆---∆=+∆∆∆()()()()0000000limlim()()6x x f x x f x f x x f x f x f x xx∆→∆→+∆-∆-''=+=+=-∆-∆-;⑤()()2323E X E X +=+,()()234D X D X +=.. 综上所述,只有②④正确. 故答案为:②④. 【点睛】本题考查命题的真假判断,需要掌握的知识较多,如线性回归直线方程的意义,线性相关系数r 与相关强弱的关系,二项分布的概率公式,导数的定义以及数据变换后的均值与方差的关系.本题属于中档题.15.40000【分析】首先根据条件判断可知根据条件求得概率最后再计算样本总量【详解】可知又(件)故填:40000【点睛】本题考查了正态分布应用的实际问题计算正态分布下的概率时需充分应用曲线关于对称对称轴解析:40000 【分析】首先根据条件判断100,10μσ==,可知()()1101202P X P x μσμσ<<=+<<+,根据条件求得概率,最后再计算样本总量. 【详解】()100,100XN可知100,10μσ==()()1101202P X P x μσμσ<<=+<<+()()222P x P X μσμσμσμσ-<<+--<<+=0.95450.68270.13592-==,又5436400000.1359=(件).故填:40000. 【点睛】本题考查了正态分布应用的实际问题,计算正态分布下的概率时,需充分应用曲线关于x μ=对称,对称轴两侧的概率均为0.5.16.【分析】直接利用二项分布公式的但是要注意实际问题4:1不能简单的二项分布【详解】甲队以4∶1获胜时共进行了局比赛其中甲队在前局中获胜局第局必胜则概率=【点睛】本题属于易错题高考中就出现过4:1获胜是解析:10243125【分析】直接利用二项分布公式的,但是要注意实际问题4:1不能简单的二项分布. 【详解】甲队以4∶1获胜时共进行了5局比赛,其中甲队在前4局中获胜3局,第5局必胜,则概率314144C 555P ⎛⎫=⨯⨯⨯ ⎪⎝⎭=10243125. 【点睛】本题属于易错题,高考中就出现过,4:1获胜是需要前4场3胜一负,并且第五场赢下.17.【分析】利用正态分布的对称性求得的值【详解】由条件知故【点睛】本小题主要考查正态分布在指定区间的概率属于基础题 解析:0.5a -【分析】利用正态分布的对称性,求得()24P X <<的值. 【详解】由条件知()()40P X P X a ≥=≤=,故()240.5P X a <<=-. 【点睛】本小题主要考查正态分布在指定区间的概率,属于基础题.18.【解析】由P(A)=P(AB)=×=由条件概率得P(B|A)==解析:14【解析】由P (A )=,P (AB )=×=,由条件概率得P (B |A )==.三、解答题19.(1)该校的疫情防控是有效的,理由见解析;(2)分布列见解析,87.5. 【分析】(1)计算出()22P X μσμσ-<<+和()33P X μσμσ-<<+,结合已知条件判断可得出结论;(2)由题意可知,随机变量X 的可能取值有50、100、150、200,计算出随机变量Y 在不同取值下的概率,可得出随机变量Y 的分布列,进一步可求得随机变量Y 的数学期望值. 【详解】(1)据该校的疫情防控是有效的,理由如下:21014.5≈,265214.536μσ∴-=-⨯=,265214.594μσ+=+⨯=,365314.521.5μσ-=-⨯=,365314.5108.5μσ+=+⨯=,得分小于36分的学生有3个,得分大于94分的有4个,()72210.9650.9544200P X μσμσ∴-<<+=-=>, 学生的得分都在[]30,100间,()3310.9974P X μσμσ∴-<<+=>.∴学生得分近似满足正态分布()65,210N 的概率分布,因此该校的疫情防控是有效的;(2)设这名同学获得的奖金为Y ,则Y 的可能值为50、100、150、200,()6395010420P Y ==⨯=,()2614331001041048P Y ⎛⎫==⨯+⨯= ⎪⎝⎭, ()124313*********P Y C ==⨯⨯⨯=,()241120010440P Y ⎛⎫==⨯=⎪⎝⎭, 故Y 的分布列为:()5010015020087.52082040E Y ∴=⨯+⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.20.(1)56万;(2)这三人中恰有二人已签约庭医生的概率为0.441,数学期望2.1,方差0.63. 【分析】(1)根据频率分布直方图可直接计算该组的频率,故可估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)由题知此地区年龄段在71~80的每个居民签约家庭医生的概率为0.7P =,“从该地区年龄在71~80岁居民中随机抽取三人”为事件B ,随机变量为X ,满足二项分布,进而可求概率,期望及方差. 【详解】(1)由题知该地区居民约为2000万,由图1知,该地区年龄在71~80岁的居民人数为0.00410200080⨯⨯=万.由图2知.年龄在71~80岁的居民签概率为0.7.所以该地区年龄在71~80岁且已签约家庭医生的居民人数为800.756⨯=万.(2)由题知此地区年龄段在71~80的每个居民签约家庭医生的概率为0.7P =,且每个居民之间是否签约是独立的,所以设“从该地区年龄在71~80岁居民中随机抽取三人”为事件B ,随机变量为X ,这三人中恰有二人已签约庭医生的概率为()()()212320.710.70.441P X C ==-=.数学期()30.7 2.1E X =⨯=,方差()30.70.30.63D X =⨯⨯=. 21.(1)750;(2)分布列见解析,43;(3)2820张.【分析】(1)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有2+12=14人,由概率公式即可得到所求值;(2)X 所有的可能取值为0,1,2,求出相应的概率值,即可得到分布列与期望; (3)随机抽取的100名顾客中,使用自由购的有47人,计算可得所求值. 【详解】(1)在随机抽取的100名顾客中,年龄在[30, 50)且未使用这款APP 的共有2+12=14人,所以随机抽取1名顾客,估计该顾客年龄在[30, 50)且未使用这款APP 的概率为14710050P ==. (2)X 的所有可能取值为0,1,2,则()22261015C P X C ===, ()1142268115C C P X C ===, ()24266215C P X C === .所以X 的分布列为()18640121515153E X =⨯+⨯+⨯=. (3)在随机抽取的100名顾客中,使用自助结算机的共有5101884247+++++=人, 所以该机构至少应准备张代金券的张数估计为:4760002820100⨯=张.【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,求X 的分布列,关键点是求出X 所有可能取值对应的概率可得,是一道综合题. 22.(1)1325;(2)分布列见解析;期望为1.2;方差0.72. 【分析】(1)先求出甲、乙、丙三名学生参加社团的总的方法数为35,再求出三名学生选择不同社团35A种,求出三名学生选择不同社团概率为35312525A =,然后由12125-得出答案. (2)由题意得ξ的可能值为0、1、2、3,每个学生参加A 或B 社团的概率都是20.45=,且相互独立,符合二项分布~(30.4)B ξ,,由二项分布可得答案. 【详解】(1)甲、乙、丙三名学生每人选择五个社团的方法是5种,故共有35125=种可能,甲、乙、丙三名学生选择不同社团概率为35312525A =,则至少有两人参加同一社团概率为121312525-=; (2)由题意得ξ的可能值为0、1、2、3, 甲、乙、丙三个学生每人参加A 或B 社团的概率都是20.45=, 且相互独立,符合二项分布~(30.4)B ξ,, 3(0)0.60.216P ξ===,1123(1)0.40.60.432P C ξ==⨯⨯=, 2213(2)0.40.60.288P C ξ==⨯⨯=,3(3)0.40.064P ξ===,ξ的分布列为:()(1)30.40.60.72D np p ξ=-=⨯⨯=. 【点睛】关键点睛:本题考查古典概率和对立事件的概率以及二项分布的期望和方程,解答本题的关键是将问题化为二项分布问题,即根据甲、乙、丙三个学生每人参加A 或B 社团的概率都是20.45=, 且相互独立,符合二项分布~(30.4)B ξ,,从而根据二项分布求解,属于中档题. 23.(Ⅰ)10:04;(Ⅱ)答案见解析;(Ⅲ)819. 【分析】(Ⅰ)结合频率分布直方图,利用平均数公式求解.(Ⅱ)结合频率分布直方图,利用分层抽样的方法可知,抽取的10辆车中,在[20,60)这一区间内的车辆数为(0.0050.015)20104+⨯⨯=,则X 的可能的取值为0,1,2,3,4,再分别求得相应的概率,列出分布列.(Ⅲ)由(1)得64μ=,再利用频率分布直方图求得σ,然后利用3σ原则求解. 【详解】(Ⅰ)这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为:(300.005500.015700.020900.010)2064⨯+⨯+⨯+⨯⨯=,即10∶04(Ⅱ)由频率分布直方图和分层抽样的方法可知,抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在20,60这一区间内的车辆数, 即(0.0050.015)20104+⨯⨯=, 所以X 的可能的取值为0,1,2,3,4.所以()464101014C P X C ===,()31644108121C C P X C ===,()2264410327C C P X C ===, ()136********C C P X C ===,()4441014210C P X C ===.所以X 的分布列为:(Ⅲ)由(1)得,22222(3064)0.1(5064)0.3(7064)0.4(9064)0.2324σ=-⨯+-⨯+-⨯+-⨯=车辆所以18σ=,估计在9:46~10:40之间通过的车辆数也就是在46,100通过的车辆数, 由()2~64,18T N ,得()(22)(641864218)0.818622P T P T P T μσμσμσμσ-<≤+-<≤+-≤≤+⨯=+=,所以估计在在9:46~10:40之间通过的车辆数为10000.8186819⨯≈. 【点睛】方法点睛:(1)求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.(2)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.24.(1)80,40m n ==,7.44; (2)分布列见解析;期望为132143.。

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测卷(有答案解析)

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测卷(有答案解析)

一、选择题1.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .122.长春气象台统计,7月15日净月区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设事件A 为下雨,事件B 为刮风,那么()|P A B =( ) A .12B .34C .25D .383.某种疾病的患病率为0.5%,已知在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为( ) A .0.495%B .0.940 5%C .0.999 5%D .0.99%4.已知随机变量X 的取值为1,2,3,若()136P X ==,()53E X =,则()D X =( ) A .19 B .39 C .59 D .795.已知随机变量X 的分布列表如下表,且随机变量23Y X =+,则Y 的期望是( )A .73B .53C .13D .166.在一次期中考试中,数学不及格的人数占20%,语文不及格占10%,两门都不及格占5%,若一名学生语文及格,则该生数学不及格的概率为( ) A .16B .14C .29D .9507.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为()A .1 10B.14C.310D.258.下列四个结论中正确的个数是(1)对于命题0:p x R∃∈使得210x-≤,则:p x R⌝∃∈都有210x->;(2)已知2(2,)X Nσ,则(2)0.5P X>=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23y x=-;(4)“1≥x”是“12xx+≥”的充分不必要条件.A.1 B.2 C.3 D.49.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则()A.12E Eξξ<,12D Dξξ<B.12E Eξξ=,12D Dξξ>C.12E Eξξ=,12D Dξξ<D.12E Eξξ>,12D Dξξ>10.已知随机变量X的分布列如下表所示则(25)E X-的值等于A.1 B.2 C.3 D.411.从装有大小形状完全相同的3个白球和7个红球的口袋内依次不放回地取出两个球,每次取一个球,在第一次取出的球是白球的条件下,第二次取出的球是红球的概率为()A.715B.12C.710D.7912.某校1 000名学生的某次数学考试成绩X服从正态分布,其密度函数2222()xf x-μ-σ=π⋅σ()x∈R()曲线如图所示,正态变量X在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内取值的概率分别是68.3%,95.4%,99.7%,则成绩X位于区间(52,68]的人数大约是()A .997B .954C .683D .341二、填空题13.下列命题中,正确命题的序号为_________.①已知随机变量X 服从二项分布(,)B n p ,若()30,()20E X D X ==,则23p =; ②将一组数据中的每个数据都加上同一个常数后,方差恒不变;③设随机变量ξ服从正态分布(0,1)N ,若(1)P p ξ=,则1(10)2P p ξ-<=-; ④某人在10次射击中,击中目标的次数为,~(10,0.8)X X B ,则当8X =时概率最大. 14.中国福利彩票3D 游戏(以下简称3D ),是以一个3位自然数(如:0记作000)为投注号码的彩票.投注者从000~999这些3位自然数中选择一个进行投注,每注2元,如果与官方公布的三位数相同,则视为中奖,获得奖金1000元,反之则获得奖金0元.某人随机投了一注,他的奖金的期望是______元.15.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率(A |B)P 等于______.16.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则()|P B A =______.17.从编号为1,2,…,10的10个大小相同的球中任取4个,在选出4号球的条件下,选出球的最大号码为6的概率为_____.18.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80<ξ<120)=0.70,若按成绩分层抽样的方式取100份试卷进行分析.则应从120分以上的试卷中抽取________份.三、解答题19.某房产中介公司对2018年成都市前几个月的二手房成交量进行统计,y 表示2018年x 月该中介公司的二手房成交量,得到统计表格如下:i x 1 2 3 4 5 6 7 8 i y1214202224202630(1)通过散点图初步分析可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(计算结果精确到0.01);(2)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动,若抽中“一等奖”获5千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为14,获得“二等奖”的概率为12,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额X(千元)的分布列及数学期望.参考数据:81850i iix y==∑,821204iix==∑,8213776iiy==∑,21 4.58≈,31 5.57≈.参考公式:相关系数1222211ni iin ni ii ix y n x yrx nx y ny===-⋅⋅=--∑∑∑.20.为了解某市2021届高三学生备考情况,教研所计划在2020年11月、2021年1月和2021年4月分别进行三次质量检测考试,第一次质量检测考试(一检)结束后,教研所分析数据,将其中所有参加考试的理科生成绩数据绘制成了扇形统计图,分数在[)400,540之间的理科学生成绩绘制成频率分布直方图,已知参加考试的理科生有12000人.(1)如果按照上届高三理科生60%的二本率来估计一检的模拟二本线,请问一检考试的模拟二本线应该是多少;(2)若甲同学每次质量检测考试,物理、化学、生物及格的概率分别为34,12,12,请问甲同学参加三次质量检测考试,物理、化学、生物三科中至少2科及格的次数X分布列及期望.21.“工资条里显红利,个税新政人民心”,随着2021年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革至2019年实施以来发挥巨大作用.个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.假设该市该收入层级的IT从业者都独自享受专项附加扣除,将预估的该市该收入层级的IT 从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:(1)求该市该收入层级的IT从业者2021年月缴个税的所有可能及其概率.(2)根据新旧个税方案,估计从2021年1月开始,经过多少个月,该市该收入层级的IT 从业者各月少缴交的个税之和就超过2021年的月收入?22.某企业为了解职工A款APP和B款APP的用户量情况,对本单位职工进行简单随机抽样,获得数据如下表:男职工女职工使用不使用使用不使用A款APP72人48人40人80人B款APP60人60人84人36人(1)分别估计该企业男职工使用A款APP的概率、该企业女职工使用A款APP的概率;(2)从该企业男,女职工中各随机抽取1人,记这2人中使用A款APP的人数为X,求X的分布列及数学期望;(3)据电商行业发布的市场分析报告显示,A款APP的用户中男性占52.04%、女性占47.96%;B款APP的用户中男性占38.92%、女性占61.08%.试分析该企业职工使用A款APP的男、女用户占比情况和使用B款APP的男、女用户占比情况哪一个与市场分析报告中的男、女用户占比情况更相符.23.我市某大学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须且只能参加一个社团,假定某寝室的甲、乙、丙三名学生对这五个社团的选择是等可能的.(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;(2)设随机变量ξ为甲、乙、丙这三个学生参加A或B社团的人数,求ξ的分布列、数学期望及方差.24.“花开疫散,山河无恙,心怀感恩,学子归来,行而不缀,未来可期”,为感谢全国人民对武汉的支持,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者参与网络云直播.将这20名志愿者的身高编成如下茎叶图(单位:厘米).若身高在175cm及其以上定义为“高个子”,否则定义为“非高个子”,且只有文学院的“高个子”才能担任兼职主持人.(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数.(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则从这5人中选2人,那么至少有一人是“高个子”的概率是多少;(3)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职主持人”的人数,试写出ξ的分布列,并求ξ的数学期望.25.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.26.为研究一种新药的耐受性,要对白鼠进行连续给药后观察是否出现F症状的试验,该试验的设计为:对参加试验的每只白鼠每天给药一次,连续给药四天为一个给药周期,试验共进行三个周期.假设每只白鼠给药后当天出现F症状的概率均为13,且每次给药后是否出现F症状与上次给药无关.(1)从试验开始,若某只白鼠连续出现2次F症状即对其终止试验,求一只白鼠至少能参加一个给药周期的概率;(2)若在一个给药周期中某只白鼠至少出现3次F症状,则在这个给药周期后,对其终止试验,设一只白鼠参加的给药周期数为X,求X的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据分布列的性质可得23a=,由()2Eξ=可得出62m n=-,再由二次函数的基本性质可求得()Dξ的最小值.【详解】由分布列的性质可得23a =,()12233E m n ξ=+=,所以,26m n +=,则62m n =-,()()()()()()222221212224222203333D m n n n n ξ=-+-=-+-=-≥, 因此,()D ξ的最小值为0. 故选:A. 【点睛】本题考查利用随机分布列的性质解题,同时也考查了方差最值的计算,考查计算能力,属于中等题.2.B解析:B 【分析】 确定421(),(),()151510P A P B P AB ===,再利用条件概率的计算公式,即可求解. 【详解】由题意,可知421(),(),()151510P A P B P AB ===, 利用条件概率的计算公式,可得1()310(|)2()415P AB P A B P B ===,故选B. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A 【分析】设事件A =“血检呈阳性”,B =“患该种疾病”,由题得P (B )=0.005,P (A |B )=0.99, 由条件概率得P (AB )=P (B )P (A |B ),计算即得解. 【详解】设事件A =“血检呈阳性”,B =“患该种疾病”. 依题意知P (B )=0.005,P (A |B )=0.99, 由条件概率公式P (A |B )=()()P AB P B , 得P (AB )=P (B )P (A |B )=0.005×0.99=0.00495, 故选:A. 【点睛】本题主要考查条件概率的计算和应用,意在考查学生对这些知识的理解掌握水平.4.C解析:C 【分析】设(1)P X p ==,(2)P X q ==,则由1(3)6P X ==,5()3E X =,列出方程组,求出p ,q ,即可求得()D X .【详解】设(1)P X p ==,(2)P X q ==,1563()23E X p q =++⨯=——①,又161p q ++=——② 由①②得,12p =,13q =, 222111()(1)(25555333(9))2336D X ∴=-+-+-=故选:C. 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.5.A解析:A 【分析】由随机变量X 的分布列求出m ,求出()E X ,由23Y X =+,得()()23E Y E X =+,由此能求出结果. 【详解】由随机变量X 的分布列得:11123m ++=, 解得16m =, ()11111012363E X ∴=-⨯+⨯+⨯=-,23Y X =+,()()2723333E Y E X ∴=+=-+=.故选:A .【点睛】本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的分布列、数学期望的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.A解析:A 【分析】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为(|)P B A ,根据条件概率的计算公式,和题设数据,即得解. 【详解】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为:()20%5%151(|)()110%906P A B P B A P A -====-故选:A 【点睛】本题考查了条件概率的计算,考查了学生概念理解,实际应用,数学运算的能力,属于基础题.7.B解析:B 【分析】记事件:A 甲乙相邻,事件:B 乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出()P A 和()P AB ,再利用条件概率公式可计算出所求事件的概率. 【详解】记事件:A 甲乙相邻,事件:B 乙丙相邻,则事件:AB 乙和甲丙都相邻,所求事件为B A ,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为424248A A =,由古典概型的概率公式可得()554825P A A ==. 乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为323212A A =,由古典概型的概率公式可得()5512110P AB A ==, 由条件概率公式可得()()()1511024P AB P B A P A ==⨯=,故选B. 【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.8.C解析:C【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.B解析:B 【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系. 【详解】1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=, 故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=. ()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯, 故223E ξ=,2221242013399D ξ=⨯+⨯-=, 故12E E ξξ=,12D D ξξ>.故选B. 【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.10.A解析:A 【分析】先求出b 的值,再利用期望公式求出E(X),再利用公式求出()25E X -. 【详解】由题得0.1+0.2+0,20.11,0.4,b b ++=∴=,所以()10.120.230.440.250.13E X =⨯+⨯+⨯+⨯+⨯= 所以(25)2()52351E X E X -=-=⨯-=. 故答案为A 【点睛】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 若a b ηξ=+(a 、b 是常数),ξ是随机变量,则η也是随机变量,E η=()E a b aE b ξξ+=+,2()D a b a D ξξ+=.11.D解析:D 【分析】运用条件概率计算公式即可求出结果 【详解】令事件A 为第一次取出的球是白球,事件B 为第二次取出的球是红球,则根据题目要求得()()()377109|3910P AB P B A P A ⨯===, 故选D 【点睛】本题考查了条件概率,只需运用条件概率的公式分别计算出事件概率即可,较为基础.12.C解析:C 【解析】分析:先由图得,μσ,再根据成绩X 位于区间(52,68]的概率确定人数.详解:由图得8μσ=== 因为60852,60868-=+=,所以成绩X 位于区间(52,68]的概率是68.3%, 对应人数为68.3%1000683⨯=, 选C.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.二、填空题13.②③④【分析】根据二项分布的均值与方差公式计算判断A 由方差公式判断B 由正态分布判断C 由独立重复试验的概率公式判断D 【详解】根据二项分布的数学期望和方差的公式可得解得所以①错误;根据方差的计算公式可知解析:②③④ 【分析】根据二项分布的均值与方差公式计算判断A ,由方差公式判断B ,由正态分布判断C ,由独立重复试验的概率公式判断D . 【详解】根据二项分布的数学期望和方差的公式,可得()30,()(1)20E X np D X np p ===-=,解得13p =,所以①错误; 根据方差的计算公式可知,将一组数据中的每个数据都加上同一个常数后,方差恒不变,所以②正确;由正态分布的图像的对称性可得12(1)121(10)222P p P p ξξ---<===-,所以③正确;由独立重复试验的概率的计算公式可得,由10101111100.80.2()4(11)1(1)0.80.2k k k k k k C P X k k P X k C k----⋅=-==>=-,得8.8k <,即8k ≤时,()()1P X k P x k =>=-,同理得9k ≥时,()(1)p X k p x k =<=-,即(8)P X =最大,88210(8)(0.8)(10.8)P X C ==-,所以④正确.所以正确命题的序号为②③④.故答案为:②③④. 【点睛】本题考查二项分布,正态分布,随机变量的方差.正态分布曲线具有对称性,常常出现由对称性求概问题,二项分布中概率公式是()(1)k k n kn P X k C p p -==-,可用作商法确定其中的最大值或最小值.14.1【分析】求出此人中奖和不中奖的概率利用期望的公式即可求得数学期望得到答案【详解】由题意此人中奖的概率为不中奖的概率为所以此人随机投注一次他的奖金的期望为:元故答案为:1【点睛】本题主要考查了离散型解析:1 【分析】求出此人中奖和不中奖的概率,利用期望的公式,即可求得数学期望,得到答案. 【详解】由题意,此人中奖的概率为11000,不中奖的概率为9991000,所以此人随机投注一次,他的奖金的期望为:199910000110001000⨯+⨯=元. 故答案为:1. 【点睛】本题主要考查了离散型随机变量的数学期望的求法,其中解答中正确理解题意,求得此人中奖和不中奖的概率,结合期望的计算公式求解是解答的关键,属于基础题.15.【分析】本题利用条件概率公式求解【详解】至少出现一个5点的情况有:至少出现一个5点的情况下三个点数之和等于15有一下两类:①恰好一个5点则另两个点数只能是4和6共有;②恰好出现两个5点则另一个点数也 解析:113【分析】本题利用条件概率公式()(|)()n AB P A B n B =求解. 【详解】至少出现一个5点的情况有:336591-=,至少出现一个5点的情况下,三个点数之和等于15有一下两类:①恰好一个5点,则另两个点数只能是4和6,共有11326C C ⨯=;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况.()611(|)()9113n AB P A B n B +∴===, 故答案为:113. 【点睛】本题考查条件概率的公式,需要求出基本事件的个数,运用正难则反的思想.16.【分析】首先第一次摸出红球为事件第二次摸出白球为事件分别求出利用条件概率公式即可求解【详解】由题意事件A 第一次摸到红球的概率为:又由第一次摸到红球且第二次摸到白球的概率为根据条件概率公式可得故答案为解析:49【分析】首先第一次摸出红球为事件A ,第二次摸出白球为事件B ,分别求出(),()P A P B ,利用条件概率公式,即可求解. 【详解】由题意,事件A“第一次摸到红球”的概率为:6()10P A =,又由“第一次摸到红球且第二次摸到白球”的概率为6424()10990P A B =⨯=, 根据条件概率公式,可得()()24104|()9069P A B P B A P A ==⨯=,故答案为49. 【点睛】本题主要考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键,着重考查了推理与运算能力.17.【分析】令事件求出即可求出选出4号球的条件下选出球的最大号码为6的概率【详解】令事件依题意知∴故答案为【点睛】本题考查古典概型理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性掌握列 解析:114【分析】令事件{}44A =选出的个球中含号球,{}46B =选出的个球中最大号码为,求出()39n A C =,()6n AB =,即可求出选出4号球的条件下,选出球的最大号码为6的概率. 【详解】令事件{}44A =选出的个球中含号球,{}46B =选出的个球中最大号码为,依题意知()39=84n A C =,()246n AB C ==, ∴()61|8414P B A ==,故答案为114. 【点睛】本题考查古典概型,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,掌握列举法,还要应用排列组合公式熟练,学会运用数形结合、分类讨论的思想解决概率的计算问题,属于中档题.18.15【解析】分析:根据正态分布概率计算可求出120分以上的概率;根据分层抽样可求出120分以上抽取样本的数量详解:根据正态分布所以根据分层抽样中概率值可得120分以上抽取份数为点睛:本题考查了利用正解析:15. 【解析】分析:根据正态分布概率计算,可求出120分以上的概率;根据分层抽样,可求出120分以上抽取样本的数量. 详解:根据正态分布()2100,N σ,100μ= ,()801200.7P ξ<<=所以()10.71200.152P ξ-<== 根据分层抽样中概率值,可得120分以上抽取份数为1200.1515⨯=点睛:本题考查了利用正态分布的概率特征,计算特定范围内的概率,结合分层抽样求出抽取样本的数数量,属于简单题.三、解答题19.(1)答案见解析;(2)分布列见解析,() 5.5E X =千元. 【分析】(1)首先计算x 、y 再将已知条件中所给的数据代入相关系数r 的公式即可求解; (2)奖金总额X 的所有可能取值有0,3,5,6,8,10千元,分别求出对应的概率,列出分布列、计算期望即可. 【详解】(1)依题意: 4.5x =,21y =,88i ix y x yr -==∑940.924 4.58 5.57===≈⨯⨯.因为0.92非常趋近1,所以变量x ,y 线性相关性很强,可用线性回归模型拟合y 与x 的关系.(2)二人所获奖金总额X 的所有可能取值有0,3,5,6,8,10千元.()11104416P X ==⨯=,()11132244P X ==⨯⨯=,()11152448P X ==⨯⨯=,()1116224P X ==⨯=,()11182244P X ==⨯⨯=,()111104416P X ==⨯=,所以,奖金总额X 的分布列如下表:()0356810 5.516484416E X =⨯+⨯+⨯+⨯+⨯+⨯=千元. 【点睛】思路点睛:求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算).20.(1)458;(2)答案见解析. 【分析】(1)设二本线应为x 分,根据题意可知,x 左边的矩形面积之和为3150,可得出关于x 的等式,解出x 的值,即为所求; (2)由题意可知,随机变量53,8X B ⎛⎫⎪⎝⎭,根据二项分布可得出随机变量X 的分布列,利用二项分布的期望可求得()E X .【详解】(1)540分以上的频率为:30136012=, 要达到60%的二本率,所以,[]460,540之间频率为:13003160%1236050⎛⎫-÷= ⎪⎝⎭ 因为[]460,540的频率总和为()0.01250.00750.0052200.6++⨯⨯= 所以模拟二本线应在[]440,460之间,设为x 则()314600.010.650x -⋅+=解得:458x =; (2)至少2科及格的概率3113115314224228P ⎛⎫=⨯⨯⨯+-⨯⨯= ⎪⎝⎭ 5~3,8X B ⎛⎫ ⎪⎝⎭,()3355188k kk P X k C -⎛⎫⎛⎫∴==⋅⋅- ⎪ ⎪⎝⎭⎝⎭,0k =,1,2,3()388E X np ==⨯=.【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.21.(1)缴个税的所有可能值为2190,1990,1790,1590,其概率分别为()221905P X ==,()119905P X ==,()117905P X ==,()115905P X ==,(2)12个月 【分析】(1)求出4种人群的每月应缴个税额,根据条件得出求出其概率;(2)由(1)求出在新政策下该收入层级的IT 从业者2021年月缴个税为,计算两种政策下的每月应缴个税额度差即可得出结论. 【详解】(1)既不符合子女教育扣除也不符合赡养老人扣除的人群每月应纳税所得额为240005000100018000--=,月缴个税30000.0390000.160000.22190X =⨯+⨯+⨯=;只符合子女教育扣除但不符合赡养老人扣除的人群每月应纳税所得额为2400050001000100017000---=,月缴个税30000.0390000.150000.21990X =⨯+⨯+⨯=;只符合赡养老人扣除但不符合子女教育扣除的人群每月应纳税所得额为2400050001000200016000---=,月缴个税30000.0390000.140000.21790X =⨯+⨯+⨯=;既符合子女教育扣除又符合赡养老人扣除的人群每月应纳税所得额为24000500010001000200015000----=,月缴个税30000.0390000.130000.21590X =⨯+⨯+⨯=; 所以X 的可能值为2190,1990,1790,1590, 依题意,上述四类人群的人数之比是2:1:1:1,所以()221905P X ==,()119905P X ==,()117905P X ==,()115905P X ==.,(2)由(1)可知X 的分布列为所以()219019901790159019505555E X =⨯+⨯+⨯+⨯=.. 因为在旧政策下该收入层级的IT 从业者2021年每月应纳税所得额为24000350020500-=,其月缴个税为15000.0330000.145000.2115000.254120⨯+⨯+⨯+⨯=,。

最新数学高三必修同步训练题随机变量及其分布

最新数学高三必修同步训练题随机变量及其分布

2019最新数学高三必修同步训练题随机变量及其分布大家把理论知识复习好的同时,也应该要多做题,从题中找到自己的不足,及时学懂,下面是查字典数学网小编为大家整理的2019最新数学高三必修同步训练题,希望对大家有帮助。

10.标号为A、B、C的三个口袋,A袋中有1个红色小球,B 袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解析:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.应有12+13+23=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.应有1+3=4(种).11.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?解析:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,321=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,321=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C、D、E有A33=6种不同的放法,根据分步乘法计数原理得,3321=18种不同方法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.12.(能力提升)某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有多少种?(用数字作答)?解析:从题意来看,6部分种4种颜色的花,又从图形看,知必有2组同颜色的花,从同颜色的花入手分类求解. (1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N1=43221=48(种).(2)③与⑤同色,则②④或④⑥同色,所以共有N2=43221=48(种);(3)②与④且③与⑥同色,所以共有N3=4321=24(种).所以,共有N=N1+N2+N3=48+48+24=120(种).[B组因材施教备选练习]1.如果一条直线与一个平面平行,那么称此直线与平面构成一个平行线面组.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的平行线面组的个数是()A.60B.48C.36D.24解析:长方体的 6个表面构成的平行线面组有66=36个,另含4个顶点的6个面(非表面)构成的平行线面组有62=12个,共36+12=48个,故选B.答案:B2.(2019年潍坊期中)如果把个位数是1,且恰有3个数字相同的四位数叫做好数,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,好数共有________个.解析:若三个相同的数字为1,则有33=9(个)好数若三个相同的数字不是1,则应为2221,3331,4441,有3个,所以共有9+3=12个.答案:123.用红、黄、蓝三种颜色之一去涂图中标号为1 ,2,,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.123456 789。

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测题(有答案解析)(4)

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测题(有答案解析)(4)

一、选择题1.在一个箱子中装有大小形状完全相同的有4个白球和3个黑球,现从中有放回地摸取5次,每次随机摸取一球,设摸得的白球个数为X ,黑球个数Y ,则( ) A .()()()(),E X E Y D X D Y >> B .()()()(),E X E Y D X D Y => C .()()()(),E X E Y D X D Y >=D .()()()(),E X E Y D X D Y ==2.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .123.现有4名男生,2名女生.从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为( ) A .23B .35C .12D .254.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52275.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为( ) A .110B .14C .310D .256.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( ) A .8225B .12C .38D .347.在一个袋子中装有6个除颜色外完全相同的球,设有1个红球,2个黄球,3个黑球,从中依次不放回地抽取2个球,则在第一个球是红球的条件下,第二个球是黄球的概率为( )A .15B .25C .35D .458.已知随机变量i X 满足()1i i P X p ==,()01,1,2i i P X p i ==-=,若21211p p <<<,则( ) A .()()12E X E X < , ()()12D X D X < B .()()12E X E X > , ()()12D X D X < C .()()12E X E X < , ()()12D X D X > D .()()12E X E X > , ()()12D X D X >9.吸烟有害健康,远离烟草,珍惜生命.据统计一小时内吸烟5支诱发脑血管病的概率为0.02,一小时内吸烟10支诱发脑血管病的概率为0.16.已知某公司职员在某一小时内吸烟5支未诱发脑血管病,则他在这一小时内还能继吸烟5支不诱发脑血管病的概率为( ) A .67B .2125C .4950D .不确定10.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( ) A .6 B .9 C .3D .411.已知随机变量ξ服从正态分布()21,N σ,若()20.66P ξ≤=,则()0P ξ≤=( )A .0.84B .0.68C .0.34D .0.1612.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( ) A .0.2B .0.6C .0.8D .0.9第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知随机变量ξ和η,其中η=4ξ-2,且E (η)=7,若ξ的分布列如下表,则n 的值为__.14.在某项测量中,测量结果ξ 服从正态分布2(2,)(0)N σσ> ,若ξ在(0,4)内取值的概率为0.6,则ξ在(0,+∞)内取值的概率为__________15.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为_______.16.假设每天从甲地去乙地的旅客人数X 是服从正态分布()2800,50N 的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p ,则0p 的值为________. (参考数据:若2),(X N μσ~,则()0.6826P X μσμσ-<≤+=;2()2P X μσμσ-<≤+=0.9544;(33)0.9974P X μσμσ-<+=≤.)17.一次英语测验由50道选择题构成,每道题有4个选项,其中有且仅有一个是正确的,每个选对得3分,选错或不选均不得分,满分150.某学生选对每一道题的概率均为0.7,则该生在这次测验中的成绩的期望是__________18.设随机变量X 的概率分布如下表所示,且随机变量X 的均值()E X 为2.5 ,X1 2 3 4Pab38316则随机变量X 的方差()V X 为__________.三、解答题19.在某运动会上,有甲队女排与乙队女排以“五局三胜”制进行比赛,其中甲队是“慢热”型队伍,根据以往的经验,首场比赛甲队获胜的概率为P ,决胜局(第五局)甲队获胜的概率为23,其余各局甲队获胜的概率均为12.(1)求甲队以3:2获胜的概率;(2)现已知甲队以3:0获胜的概率是112,若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求甲队得分的分布列及数学期望.20.假设有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出两个零件,试求: (1)先取出的零件是一等品的概率; (2)两次取出的零件均为一等品的概率.21.时值金秋十月,秋高气爽,我校一年一度的运动会拉开了序幕.为了增加运动会的趣味性,大会组委会决定增加一项射击比赛,比赛规则如下:向甲、乙两个靶进行射击,先向甲靶射击一次,命中得2分,没有命中得0分;再向乙靶射击两次,如果连续命中两次得3分,只命中一次得1分,一次也没有命中得0分.小华同学准备参赛,目前的水平是:向甲靶射击,命中的概率是35;向乙靶射击,命中的概率为23.假设小华同学每次射击的结果相互独立.(1)求小华同学恰好命中两次的概率; (2)求小华同学获得总分X 的分布列及数学期望. 22.设袋中有5个红球,3个黑球,2个白球,试按:(1)有放回摸球三次,每次摸一球,求第三次才摸到白球的概率; (2)不放回摸球三次,每次摸一球,求第三次才摸到白球的概率.23.据中国日报网报道:TOP 500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席.其中超算仝球第一“神威·太湖之光”完全使用了国产处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下:(数值越小,速度越快,单位是MIPS )的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.24.某工厂生产甲、乙两种电子产品,甲产品的正品率为p (p 为常数且00.9p <<),乙产品的正品率为0.1p +.生产1件甲产品,若是正品,则可盈利4万元,若是次品,则亏损1万元;生产1件乙产品,若是正品,则可盈利6万元,若是次品,则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,若()8.2E X =,求p ;(2)在(1)的条件下,求生产4件甲产品所获得的利润不少于11万元的概率.25.甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是23,乙能答对其中的8道题,规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选.(1)求甲恰有2个题目答对的概率;(2)求乙答对的题目数X的分布列与期望.26.2020年10月4日,第29届全国中学生生物学奥林匹克竞赛,在重庆巴蜀中学隆重举行,若将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于50至100之间,将数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100的分组作出频率分布直方图如图所示.(1)求频率分布直方图中a的值,并估计这50名学生成绩的中位数;(2)若按照分层随机抽样从成绩在[)(]80,90,90,100的两组中抽取了6人,再从这6人中随机抽取3人,记x为3人中成绩在[]90,100的人数,求x的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7X B,3(5,)7YB ,由二项分布的均值与方差公式计算后可得结论.【详解】 有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7XB ,3(5,)7YB ,∴420()577E X =⨯=,315()577E Y =⨯=, 4360()57749D X =⨯⨯=,3460()57749D Y =⨯⨯=.故选:C 【点睛】结论点睛:本题考查二项分布,掌握二项分布的概念是解题关键.变量(,)XB n p ,则()E X np =,()(1)D X np p =-.2.A解析:A 【分析】根据分布列的性质可得23a =,由()2E ξ=可得出62m n =-,再由二次函数的基本性质可求得()D ξ的最小值. 【详解】由分布列的性质可得23a =,()12233E m n ξ=+=,所以,26m n +=,则62m n =-,()()()()()()222221212224222203333D m n n n n ξ=-+-=-+-=-≥, 因此,()D ξ的最小值为0. 故选:A. 【点睛】本题考查利用随机分布列的性质解题,同时也考查了方差最值的计算,考查计算能力,属于中等题.3.D解析:D 【分析】设男生甲被选中为事件A ,女生乙也被选中为事件B ,分别求得1()2P A =,1()5P AB =,再结合条件概率的计算公式,即可求解.【详解】由题意,从现有4名男生,2名女生选出3人参加学校组织的社会实践活动,设男生甲被选中为事件A ,其概率为25361()2C P A C ==,设女生乙也被选中为事件B ,其概率为14361()5C P AB C ==,所以在男生甲被选中的情况下,女生乙也被选中的概率为()2(|)1()5215P AB P B A P A ===. 故选:D. 【点睛】本题主要考查了条件概率的求解,其中解答中正确理解题意,熟练应用条件概率的计算公式求解是解答的关键,着重考查推理与计算能力.4.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.5.B解析:B【分析】记事件:A 甲乙相邻,事件:B 乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出()P A 和()P AB ,再利用条件概率公式可计算出所求事件的概率. 【详解】记事件:A 甲乙相邻,事件:B 乙丙相邻,则事件:AB 乙和甲丙都相邻,所求事件为B A ,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为424248A A =,由古典概型的概率公式可得()554825P A A ==. 乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为323212A A =,由古典概型的概率公式可得()5512110P AB A ==, 由条件概率公式可得()()()1511024P AB P B A P A ==⨯=,故选B. 【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.6.C解析:C 【分析】利用条件概率公式,即可求得结论. 【详解】该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110, ∵设A 事件为下雨,B 事件为刮风,由题意得,P (A )415=,P (AB )110=, 则P (B |A )()()13104815P AB P A ===, 故选C . 【点睛】本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.7.B解析:B 【分析】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,所求概率为()()()|P AB P B A P A =,求解即可.【详解】设抽取第一个球是红球的事件为A ,第二个球是黄球的事件为B ,则()16P A =,()1216515P AB =⨯=,则所求概率为()()()25P AB P B A P A |==. 故选B. 【点睛】本题考查了条件概率的计算,考查了学生对条件概率知识的掌握,属于基础题.8.C解析:C 【分析】根据题目已知条件写出12,X X 的分布列,取特殊值计算出两者的期望和方差,由此得出正确选项. 【详解】 依题意可知:由于2121p p <<<,不妨设12,34p p ==.故121223,,34EX EX EX EX ==<,121223,,916DX DX DX DX ==>,故选C.【点睛】本小题主要考查随机变量分布列期望和方差的计算,考查分析与阅读理解能力,属于中档题.9.A解析:A 【分析】直接利用条件概率公式计算出该事件的概率. 【详解】记事件A :某公司职员一小时内吸烟5支未诱发脑血管病, 记事件B :某公司职员一小时内吸烟10支未诱发脑血管病,则事件B |A :某公司职员在某一小时内吸烟5支未诱发脑血管病,在这一小时内还能继吸烟5支不诱发脑血管病, 则B ⊂A ,AB =A ∩B =B , P (A )=1﹣0.02=0.98,P (B )=1﹣0.16=0.84, 因此,P (B |A )()()()()0.8460.987P AB P B P A P A ====, 故选A . 【点睛】本题考查的是条件概率.条件概率一般有两种求解方法:(1)定义法:先求P (A )和P (AB ),再由P (B |A )=()()P AB P A ,求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=()()n AB n A .10.A解析:A 【分析】直接利用方差的性质()()2D a b a D ξξ+=⨯求解即可.【详解】 由题意得()()112323E ξ=⨯++=, ()()()()2221212223233D ξ⎡⎤∴=-+-+-=⎣⎦,()()23536D D ξξ+=⨯=,故选A.【点睛】本题主要考查方差的性质与应用,意在考查对基本性质掌握的熟练程度,属于中档题.11.C解析:C 【解析】分析:先根据正态分布得(12)0.16,P ξ≤≤=再求(01)0.16,P ξ≤≤=最后求得() 0P ξ≤=0.34.详解:由正态分布曲线得(12)0.660.50.16,P ξ≤≤=-= 所以(01)0.16,P ξ≤≤=所以()0P ξ≤=0.5-0.16=0.34. 故答案为C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.12.C解析:C 【解析】分析:由题意可知()()0.5,0.4P A P AB ==,利用条件概率公式可求得()|P B A 的值. 详解: 设第一个路口遇到红灯的事件为A , 第二个路口遇到红灯的事件为B , 则()()0.5,0.4P A P AB ==, 则()()()|0.8P AB P B A P A ==,故选C.点睛:本题考查条件概率公式()()()/=P AB P B A P A ,属于基础题.计算条件概率时一定要注意区分条件概率与独立事件同时发生的概率的区别与联系.二、填空题13.【解析】所以且概率和解得解析:13【解析】42ηξ=-,()()9427,4E E E ηξξ=-==,所以()11912344124E m n ξ=⨯+++⨯=,且概率和111412m n +++=,解得13n =.14.08【分析】根据服从正态分布可得曲线的对称轴是直线由在(04)内取值的概率可求得再根据正态曲线的对称性可求在内取值的概率进而求得在(0+∞)内取值的概率【详解】服从正态分布曲线的对称轴是在(04)内解析:0.8 【分析】根据ξ服从正态分布2(2,)(0)N σσ>,可得曲线的对称轴是直线2x =.由ξ在(0,4)内取值的概率,可求得(0)(4)P P ξξ<+>.再根据正态曲线的对称性,可求在(4,)+∞内取值的概率,进而求得在(0,+∞)内取值的概率. 【详解】ξ服从正态分布2(2,)(0)N σσ>,∴曲线的对称轴是2x =,ξ在(0,4)内取值的概率为0.6,(0)(4)0.4P P ξξ∴<+>=,则(4)0.2P ξ>=, (0)0.60.20.8P ξ∴>=+=.故答案为:0.8. 【点睛】本题考查了正态分布曲线的特点及曲线所表示的意义,主要考查正态曲线的对称性,是基础题.15.【分析】从顶点到3总共有5个岔口共有10种走法每一岔口走法的概率都是二项分布的概率计算公式即可求解【详解】由题意从顶点到3的路线图单独画出来如图所示可得从顶点到3总共有种走法其中每一岔口走法的概率都 解析:516【分析】从顶点到3总共有5个岔口,共有10种走法,每一岔口走法的概率都是12,二项分布的概率计算公式,即可求解. 【详解】由题意,从顶点到3的路线图单独画出来,如图所示,可得从顶点到3总共有2510C =种走法,其中每一岔口走法的概率都是12, 所以珠子从出口3出来的概率为25515()216P C =⋅=.【点睛】本题主要考查了二项分布的一个模型,其中解答中认真审题,合理利用二项分布的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.09772【分析】由X 是服从正态分布知μ=800σ=50故结合正态分布的对称性可知根据即可求解【详解】由于随机变量X 服从正态分布故有μ=800σ=50则由正态分布的对称性可得【点睛】本题主要考查了正解析:0.9772 【分析】由X 是服从正态分布()2800,50N 知μ=800,σ=50,故()7009000.9544P X <=≤,结合正态分布的对称性可知()01=800290P X <≤()700900P X <≤,根据()()()0900800800900p P X P X P X ≤≤+≤==<即可求解.【详解】由于随机变量X 服从正态分布()2800,50N ,故有μ=800,σ=50,则()7009000.9544P X <=≤. 由正态分布的对称性, 可得()()()090080080019200p P X P X P X ==≤<≤=≤++()17009000.97722P X =<≤. 【点睛】本题主要考查了正态分布,利用正态曲线的对称性解题,属于中档题.17.105【解析】分析:先判断概率分别为二项分布再根据二项分布期望公式求结果详解:因为所以点睛:解析:105. 【解析】分析:先判断概率分别为二项分布,再根据二项分布期望公式求结果. 详解:因为(150,0.7)x B ~,所以1500.7105.Ex =⨯= 点睛:(,),(),()(1).x B n p E X np V X np p ~==-18.【解析】分析:根据分布列的性质求出的值然后再根据方差的定义求解即可得到结论详解:由题意得即解得∴点睛:(1)离散型随机变量的分布列中所有概率和为1这一性质为求概率和检验分布列是否正确提供了工具(2)解析:98【解析】分析:根据分布列的性质求出,a b 的值,然后再根据方差的定义求解即可得到结论.详解:由题意得3318163352348162a b a b ⎧+++=⎪⎪⎨⎪++⨯+⨯=⎪⎩,即716528a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14316a b ⎧=⎪⎪⎨⎪=⎪⎩.∴()2222515353539123424216282168V X ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.点睛:(1)离散型随机变量的分布列中所有概率和为1,这一性质为求概率和检验分布列是否正确提供了工具.(2)求分布列的期望和方差时可根据定义直接求解即可.三、解答题19.(1)14;(2)分布列见解析,数学期望为118. 【分析】(1)分析出第五局甲赢,前四局甲队赢两局,利用独立事件的概率乘法公式可求得所求事件的概率;(2)利用独立事件的概率乘法公式计算得出13P =,设甲队得分为X ,则X 的可能取值有0、1、2、3,计算出X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得()E X 的值. 【详解】(1)记事件A :甲队以3:2获胜,则第五局甲队胜,前面四局甲队赢两局,所以,()()33123312121123234P A P C P C ⎛⎫⎛⎫=⋅⋅⋅+-⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭;(2)记甲队以3:0获胜为事件B ,则()21112412P B P P ⎛⎫=⨯== ⎪⎝⎭,解得13P =. 记甲队得分为X ,则X 的可能取值有0、1、2、3, 若X 0=,则甲队以0:3或1:3落败,所以,()23312111111301113232328P X C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==-⋅-+⋅+-⋅⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;若1X =,则甲队以2:3落败,所以,()331233111211113233238P X C C ⎛⎫⎛⎫==⋅⋅⋅+⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭;若2X =,则甲队以3:2获胜,所以,()()124P X P A ===; 若3X =,则甲队以3:0或3:1获胜,所以,()2231211111211332322324P X C ⎛⎫⎛⎫⎛⎫==⋅+⋅⋅⋅+⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以,随机变量X 的分布列如下表所示:因此,()012388448E X =⨯+⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 20.(1)715;(2)0.22. 【分析】(1)记事件=i A “任取的一箱为第i 箱零件”,则1i =、2、3,记事件j B =“第j 次取到的是一等品”,则1j =、2,利用条件概率和全概率公式可求得所求事件的概率; (2)求出()121P B B A 、()122P B B A 、()123P B B A ,利用全概率公式可求得所求事件的概率. 【详解】(1)记事件=i A “任取的一箱为第i 箱零件”,则1i =、2、3, 记事件j B =“第j 次取到的是一等品”,则1j =、2,由题意知1A 、2A 、3A 构成完备事件组,且()()()12313P A P A P A ===, ()11200.450P B A ==,()12120.430P B A ==,()13240.640P B A ==, 由全概率公式得()()()()()()()()1111212313170.40.40.6315P B P A P B A P A P B A P A P B A =++=⨯++=;(2)因为()22012125038245C P B B A C ==,()21212223022145C P B B A C ==,()2241232402365C P B B A C ==,由全概率公式得()()()()()()()12112121223123P B B P A P B B A P A P B B A P A P B B A =++13822230.22324514565⎛⎫=⨯++≈ ⎪⎝⎭. 【点睛】易错点点睛:本题考查利用条件概率和全概率公式计算事件的概率,解本题的关键在于确定一等品是从哪个箱子里取出的,再结合相应的知识求解. 21.(1)49;(2)分布列答案见解析,数学期望:13445. 【分析】(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B , “小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 则有A BCD BCD BCD =++,由互斥事件与独立事件的概率公式可得;(2)随机变量X 的取值可能为0,1,2,3,5,求出它们的概率可得分布列,由期望公式可计算出期望. 【详解】解:(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B , “小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 由题意可知3()5P B =,2()()3P C P D ==,由于A BCD BCD BCD =++, ∴3213122224()()5335335339P A P BCD BCD BCD =++=⨯⨯+⨯⨯+⨯⨯=, 故甲同学恰好命中一次的概率为49. (2)X =0,1,2,3,5.2212(0)5345P X ⎛⎫==⨯=⎪⎝⎭,122218(1)53345P X C ==⨯⨯⨯=, 2311(2)5315P X ⎛⎫==⨯= ⎪⎝⎭,123212224(3)5335339P X C ==⨯⨯⨯+⨯⨯=, 2324(5)5315P X ⎛⎫==⨯= ⎪⎝⎭,()0123545451591545E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查互斥事件与相互独立事件的概率公式,考查随机变量的概率分布列和数学期望,解题关键是把事件“小华恰好命中两次”拆成一些互斥事件的和,确定随机变量的可能值并计算出概率. 22.(1)16125;(2)745. 【分析】设A ={第一次未摸到白球},B ={第二次未摸到白球},C ={第三次摸到白球},则事件“第三次才摸到白球”可表示为ABC .(1)有放回地摸球,每次都是从10个球中摸一球,由条件概率公式计算.(2)无放回地摸球,三次摸球时的个数不相等,计算出相应的概率后由条件概率公式计算可得. 【详解】设A ={第一次未摸到白球},B ={第二次未摸到白球},C ={第三次摸到白球},则事件“第三次才摸到白球”可表示为ABC . (1)有放回时,882(),(),()101010P A P B A P C AB ===∣∣, ()()()()P ABC P C AB P B A P A =∣∣28816101010125=⨯⨯=. (2)不放回时, 872(),(),()1098P A P B A P C AB ===∣∣, ()()()()P ABC P C AB P B A P A =∣∣2787891045=⨯⨯=. 【点睛】关键点点睛:本题考查条件概率的计算.解题第一步设A ={第一次未摸到白球},B ={第二次未摸到白球},C ={第三次摸到白球},则事件“第三次才摸到白球”可表示为ABC .由条件概率公式有()()()()P ABC P CAB P B A P A =∣∣,解题时注意有放回和无放回的区别.即在计算(|)P B A 和(|)P C AB 时,两种情况下球的个数是不一样的. 23.答案见解析. 【分析】本题为开放问题,答案不唯一,结合已有数据,言之成理即可. 【详解】本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,给出明确结论,结合已有数据,能够运用以下8个标准中的任何一个陈述得出该结论的理由,标准1:会用前6次测试品牌A 、品牌B 的测试结果的平均值与后6次测试品牌A 、品牌B 的测试结果的平均值进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的平均值均小于打开含有文字和图片的文件的测试结果平均值;这两种品牌的处理器打开含有文字与表格的文件的平均速度均快于打开含有文字和图片的文件的平均速度) 标准2:会用前6次测试品牌A 、品牌B 的测试结果的方差与后6次测试品牌A 、品牌B 的测试结果的方差进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的方差均小于打开含有文字和图片的文件的测试结果的方差;这两种品牌的处理器打开含有文字与表格的文件速度的波动均小于打开含有文字和图片的文件速度的波动)标准3:会用品牌A前6次测试结果的平均值、后6次测试结果的平均值与品牌B前6次测试结果的平均值、后6次测试结果的平均值进行阐述(品牌A前6次测试结果的平均值大于品牌B前6次测试结果的平均值,品牌A后6次测试结果的平均值小于品牌B后6次测试结果的平均值,品牌A打开含有文字和表格的文件的速度慢于品牌B,品牌A打开含有文字和图形的文件的速度快于品牌B)标准4:会用品牌A前6次测试结果的方差、后6次测试结果的方差与品牌B前6次测试结果的方差、后6次测试结果的方差进行阐述(品牌A前6次测试结果的方差大于品牌B 前6次测试结果的方差,品牌A后6次测试结果的方差小于品牌B后6次测试结果的方差,品牌A打开含有文字和表格的文件的速度波动大于品牌B,品牌A打开含有文字和图形的文件的速度波动小于品牌B)标准5:会用品牌A这12次测试结果的平均值与品牌B这12次测试结果的平均值进行阐述(品牌A这12次测试结果的平均值小于品牌B这12次测试结果的平均值,品牌A打开文件的平均速度快于B)标准6:会用品牌A这12次测试结果的方差与品牌B这12次测试结果的方差进行阐述(品牌A这12次测试结果的方差小于品牌B这12次测试结果的方差,品牌A打开文件速度的波动小于B)标准7:会用前6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数、后6次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(前6次测试结果中,品牌A小于品牌B的有2次,占1/3.后6次测试中,品牌A小于品牌B的有4次,占2/3.故品牌A打开含有文字和表格的文件的速度慢于B,品牌A打开含有文字和图片的文件的速度快B)标准8:会用这12次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(这12次测试结果中,品牌A小于品牌B的有6次,占1/2.故品牌A和品牌B打开文件的速度相当)参考数据p ;(2)0.8192.24.(1)0.8【分析】(1)先确定X 的可能取值,进而利用独立事件概率公式求得分布列,然后利用期望值定义列出期望值,根据已知得到关于p 的方程,求解即得;(2)先根据题意求得4件产品中正品的件数,利用独立重复事件概率公式求得结果. 【详解】(1)由题设知,X 的可能取值为10,5,2,-3, 且(10)(0.1)P X p p ==+,(5)(1)(0.1)P X p p ==-+,(2)(10.1)(0.9)P X p p p p ==--=-,(3)(1)(10.1)(1)(0.9)P X p p p p =-=---=--.所以X 的分布列为:()3(1)(0.9)2(0.9)E X p p p p =---+⨯-5(1)(0.1)10(0.1)13 2.2p p p p p +⨯-++⨯+=-,因为()8.2E X =,所以13 2.28.2p -=,解得0.8p =. (2)设生产的4件甲产品中正品有n 件,则次品有4n -件, 由题意知,()4411n n --≥,则3n =或4n =.所以33440.80.20.80.8192P C =⨯⨯+=.故所求概率为0.8192. 【点睛】命题意图本题考查独立事件的概率,随机变量的分布列与数学期望. 25.(1)827;(2)答案见解析. 【分析】(1)甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是23,从而甲答对题目数~(43,)2B ξ,由此能求出甲恰有2个题目答对的概率; (2)由题意知乙答对的题目数X 的可能取值为2,3,4,分别求出相应的概率,由此能求出X 的分布列. 【详解】 (1)甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是23, ∴选中的4个题目甲恰有2个题目答对的概率222418()(223)37P C ==.(2)由题意知乙答对的题目数X 的可能取值为2,3,4,22284102(2)15C C P X C ===,13284108(3)15C C P X C ===,484101(4)3C P X C ===,X ∴的分布列为:()=234=151535E X ⨯+⨯+⨯. 【点睛】方法点睛:本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,是中档题,求解离散型随机变量分布列的步骤是: 首先确定随机变量X 的所有可能取值;计算X 取得每一个值的概率,可通过所有概率和为1来检验是否正确; 进行列表,画出分布列的表格;最后扣题,根据题意求数学期望或者其它.26.(1)0.016a =,73.5分;(2)分布列见解析,1. 【分析】(1)根据频率分布直方图的性质,求得0.016a =,再结合中位数的计算方法,即可求解;(2)根据题意,得出在[80,90)抽取了4人,[90,100]抽取了2人,得到随机变量ξ的取 【详解】(1)根据频率分布直方图的性质,可得(0.0120.0240.040.008)101a ++++⨯=, 解得0.016a =,由[50,60),[60,70)的概率之和为(0.0120.024)100.36+⨯=,所以中位数为0.14701073.50.4+⨯=(分). (2)由题意,可得在[80,90)共有0.01610508⨯⨯=(人),在[90,100]共有0.00810504⨯⨯=(人), 所以在[80,90)抽取了4人,在[90,100]抽取了2人, 所以随机变量ξ的取值为0,1,2,。

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测题(含答案解析)(2)

(压轴题)高中数学选修三第二单元《随机变量及其分布》检测题(含答案解析)(2)

一、选择题1.某校一次高三年级数学检测,经抽样分析,成绩ξ占近似服从正态分布()295,N σ,且(9195)0.25P ξ<≤=.若该校有700人参加此次检测,估计该校此次检测数学成绩不低于99分的人数为( ) A .100B .125C .150D .1752.在市高二下学期期中考试中,理科学生的数学成绩()2~90,X N σ,已知(7090)0.35P X <=,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为( ) A .0.15B .0.50C .0.70D .0.853.一个盒子内装有3个红球,4个白球,从盒子中取出两个球,已知一个球是红球,则另一个也是红球的概率是( ) A .16B .15C .14D .134.现有一条零件生产线,每个零件达到优等品的概率都为p .某检验员从该生产线上随机抽检50个零件,设其中优等品零件的个数为X .若()8D X =,(20)P X =(30)P X <=,则p =( ) A .0.16B .0.2C .0.8D .0.845.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52276.设103p <<,随机变量ξ的分布列如下:当p 在10,3⎛⎫ ⎪⎝⎭内增大时,下列结论正确的是( ) A .()D ξ减小 B .()D ξ增大 C .()D ξ先减小后增大D .()D ξ先增大后减小7.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( ) A.342+B .622+C .322+D .642+8.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .129.8张卡片上分别写有数字12345678、、、、、、、,从中随机取出2张,记事件A =“所取2张卡片上的数字之和为偶数”,事件B =“所取2张卡片上的数字之和小于9”,则()|=P B A ( ) A .16B .13C .12D .2310.已知一组数据12,,,n x x x 的平均数3x =,方差24s =,则数据1232,32,,32n x x x +++的平均数、方差分别为( )A .9,12B .9,36C .11,12D .11,3611.某校1 000名学生的某次数学考试成绩X 服从正态分布,其密度函数2222()x f x e-μ-σ=π⋅σ()x ∈R ()曲线如图所示,正态变量X 在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内取值的概率分别是68.3%,95.4%,99.7%,则成绩X 位于区间(52,68]的人数大约是( )A .997B .954C .683D .34112.已知随机变量ξ服从正态分布()21,N σ,若()20.66P ξ≤=,则()0P ξ≤=( )A .0.84B .0.68C .0.34D .0.16二、填空题13.随机变量ξ的取值为0,1,2,若()104P ξ==,()1E ξ=,则()D ξ=______.14.甲队和乙队进行乒乓球决赛,采取七局四胜制(当一队贏得四局胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队每局取胜的概率为0.8.且各局比赛结果相互独立,则甲队以4:1获胜的概率是_____15.已知随机变量X 的分布列如下,若E(X)=3,则D(X)=____.16.驻马店市某校高三年级学生一次数学诊断考试的成绩(单位:分)X 服从正态分布()2110,10N ,记(]90,110X ∈为事件(],80,100A X ∈为事件B ,则()|P B A __________.(结果用分数示)附:()0.68P X μσμσ-<≤+=;()220.95P X μσμσ-<≤+=;()330.99P X μσμσ-<≤+=.17.已知随机变量ξ的分布列为ξ1 x 4Py1612且数学期望83E ξ=,则方差D ξ=__________. 18.设随机变量X 的概率分布如下表所示,且随机变量X 的均值()E X 为2.5 ,X123 4Pab38316则随机变量X 的方差()V X 为__________.三、解答题19.为迎接2020年国庆节的到来,某电视台举办爱国知识问答竞赛,每个人随机抽取五个问题依次回答,回答每个问题相互独立.若答对一题可以上升两个等级,回答错误可以上升一个等级,最后看哪位选手的等级高即可获胜.甲答对每个问题的概率为13,答错的概率为23. (1)若甲回答完5个问题后,甲上的台阶等级数为X ,求X 的分布列及数学期望; (2)若甲在回答过程中出现在第()2i i ≥个等级的概率为i P ,证明:{}1i i P P --为等比数列.20.黑龙江省哈尔滨市为了打好疫情防控阻击战、歼灭战,在全民核酸检测期间,倡议全体市民:不聚餐、不聚集、居家抗疫.哈尔滨市市民小李为了增加居家抗疫的趣味性,在家里进行套圈游戏,游戏规则如下:向甲、乙两个物体进行套圈,先向甲物体套圈一次,再向乙物体套圈两次,一共套圈三次,向甲物体套圈时命中得2分,没有命中得0分;向乙物体套圈时,如果连续命中两次得3分,只命中一次得1分,一次也没有命中得0分.小李同志目前的水平是:向甲物体套圈时,命中的概率是34;向乙物体套圈时,命中的概率为23.假设小李同志每次套圈的结果相互独立.(1)求小李同志恰好命中三次的概率;(2)求小李同志获得总分X 的分布列及数学期望.21.疫情防控期间,为了让大家有良好的卫生习惯某校组织了健康防护的知识测试(百分制)活动,活动结束后随机抽取了200名学生的成绩,并计算得知这200个学生的平均成绩为65,其中5个低分成绩分别是30、33、35、38、38;而产生的10个高分成绩分别是90、91、91、92、92、93、95、98、100、100.(1)为了评估该校的防控是否有效,以样本估计总体,将频率视为概率,若该校学生的测试得分近似满足正态分布()2,N μσ(μ和2σ分别为样本平均数和方差),则认为防控有效,否则视为效果不佳.经过计算得知样本方差为210,请判断该校的疫情防控是否有21014.5≈)规定:若()220.9544P X μσμσ-<<+>,()330.9974P X μσμσ-<<+>,则称变量X “近似满足正态分布()2,N μσ的概率分布”.(2)学校为了鼓励学生对疫情防控的配合,决定对90分及以上的同学通过抽奖的方式进行奖励,得分低于94分的同学只有一次抽奖机会,不低于94分的同学有两次抽奖机会.每次抽奖获得50元奖金的概率是34,获得100元的概率是14.现在从这10个高分学生中随机选一名,记其获奖金额为Y ,求Y 的分布列和数学期望.22.体检时,为了确定体检人是否患有某种疾病,需要对其血液采样进行化验,若结果呈阳性,则患有该疾病;若结果呈阴性,则未患有该疾病.对于*()n n N ∈份血液样本,有以下两种检验方式:一是逐份检验,则需检验n 次.二是混合检验,将n 份血液样本分别取样混合在一起,若检验结果为阴性,那么这n 份血液全为阴性,因而检验一次就够了﹔如果检验结果为阳性,为了明确这n 份血液究竟哪些为阳性,就需要对它们再次取样逐份检验,则n 份血液检验的次数共为1n +次.已知每位体检人未患有该疾病的概率为()301p p <<,而且各体检人是否患该疾病相互独立.(1)若89p =,求3位体检人的血液样本混合检验结果为阳性的概率; (2)某定点医院现取得6位体检人的血液样本,考虑以下两种检验方案: 方案一:采用混合检验;方案二:平均分成两组,每组3位体检人血液样本采用混合检验.若检验次数的期望值越小,则方案越“优”.试问方案一、二哪个更“优”?请说明理由. 23.为检测某种抗病毒疫苗的免疫效果,某药物研究所科研人员随机选取100只小白鼠,并将该疫苗首次注射到这些小白鼠体内.独立环境下试验一段时间后检测这些小白鼠的某项医学指标值并制成如下的频率分布直方图(以小白鼠医学指标值在各个区间上的频率代替其概率):(1)根据频率分布直方图,估计100只小白鼠该项医学指标平均值x (同一组数据用该组数据区间的中点值表示);(2)若认为小白鼠的该项医学指标值X 服从正态分布()2,N μσ,且首次注射疫苗的小白鼠该项医学指标值不低于14.77时,则认定其体内已经产生抗体;进一步研究还发现,对第一次注射疫苗的100只小白鼠中没有产生抗体的那一部分群体进行第二次注射疫苗,约有10只小白鼠又产生了抗体.这里μ近似为小白鼠医学指标平均值x ,2σ近似为样本方差2s .经计算得2 6.92s =,假设两次注射疫苗相互独立,求一只小白鼠注射疫苗后产生抗体的概率p (精确到0.01). 附:参考数据与公式6.92 2.63≈,若()2~,X N μσ,则①()0.6827P X μσμσ-<≤+=;②()220.9545P X μσμσ-<≤+=;③()330.9973P X μσμσ-<≤+=. 24.某学校工会积极组织学校教职工参与“日行万步”健身活动,规定每日行走不足8千步的人为“不健康生活方式者”,不少于14千步的人为“超健康生活方式者”,其他为“一般健康生活方式者”.某日,学校工会随机抽取了该校300名教职工的“日行万步”健身活动数据,统计出他们的日行步数(单位:千步,且均在[4,20]内),按步数分组,得到频率分布直方图如图所示.(1)求被抽取的300名教职工日行步数的平均数(每组数据以区间的中点值为代表,结果四舍五入保留整数).(2)由直方图可以认为该校教职工的日行步数ξ服从正态分布()2,Nμσ,其中,μ为(1)中求得的平均数标准差σ的近似值为2,求该校被抽取的300名教职工中日行步数(14,18)ξ∈的人数(结果四舍五入保留整数).(3)用样本估计总体,将频率视为概率.若工会从该校教职工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:“不健康生活方式者”给予精神鼓励,奖励金额每人0元;“一般健康生活方式者”奖励金额每人100元;“超健康生活方式者”奖励金额每人200元,求工会慰问奖励金额X的分布列和数学期望.附:若随机变量ξ服从正态分布()2,Nμσ,则()0.6827Pμσξμσ-<+≈,(22)0.9545Pμσξμσ-<+≈,(33)0.9973Pμσξμσ-<+≈.25.某商场在“双十二”进行促销活动,现有甲、乙两个盒子,甲盒中有3红2白共5个小球,乙盒中有1红4白共5个小球,这些小球除颜色外完全相同.有两种活动规则:规则一:顾客先从甲盒中随机摸取一个小球,从第二次摸球起,若前一次摸到红球,则还从该盒中摸取一个球,若前一次摸到白球,则从另一个盒中摸取一个球,每摸出1个红球奖励100元,每个顾客只有3次摸球机会(每次摸球都不放回);规则二:顾客先从甲盒中随机摸取一个小球,从第二次摸球起,若前一次摸到红球,则要从甲盒中摸球一个,若前一次摸到白球,则要从乙盒中摸球一个,每摸出1个红球奖励100元,每个顾客只有3次摸球机会(每次摸球都不放回).(1)按照“规则一”,求一名顾客摸球获奖励金额的数学期望;(2)请问顾客选择哪种规则进行抽奖更有利,并请说明理由.26.近年来,我国肥胖人群的规模不断扩大,肥胖人群有很大的心血管安全隐患,目前,国际上常用身体质量指数(Bodv Mass Index,缩写BMI)来衡量人体胖瘦程度以及是否健康,其计算公式是BMI=体重(单位:千克)÷身高2(单位:2m),中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖.某单位随机调查了100名员工,测量身高、体重并计算出BMI 值.(1)根据调查结果制作了如下2×2列联表,请将2×2列联表补充完整,并判断是否有99%的把握认为肥胖与不经常运动有关;人中“经常运动且不肥胖”的人数为X ,求随机变量X 的分布列和数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意,成绩X 近似服从正态分布()295,N σ,则正态分布曲线的对称轴为95X =,根据正态分布曲线的对称性,求得()199[12(9195)]2P X P X ≥=⨯-⨯<≤,进而可求解,得到答案. 【详解】由题意,成绩X 近似服从正态分布()295,N σ,则正态分布曲线的对称轴为95X =, 又由(9195)0.25P ξ<≤=, 根据正态分布曲线的对称性,可得()()1199[12(9195)]120.250.2522P X P X ≥=⨯-⨯<≤=-⨯=,所以该市某校有700人中,估计该校数学成绩不低于99分的人数为7000.25175⨯=人, 故选:D. 【点睛】关键点点睛:该题主要考查了正态分布曲线的性质的应用,其中解答中熟练应用正态分布曲线的对称性,求得成绩不低于99分的概率是解答的关键.2.D解析:D 【分析】根据正态密度曲线的对称性得出()()()110700.57090P X P X P X ≥=≤=-<≤,于是可计算出()()1101110P X P X <=-≥,于此可得出结果. 【详解】 由于()2~90,X N σ,由正态密度曲线的对称性可得()()()110700.570900.15P X P X P X ≥=≤=-<≤=,因此,()()110111010.150.85P X P X <=-≥=-=,故选D. 【点睛】本题考查正态分布在指定区间上的概率的计算,解题的关键在于利用正态密度曲线的对称性将所求概率转化为已知区间概率进行计算,属于基础题.3.B解析:B 【分析】取出两个球,设其中一个球是红球为事件A ,求出()P A ,设取出的另一个球是红球为事件B ,然后求出()P AB ,由此利用条件概率公式,求出从盒子中取出两个球,已知一个球是红球,另一个也是红球的概率. 【详解】取出两个球,设其中一个球是红球为事件A ,则()P A 2113342757C C C C +==, 设取出的另一个球是红球为事件B ,则23271()7C P AB C ==,∴从盒子中取出两个球,已知一个球是红球,则另一个也是红球的概率是1()17(|)5()57P AB P B A P A ===. 故选:B 【点睛】本题考查概率的求法,古典概型、条件概率等基础知识,考查运算求解能力,是基础题.4.C解析:C 【分析】由(20)(30)p X P X =<=求出的范围,再由方差公式求出值.【详解】∵(20)(30)p X P X =<=,∴2020303030205050(1)(1)C p p C p p -<-,化简得1p p -<,即12p >,又()850(1)D X p p ==-,解得0.2p =或0.8p =,∴0.8p =,故选C . 【点睛】 本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.5.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.6.A解析:A 【分析】根据方差公式得出211()64D p ξ⎛⎫=-++ ⎪⎝⎭,结合二次函数的性质,即可得出答案.【详解】122()01333E p p p ξ⎛⎫⎛⎫=⨯-+⨯+=+ ⎪ ⎪⎝⎭⎝⎭ 222122()013333D p p p p ξ⎛⎫⎛⎫⎛⎫⎛⎫=+--++-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⨯2212113964p p p ⎛⎫=--+=-++ ⎪⎝⎭当p 在10,3⎛⎫ ⎪⎝⎭内增大时,()D ξ∴减小故选:A 【点睛】本题主要考查了求离散型随机变量的方差,涉及了二次函数性质的应用,属于中档题.7.D解析:D 【分析】利用正态密度曲线的对称性得出12m n +=,再将代数式22m n +与12m n +相乘,展开后可利用基本不等式求出12m n+的最小值. 【详解】 由于()210,XN σ,由正态密度曲线的对称性可知,()()128P X P X m >=<=,所以,()()188102P X P X <+≤≤=,即12m n +=,221m n ∴+=,由基本不等式可得()1212422266m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭6=,当且仅当()420,0m n m n n m=>>,即当n =时,等号成立,因此,12m n +的最小值为6+,故选D. 【点睛】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.8.C解析:C 【分析】利用古典概型概率公式计算出()P AB 和()P A ,然后利用条件概率公式可计算出结果. 【详解】事件:AB 前两次取到的都是一等品,由古典概型的概率公式得()232412A P AB A ==,由古典概型的概率公式得()34P A =,由条件概率公式得()()()142233P AB P B A P A ==⨯=, 故选C. 【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题.9.C解析:C 【分析】利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概率公式()P B A =()()P AB P A 可得出答案. 【详解】事件AB 为“所取2张卡片上的数字之和为小于9的偶数”,以(),a b 为一个基本事件,则事件AB 包含的基本事件有:()1,3、()1,5、()1,7、()2,4、()2,6、()3,5,共6个, 由古典概型的概率公式可得()286314P AB C ==, 事件A 为“所取2张卡片上的数字之和为偶数”,则所取的两个数全是奇数或全是偶数,由古典概型的概率公式可得()2428237C P A C ==,因此,()()()3711432P AB P B A P A ==⨯=, 故选C . 【点睛】本题考查条件概率的计算,数量利用条件概率公式,是解本题的关键,同时也考查了古典概型的概率公式,考查运算求解能力,属于中等题.10.D解析:D 【解析】分析:由题意结合平均数,方程的性质即可求得新数据的平均数和方差.详解:由题意结合平均数,方程的性质可知: 数据1232,32,,32n x x x +++的平均数为:3211x +=,方差为22336s ⨯=.本题选择D 选项.点睛:本题主要考查平均数的性质,方差的性质等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【解析】分析:先由图得,μσ,再根据成绩X 位于区间(52,68]的概率确定人数. 详解:由图得8μσ=== 因为60852,60868-=+=,所以成绩X 位于区间(52,68]的概率是68.3%, 对应人数为68.3%1000683⨯=, 选C.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.12.C解析:C 【解析】分析:先根据正态分布得(12)0.16,P ξ≤≤=再求(01)0.16,P ξ≤≤=最后求得() 0P ξ≤=0.34.详解:由正态分布曲线得(12)0.660.50.16,P ξ≤≤=-= 所以(01)0.16,P ξ≤≤=所以()0P ξ≤=0.5-0.16=0.34. 故答案为C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.二、填空题13.【分析】根据计算得到再计算得到答案【详解】则;故故答案为:【点睛】本题考查了方差的计算意在考查学生的计算能力 解析:12【分析】根据()()3124P P ξξ=+==,()()()1221P E P ξξξ=+===计算得到()()111,224P P ξξ====,再计算()D ξ得到答案.【详解】()104P ξ==,则()()3124P P ξξ=+==;()()()1221P E P ξξξ=+===故()()111,224P P ξξ====.()()()()22211111011214242D ξ=-+-+-=故答案为:12【点睛】本题考查了方差的计算,意在考查学生的计算能力.14.【分析】直接利用二项分布公式的但是要注意实际问题4:1不能简单的二项分布【详解】甲队以4∶1获胜时共进行了局比赛其中甲队在前局中获胜局第局必胜则概率=【点睛】本题属于易错题高考中就出现过4:1获胜是解析:10243125【分析】直接利用二项分布公式的,但是要注意实际问题4:1不能简单的二项分布. 【详解】甲队以4∶1获胜时共进行了5局比赛,其中甲队在前4局中获胜3局,第5局必胜,则概率314144C 555P ⎛⎫=⨯⨯⨯ ⎪⎝⎭=10243125. 【点睛】本题属于易错题,高考中就出现过,4:1获胜是需要前4场3胜一负,并且第五场赢下.15.1【分析】由题意根据和分布列的性质求得的值再利用方差的公式即可求解【详解】根据题意得解得∴D(X)=(1-3)2×01+(2-3)2×02+(3-3)2×03+(4-3)2×04=1【点睛】本题主要解析:1 【分析】由题意,根据()3E X =和分布列的性质,求得,m n 的值,再利用方差的公式,即可求解. 【详解】 根据题意,得解得∴D(X)=(1-3)2×0.1+(2-3)2×0.2+(3-3)2×0.3+(4-3)2×0.4=1. 【点睛】本题主要考查了分布列的性质和期望与方差的计算,其中明确分布列的性质和相应的数学期望和方差的计算公式,准确计算是解答的关键,着重考查了推理与运算能力.16.【解析】分析:利用条件概率公式即可得出结论详解:由题意故答案为点睛:本题考查条件概率考查正态分布考查计算能力属于中档题 解析:2795【解析】分析:利用条件概率公式,即可得出结论. 详解:由题意,()()()()()110.475,0.990.680.155,0.950.680.13522P A P B P AB ==-==-=, ()0.13527|0.47595P B A ∴==. 故答案为2795. 点睛:本题考查条件概率,考查正态分布,考查计算能力,属于中档题.17.【解析】分析:根据概率和为求出的值在根据期望公式求得的值由方差公式可得结果详解:故答案为点睛:本题考查离散型随机变量的分布列离散型随机变量的期望与方差公式意在考查综合应用所学知识解决问题的能力属于中 解析:179【解析】分析:根据概率和为1,求出y 的值,在根据期望公式求得x 的值,由方差公式可得结果. 详解:1111,623y y ++=∴=, 11181+4=3623x ∴⨯+⨯,2x ∴=,222818181171243336329D ξ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故答案为179.点睛:本题考查离散型随机变量的分布列、离散型随机变量的期望与方差公式,意在考查综合应用所学知识解决问题的能力,属于中档题.18.【解析】分析:根据分布列的性质求出的值然后再根据方差的定义求解即可得到结论详解:由题意得即解得∴点睛:(1)离散型随机变量的分布列中所有概率和为1这一性质为求概率和检验分布列是否正确提供了工具(2)解析:98【解析】分析:根据分布列的性质求出,a b 的值,然后再根据方差的定义求解即可得到结论.详解:由题意得3318163352348162a b a b ⎧+++=⎪⎪⎨⎪++⨯+⨯=⎪⎩,即716528a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14316a b ⎧=⎪⎪⎨⎪=⎪⎩.∴()2222515353539123424216282168V X ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.点睛:(1)离散型随机变量的分布列中所有概率和为1,这一性质为求概率和检验分布列是否正确提供了工具.(2)求分布列的期望和方差时可根据定义直接求解即可.三、解答题19.(1)分布列答案见解析,数学期望:203;(2)证明见解析. 【分析】(1)首先确定X 的所有可能取值5,6,7,8,9,10X =,根据概率公式分别求出对应发生的概率,列出分布列,即可求出数学期望;(2)根据已知的关系,求出1i P +与i P ,1i P -的关系式112133i i i P P P +-=+,再通过化简和等比数列的定义求解即可. 【详解】解:(1)依题意可得,5,6,7,8,9,10X =,55552232(5)33243P X C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,4445212180(6)53333243P X C ⎛⎫⎛⎫⎛⎫===⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32352180(7)33243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()23252140833243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()4152110933243P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()50511103243P X C ⎛⎫=== ⎪⎝⎭, 则X 的分布列如表所示.()56789102432432432432432433E X =⨯+⨯+⨯+⨯+⨯+⨯=.(2)处于第1i 个等级有两种情况: 由第i 等级到第1i等级,其概率为23i P ; 由第1i -等级到第1i 等级,其概率为113i P -;所以112133i i i P P P +-=+,所以()1113i i i i P P P P +--=--,即1113i i i i P P P P +--=--. 所以数列{}1i i P P --为等比数列. 【点睛】本题考查概率公式、随机变量的分布列及数学期望,考查运算求解能力、数据处理能力,考查数学运算、逻辑推理核心素养.其中第二问解题的关键在于寻找1i P +与i P ,1i P -的关系式,即:()1121233i i i P P P i +-=+≥,进而根据等比数列的定义证明. 20.(1)13;(2)分布列见解析,()5918E X =. 【分析】(1)直接根据相互独立事件的概率公式计算即可;(2)X 的可能取值为0,1,2,3,5,根据独立事件、互斥事件的概率公式分别计算X 的各种取值对应的概率,得出分布列,再计算数学期望. 【详解】设小李同志第i 次套圈命中为事件i A ,1,2,3i =, 则123,,A A A 为独立事件, (1)设恰好命中三次为事件A .()()()()()12312332214333P A P A A A P A P A P A ===⨯⨯=(2)X 的可能取值为0,1,2,3,5则()1231111043336P X P A A A ---⎛⎫===⨯⨯= ⎪⎝⎭()123123121112114334339P X P A A A P A A A ----⎛⎫⎛⎫==+=⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()1233111243312P X P A A A --⎛⎫===⨯⨯= ⎪⎝⎭()1231231233P X P A A A P A A A P A A A ---⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12231232111144334334339669=⨯⨯+⨯⨯+⨯⨯=++= ()()123322154333P X P A A A ===⨯⨯=X 的分布列为则()01235369129318E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】方法点睛:求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关. 21.(1)该校的疫情防控是有效的,理由见解析;(2)分布列见解析,87.5. 【分析】(1)计算出()22P X μσμσ-<<+和()33P X μσμσ-<<+,结合已知条件判断可得出结论;(2)由题意可知,随机变量X 的可能取值有50、100、150、200,计算出随机变量Y 在不同取值下的概率,可得出随机变量Y 的分布列,进一步可求得随机变量Y 的数学期望值. 【详解】(1)据该校的疫情防控是有效的,理由如下:21014.5≈,265214.536μσ∴-=-⨯=,265214.594μσ+=+⨯=,365314.521.5μσ-=-⨯=,365314.5108.5μσ+=+⨯=,得分小于36分的学生有3个,得分大于94分的有4个,()72210.9650.9544200P X μσμσ∴-<<+=-=>, 学生的得分都在[]30,100间,()3310.9974P X μσμσ∴-<<+=>.∴学生得分近似满足正态分布()65,210N 的概率分布,因此该校的疫情防控是有效的;(2)设这名同学获得的奖金为Y ,则Y 的可能值为50、100、150、200,()6395010420P Y ==⨯=,()2614331001041048P Y ⎛⎫==⨯+⨯= ⎪⎝⎭, ()124313*********P Y C ==⨯⨯⨯=,()241120010440P Y ⎛⎫==⨯=⎪⎝⎭, 故Y 的分布列为:()5010015020087.52082040E Y ∴=⨯+⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.22.(1)19;(2)当0p <<1p <<时,方案一更“优”; 当36p =或36p =+时,方案一、二一样“优”;当3366p +<<时,方案二更“优”. 【分析】(1)根据题意,3人混检样本为阴性的概率为389=,故根据对立事件得答案; (2)采取方案一,检验次数记为X ,可能取值为1,7,进而列概率分布列,求期望()276E X p =-;采取方案二,记检验次数为Y ,可能取值为2,5,8,进而列概率分布列,求期望得()86E Y p =-,再作差分情况讨论即可得答案. 【详解】解:(1)该混合样本阴性的概率是389=, 根据对立事件可得,阳性的概率为81199-= (2)方案一:混在一起检验,方案一的检验次数记为X ,则X 的可能取值为1,7()()6221;71P X p P X p =====-,其分布列为:则76E X p =-,方案二:由题意分析可知,每组3份样本混合检验时,若阴性则检测次数为1,概率为3p =,若阳性,则检测次数为4,概率为1p -,方案二的检验次数记为Y ,则Y 的可能取值为2,5,8,()()()()()()22122;5121;81P Y p P Y C p p p p P Y p ====-=-==-;其分布列为:则()()2225228186E Y p p pp p =+-+-=-,()()()228676661E Y E X p p p p =---=-+-,当306p <<或316p +<<时,可得()()E X E Y <,所以方案一更“优”当p =或p =时,可得()()E X E Y =,所以方案一、二一样“优”p <<()()E Y E X <,所以方案二更“优”. 【点睛】本题考查随机事件的概率分布列与数学期望,考查知识迁移与运算求解能力,是中档题.本题解题的关键在于根据题意写出方案一与方案二的概率分布列,求解对应事件的概率是难点,理解并应用独立事件的概率求解是解决概率的基本方法,进而根据分布列求期望,并作差分类讨论.23.(1)17.4;(2)0.94. 【分析】(1)利用每一个小矩形的面积乘以对应的底边中点的横坐标之和即为x ;(2)先计算第一次注射疫苗后产生抗体的概率()()14.77P x P x μσ≥=≥-,即可计算第一次注射疫苗后100只小白鼠中产生抗体的数量,加上第二次注射疫苗10只小白鼠又产生了抗体,可以得出两次注射疫苗产生抗体的总数,即可求概率. 【详解】(1)0.021220.061420.141620.181820.05202x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.032220.0224217.4+⨯⨯+⨯⨯= (2)17.40 2.6314.77μσ-=-=∴()10.68270.68270.84142P x μσ-≥-=+= 记事件A 表示首先注射疫苗后产生抗体,则()()()14.770.8414P A P x P x μσ=≥=≥-=,因此100只小鼠首先注射疫苗后有1000.841484⨯≈只产生抗体,有1008416-=只没有产生抗体.故注射疫苗后产生抗体的概率84100.94100P +==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1; ②直方图中每组样本的频数为频率乘以总数; ③最高的小矩形底边中点横坐标即是众数; ④中位数的左边和右边小长方形面积之和相等;⑤平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.24.(1)12;(2)47;(3)分布列答案见解析,数学期望:216. 【分析】(1)根据频率分布直方图,利用平均数求解. (2)根据()2~12,2N ξ,由(1418)P ξ<<1[(618)(1014)]2P P ξξ=<<-<<求得概率,然后再乘以300求解.(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,易得X 的可能取值为0,100,200,300,400,分别求得其相应的概率,列出分布例,再求期望. 【详解】 (1)依题意得0.0150.0170.0890.5811x =⨯+⨯+⨯+⨯0.22130.06150.03170.011911.6812+⨯+⨯+⨯+⨯=≈.(2)因为()2~12,2N ξ,所以(1418)(1221232)P P ξξ<<=+<<+⨯,1[(618)(1014)]0.15732P P ξξ=<<-<<≈ 所以走路步数(14,18)ξ∈的总人数为3000.157347⨯≈.(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1. 由题意知X 的可能取值为0,100,200,300,400.2(0)0.020.0004P X ===;12(100)0.020.880.0352P X C ==⨯⨯=; 122(200)0.020.10.880.7784P X C ==⨯⨯+=;12(300)0.10.880.176P X C ==⨯⨯=;。

(好题)高中数学选修三第二单元《随机变量及其分布》测试题(答案解析)

(好题)高中数学选修三第二单元《随机变量及其分布》测试题(答案解析)

一、选择题1.某校一次高三年级数学检测,经抽样分析,成绩ξ占近似服从正态分布()295,N σ,且(9195)0.25P ξ<≤=.若该校有700人参加此次检测,估计该校此次检测数学成绩不低于99分的人数为( ) A .100B .125C .150D .1752.在一个箱子中装有大小形状完全相同的有4个白球和3个黑球,现从中有放回地摸取5次,每次随机摸取一球,设摸得的白球个数为X ,黑球个数Y ,则( ) A .()()()(),E X E Y D X D Y >> B .()()()(),E X E Y D X D Y => C .()()()(),E X E Y D X D Y >=D .()()()(),E X E Y D X D Y ==3.抛掷两枚均匀骰子,观察向上的点数,记事件A 为“两个点数不同”,事件B 为“两个点数中最大点数为4”,则()P B A =( ) A .112B .16C .15D .564.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( ) A .38B .1340C .1345D .345.在一次期中考试中,数学不及格的人数占20%,语文不及格占10%,两门都不及格占5%,若一名学生语文及格,则该生数学不及格的概率为( ) A .16B .14C .29D .9506.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为34,且各局比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了三局的概率为( )A .13B .25C .23D .457.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件=A {两次掷的玩具底面图案不相同},B ={两次掷的玩具底面图案至少出现一次小狗},则()P B A =( )A .712B .512C .12D .11128.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于3”;事件B :“甲、乙两骰子的点数之和等于7”,则P (B /A )的值等于( )A .118B .19C .16D .139.10张奖券中有3张是有奖的,某人从中依次抽取两张.则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率是( ) A .27B .29C .310D .1510.从装有大小形状完全相同的3个白球和7个红球的口袋内依次不放回地取出两个球,每次取一个球,在第一次取出的球是白球的条件下,第二次取出的球是红球的概率为( ) A .715B .12C .710D .7911.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( ) A .14B .13C .12D .112.已知某次数学考试的成绩服从正态分布2(102,4)N ,则114分以上的成绩所占的百分比为( )(附()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤)A .0.3%B .0.23%C .0.13%D .1.3%二、填空题13.随机变量X 的概率分布满足()()100,1,2,3,10k C P X k k M===,,则()E X =______________.14.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()70,100N ,已知成绩在80到90分之间的学生有120名,若该校计划奖励竞赛成绩在90分以上(含90分)的学生,估计获奖的学生有________.人(填一个整数)(参考数据:若()2~,X N μσ有()0.6826P X μσμσ-<+=,(22)0.9544,(33)0.9974)P X P X μσμσμσμσ-<+=-<+=15.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2K 是用来判断两个分类变量是否相关的随机变量,当2K 的值很小时可以推断两个变量不相关;④某项测量结果ξ服从正态分布()21,N a,则(5)0.81P ξ≤=,则(3)0.19P ξ≤-=.16.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X元,则P(X≥-80)=________.17.甲队和乙队进行乒乓球决赛,采取七局四胜制(当一队贏得四局胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队每局取胜的概率为0.8.且各局比赛结果相互独立,则甲队以4:1获胜的概率是_____18.抛掷红、黄两颗骰子,设事件A为“黄色的骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于7”.当已知黄色的骰子的点数为3或6时,两颗骰子的点数之和大于7的概率为__________.三、解答题19.为了推进分级诊疗,实现“基层首诊,双向转诊,急慢分治、上下联动”的诊疗模式,某地区自2016年起全面推行家庭医生签约服务.已知该地区居民约为2000万.从1岁到101岁的居民年龄结构的频率分布直方图如图甲所示.为了解各年龄段居民签约家庭医生的情况,现调查了1000名年满18周岁以上的居民,各年龄段被访者签约率如图乙所示.(1)估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)若以图中年龄在71~80岁居民签约率作为此地区该年龄段每个居民签约家庭医生的概率,则从该地区年龄在71~80岁居民中随机抽取三人,以已签约家庭医生的居民为变量X,求这三人中恰有二人已签约家庭医生的概率;并求变量X的数学期望和方差. 20.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表:送餐单数3839404142天数101510105送餐单数3839404142天数51010205(1)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;(2)小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.21.学校趣味运动会上增加了一项射击比赛,比赛规则如下:向A、B两个靶子进行射击,先向A靶射击一次,命中得1分,没有命中得0分;再向B靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练,甲同学的射击水平显著提高,目前的水平是:向A靶射击,命中的概率是23;向B靶射击,命中的概率为34.假设甲同学每次射击结果相互独立.(1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X的分布列及数学期望.22.某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X表示抽到“极满意”的人数,求X的分布列及数学期望.23.时值金秋十月,秋高气爽,我校一年一度的运动会拉开了序幕.为了增加运动会的趣味性,大会组委会决定增加一项射击比赛,比赛规则如下:向甲、乙两个靶进行射击,先向甲靶射击一次,命中得2分,没有命中得0分;再向乙靶射击两次,如果连续命中两次得3分,只命中一次得1分,一次也没有命中得0分.小华同学准备参赛,目前的水平是:向甲靶射击,命中的概率是35;向乙靶射击,命中的概率为23.假设小华同学每次射击的结果相互独立.(1)求小华同学恰好命中两次的概率; (2)求小华同学获得总分X 的分布列及数学期望.24.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有()|P A C 0.95=,()|0.95P A C =.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即()0.005P C =,试求()|P C A .25.三个罐子分别编号为1,2,3,其中1号罐中装有2个红球和1个黑球,2号罐中装有3个红球和1个黑球,3号罐中装有2个红球和2个黑球,若某人从中随机取一罐,再从中任意取出一球,求取得红球的概率.26.某单位招考工作人员,须参加初试和复试,初试通过后组织考生参加复试,共5000人参加复试,复试共三道题,第一题考生答对得3分,答错得0分,后两题考生每答对一道题得5分,答错得0分,答完三道题后的得分之和为考生的复试成绩.(1)通过分析可以认为考生初试成绩X 服从正态分布2(,)N μδ,其中64μ=,2169δ=,试估计初试成绩不低于90分的人数;(2)已知某考生已通过初试,他在复试中第一题答对的概率为34,后两题答对的概率均为23,且每道题回答正确与否互不影响.记该考生的复试试成绩为Y ,求Y 的分布列及数学期望.附:若随机变量X 服从正态分布2(,)N μδ,则()0.6826P X μδμδ-<<+=,()220.9544P X μδμδ-<<+=,()330.9974P X μδμδ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意,成绩X 近似服从正态分布()295,N σ,则正态分布曲线的对称轴为95X =,根据正态分布曲线的对称性,求得()199[12(9195)]2P X P X ≥=⨯-⨯<≤,进而可求解,得到答案. 【详解】由题意,成绩X 近似服从正态分布()295,N σ,则正态分布曲线的对称轴为95X =, 又由(9195)0.25P ξ<≤=, 根据正态分布曲线的对称性,可得()()1199[12(9195)]120.250.2522P X P X ≥=⨯-⨯<≤=-⨯=,所以该市某校有700人中,估计该校数学成绩不低于99分的人数为7000.25175⨯=人, 故选:D. 【点睛】关键点点睛:该题主要考查了正态分布曲线的性质的应用,其中解答中熟练应用正态分布曲线的对称性,求得成绩不低于99分的概率是解答的关键.2.C解析:C 【分析】有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7XB ,3(5,)7YB ,由二项分布的均值与方差公式计算后可得结论.【详解】 有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7XB ,3(5,)7YB ,∴420()577E X =⨯=,315()577E Y =⨯=, 4360()57749D X =⨯⨯=,3460()57749D Y =⨯⨯=.故选:C 【点睛】结论点睛:本题考查二项分布,掌握二项分布的概念是解题关键.变量(,)XB n p ,则()E X np =,()(1)D X np p =-.3.C解析:C【分析】抛掷两枚均匀骰子,构成的基本事件的总数共有36种,其中记事件A 为“两个点数不同”的基本事件共有30种,再由“两个点数不同且最大点数为4”的基本事件共有6种,利用条件概率的计算公式,即可求解. 【详解】由题意,抛掷两枚均匀骰子,构成的基本事件的总数共有36种, 其中记事件A 为“两个点数不同”的基本事件共有36630-=种,又由事件“两个点数不同且最大点数为4”的基本事件为:(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),共有6种,所以6()136()30()536P A B P B A P A ⋂===,故选C . 【点睛】本题主要考查了条件概率的计算,其中解答中熟记条件概率的计算方法,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.B解析:B 【分析】由条件概率的定义()(|)()P A B P B A P A =,分别计算(),()P A B P A 即得解.【详解】 由题意5()9P A = 事件AB 为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有223313⨯+⨯=个事件1313()9872P A B ==⨯由条件概率的定义:()13(|)()40P A B P B A P A ==故选:B 【点睛】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.5.A解析:A 【分析】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为(|)P B A ,根据条件概率的计算公式,和题设数据,即得解. 【详解】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为:()20%5%151(|)()110%906P A B P B A P A -====-故选:A 【点睛】本题考查了条件概率的计算,考查了学生概念理解,实际应用,数学运算的能力,属于基础题.6.A解析:A 【分析】记事件:A 甲获得冠军,事件:B 比赛进行三局,计算出事件AB 的概率和事件A 的概率,然后由条件概率公式可得所求事件的概率为()()()P AB P B A P A =.【详解】记事件:A 甲获得冠军,事件:B 比赛进行三局,事件:AB 甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局, 由独立事件的概率乘法公式得()12313944432P AB C =⋅⋅⋅=, 对于事件A ,甲获得冠军,包含两种情况:前两局甲胜和事件AB ,()2392743232P A ⎛⎫∴=+=⎪⎝⎭,()()()932132273P AB P B A P A ∴==⋅=,故选A. 【点睛】本题考查利用条件概率公式计算事件的概率,解题时要理解所求事件的之间的关系,确定两事件之间的相对关系,并利用条件概率公式进行计算,考查运算求解能力,属于中等题.7.C解析:C 【分析】利用条件概率公式得到答案. 【详解】336()1616P AB +== 412()11616P A =-= ()()1()2P AB P B A P A == 故答案选C【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.8.C解析:C 【分析】利用古典概型的概率公式计算出()P AB 和()P A ,然后利用条件概率公式()P B A =()()P AB P A 可计算出结果. 【详解】事件:AB 甲的骰子的点数大于3,且甲、乙两骰子的点数之和等于7,则事件AB 包含的基本事件为()4,3、()5,2、()6,1,由古典概型的概率公式可得()316612==⨯P AB , 由古典概型的概率公式可得()3162P A ==, 由条件概率公式得()()()112126P AB P B A P A ==⨯=,故选C. 【点睛】本题考查条件概率的计算,解题时需弄清楚各事件的基本关系,并计算出相应事件的概率, 解题的关键在于条件概率公式的应用,考查运算求解能力,属于中等题.9.B解析:B 【分析】根据第一次抽完的情况下重新计算总共样本数和满足条件样本数,再由古典概型求得概率. 【详解】在第一次抽中奖后,剩下9张奖券,且只有2张是有奖的,所以根据古典概型可知,第二次中奖的概率为29P =.选B. 【点睛】事件A 发生的条件下,事件B 发生的概率称为“事件A 发生的条件下,事件B 发生的条件概率”,记为(|)P B A ;条件概率常有两种处理方法: (1)条件概率公式:()(|)()P AB P B A P A =. (2)缩小样本空间,即在事件A 发生后的己知事实情况下,用新的样本空间的样本总数和满足特征的样本总数来计算事件B 发生的概率.10.D解析:D 【分析】运用条件概率计算公式即可求出结果 【详解】令事件A 为第一次取出的球是白球,事件B 为第二次取出的球是红球,则根据题目要求得()()()377109|3910P AB P B A P A ⨯===, 故选D 【点睛】本题考查了条件概率,只需运用条件概率的公式分别计算出事件概率即可,较为基础.11.C解析:C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.12.C解析:C 【解析】分析:先求出u,σ,再根据(33)0.9974P X μσμσ-<≤+=和正态分布曲线求114分以上的成绩所占的百分比.详解:由题得u=102,4,σ=3114.u σ∴+= 因为(33)0.9974P X μσμσ-<≤+=,所以10.9974(114=0.00130.13%2P X ->==). 故答案为C.点睛:(1)本题主要考查正态分布曲线和概率的计算,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)利用正态分布曲线求概率时,要画图数形结合分析,不要死记硬背公式.二、填空题13.【分析】由可求得再利用随机变量数学期望公式结合倒序相加法可求得的值【详解】由题意可得则倒序:故则故答案为:【点睛】关键点点睛:本题考查数学期望的计算解题的关键就是利用二项式系数的对称性结合倒序相加法 解析:5【分析】 由()101k P X k ===∑可求得102M =,再利用随机变量数学期望公式结合倒序相加法可求得()E X 的值. 【详解】由题意可得()101010101000212k k k C P X k M MM ======⇒=∑∑, 则()012101010101001210C C C C E X M M M M=⋅+⋅+⋅++⋅. 倒序:()109801010101010980C C C C E X M M M M=⋅+⋅+⋅++⋅. 0101010C C =,191010C C =,281010C C =,,故()()012101010101010210E X C C C C M=++++=,则()5E X =.故答案为:5.【点睛】关键点点睛:本题考查数学期望的计算,解题的关键就是利用二项式系数的对称性,结合倒序相加法求出()E X 的值,同时也要注意随机变量在所有可能取值下的概率之和为1,结合二项式定理求出M 的值.14.20【分析】根据正态分布函数可知从而可确定竞赛分数在到分之间的概率为进而求得参赛学生总数;利用竞赛成绩在分以上所对应的概率可求得获奖学生数【详解】由题意可得:若参赛学生的竞赛分数记为则参赛的学生总数解析:20 【分析】根据正态分布函数可知70μ=,10σ=,从而可确定竞赛分数在80到90分之间的概率为0.1359,进而求得参赛学生总数;利用竞赛成绩在90分以上所对应的概率可求得获奖学生数. 【详解】由题意可得:70μ=,10σ=若参赛学生的竞赛分数记为X ,则()0.95440.682680900.13592P X -<≤==∴参赛的学生总数为:1208830.1359≈人∴获奖的学生有:10.9544883202-⨯≈人本题正确结果:20 【点睛】本题考查正态分布的实际应用问题,关键是能够利用3σ原则确定区间所对应的概率,从而求得总数,属于基础题.15.②④【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④【详解】回归直线恒过点但不一定要过样本点故①错误;由得有99的把握认为两个分类变量有关系故②正确;的值很小时只能解析:②④ 【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④. 【详解】回归直线ˆˆˆybx a =+恒过点(),x y ,但不一定要过样本点,故①错误; 由2 6.635K ≥,得有99%的把握认为两个分类变量有关系,故②正确;2K 的值很小时,只能说两个变量的相关程度低,不能说明两个变量不相关,故③错误;(5)0.81P ξ≤=,(5)(3)10.810.19P P ξξ∴>=<-=-=,故④正确;故答案为:②④ 【点睛】本题主要考查了正态分布求指定区间的概率等,属于中等题.16.【分析】首先求某产品两轮检测合格的概率X 的所有可能取值为-320-200-8040160然后根据二项分布求其概率并计算【详解】由题意得该产品能销售的概率为易知X 的所有可能取值为-320-200-80 解析:243256【分析】首先求某产品两轮检测合格的概率113116104⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,X 的所有可能取值为-320,-200,-80,40,160,然后根据二项分布求其概率,并计算()80P X ≥-. 【详解】由题意得该产品能销售的概率为113116104⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,易知X 的所有可能取值为-320,-200,-80,40,160,设ξ表示一箱产品中可以销售的件数,则ξ~B 34,4⎛⎫ ⎪⎝⎭,所以()443144kkk P k C ξ-⎛⎫⎛⎫==⋅ ⎪ ⎪⎝⎭⎝⎭,所以P (X =-80)=P (ξ=2)=2224312744128C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ , P (X =40)=P (ξ=3)=33431274464C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,P (X =160)=P (ξ=4)=4044318144256C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故P (X ≥-80)=P (X =-80)+P (X =40)+P (X =160)=243256. 【点睛】本题考查独立事件同时发生的概率和二项分布,意在考查分析问题和解决问题的能力,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键.17.【分析】直接利用二项分布公式的但是要注意实际问题4:1不能简单的二项分布【详解】甲队以4∶1获胜时共进行了局比赛其中甲队在前局中获胜局第局必胜则概率=【点睛】本题属于易错题高考中就出现过4:1获胜是解析:10243125【分析】直接利用二项分布公式的,但是要注意实际问题4:1不能简单的二项分布. 【详解】甲队以4∶1获胜时共进行了5局比赛,其中甲队在前4局中获胜3局,第5局必胜,则概率314144C 555P ⎛⎫=⨯⨯⨯ ⎪⎝⎭=10243125. 【点睛】本题属于易错题,高考中就出现过,4:1获胜是需要前4场3胜一负,并且第五场赢下.18.【解析】分析:由题意知这是一个条件概率做这种问题时要从这两步入手一是做出黄色骰子的点数为或的概率二是两颗骰子的点数之和大于的概率再做出两颗骰子的点数之和大于且黄色骰子的点数为或的概率根据条件概率的公解析:712【解析】分析:由题意知这是一个条件概率,做这种问题时,要从这两步入手,一是做出黄色骰子的点数为3或6的概率,二是两颗骰子的点数之和大于7的概率,再做出两颗骰子的点数之和大于7且黄色骰子的点数为3或6的概率,根据条件概率的公式得到结果.详解:设x 为掷红骰子的点数,y 为黄掷骰子得的点数,(),x y 共有6636⨯=种结果,则黄色的骰子的点数为3或6所有12种结果,两颗骰子的点数之和大于7所有结果有10种,利用古典概型概率公式可得()()()1211077,,363361836P A P B P AB =====,由条件概率公式可得()()()7736|1123P AB P B A P A ===,故答案为712. 点睛:本题主要考查条件概率以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出;(3)利用两个原理及排列组合知识.三、解答题19.(1)56万;(2)这三人中恰有二人已签约庭医生的概率为0.441,数学期望2.1,方差0.63. 【分析】(1)根据频率分布直方图可直接计算该组的频率,故可估计该地区年龄在71~80岁且已签约家庭医生的居民人数;(2)由题知此地区年龄段在71~80的每个居民签约家庭医生的概率为0.7P =,“从该地区年龄在71~80岁居民中随机抽取三人”为事件B ,随机变量为X ,满足二项分布,进而可求概率,期望及方差. 【详解】(1)由题知该地区居民约为2000万,由图1知,该地区年龄在71~80岁的居民人数为0.00410200080⨯⨯=万.由图2知.年龄在71~80岁的居民签概率为0.7.所以该地区年龄在71~80岁且已签约家庭医生的居民人数为800.756⨯=万.(2)由题知此地区年龄段在71~80的每个居民签约家庭医生的概率为0.7P =,且每个居民之间是否签约是独立的,所以设“从该地区年龄在71~80岁居民中随机抽取三人”为事件B ,随机变量为X ,这三人中恰有二人已签约庭医生的概率为()()()212320.710.70.441P X C ==-=.数学期()30.7 2.1E X =⨯=,方差()30.70.30.63D X =⨯⨯=.20.(1)详见解析;(2)推荐小王去乙公司应聘,理由见解析. 【分析】(1)本题首先可以设乙公司送餐员送餐单数为a ,然后依次求出38a =、39a =、40a =、41a =、42a =时的工资X 以及概率p ,即可列出X 的分布列并求出数学期望;(2)本题可求出甲公司送餐员日平均工资,然后与乙公司送餐员日平均工资进行对比,即可得出结果. 【详解】(1)设乙公司送餐员送餐单数为a , 当38a =时,386228X =⨯=,515010p ; 当39a =时,396234X =⨯=,101505p ; 当40a =时,406240X =⨯=,101505p; 当41a =时,40617247X =⨯+⨯=,202505p ; 当42a=时,40627254X =⨯+⨯=,515010p,故X 的所有可能取值为228、234、240、247、254, 故X 的分布列为:故()228234240247254241.81055510E X =⨯+⨯+⨯+⨯+⨯=. (2)甲公司送餐员日平均送餐单数为:380.2390.3400.2410.2420.139.7⨯+⨯+⨯+⨯+⨯=,则甲公司送餐员日平均工资为80439.7238.8+⨯=元, 因为乙公司送餐员日平均工资为241.8元,238.8241.8<, 所以推荐小王去乙公司应聘. 【点睛】 关键点点睛:(1)求分布列的关键是根据题意确定随机变量的所有可能取值和取每一个值时的概率,然后列成表格的形式后即可,(2)根据统计数据做出决策时,可根据实际情况从平均数、方差等的大小关系作出比较后得到结论.648【分析】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,然后利用互斥事件概率的求解方法求解即可.(2)随机变量X 的可能取值为:0,1,2,3,5,6,求出概率,列出分布列,然后求解期望. 【详解】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,由题意可知()23P D =,()()34P E P F ==.由于C DEF DEF DEF =++,()()21111313134434413446P C P DEF DEF DEF =++=⨯⨯+⨯⨯+⨯⨯=.(2)随机变量X 的可能取值为:0,1,2,3,5,6.()1111034448P X ==⨯⨯=()2111134424P X ==⨯⨯=()12113123448P X C ==⨯⨯⨯=()12231334144P X C ==⨯⨯⨯=()1333534416P X ==⨯⨯=()233363448P X ==⨯⨯=()48E X =. 【点睛】 关键点点睛:古典概型及其概率计算公式的应用,求离散型随机变量的分布列及其期望的求法,解题的关键为正确求出X =0,1,2,3,5,6,所对应的概率.284【分析】(1)先求出抽出的3人都不满意的概率,再利用对立事件的概率公式即可求解; (2)X 的所有可能取值为0,1,2,3则13,4X B ⎛⎫~ ⎪⎝⎭,利用二项分布的概率公式求出每一个X 的取值对应的概率,即可列出X 的分布列求出数学期望. 【详解】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫=== ⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=. 【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算) 23.(1)49;(2)分布列答案见解析,数学期望:13445. 【分析】(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B , “小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 则有A BCD BCD BCD =++,由互斥事件与独立事件的概率公式可得;(2)随机变量X 的取值可能为0,1,2,3,5,求出它们的概率可得分布列,由期望公式可计算出期望. 【详解】解:(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B , “小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 由题意可知3()5P B =,2()()3P C P D ==,由于A BCD BCD BCD =++, ∴3213122224()()5335335339P A P BCD BCD BCD =++=⨯⨯+⨯⨯+⨯⨯=, 故甲同学恰好命中一次的概率为49. (2)X =0,1,2,3,5.2212(0)5345P X ⎛⎫==⨯=⎪⎝⎭,122218(1)53345P X C ==⨯⨯⨯=, 2311(2)5315P X ⎛⎫==⨯= ⎪⎝⎭,123212224(3)5335339P X C ==⨯⨯⨯+⨯⨯=, 2324(5)5315P X ⎛⎫==⨯= ⎪⎝⎭,()0123545451591545E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查互斥事件与相互独立事件的概率公式,考查随机变量的概率分布列和数学期望,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省洋浦中学2010届高三数学周测28
《随机变量及其分布》
时量:60分钟 满分:80分 班级: 姓名: 计分:
个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共6小题,每小题5分,满分30分) 1. 某一随机变量ξ的概率分布如下表,且2m n + 1.2=,则2
n
m -的值为( )
A.-0.2;
B.0.2;
C.0.1;
D.-0.1
2. 一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则=≤≤)3
531(ξP ( ) A.
7
1 B.
7
2
C.
7
3
D.
7
4 3. 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、
b 、(0,1)
c ∈)
,已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为( )
A .
148
B .
124
C .
112
D .
16
4. 如果随机变量()
ξμσξξ~N E D ,,,231==,则()P -≤<11ξ等于( )
A.241Φ()-
B.ΦΦ()()42-
C.ΦΦ()()24-
D.ΦΦ()()---42
5. 随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )
A .3n =;
B .4n =;
C .10n =;
D .不能确定
6. 设ξ是离散型随机变量,32)(1=
=x p ξ,31)(2==x p ξ,且21x x <,现已知:3
4=ξE ,92
=
ξD ,则21x x +的值为( ) A.35 B.37 C.3 D.3
11 二、填空题:(本大题共4小题,每小题5分,满分20分) 1. 甲、乙两人对同一目标各射击一次,甲、乙命中的概率分别为
32和5
4
,若命中目标的人数为ξ,则=ξE .
2. 一袋中装有4个白球,2个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现3次停止,设停止时,取球次数为随机变量X ,则==)5(X P ________.
3. 同时掷两枚骰子,它们各面分别刻有:3,3,3,2,2,1,若ξ为掷得点数之积,则
E ξ= .
4. 设ξ是一个离散型随机变量,其分布列如下表,则q = .
ξ
-1 0 1 P
2
1 1-2q
三、解答题:(本大题共2小题,每小题15分,满分30分)
1. 若随机事件A 在1次试验中发生的概率是p ,用随机变量ξ表示A 在1次实验中发生的次数。

(1)求方差ξD 的最大值;(2)求
ξ
ξE D 1
2-的最大值.
2. 甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为
12,乙、丙面试合格的概率都是1
3
,且面试是否合格互不影响.求: (1)至少有1人面试合格的概率; (2)签约人数ξ的分布列和数学期望.
海南省洋浦中学2010届高三数学周测28
《随机变量及其分布》答案
一、选择题
1. 答案:B ;[解题思路]: 由离散型随机变量分布列的性质可得
解析:由0.2
m n ++1=,又2m n + 1.2=,可得2
n m -0.2=
【名师指引】离散型随机变量的分布列都具有下面两个性质:
⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)
2.答案:D 解析:设二级品有k 个,∴ 一级品有k 2个,三级品有
2k 个,总数为k 2
7
个。

∴ 分布列为
74
)1()3531(===≤≤ξξP P
3.答案:由已知得3202,a b c ++⨯=即322,a b +=2
11321
326626
a b ab a b +⎛⎫∴=⋅⋅≤= ⎪
⎝⎭,故选D.
4. 答案:B 解析:这里的μξσξ====E D 31,;由换算关系式F x x ()=-⎛⎝


⎪Φμσ,

()
()()()()()[][]111113132(4)1(2)1(4)(4)(2)
P P x P x ξ-≤<=<-≤-=Φ--Φ--=Φ--Φ-=-Φ--Φ=Φ-Φ5.答案:C 6.答案:C 二填空题:
1.答案:
1522; 2.答案:818
3.
答案: 49
9
解析:投两个骰子共有36种可能,即 ξ 1
2
1
2 2
3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 2
4 4 6 6 6 2 4 4 6 6 6 3 6 6 9 9 9
3 6 6 9 9 9 3 6 6 9 9 9
ξξ 1 2
3
4
6
9
P
361 364 36
6 364 3612 36
9
∴9
49
3681367236163618368361=
+++++=
ξE 4.解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以
⎪⎪⎩

⎪⎨⎧≤≤-≤=+-+112101212122
q q q q 解得2
21-
=q 。

三解答题:
1.[解题思路]:
(1)由两点分布,分布列易写出,而要求方差ξD 的最大值需求得ξD 的表达式,转化为二次函数的最值问题;
(2)得到
p
p p p p E D 1
221)(2122--=--=-ξξ后自然会联想均值不等式求最值。

解析:(1)ξ的分布列如表:所以p E =ξ,
4
1
)21()1()1()1()0(2222+--=-=--+--=p p p p p p p D ξ
所以21=p 时,ξD 有最大值4
1。

(2)由2221
2221221)(2122-=⋅-≤--=--=-p
p p p p p p E D ξξ,
当且仅当p p 12=即22
=
p 时取等号,所以ξ
ξE D 12-的最大值是222-。

【名师指引】在超几何分布中,只要知道N,M 和n,就可以根据公式求出X 取不同m 值时的概率P(X=m).
2. 解: 用A ,B ,C 分别表示事件甲、乙、丙面试合格.由题意知A ,B ,C 相互独立,
且11
(),()()23
P A P B P C =
==.-------------------------------------------2分 (1)至少有1人面试合格的概率是
1227
1()1()()()1.2339
P ABC P A P B P C -=-=-⨯⨯=----------------------4分
(2)ξ的可能取值为0,1,2,3.------------------------ ---------5分
∵ (0)()()()P P ABC P ABC P ABC ξ==++
=()()()()()()()()()P A P B P C P A P B P C P A P B P C ++

1121211224
.2332332339
⨯⨯+⨯⨯+⨯⨯=---------------------------6分 (1)()()()P P ABC P ABC P ABC ξ==++
=()()()()()()()()()P A P B P C P A P B P C P A P B P C ++
=
1211121224
.2332332339
⨯⨯+⨯⨯+⨯⨯=---------------------7分 1111
(2)()()()().23318P P ABC P A P B P C ξ====⨯⨯=-----------------8分
1111
(3)()()()().23318
P P ABC P A P B P C ξ====⨯⨯=---------------9分
∴ξ的分布列是
--------10分
ξ的期望
441113
0123.
99181818
Eξ=⨯+⨯+⨯+⨯=--------------------------12分。

相关文档
最新文档