八年级数学上册 11.3 多边形及其内角和(第2课时)教案 (新版)新人教版
11.3多边形及其内角和多边形教案
-举例:计算一个给定边数的凸多边形的内角和,以及如何利用内角和解决建筑平面图中的角度问题。
-多边形的分类:区分凸多边形与凹多边形、等边多边形与一般多边形等不同类型,理解各自特点。
-举例:分析实际生活中遇到的多边形物体,如风筝、建筑物的立面等,识别其类型和性质。
1.理论介绍:首先,我们要了解多边形的基本概念、性质,包括多边形的内角和、对角线等。
-多边形的定义与性质
-多边形的内角和计算公式
-多边形的分类和对角线数量计算
2.案例分析:通过具体的多边形案例,讲解内角和与外角的关系,以及多边形在实际问题中的应用。
(三)实践活动(10分钟)
1.分组讨论:学生们分成若干小组,讨论以下问题:“多边形在生活中的应用有哪些?它们是如何帮助我们解决问题的?”
4.多边形的对角线
-对角线的定义
-对角线的性质:对角线将多边形分割成三角形
-多边形对角线的数量计算
5.多边形内角与外角的关系
-内角与外角的定义
-内角与外角的性质:内角和等于(n-2)×180°,外角和等于360°
-内角与外角的关系:内角与外角互补
6.多边形面积的计算
-基本方法:分割法、三角剖分法
-特殊多边形面积的计算:正方形、矩形、菱形等
2.实验操作:每组选取一个多边形,通过实际操作,计算其内角和、对角线数量,并观察多边形的特点。
(四)成果分享(5分钟)
每个小组选取一名代表,向全班分享他们的讨论成果和实验操作结果。
(五)总结回顾(5分钟)
今天我们学习了多边形的基本概念、性质以及在实际生活中的应用。希望大家能够掌握多边形的内角和计算方法,并在日常生活中灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
11.3.多边形及其内角和(教案)
五、教学反思
在今天的教学中,我发现学生们对于多边形内角和的概念和计算公式的理解整体上是积极的。他们能够通过具体的实例和实践活动,逐步掌握内角和的计算方法。然而,我也注意到了一些需要改进的地方。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解多边形的基本概念。多边形是由三条或三条以上的线段首尾顺次相连,形成的封闭平面图形。内角和是多边形内所有角的总和,它在几何图形的计算中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。以四边形为例,通过将其分解为两个三角形,来计算其内角和。这个案例展示了内角和在实际中的应用,以及它如何帮助我们解决问题。
-四边形内角和的推导;
- n边形内角和的公式:(n-2)×180°。
3.多边形内角和的应用:解决实际问题,运用内角和公式进行计算。
-利用内角和解决多边形角度问题;
-结合生活实例,进行内角和计算的应用练习。
4.实践活动:通过实际操作,加深对多边形内角和的理解。
-动手制作多边形,观察内角和的特征;
-分组讨论,探索多边形内角和与边数的关系。
-对于内角与外角的关系,教师可以通过动态演示或实物模型,让学生直观感受外角是如何由内角转化而来,从而理解外角和总是等于360°的原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《多边形及其内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多边形内角和的情况?”比如,在设计班旗或地图上的多边形区域时。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索多边形内角和的奥秘。
人教版八年级数学上册同步教案:11.3.2 多边形内角和
11.3 多边形及其内角和(第2课时)一、内容和内容解析1.内容多边形的外角和.2.内容解析多边形的外角和以三角形的内角和、外角和、多边形的内角和为基础,它是对多边形的内角和的延伸,又是对三角形的外角和的推广.利用三角形的外角与相邻内角互补的关系可以求出三角形的外角和,类比这一方法可以求出多边形的外角和,运用多边形的外角和公式可以解决相关的计算问题.基于以上分析,确定本节课的教学重点:探索并掌握多边形的外角和公式.二、目标和目标解析1.目标探索并掌握多边形的外角和公式.2.目标解析达成目标的标志:学生能从三角形的外角和的研究出发,逐步深入,进而获得n边形外角和的一般结论,从而体会从简单到复杂,从特殊到一般,从具体到抽象的数学思想方法,并能运用多边形的外角和公式解决相关的计算问题.三、教学问题诊断分析本节课学生在多边形内角和公式的基础上得出了多边形的外角和公式,有些问题需要综合运用这两个公式解决,学生不容易掌握.本节课的教学难点:综合运用多边形的外角和公式与内角和公式解决问题.四、教学过程设计导入:我们知道,三角形的内角和是180°,三角形的外角和是360°,n边形的内角和是(n-2)×180°.在多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.那么多边形的外角和又是多少呢?本节课我们将研究多边形的外角和.1.探索四边形、五边形、六边形的外角和问题1得出三角形的外角和是360°有多种方法.如图1,你能说说怎样由外角与相邻内角互补的关系得出这个结论吗?师生活动:教师提出问题,学生按指定要求解答.由∠1+∠BAE =180°,∠2+∠CBF =180°,∠3+∠ACD =180°,得∠1+∠2+∠3+∠BAE +∠CBF +∠ACD =540°.由∠1+∠2+∠3=180°,得∠BAE +∠CBF +∠ACD =540°-180°=360°.设计意图:引导学生复习求三角形的外角和的方法,为下一步运用类比思想求多边形的外角和埋下伏笔.问题2 如图2,你能仿照上面的方法求四边形的外角和吗?师生活动:学生类比求三角形的外角和的方法求出四边形的外角和是360°.由∠BAD +∠1=180°,∠ABC +∠2=180°,∠BCD +∠3=180°,∠ADC +∠4=180°,得∠BAD +∠1+∠ABC +∠2+∠BCD +∠3+∠ADC +∠4=180°×4.由∠BAD +∠ABC +∠BCD +∠ADC =180°×2,得∠1+∠2+∠3+∠4=180°×4-180°×2=360°.设计意图:从简单逐步向复杂过渡,类比三角形的外角和求出四边形的外角和,为求多边形的内角和再次添设台阶.问题3 五边形的外角和等于多少度?六边形呢?仿照上面的方法试一试.师生活动:学生类比求三角形、四边形的外角和的方法求出五边形的外角和是360°,六边形的外角和是360°(解答过程略).设计意图:再次运用类比思想,培养学生举一反三的能力.2.探索n 边形的外角和问题4 你能仿照上面的方法求n 边形(n 是不小于3的任意整数)的外角和吗?师生活动:学生类比求三角形的外角和的方法求出n 边形的外角和是360°.因为n 边形的每个内角与它相邻的外角是邻补角,它们的和是180°, A D 4 1 2C 3 B所以n边形的内角和加外角和等于n·180°,所以,n边形的外角和等于n·180°-(n-2)·180°=360°.教师指出:由这个问题的解答可知,任意多边形的外角和等于360°.教师结合图3让学生理解多边形外角和等于360°(从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发的方向.在行程中转过的各个角的和,就是多边形的外角和.由于走了一周,所转过的各个角的和等于一个周角,所以多边形外角和等于360°).图3设计意图:类比特殊情形的解答得出一般情形的解答.3.巩固多边形外角和公式例一个多边形的内角和等于它的外角和的3倍,它是几边形?师生活动:学生思考,独立解答.教师点评:解题要注意格式;注意代数方法解决有关几何问题的便捷性.设计意图:巩固多边形的外角和公式.练习1.一个多边形的内角和与外角和相等,它是几边形?2.是否存在一个多边形,它的每个内角都等于相邻外角的?为什么?师生活动:学生思考,独立解答,教师点评.设计意图:巩固多边形的外角和公式.4.小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)我们是怎样得到“多边形的外角和等于360°”这一结论的?师生活动:学生归纳小结,梳理知识与方法,教师及时点评.设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,通过建立知识之间的联系,体会类比、化归的数学思想,强调从简单到复杂,从特殊到一般,从具体到抽象研究问题的方法.5.布置作业教科书习题11.3第6题.五、目标检测设计1.一个多边形的外角都等于60°,这个多边形是几边形?设计意图:考查学生对多边形的外角和公式的掌握情况.2.一个五边形的外角比为1∶2∶3∶4∶5,有可能吗?设计意图:考查学生对多边形的外角和公式的掌握情况.3.一个多边形的外角和是内角和的,求这个多边形的边数.设计意图:考查学生对多边形的外角和与内角和公式的掌握情况.。
八年级数学上册第十一章三角形11.3多边形及其内角和11.3.1多边形教案新版新人教版
11.3 多边形及其内角和11.3.1 多边形【知识与技能】1.掌握多边形定义及相关概念.2.了解什么是凸多边形,什么是凹多边形.3.掌握正多边形的定义.【过程与方法】复习三角形的有关知识,用类比的方法引出多边形的定义及多边形的对角线概念.运用四边形、五边形等简单的多边形作为例子学习对角线、凸多边形、凹多边形等概念,最后学习正多边形的概念.【情感态度】让学生体验“由特殊到一般”的思维方法,从中体验数学的乐趣.【教学重点】多边形、正多边形的定义及相关概念.【教学难点】1.凸多边形、凹多边形的定义.2.正多边形的定义.一、情境导入,初步认识问题1回顾三角形的定义及边、角、外角的概念,类似地对四边形、五边形、多边形下定义.问题2 如图是五边形ABCDE,连AC、AD,从而引出多边形对角线的定义.问题3 如图,两个四边形ABCD,A1B1C1D1是不同类型的两种四边形,前者是凸四边形,后者是凹四边形,请将两个图形的各边都向两边延长,观察它们的区别,从而探究凸多边形与凹多边形的定义.问题4 画一个正三角形、正方形,从它们的边角特点探究正多边形的定义.【教学说明】全班同学分组讨论,8分钟后交流成果,老师巡回指导,随时了解学习情况.对问题1要顺便指导学生多边形的命名法及表示法.对问题2要求画出五边形的全部对角线,并数一数共有多少条.对问题3要告诉同学们多边形可分为凸多边形和凹多边形两类,今后如果没有特别说明,一般只讨论凸多边形.对问题4,告诉学生要从边角两个方面考虑.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考为什么正多边形的定义要强调各条边相等,各个角相等?【归纳结论】1.定义:多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线.凸多边形与凹多边形:画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,这样的多边形叫凸多边形,如果整个多边形不都在这条直线的同一侧,那么这个多边形就是凹多边形.正多边形:各条边都相等,各角都相等的多边形叫做正多边形.2.只有各条边都相等的多边形不一定是正多边形,如菱形的四边都相等,但它不一定是正四边形(即正方形).只有各角都相等的四边形不一定是正多边形,如长方形的各角都相等,但它不一定是正四边形.三、运用新知,深化理解1.下列图形中是正多边形的是()A.等边三角形B.长方形C.边长相等的四边形D.每个角都相等的六边形2.如果把一个三角形剪掉一个角,剩余的图形是几边形?3.画出下列多边形的全部对角线,想一想,n边形共有多少条对角线?(提示:n边形共有2)3(nn条对角线)4.某学校七年级六个班举行篮球比赛,比赛采用单循环积分制(即每两个班都进行一次比赛).一共需进行场比赛.5.四边形的一条对角线将四边形分成几个三角形?从五边形的一个顶点出发,可以画出几条对角线?它们将五边形分成几个三角形?从n边形的一个顶点出发,可以画出几条对角线?它们将n边形分成几个三角形?(提示:从n边形的一个顶点出发,可以画出(n-3)条对角线,它们把n边形分成(n-2)个三角形.本题为下节课作好铺垫).【教学说明】题1、2、3由学生自主完成,题4、5让同学们分组讨论,互相交流,再由教师给予指导和总结.【答案】1.A 解析:因为三角形具有稳定性,当三角形的各边相等时,各角也相等,而其他多边形不具有稳定性,因此判定正多边形必须同时具备各边都相等,各内角都相等两个条件.2.解:把一个三角形剪掉一个角分两种情况:第一种情况如图(1)所示,此时剩余部分为三角形;第二种情况如图(2)所示,此时剩余部分为四边形.3.解:如图4.15 解析:本题体现数学与体育学科的综合,解题方法可参照多边形对角线条数的求法,总场数即为多边形的对角线条数加边数.如图所示,共需比赛1562366=+-⨯)((场).5.解:四边形可以分成2个三角形;五边形可以画出2条对角线,分成3个三角形;n 边形可以画出(n-3)条对角线,分成(n-2)个三角形.四、师生互动,课堂小结请学生总结本节学习重点,教师将小结内容出示在屏幕上.1.布置作业:从教材“习题11.3”中选取.2.完成练习册中本课时的练习.学习本课时,可让学生先自主探索再合作交流,小组内、小组之间充分交流后概括所得结论,既巩固了三角形的知识,又用类比的方法引出多边形的有关概念,加深对本课时的学习.。
八年级上册数学人教版教案《多边形》
《11.3.1 多边形》教学设计一、教材分析《多边形及其内角和》是新人教版八年级数学上册第十一章第三单元第一节课的内容。
本节教材属于平面几何图形内容,是在学习了“三角形”有关知识后认识的一种基本图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
本节课主要介绍多边形的有关概念、理解凸多边形与凹多边形的联系与区别、会找出多边形的所有的对角线。
为使学生感受、理解数学知识来源于生活并应用于生活。
理解数学知识的产生和发展过程,培养学生的抽象思维,我将通过例举日常生活中的一些与多边形的关的图片引出多边形的概念;通过多媒体演示使学生对多边形的边,内角,外角,对角线有直观的表象;引导学生操作、观察、猜想、归纳、类比等方法探究多边形的特点.二、学情分析1.我授课的是陆川县初级中学八年级二班的学生,学生在学习了三角形的有关概念的基础上,在认识三角形的边,内角,外角方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力通过欣赏图片,自主学习,理解掌握多边形的边,内角,外角等概念。
关键是要理解什么是对角线的概念。
会记住几种特殊的正多边形。
班级学生,基础较好,思维活跃,表现力强,学习积极性高的特点,但学生的抽象思维能力不很好。
2.班级学生的年龄大多在14岁到16岁间.他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣.3.学生已有的与本课相联系的知识与技能、问题解决的方法,以及生活经验对多边形学习是在三角形有关知识的延续,它与三角形的联系较紧,由于学生以前没学过对角线的概念。
在这方面要让他们加强画对角线的操作,由于他们的推理归纳能力相对不高,缺乏实践经验,因此要让他们主动参与,勤于动手.自己总结归纳得出结论。
八年级数学上册第11章三角形11.3多边形及其内角和多边形的外角和教案新版新人教版
多边形的外角和课题:多边形的外角和第二教学设计课标要求探索并掌握多边形外角和公式教材及学情分析多边形的一个外角可以用相邻的内角表示,这样外角的问题就转化为内角的问题。
运用例2的思路,n边形的外角和是n个平角减去多边形的内角和。
多边形的内角和恒等于360°,与边数的多少无关,这一点与内角和不同,要让学生注意。
本节内容的展开运用了类比、推广的方法,以及把复杂问题转化为简单问题、化未知为已知的思想方法等,教学中应结合具体内容让学生加以体会。
学生以接触过类比思想,通过类比归纳总结对学生难度不大。
课时教学目标1、探索多边形外角和公式,并能运用公式解决简单的问题。
2、通过求三角形、四边形、五边形外角和,运用类比的方法得出多边形外角和计算公式。
3、经历探索类比总结规律的过程,激发学生学习的兴趣。
重点多边形外角和公式难点多边形外角和公式的推导教法学法指导教具准备教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课创设情境1、什么是三角形的外角?外角有什么性质?2、三角形的外角是多少度?3、我们是如何计算三角形的外角和的呢?4、多边形的内角和是如何计算的呢?通过问题回顾三角形内角和定理,引导学生这个定理探索多边形的内角和教学过程探索多边形内角和如图,你能仿照上面的方法求四边形的外角和吗?四边形外角和=4个平角-四边形内角和=5×180°-(4-2) × 180°=360 °如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?1234ABCDEF56通过运用平角的定义和多边形内角和定理逐步推导多边形外角和,培养学生归纳总结规律的能力巩固练习n边形外角和3、如果一个四边形的一组对角互补,那么另一4、正n边形的每一个外角等于___.每一个内角,倍,它是几边形?行综合运用,培。
11.3《多边形的内角和》教学设计 2021-2022学年人教版八年级数学上册
《多边形的内角和》教学设计【课标内容】《多边形的内角和》在《数学课程标准(2011年版)》中体现的内容是:探索并掌握多边形内角和与外角和公式.【设计理念】立足数形结合、转化等思想,内容安排由易到难,从简单的三角形入手,根据四边形内角和的探究过程,形成转化思想,类比探究五边形、六边形、n边形的内角和公式和外角和.【教材分析】本节课是八年级上册第11章第3节P21-23页内容,主要知识点有两个:一是多边形的内角和公式和多边形外角和;二是运用三角形内角和公式和外角和解决实际问题.得出公式本身并不是最终目的,目的是通过对多边形内角和与外角和公式的探索过程,让学生历经知识规律形成的过程,感悟类比法、数形结合法等基本思想方法,增强学生数学思维能力.【学情分析】学生对三角形、特殊四边形的内角和已经有了一定的理解和认识,学生在探究任意四边形内角和时会想到量、拼、分的多种方法,但是依据分割“多边形为三角形”思想,继而探究多边形的内角和公式和外角和这一过程会是学生学习的难点,因此,探究的过程中,教师要充分借助表格法,增强规律呈现的直观性和认识,从而发展合情推理和演绎推理能力.【学习目标】1.掌握多边形的内角和公式和外角和,并能运用知识解决问题.2.通过把多边形转化成三角形过程,体会转化思想在几何中的运用,感悟从特殊到一般、类比法、数形结合法等基本思想方法.3.通过探索过程,增强学生的推理能力和语言表达能力,激发求知欲望.【重点、难点】1.重点:多边形的内角和公式.2.难点:把多边形转化成三角形及其相关因素的归纳分析.【教学策略】1.启发式教学、自主探究式学法.2.“五步教学法”,多媒体、导学案辅助教学法.【教学媒体】多媒体课件和导学案.【课时安排】1课时【教学过程】一、预学自检、自主探究1.阅读教材P21-22自主完成多边形内角和的探究过程(1)我们知道,三角形的内角和等于__________;正方形、长方形的内角和等于_______;则任意一个四边形的内角和等于____________.【设计意图】这个环节的目的是引导学生把探索多边形内角和问题转化为多个三角形问题,唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题,同时自然引入探究多边形内角和问题.(板书课题,结合课件、导学案进行)(2)带着问题完成下表:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②你会发现多边形的边数同被分割成的三角形个数之间存在什么关系?多边形边数分成三角形的个数图形内角和计算规律三角形3 1 180°(3-2) ·180°四边形4五边形5六边形6………………………………n边形n结论:一般的,从n边形的一个顶点出发可以引 ________条对角线,他们将n边形分为_________个三角形,n边形的内角和等于180 º×__________________.所以,多边形的内角和公式:______________________________.【设计意图】采取表格的形式,找出边数和将多边形分割成三角形的个数之间的关系,再根据三角形个数求出多边形的内角和.学生分组讨论、归纳分析并展示自己发现的规律,即用已“探究”的不同多边形来有条理地发现和概括出多边形的边数与内角和之间的关系,水到渠成地归纳、类比推出n边形的内角和公式,让学生体会从特殊到一般的思考问题的方法.由于学生不熟悉完全归纳法,采取表格的形式使归纳更富条理性.(结合课件、导学案教学)多边形边数外角和计算规律三角形 3 360°3·180°-(3-2)·180°四边形 4 360°4·180°-(4-2)·180°五边形 5 360°六边形 6 360°…………………n边形n 360°由上面的探究过程可以得到:多边形的外角和等于__________________.所以我们说:多边形的外角和与它的边数无关.【设计意图】再次借助表格,精简过程,复杂问题简单化,清晰呈现探索多边形外角和的过程.二、合作互学、探究新知1.问题1(P22)想一想:以上要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分割成几个三角形.除此方法外,还有其他的分法吗?你会用新的分法得到n 边形的内角和公式吗?请说出你的想法.(提示:画出图形,结合图形说明)【设计意图】再次给予学生创新思考和表达的机会,培养学生从不同角度思考解决问题的方案,增加思维含量.2.课件显示求解过程【设计意图】以课件形式直观呈现解题过程,规范形象,效率高。
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案
第十一章三角形11.3 多边形及其内角和11.3.1 多边形一、教学目标【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图的过程,进一步发展空间能力.【情感态度与价值观】经历探索、归纳等过程,学会研究问题的方法.二、课型新授课三、课时第1课时四、教学重难点【教学重点】1.了解多边形的边、顶点、内角、外角、对角线等有关概念.2.了解正多边形的基本性质.【教学难点】1.在多边形的概念中,对“在同一平面内”的理解.2.对多边形对角线的理解.3.对正多边形性质的理解.五、课前准备教师:课件、三角尺、多边形图片等。
学生:三角尺、直尺、多边形纸片。
六、教学过程(一)导入新课在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?(出示课件2-4)(二)探索新知1.师生互动,探究多边形的定义及其有关概念教师问1:观察下面的图片,你能找到哪些我们熟悉的图形?学生回答:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.教师讲解引入多边形:上面这些图形我们要给出一个统一的名称,称它们为多边形.那么到底什么是多边形呢?我们先回忆一下三角形的定义.教师问2:同学们想一想,什么是三角形呢?学生回答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.做一做教师讲解:请同学们拿出准备好的材料,随意画几个多边形.教师问3:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?学生回答:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.(出示课件6)教师问4:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?学生交流,教师讲解并强调“在平面内”,并总结:这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.根据边数的多少来命名为,有四条边就是四边形,有五条边就是五边形,依次命名为六边形、七边形、八边形…学生问:观察这个多边形,为什么有一条边是虚线?教师回答:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.教师问5:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.学生讨论回答,教师引导如下:内角:多边形相邻两边组成的角.外角:多边形的边与它的邻边的延长线组成的角.对角线:连接多边形两个顶点的线段教师问6:多边形按边数分类,可以分为哪一些呢?学生回答:多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.(出示课件8)教师总结如下:(1)多边形的分类:多边形按组成它的线段的条数分成三角形、四边形、五边形……如果一个多边形由n条线段组成,那么这个多边形就叫做n边形. 其中,三角形是最简单的多边形.如图所示的多边形记作五边形ABCDE.(2)多边形的边:所连接的线段叫做多边形的边. 如图中的AB、BC、CD、DE、EA都是五边形ABCDE的边.(3)多边形的角:①内角:多边形相邻的两边所组成的角叫做多边形的内角,如图中的∠EAB、∠ABC、∠BCD、∠CDE、∠DEA都是五边形ABCDE的内角;n 边形共有n个内角.②外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角,如图中的∠DCF是五边形ABCDE的一个外角.n边形共有2n个外角,其中每个顶点处有两个相等的外角,这两个外角是对顶角.(4)多边形的对角线:多边形不相邻的两个顶点的连线组成的线段叫做多边形的对角线. 如图中,AC、AD是五边形ABCDE的两条对角线.教师问7:回想三角形的表示方法,多边形应如何表示?学生讨论回答并得出结论.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.(出示课件7)教师问8:请分别画出下列两个图形各边所在的直线,你能得到什么结论?学生讨论回答,并得出结论:如图(2)这样,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(出示课件9)例:凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.师生共同解答如下:(出示课件10)解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.总结点拨:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.①从所截角的两边截,边数增加1.②从所截角的相邻两角的顶点截,边数减少1.③从所截角的一边及相邻角的顶点截,边数不变.2.动手画图,寻找多边形对角线的特征教师问9:三角形有对角线吗?为什么?学生回答:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.教师问10:四边形有对角线,过四边形的一个顶点有几条对角线?学生画图并回答:过四边形的一个顶点有1条对角线.(如下图所示)教师问11:过五边形的一个顶点有几条对角线?学生回答:过五边形的一个顶点有2条对角线.(如下图所示)(出示课件13)教师问12:请画出下列图形从某一顶点出发的对角线的条数,并看一下边数与对角线的条数之间有何规律?多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数0 1 2 3 5 n-3分割出的三角形的个数1 2 3 4 6 n-2学生动手操作并回答(如上表数字)教师问13:每个多边形被过同一顶点的对角线分为几个三角形?学生观察并回答(如上表数字)(出示课件14)教师指导学生完成下列问题:(1)学生画一画画出下列多边形的全部对角线.(出示课件17)(2)观察下列图形,并阅读图形下面的相关文字,解答下列问题:教师问14:十边形有多少条对角线?n边形呢?(出示课件18)学生解答如下:(出示课件19)解:∵四边形的对角线条数为4×(4-3)×1=2.2=5.五边形的对角线条数为5×(5-3)× 12=9.六边形的对角线条数为6×(6-3)× 12∴十边形的对角线条数为10×(10-3)× 1=35.2n(n-3) .n边形的对角线条数为12教师问15:多边形一共有多少条对角线呢?学生讨论并回答,教师引导总结如下:(出示课件15)从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线n(n−3)条.2例2:过多边形的一个顶点的所有对角线的条数与这些对角线分割多边形所得三角形的个数的和为21,求这个多边形的边数.师生共同解答如下:(出示课件16)解:设这个多边形为n边形,则有(n-3)条对角线,所分得的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.3.自主探索正多边形的概念及基本性质教师问16:观察下列图形,它们的边、角有什么特点?学生回答:它们的边都相等,它们的角也都相等.教师问17:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?学生回答:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:由定义可知,正多边形有什么性质?学生回答:正多边形的各个角都相等,各条边都相等.教师问18:下列多边形是正多边形吗?如不是,请说明为什么?(出示课件21)(四条边都相等)(四个角都相等)学生回答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.总结点拨:判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.(三)课堂练习(出示课件24-27)1.下列多边形中,不是凸多边形的是()2. 九边形的对角线有()A. 25条B. 31条C. 27条D. 30条3. 把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B .五边形C.四边形D.三角形4. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是__________边形.5. 过八边形的一个顶点画对角线,把这个八边形分割成________个三角形.6. 过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,则(m-k)n为多少?参考答案:1.B2.C3.A4. 十三5.六6. 解:∵m=10,n=3,k=5.∴(m-k)n=(10-5)3=53=125.(四)课堂小结今天我们学了哪些内容:1.本节主要学习多边形及有关概念,多边形的分类和正多边形的概念及基本性质.2.本节涉及的思想方法是类比思想.(五)课前预习预习下节课(11.3.2)的相关内容。
人教版八年级上册数学教学设计《11.3 多边形及其内角和》
人教版八年级上册数学教学设计《11.3 多边形及其内角和》一. 教材分析《11.3 多边形及其内角和》是人教版八年级上册数学的一节内容。
本节课主要介绍了多边形的定义、多边形的内角和及其计算方法。
通过本节课的学习,学生能够理解多边形的概念,掌握多边形的内角和计算方法,并能够应用这些知识解决一些实际问题。
二. 学情分析八年级的学生已经学习了图形的性质和几何图形的分类,具备了一定的图形认知能力和空间想象能力。
但是,对于多边形的内角和计算方法,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.了解多边形的定义和性质,能够识别各种多边形。
2.掌握多边形的内角和计算方法,并能够应用这些知识解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重点:多边形的定义和性质,多边形的内角和计算方法。
2.难点:多边形的内角和计算方法的推导和应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题和引导学生思考,激发学生的学习兴趣和主动性。
2.利用多媒体课件和实物模型,帮助学生直观地理解多边形的性质和内角和计算方法。
3.采用分组讨论和合作学习的方式,培养学生的团队合作能力和交流表达能力。
4.通过练习和实例,巩固学生对多边形内角和计算方法的理解和应用。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和实际问题。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些常见的多边形,如正方形、矩形、三角形等,引导学生观察和思考多边形的特征。
提问:你们对这些图形有什么认识?它们有什么共同的特点?2.呈现(10分钟)介绍多边形的定义和性质,如多边形是由平面上不在同一直线上的n条线段依次首尾相接组成的封闭平面图形,多边形的内角和为(n-2)×180°等。
通过多媒体课件和实物模型,帮助学生直观地理解这些概念和性质。
3.操练(10分钟)让学生分组讨论,每组选择一个多边形,用纸和剪刀剪出一个该多边形的模型,并测量和记录该多边形的内角和。
人教版八年级数学上册《第十一章第3单元多边形及其内角和》教案设计
人教版八年级数学上册《第十一章第3课时多边形及其内角和》教案设计11.3.1多边形1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)2.正确区分凹多边形和凸多边形.(重点)3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)一、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念【类型一】多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( ) A .14或15或16 B .15或16 C .14或16 D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线.方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( ) A .6 B .7 C .8 D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( ) A .等腰三角形 B .长方形 C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.三、板书设计多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.本节课采取的是合作探究的教学方式,在小组活动中,每个学生都能发挥自己的作用,都有表达和倾听的机会,每个人的价值作用都能显现出来.在这个过程中,学生得到了锻炼,明白了和他人怎样合作,取长补短.在教学设计时要从学生的角度出发,设计出合理的,具有可操作性的探究步骤,充分估计探究中的不确定因素和障碍点,并在教学过程中加强组织引导和巡视力度.11.3.1 多边形教学过程(师生活动)复习:1.什么是三角形?怎样表示?2.什么是三角形的边,角以及外角?图片观赏:你能从图中找出几个由一些线段围成的图形吗?学生回答,相互补充,教师点明本节课题.这些线段围成的图形有何特性?如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)明确概念:1.多边形相邻两边组成的角叫做多边形的内角2.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.课本P21练习1.2.课堂小结1、今天本节课学习的主要内容(概念)。
最新人教版八年级数学上册《多边形》优质教案
11.3多边形及其内角和11.3.1多边形一、新课导入1.导入课题:请同学们仔细观察下面的三个图形,它们给我们以由一些线段围成的图形的形象,这些图形叫做什么形呢?这节课我们就来学习多边形.2.学习目标:(1)能叙述多边形、多边形的内角、外角和对角线的意义.(2)知道什么是凸多边形和正多边形.3.学习重、难点:重点:多边形及其有关的概念.难点:多边形的边的特征.二、分层学习1.自学指导:(1)自学内容:教材第19页的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,可以结合下面的自学参考提纲学习,通过观察、比较,初步建立边的概念,初步认识四边形、五边形、六边形等平面图形,理解多边形、多边形的内角及其外角的定义.(4)自学参考提纲:①认识多边形a.回忆三角形的概念,说说多边形的概念.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.b.下面这些图形分别是几边形?五边形六边形八边形如果一个多边形由n条线段组成,那么这个多边形就叫做n边形.②认识多边形的内角、外角多边形的内角是多边形相邻两边组成的角,多边形的外角是多边形的边与它的邻边的延长线组成的角,指出图2中多边形ABCDEF的外角∠1,∠2,∠3,∠4,∠5,∠6.③列举出我们生活中见到的多边形.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:在日常生活中,学生接触的多边形比较多,本层次的内容学生能够很快掌握.②差异指导:引导学生列举出生活中的多边形.(2)生助生:学生之间相互交流学习的成果和困惑.4.强化:(1)多边形及其有关的角的概念.(2)练习:下列图形包含了哪些多边形?六边形四边形五边形和六边形1.自学指导:(1)自学内容:教材第20页内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课本,抓住各个概念中的关键词.(4)自学参考提纲:①什么叫多边形的对角线?连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.②什么叫凸多边形?指出下列多边形哪些是凸多边形.画出多边形任何一条边所在直线,整个多边形都在这条直线的同一侧,这样的多边形叫做凸多边形.a,c,e是凸多边形.③什么叫正多边形?正多边形有什么特征?各个角都相等,各条边都相等的多边形叫做正多边形.正多边形各个角相等,各条边相等.④试从四边形、五边形、六边形中探究n边形的对角线条数m与边数n之间的关系.m=n(3)2n(n≥4)2.自学:同学们可参照自学指导进行自学.3.助学:(1)师助生:①明了学情:多边形的对角线比较多,一般学生会有疏漏,应注意了解.②差异指导:引导学生领会对角线的重要应用是它可以把多边形分为几个三角形,从而把多边形的问题转化为三角形的问题来解决.(2)生助生:学生之间相互交流帮助.4.强化:(1)多边形的对角线的定义,正多边形的定义.(2)练习:画出右图多边形的全部对角线.(3)完成教材第21页练习第2题.答:四边形的一条对角线将四边形分成2个三角形,从五边形的一个顶点出发,可以画出2条对角线,它们将五边形分成了三个三角形.三、评价1.学生自我评价(围绕三维目标):学生当众交谈自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测3.教师自我评价(教学反思):学习本课时,可让学生先自主探索再合作交流,小组内、小组之间充分交流后概括所得结论,既巩固了三角形的知识,又用类比的方法引出多边形的有关概念,加深对本课时的学习.一、基础巩固(每小题10分,共50分)1.六边形的对角线共有(D)A.6条B.7条C.8条D.9条2.下列属于正多边形的是(B)A.长方形B.等边三角形C.梯形D.圆3.从一个顶点出发的对角线,可以把十边形分成互不重叠的三角形的个数(B)A.7个B.8个C.9个D.10个4.四边形有2条对角线,五边形有5条对角线,十边形有35条对角线.5.十二边形共有54条对角线,过一个顶点可作9条对角线,可把十二边形分成10个三角形.二、综合应用(20分)6.某学校七年级六个班举行篮球比赛,比赛采用单循环积分制(即每个班都进行一次比赛).一共需要多少场比赛?解:一共需要15场比赛.如图:三、拓展延伸(30分)7.四边形中,过一个顶点可画一条对角线,共可画两条对角线;五边形中,过一个顶点可画两条对角线,共可画五条对角线;六边形中,过一个顶点可画三条对角线,共可画九条对角线,请从以上三种情况寻找一下规律,看一看多边形的边数和对角线之间有关系吗?如果有,请找出来.如果是n边形,可画多少条对角线呢?解:有关系,多边形对角线的条数等于边数与(边数-3)的乘积的12即n边形对角线的条数=n(3)2n.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
人教版数学八年级上册11.3.2多边形的内角和教案
整合拓展
1.这几种方法有什么共同点?(利用辅助线将四边形分割成三角形)为什么要分割成三角形呢?(因为我们知道三角形的内角和是180°)
2.下面每个同学从刚才的方法中选择一种自己喜欢的方法,也将一些多边形分割成若干个三角形,然后来探索五边形、六边形、七边形的内角和分别是多少度?(幻灯片出示“探究2”)。 这样同学们先独立探究一下,把答案写在答题纸“探究2”上
(3)通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
3、情感、态度与价值观:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
教学重点:探索多边形内角和。
教学难点:探索多边形内角和时,如何把多边形转化成三角形。
三、教学策略选择与设计
通过猜想、推理法并能有效地解决问题,提高学生学习热情。使不同的学生在数学上得到不同的发展,培养学生积极思考探究的精神,同学间充分合作与交流。
3、课堂氛围的转变。
整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
生独立思考,师深入指导。集中展示探究结果
问题1:用刚才类似的方法,你能算出五边形、六边形的内角和吗?
学生先独立思考,分组讨论,然后再叙述结论。
问题2:依此类推,n边形的内角和等于多少度呢?
让学生自己归纳总结,得出n边形的内角和公式为(n-2)·180°。
问题3:能否采用不同的分割方法来解决问题?
人教版八年级数学上册11.3.2《多边形的内角和》说课稿
人教版八年级数学上册11.3.2《多边形的内角和》说课稿一. 教材分析《多边形的内角和》是人教版八年级数学上册第11.3.2节的内容,本节课主要介绍了多边形的内角和的概念以及计算方法。
通过本节课的学习,学生能够理解多边形内角和的性质,掌握多边形内角和的计算公式,并为后续学习多边形的其他性质和计算打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的内角和定理,对四边形及以上的多边形有一定的了解。
但学生对多边形的内角和的概念和计算方法可能还不够清晰,需要通过本节课的学习来进一步巩固和提高。
三. 说教学目标1.知识与技能目标:学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法,能够运用所学知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:多边形的内角和的概念,多边形内角和的计算方法。
2.教学难点:多边形内角和的计算方法的推导和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,积极思考。
2.教学手段:利用多媒体课件、实物模型、图形软件等辅助教学,直观展示多边形的内角和的特点和计算过程。
六. 说教学过程1.导入新课:通过展示一些多边形的图片,引导学生思考多边形的内角和的概念。
2.探究多边形的内角和:引导学生通过观察和操作,发现多边形内角和的规律,推导出计算公式。
3.讲解与演示:教师对多边形的内角和的概念和计算方法进行讲解,并利用多媒体课件和实物模型进行演示。
4.练习与交流:学生进行课堂练习,教师引导学生相互交流、讨论,共同解决问题。
5.总结与拓展:教师引导学生总结本节课的主要内容和知识点,并进行适当的拓展。
七. 说板书设计板书设计要简洁明了,能够突出多边形的内角和的概念和计算方法。
人教版八年级数学上册《多边形及其内角和》教案
11.3多边形及其内角和教学目标:1、了解多边形及其有关概念,理解正多边形的概念,区别凸多边形与凹多边形.2、探索多边形的内角和公式,并会应用它们进行有关计算.学习重点:多边形的内角和学习难点:多边形的内角和定理的推导教学过程:一、情境导入,新课学习请同学们画出三角形,四边形,引出多边形的定义以及相关概念1、组成的图形叫做多边形。
2、叫多边形的内角。
3、叫多边形的对角线。
4、n边形从一个顶点出发可以画____ 条对角线,一共可以画____条对角线。
5、叫正多边形。
二、问题引入,探索新知1、思考:我们知道,三角形的内角和是180°,正方形,长方形的内角和是360°,那么是不是任意四边形的内角和都等于360°呢?2、探索四边形的内角和课本例子:把四边形分割成三角形,利用三角形内角和定理推导出四边形内角和: 2×180 º=360 º3、扩展延伸:除了连接对角线,还有没有其他的方法?4、自主探究用多种方法求出五边形的内角和等于540°5、发现规律n边形内角和等于(n-2) ·180°6、典例分析例1:如果一个多边形的内角和是1620°,那么它是几边形?7、课堂练习学以致用8、巩固训练1.十边形的内角和的度数是______2.已知一个多边形的内角和为720°,则这个多边形是______边形3.已知一个多边形的内角和为1080°,则它的边数为____4.已知一个多边形的每一个内角都是156°,则它的边数为____9、能力提高1.多边形的边数增加一条时,其内角和就增加______ 度2.下列角度中,不能成为多边形内角和的是()A 540°B 280°C 1800°D 900°3.一个九边形的八个内角都是140°,那么,它的第九个内角为_______度.4.五边形ABCDE中,若∠A = ∠D = 90°,∠B:∠C :∠E = 3:8:7,求∠B,∠C ,∠E9、小结课堂多边形及其相关概念n边形内角和等于(n-2) ·180°10、课后思考如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和. 六边形的外角和等于多少?(结束课堂)。
人教版八年级上册教案设计:11.3.2多边形的内角和
多边形的内角和的教学设计
学科初中数学年级八年级
课题名称多边形的内角和
学情分析
1.学生的年龄与认知特点:八年级学生思维活跃,求知欲强,容易接受新鲜事物,对本节课采用问题探究式的形式,符合学生的认知特点,容易调动学生的学习积极性,满足其学习愿望。
2.学生在小学对三角形的的初步认识,七年级上对图形的进一步认识,上几次课也学习了三角形的一些基本知识,对三角形的内角和已经掌握牢固,这次在以前学习的知识的基础上学习多边形的内角和。
3.图形的美感和直观让学生更好理解,从而引起兴趣。
教材分析
三角形的内角和是八年级上册第十一章课本21-23的内容,本小结主要是从四边形的内角和推导出n 边行的内角和公式。
通过研究四边形的内角和,利用三角形的内角和定理和对角线的分割,推导出内角和与三角形的分割,个数之间的关系,通过内角和的学习为下一节的多边形的外角和作铺垫,多边形的内角和是初中必须掌握的基本知识,同时也是为后面的知识的学习作很好的基础。
教学目标
知识与技能:了解多边形及有关概念,理解正多边形及有关概念。
过程与方法:通过多多边形概念的探究,使学生体会从特殊到一般的认识问题的方法。
教学重难点
重点:多边形及有关概念。
难点:区分凸凹多边形
教学策略:针对本节的内容,可以利用多媒体放映多边形的分割方法,然后利用三角形的内角和定理进行讲解,因为三角形的内角和在前面的学习中我们已经知道了分割的原理和技巧,针对这节的学习也为后面的多边形的外角和的学习打下了基础。
对本节的重难点可以利用讲解的方法和PPT放映,让学生更加直观。
人教版初中数学课标版八年级上册第十一章 11.3.2 多边形及其内角和 教案
人教版初中数学课标版八年级上册第十一章 11.3.2 多边形及其内角和教案1、2、采用多媒体辅助教学,给课堂带来生机,通过几何画板等工具,突出重点、突破难点,发展学生思维,提高学生能力。
一、教学过程(一)知识引入1.教师操作课件,复习三角形、长方形、正方形的内角和。
2.播放FLASH视频,激发学生学习兴趣。
3.引入问题:今天我们就来学习多边形的内角和问题。
(板书课题)(二)探索新知1.启发:长方形、正方形的内角和是360°。
那么任意四边形的内角和都是360°吗?2.指导学生画图,先自行探究。
教师巡视。
3.学生交流结果,教师引导,操作课件演示。
(展台)①拼图法,②度量法,③辅助线法。
(注意几何画板的辅助教学)4.由四边形到六边形层层引入,归纳出结论。
多边形的边数图形从一个顶点出发所引的对角线条数及分割成的三角形个数多边形的内角和3 11×180º=180º2×180º=360º4 1 23×180º=540º5 2 34×180º=720º6 3 4 。
( n - 2)×180ºn n-3 n-2结论:多边形的内角和公式:n边形的内角和等于(n-2)·180°(三)另辟蹊径1.探索多边形的内角和关键是:把多边形分成几个三角形,再利用三角形的内角和求得。
你还有其它分法吗?和同学们交流一下吧!2.学生讨论后回答,教师操作几何画板演示。
3.小结:这几种方法都是从一个顶点出发和各顶点相连,把四边形的问题转化为三角形的问题。
注重“转化思想”。
(四)知识应用1、教师演示课件,请学生读题,启发思考:你能自己独立完成这道题目吗?2、教师请学生分析解题,师生共评。
(五)选择挑战1、演示课件,展示“海宝”2、学生选号抢答,教师点评。
注重“方程思想”。
人教版八年级数学上册《多边形的外角和》教学设计 (2)
11.3.2多边形的外角和一、教材分析本节课是人教版八年级上册第十一章第三节多边形及其内角和第二课时,训练重点是探究多边形外角和定理及利用内角和、外角和公式解决一些数学问题。
本节课多边形的外角和的推导过程和计算应用作为本章的一个重点也是一个难点,是多边形相关知识的延展和升华,并且在探究学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后面的知识做铺垫,联系性比较强,极大地提高了学生的探究、推理、表达等各方面能力,公式的运用还充分体现了图形与客观世界的密切联系。
二、学情分析八年级学生已经知道三角形的内角和、外角和相邻内角的关系,并了解了多边形的有关概念,这些为学生学习本节知识作了知识准备。
学生已经初步具备小组合作探究能力、独立学习能力,以及归纳、分析能力,能通过合作、交流来完成学习任务,由于上节课对如何探究内角和的问题有了一定的认识,因此对于学习本节内容的知识条件已经成熟,所以设计本节课为探究活动课。
三、教学目标知识与技能:(1)掌握多边形外角和的定义;(2)掌握多边形外角和定理并初步学会应用。
过程与方法:(1)体会从特殊到一般的方法,逐步培养推理能力;(2)应用定理解决问题时,体会转化的思想。
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探究和创造。
四、教学重难点重点:掌握多边形外角和定理及初步运用。
难点:多边形外角和定理的推导和理解。
五、教法分析依据新课程教学理念的要求,让学生经历知识的形成过程,积累数学活动的探究经验,本节课主要采用了小组合作探究的形式,通过自制教具和多媒体引导和启发学生进行有意义的学习,利用从一般到特殊的方法研究问题,并养成大胆猜想,合情推理的科学学习方法。
六、教学过程(一)情境引入1.问卷调查:咱们班学生周末坚持跑步的学生有多少人?师生活动:学生举手示意,教师就结果进行评价。
设计意图:结合学生每天进行体育锻炼这一生活实际情况,引入后面的情境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用学生的好奇心设疑,激发学生的求知欲望,使他们能自觉地参与到下面多边形内角和探索的活动中去
新课教学
1. 探索四边形的内角和
学生叙述对四边形内角和的认识.
(如:通过测量相加求内角和,通过画四边形对角线分成两个三角形来计算内角和等).
建议:①对于学生提出的不同方法加以及时肯定;②对于通过“分割转化”来求内角和的方法加以强调,并提出是数学学习中的一种常用方法;
③可以启示学生用其他方法证明四边形内角和为360度
A
D
B C
【分成2个三角形180°×2=360°】
【分割成4个三角形180°×4-360°=360°】
【分割成3个三角形180°×3-180°=360°】
鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。
通过增加图形的复杂性,让学生再一次经历转化的过程,加深对转化思想方法的理解,在探索过程中进一步体现新课标“以人为本”的思想,发展学生的语言表达能力
知识应用
合作探究
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
求:∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.
这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.
多边形的外角和等于360°.
所以我们说多边形的外角和与它的边数无关.
巩固新知识;
小结与作业
课堂小结
学生回顾本节课所学内容(包括数学思想方法)
本课作业
1.必做题:
2.选做题:
小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和
2.你知道五边形的内角和是多少度吗?
A E
B
D
C
A E
O
B D
C
A E
B
D
P
C
3、探索多边形内角和问题
提出阶梯式问题:
(1)你能用刚才类似的方法计算出六边形的内角和吗?
(2)十边形、n边形呢?
结论:多边形内角和等于(n-2)·180°
教学难点
如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和
教学准备
学生:量角器、直尺(三角尺);教师:教具(全等四边形四个)。
教学过程(师生活动)
设计理念
创设情境引入新课
1.(1)你知道三角形的内角和是多少度吗?
【三角形的内角和等于180°】
(2)长方形的内角和等于,正方形的内角和等于
已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.
分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.
例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.
11.3多形的内角和(2)
教学目标
知识与技能
1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些较简单的问题;
过程与方法
通过多边形内角和计算公式的推导,培养学生探索与归纳能力
情感态度价值观
通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质
教学重点
多边形的内角和以及外角和
对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.
如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
巩固练习
教材24页练习1、2、3.