与等腰三角形有关的图形变式证明导学案
等腰三角形的性质和判定的综合题目
-鼓励学生在课后继续思考、探索联系观点的内涵,为下一节课的学习打下基础。
五、作业布置
为了巩固本章节的学习内容,培养学生的理论联系实际能力,特布置以下作业:
1.请同学们结合本节课所学的联系观点,选取一个生活中的实例,分析其中包含的联系特征及其影养学生合作、探究的学习能力,提高学生在案例分析中运用联系观点分析问题的能力。
-引导学生运用比较法、分析法等学习方法,深入挖掘联系现象背后的本质规律。
3.情感态度与价值观方面的重难点:
-培养学生对联系观点的认同,使学生认识到联系是事物发展的内在规律,树立正确的价值观。
-增强学生的社会责任感,培养学生关注社会、关注生活的态度。
3.强化实践环节,引导学生关注现实生活中的联系现象,提高学生理论联系实际的能力。
三、教学重难点和教学设想
(一)教学重难点
1.知识与技能方面的重难点:
-理解联系的普遍性、多样性、条件性等特征,并能运用联系的观点分析实际问题。
-掌握联系的方法论,学会从联系的角度认识问题、分析问题,提高解决问题的能力。
2.过程与方法方面的重难点:
5.观察日记:要求学生观察身边的事物和现象,运用联系观点进行分析,记录在日记中。持续一周,每天至少记录一个实例,并写出自己的思考。
6.课后实践:鼓励学生参加社会实践活动,将所学联系观点运用到实际中,如参与环保活动、社区服务等。要求学生撰写实践报告,不少于1000字,内容需包括实践过程、联系观点的应用及收获。
四、教学内容与过程
(一)导入新课
1.教学内容:以现实生活中的实例导入新课,如“互联网的发展与人们生活的联系”、“环境保护与经济发展的联系”等,引发学生对联系概念的思考。
等腰三角形教案设计5篇
等腰三角形教案设计5篇等腰三角形教案设计5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
1等腰三角形(提高)知识讲解及其练习 含答案
等腰三角形(提高)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到以下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
北师大版八年级下册数学1.1等腰三角形第3课时 教案设计
课时课题:第一章第一节等腰三角形第3课时教学目标:1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.2.初步了解反证法的含义,并能利用反证法证明简单的命题.3.体验数学活动中的探索与创造,感受数学的严谨性.教学重点与难点:重点:等腰三角形的判定定理的证明.难点:反证法的含义,利用反证法证明简单的命题.教法与学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.本节课关注了问题的变式与拓广,引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力.课前准备:多媒体课件教学过程:第一环节回顾旧知复习导入师:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质。
生1:等腰三角形两底角相等,就是“等边对等角”。
生2:“三线合一”。
生3:等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等。
师:非常好!同学们概括的很全面。
那么对于等腰三角形的性质定理:等腰三角形两底角相等,这个命题的题设和结论是什么? 生:题设:等腰三角形。
结论:两底角相等。
师:我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等? 生:完全成立,可以证明出来。
设计意图:设计成问题串是为引出等腰三角形的判定定理埋下伏笔。
学生独立思考是对上节课内容有效地检测手段。
第二环节 合作探究 展示交流师:以前我们通过改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.比如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?下面我们来一起证明一下这个结论。
请同学们画出图形,写出已知、求证。
中考一轮复习第18讲《等腰三角形》讲学案
中考数学一轮复习第18讲《等腰三角形》【考点解析】知识点一、等腰三角形的性质【例1(·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.【变式】(·黑龙江哈尔滨·3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.知识点二、等腰三角形的内角的计算【例2】(新疆乌鲁木齐)等腰三角形的一个外角是60°,则它的顶角的度数是.【答案】120°.【分析】本题主要考虑与这个外角相邻的内角是顶角或是底角,利用内角和定理即可得解. 【解析】等腰三角形一个外角为60°,那相邻的内角为120°,三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以120°只可能是顶角.故答案为:120°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.【变式】如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= °.【答案】15.【解析】∵AB=AC,∠A=50°,∴∠ACB=∠ABC=12(180°﹣50°)=65°.∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°.∴∠CBE=∠ABC﹣∠ABE=65°﹣50°=15°.知识点三、等腰三角形的多解问题【例3】(·湖北武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
等腰三角形的性质教案
等腰三角形的性质【教案背景】本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级第一章第四节等腰三角形第一课时,主要内容是等腰三角形概念及利用等腰三角形的轴对称性,探索发现等腰三角形的性质.新课标对本节课的要求是:“了解等腰三角形的有关概念,探索并掌等腰三角形的性质.”【教学课题】等腰三角形的性质【教材分析】本节是继三角形全等后,对特殊三角形研究较重要的一节内容,在三角形中占有重要地位,在证明线段相等、角相等、垂直方面有着广泛应用。
是培养学生逻辑推理能力的好素材,也是学生后续学习的重要的基础知识。
【教学方法】采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。
通过本节教学,我将对学生进行以下学法指导:1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。
2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。
【教学目标】1、了解等腰三角形的有关概念;2、掌握等腰三角形的性质定理;3、能运用等腰三角形的性质定理进行简单的计算和证明。
教学重点:掌握和应用等腰三角形的性质。
教学难点:1、等腰三角形性质的符号表示;2、能灵活运用等腰三角形的性质。
【教学策略】在探究等腰三角形的性质时,通过剪等腰三角形、折等腰三角形等探究活动,让学生利用对称轴的知识分析、观察、归纳出等腰三角形的性质。
再通过练习,让学生知道等腰三角形性质的符合表示,加深学生对等腰三角形性质的理解,并让学生在练习中学会灵活运用等腰三角形的性质,进一步培养学生的知识迁移能力。
教学媒体的选择和设计:多媒体、课件、量角器、长方形纸片、剪刀。
【学情分析】通过七年级的学习,学生已有平面图形的知识,为了更好地认识生活中的图形,本节课学生在探究活动以后直接对操作活动的过程和结果作分析与总结,经过这些抽象的思维活动,形成新的数学知识,增加了学习过程的趣味性和实践性。
“等腰三角形的性质”崔思友
“等腰三角形的性质”教学设计及反思黑龙江省肇源县福兴中学:崔思友教学案例一、背景分析本节课是人教版《义务教育课程标准实验教科书〃数学》八年级上册第十四章“轴对称”的一个内容。
因为等腰三角形是一种特殊的三角形,它除了具有一般三角形所有性质外,还有许多特殊的性质,由于它的这些特殊性质,使它比一般三角形应用更广泛。
而等腰三角形的许多特殊的性质。
又和它是轴对称图形有关,所以“等腰三角形的性质”是学生在学习轴对称的基础上开展的一个探究性学习的内容。
本节课教师从已学过的轴对称的知识入手,针对八年级学生具有好强、好胜、好奇的心理特点,让学生通过画图、折纸、度量或实验等活动,探索、发现几何结论,经历知识的“再发现”过程,在探究活动的过程中发展创新思维能力,改变学生的学习方式,在发现结论的基础上,再经过推理证明这些结论,使得推理、证明成为学生观察、实验、探究得出结论的自然延续,使图形的认识与图形的证明有机地整合。
二、设计理念《数学课程标准》中指出:“有效的数学学习活动不能单纯的依赖模仿与记忆。
动手实践、自主探索与合作交流是学生学习数学的重要方式。
数学学习活动应是一个生动活泼的、主动的和富有个性的过程。
本节课的目标是让学生把实验几何与论证几何有机结合,鼓励学生进行自主探索与合作交流,培养学生的直觉思维、创造性思维和逻辑思维能力。
根据《数学课程标准》的具体目标,结合我校学生的实际情况,改变数学课程过于注重知识传授的倾向,关注学生的学习兴趣,变“苦学”为“乐学”,帮助学生形成积极主动的学习态度,实施开放式教学,给学生提供充分从事数学活动的机会,让学生主动参与学习活动,在课堂活动中感悟知识的生成,发展与变化的过程,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想与方法,获得广泛的数学活动经验。
三、教学目标1、知识与技能(1)经历获得知识的过程,并通过实验、操作、观察、分析、想象、探索、掌握等腰三角形的性质。
专题 二次函数与等腰三角形有关的问题(知识解读)-中考数学(全国通用)
专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
【解题思路】等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.注意:若有重合的情况,则需排除.以点C1 为例,具体求点坐标:过点A作AH⊥x轴交x轴于点H,则AH=1,又32121131311==-=∴=HC AC ,()03211,坐标为故点-C类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C总结:【典例分析】【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A (﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【变式11】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【变式1-2】(2022•荣昌区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+x+c (a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式;(2)将抛物线y=ax2+x+c沿射线BC平移,B,C的对应点分别为M,N,当以点A,M,N为顶点的三角形是以MN为腰的等腰三角形时,请直接写出点M的坐标,并任选其中一个点的坐标,写出求解过程.【典例2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【变式2-1】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【变式2-1】(2021•大渡口区自主招生)如图,若抛物线y=x2+bx+c与x轴相交于A,B 两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
等腰三角形(导学案)
12.3.1《等腰三角形》导学案班级姓名学习目标:1.根据等腰三角形的轴对称性得出并掌握等腰三角形的等边对等角、“三线合一”的性质;2.会利用等腰三角形的性质解决简单问题.学习重、难点:等腰三角形性质的探究及简单应用.学习过程:1、动手操作把一张长方形的纸按图中虚线对折,然后沿实线剪开,再把它展开,得到等腰三角形.2、猜想性质(1)剪出的等腰三角形是否为轴对称图形?它的对称轴在哪里?(2)将等腰三角形沿折痕对折,观察重合的线段和角,你有什么发现?猜想:3、证明性质猜想1:等腰三角形的两个底角相等已知:△ABC中,AB=AC求证:∠B= C证明:由性质1的证明过程,你能不能证明出猜想2呢?4、巩固性质:(1)如图.在△ABC 中,如果AB=AC,那么∠________=∠_______;(2)如图.在△ABC 中, AB=AC,点D 在BC 上.如果∠BAD=∠CAD,那么 AD ⊥BC , BD=CD.如果BD=CD,那么∠________=∠_______, _______⊥______;如果AD ⊥BC,那么_______________, _____________.5、课堂练习:(1)如图,在下列等腰三角形中,分别求出其它两角的度数.(2)等腰三角形一个角为130°,它的另外两个角为 .(3)等腰三角形一个角为80°,它的另外两个角为 。
(4)想一想:现在工人师傅要加固人字形屋顶,他们通过测量找到了横梁BC 的中点D ,然后在A 、D 两点之间钉上一根木桩,理由.(5)思考:已知等腰三角形的一个底角是顶角的2倍,你能求出这个等腰三角形的底角和顶角的度数吗?(6)如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求△ABC 各角的度数.6.学习体会:AB C D。
等腰三角形性质说课稿
等腰三角形性质说课稿等腰三角形性质说课稿1各位领导、老师:大家好!我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。
一、说教材分析1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。
并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。
2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。
二、说教学方法:“教必有法而教无定法”,只有方法得当,才会有效。
根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
三、说学生学法。
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
四、说教学程序1、等腰三角形的有关概念,轴对称图形的有关概念。
提问:等腰三角形是不是轴对称图形?什么是它的对称轴?2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。
3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。
2.5第1课时等腰三角形的性质与判定(十一大题型)(解析版)
(苏科版)八年级上册数学《第2章 轴对称图形》2.4 等腰三角形的轴对称性第1课时 等腰三角形的性质和判定◆1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.◆2、等腰三角形性质1:等腰三角形的两个底角相等(简写“等边对等角”).★用符号语言表示为:在△ABC 中,∵ AB =AC (已知),∴ ∠B =∠C (等边对等角).◆3、等腰三角形性质2:等腰三角形底边上的高线、中线及顶角平分线重合.★用符号语言表示为:在△ABC 中,(1)∵AB =AC , ∠1=∠2(已知),∴BD =CD , AD ⊥BC (等腰三角形三线合一).(2)∵AB =AC , BD =CD (已知),∴∠1=∠2 , AD ⊥BC (等腰三角形三线合一).(3)∵AB =AC , AD ⊥BC (已知),∴BD =CD , ∠1=∠2(等腰三角形三线合一).★在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.★拓展:等腰三角形是轴对称图形,对称轴为顶角平分线(或底边上的高或底边上的中线)所在的直线.等腰三角形的判定方法:◆1、定义法:有两边相等的三角形是等腰三角形.◆2、判定定理:有两个角相等的三角形是等腰三角形.(简称“等角对等边”).几何语言:在△ABC中,∵∠B=∠C(已知),∴AB=AC(等角对等边).◆3、等腰三角形的判定与性质的区别条件结论作用性质(等边对等角)在同一个三角形中,两边相等.这两边所对的角也相等.证明角相等.判定(等角对等边)在同一个三角形中,两个角相等.这两个角所对的边也相等.证明线段相等.【例题1】(2022•梅江区校级开学)如图,等腰△ABC 中,AB =AC ,∠A =36°.BD 平分∠ABC ,则∠BDC 是( )A .36°B .60°C .72°D .80°【分析】根据等腰三角形的性质以及三角形的内角和定理可得∠ABC 的度数,再根据角平分线的定义可得∠ABD 的度数,然后根据三角形的外角性质解答即可.【解答】解:∵AB =AC ,∠A =36°,∴∠ABC =180°36°2=72°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =36°,∴∠BDC =∠A +∠ABD =72°.故选:C.【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;【变式1-1】(2022春•藁城区期末)如图,在△ABC中,∠ABC=90°,AD=DC,AE⊥BD,若∠DAE=28°,则∠BAE= °.【分析】根据等腰三角形的性质和直角三角形的性质即可得到结论.【解答】解:∵AE⊥BD,∴∠ARD=90°,∵∠DAE=28°,∴∠ADB=62°,∵∠ABC=90°,AD=DC,∴AD=BD,∴∠DAB=∠ABD=12×(180°﹣62°)=59°,∴∠BAE=∠BAD﹣∠DAE=31°,故答案为:31.【点评】本题考查了等腰三角形的性质,直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.【变式1-2】(2022春•三原县期末)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,交AB于点E,交AC于点D.若∠ADE=40°,则∠CBD= .【分析】由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE =40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案.【解答】解:∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠CBD=∠ABC﹣∠ABD=65°﹣50°=15°.故答案为:15°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.【变式1-3】(2022春•碑林区校级期末)如图,已知在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AC于点D,交AB于点E,连接BD,则∠DBC的度数为( )A.30°B.32°C.34°D.36°【分析】根据等腰三角形的性质可得∠ABC的度数,根据线段垂直平分线的性质可得DA=DB,可得∠DBA 的度数,进一步即可求出∠DBC的度数.【解答】解:在△ABC中,AB=AC,∠A=40°,∴∠ABC =∠ACB =70°,∵AB 的垂直平分线交AC 于点D ,∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =30°,故选:A .【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握这些性质是解题的关键.【变式1-4】(2022春•铁西区期末)如图,在等腰△ABC 中,AB =AC ,延长BC 到点D ,使得CD =CA ,连接AD ,若∠D =25°,求∠BAC 的度数.【分析】两次利用等边对等角求得∠B =∠BCA =50°,然后利用三角形的内角和求得答案即可.【解答】解:∵CD =CA ,∠D =25°,∴∠BCA =2∠D =50°,∵AB =AC ,∴∠B =∠BCA =50°,∴∠BAC =180°﹣∠B ﹣∠C =80°.【点评】考查了等腰三角形的性质,解题的关键是了解“等边对等角”,难度不大.【例题2】(2022秋•云梦县期中)如图,在△ABC 中,AB =AC ,AD =DB ,DE ⊥AB 于点E ,若BC =3,且△BDC 的周长为8,则AE的长为( )A.2B.2.5C.3D.3.5【分析】根据已知可得BD+CD=5,从而可得AB=AC=5,然后利用等腰三角形的三线合一性质进行计算即可解答.【解答】解:∵BC=3,且△BDC的周长为8,∴BD+CD=8﹣3=5,∵AD=BD,∴AD+DC=5,∴AC=5,∵AB=AC,∴AB=5,∵AD=DB,DE⊥AB,∴AE=12AB=2.5,故选:B.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.【变式2-1】如图,在△ABC中,AB=AC,MN是AB的垂直平分线,△BNC的周长是24cm,BC=10cm,则AB的长是( )A .17cmB .12cmC .14cmD .34cm【分析】根据垂直平分线的性质可得:AN=BN ,根据△BNC 的周长和BC 的长度得出AC=14cm,再利用AB=AC ,则AB=AC=14cm .【解答】解:∵MN 是AB 的垂直平分线,∴AN =BN ,∵△BNC 的周长是24cm ,BC =10cm ,∴BN +NC +BC =AN +NC +BC =AC +BC =24(cm ),∴AC =14cm ,∵AB =AC ,∴AB =14cm ,故选:C .【点评】本题考查垂直平分线的性质以及等腰三角形的性质,解题的关键是掌握垂直平分线的性质,求出AC=14cm .【变式2-2】(2023春•西安月考)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE =5cm ,则BF =( )A .8cmB .10cmC .12cmD .14cm【分析】先得出AD 是△ABC 的中线,得出S △ABC =2S △ABD =2×12AB •DE =AB •DE =5AB ,又S △ABC =12AC •BF ,将AC =AB 代入即可求出BF .【解答】解:∵△ABC 中,AB =AC ,AD ⊥BC ,∴AD 是△ABC 的中线,∴S △ABC =2S △ABD =2×12AB •DE =AB •DE =5AB ,∵S △ABC =12AC •BF ,∴12AC •BF =5AB ,∵AC =AB ,∴12BF =5,∴BF =10(cm ),故选:B .【点评】本题考查了等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.【例题3】(2022秋•栖霞区校级月考)如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .则下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③BC =AD ;④OD =2CD .正确的有( )A .1个B .2个C .3个D .4个【分析】由在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,根据线段垂直平分线的性质与等腰三角形的性质,可求得∠ABD =∠DBC =∠A =36°,∠ABC =∠BDC =∠C =72°,继而求得:①∠C =2∠A ;②BD 平分∠ABC ;③BC =AD .【解答】解:∵AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,∴AD =BD ,∴∠ABD =∠A =36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠C=2∠A,故①正确;∴∠DBC=∠ABC﹣∠ABD=36°,∴∠ABD=∠DBC,∴BD平分∠ABC,故②正确;∴∠BDC=∠C=72°,∴BC=BD=AD,故③正确;由条件不能得出OD=2CD,故④错误.故选:C.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.【变式3-1】在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.下列结论中:①∠C=72°;②BD是△ABC的中线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.正确的序号有( )A.①③④B.①④⑤C.①②⑤D.②④⑤【分析】根据题意画出图形,再根据在△ABC中,已知AB=AC,∠A=36°求出∠C的度数;由线段垂直平分线的性质求出∠ABD的度数,故可得出∠DBC的度数,进而得出BD是∠ABC的平分线;由三角形内角和定理可求出∠BDC的度数;由线段垂直平分线的性质,易证得△ABD是等腰三角形.【解答】解:∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C=180°∠A2=72°,故①正确;∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠DBC=72°﹣36°=36°,∴BD是∠ABC的平分线,故②错误;∵在△BCD中,∠DBC=36°,∠C=72°,∴∠BDC=180°﹣(∠DBC+∠C)=180°﹣(36°+72°)=72°.故③错误;∵DM是AB的垂直平分线,∴AD=BD∴△ABD是等腰三角形;故④正确;∵MN是线段AB的垂直平分线,∴AD=BD,∵∠A=∠ABD=36°,∴∠CBD=36°,∴BD=BC,∴AD=BD=BC,故⑤正确.故选:B.【点评】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.【变式3-2】如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有( )A.1个B.2个C.3个D.4个【分析】利用等腰三角形的概念、性质以及角平分线的性质做题.【解答】解:∵AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC∴△ABC是等腰三角形,AD⊥BC,BD=CD,∠BED=∠DFC=90°∴DE=DF∴AD垂直平分EF∴(4)错误;又∵AD所在直线是△ABC的对称轴,∴(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF.故选:C.【点评】有两边相等的三角形是等腰三角形;等腰三角形的两个底角相等;(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”).【变式3-3】如图,在△ABC中,∠BAC与∠ACB的平分线交于点M,过点M作DE∥AC交AB于点D,交BC于点E,那么下列结论:①△ADM和△CEM都是等腰三角形;②△BDE的周长等于AB+BC;③AM=2CM;④AD+CE=AC.其中一定正确的结论有( )A.4个B.3个C.2个D.1个【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵DE∥AC,∴∠DMA=∠MAC,∠EMC=∠MCA,∵△ABC中,∠BAC与∠ACB的平分线交于点M,∴∠DAM=∠MAC,∠ECM=∠MCA,∴∠DAM=∠DMA,∠EMC=∠ECM,∴DA=DM,ME=EC,即△ADM和△CEM都是等腰三角形;故①正确;∴DE=DM+EM=AD+CE,∵AC>DE,∴AD+CE<AC,故④错误;∴△BDE的周长为:BD+DE+BE=DB+DM+ME+BE=AB+BC;故②正确;根据已知条件无法证明AM=2CM,故③错误.故选:C.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.【变式3-4】(2022春•神木市期末)如图,在△ABC中,点E、D分别在AB、AC的延长线上,∠BAC 与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②CP平分∠BCD;③BP垂直平分CE,其中正确的结论有( )A.0个B.1个C.2个D.3个【分析】①根据角平分线的性质和平行线的性质即可得到结论;②根据角平分线的性质即可得到结论;③根据线段垂直平分线的性质即可得出结论.【解答】解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;②∵∠BAC与∠CBE的平分线相交于点P,∴点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,故②正确;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),故③正确;故选:D.【点评】本题主要考查了角平分线的性质和定义,平行线的性质,等腰三角形的性质,熟练掌握各性质定理是解题的关键.【例题4】(2022春•巴中期末)在等腰△ABC中有一个角是50°,那么另外两个角分别是( )A.50°、80°B.50°、80°或65°、65°C.65°、65°D.无法确定【分析】根据等腰三角形的性质分∠B为顶角或底角两种情况求解即可.【解答】解:当∠B=50°为顶角时,此时∠A=∠C=180°50°2=65°;当∠B=50°为底角时,此时另一底角为50°,顶角为80°,故另外两个角分别是50°,80°或65°,65°.故选:B.【点评】本题考查了等腰三角形的性质和三角形的内角和定理,注意此题有两种情况.【变式4-1】(2022•上杭县校级开学)如果等腰三角形的一个外角为150°,则它的底角度数为( )A.30°B.75°C.30°或75°D.60°【分析】根据等腰三角形的一个外角等于150°,进行讨论可能是底角的外角是150°,也有可能顶角的外角是150°,从而求出答案.【解答】解:①当150°外角是底角的外角时,底角为:180°﹣150°=30°;②当150°外角是顶角的外角时,顶角为:180°﹣150°=30°,则底角为:(180°﹣30°)×12=75°,∴底角为30°或75°.故选:C.【点评】此题主要考查了等腰三角形的性质,此题应注意进行分类讨论,非常容易忽略一种情况.【变式4-2】(2022秋•南岗区校级月考)已知等腰三角形的两边长分别为7和3,则周长是( )A.13B.17C.18D.19【分析】分两种情况讨论:当3是腰时或当7是腰时,利用三角形的三边关系进行分析求解即可.【解答】解:当3是腰时,则3+3<7,不能组成三角形,舍去;当7是腰时,则三角形的周长是3+7×2=17.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.【变式4-3】(2022春•榆次区期中)一个等腰三角形的周长为13cm,一边长为5cm,则另两边长分别为( )A.3cm,5cm B.4cm,4cmC.3cm,5cm或4cm,4cm D.以上都不对【分析】此题分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:当5cm是等腰三角形的腰时,则其底边是13﹣5×2=3(cm),能够组成三角形;当5cm是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4(cm),能够组成三角形.故另两边长分别为3cm,5cm或4cm,4cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.【变式4-4】(2022春•文登区期末)若实数m,n=0,且m,n恰好是等腰△ABC的两条边的长,则△ABC的周长是( )A.6B.8C.10D.8或10【分析】利用非负数的性质求出m,n的值,再分两种情形讨论即可.【解答】解:=0,∴m﹣2=0,n﹣4=0,解得:m=2,n=4,当2是等腰三角形的底时,4,4,2能构成三角形,周长为10,当4是底时,2,2,4不能构成三角形.故选:C.【点评】本题考查等腰三角形的性质,非负数的性质,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.【变式4-5】(2022秋•长汀县校级月考)已知等腰三角形一腰上的高线与另一腰的夹角为60°,那么这个等腰三角形的顶角等于( )A.15°或75°B.30°C.150°D.150°或30°【分析】方法1:首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.方法2:读到此题我们首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,我们可以通过画图来讨论剩余两种情况.【解答】解:方法1:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠BAC=180°﹣30°=150°.故这个等腰三角形的顶角等于30°或150°.方法2:①当为锐角三角形时可以画图,高与左边腰成60°夹角,由三角形内角和为180°可得,顶角为180°﹣90°﹣60°=30°,②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为30°,∴三角形的顶角为180°﹣30°=150°.故选:D.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.【例题5】已知:如图,P 、Q 是△ABC 边BC 上两点,且AB=AC ,AP=AQ .求证:BP=CQ .【分析】根据线段垂直平分线的性质,可得BO=CO ,PO=QO ,根据等式的性质,可得答案.【解答】证明:过点A 作AO ⊥BC 于O .∵AB=AC ,AO ⊥BC ,∴BO=CO , ∵AP=AQ ,AO ⊥BC ,∴PO=QO , ∴BO -PO=CO -QO∴BP=CQ .【点评】本题考查了等腰三角形的性质,利用线段垂直平分线的性质是解题关键.【变式5-1】已知:如图,在△ABC 中,AB =AC ,BD ,CE 是△ABC的角平分线.求证:BD =CE .【分析】由于AB=AC,BD,CE是△ABC的角平分线,利用等边对等角,角平分线定义,可得∠ABC=∠ACB,∠DBC=∠ECB,而BC=CB,利用ASA可证△EBC≌△DBC,再利用全等三角形的性质可证BD=CE.【解答】证明:如图所示,∵AB=AC,BD,CE是△ABC的角平分线.∴∠ABC=∠ACB,∴∠DBC=∠ECB,又∵BC=CB,∴△EBC≌△DCB(ASA),∴BD=CE.【点评】本题利用等腰三角形的性质、角平分线的定义、全等三角形的判定和性质.【变式5-2】如图,AB=AC,BD=CD,AD的延长线与BC交于E,求证:AE⊥BC.【分析】由AB=AC,BD=CD,AD是公共边,即可证得△ABD≌△ACD(SSS),则可得∠BAD=∠CAD,又由等腰三角形的三线合一的性质,证得AE⊥BC.【解答】解:在△ABD和△ACD中,AB=ACAD=AD,BD=CD∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵AB=AC,∴AE⊥BC.【点评】此题考查了等腰三角形的性质与全等三角形的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.【变式5-3】(2023•成武县校级三模)如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.【分析】首先连接AD,由AB=AC,D是BC的中点,根据三线合一的性质,可得∠EAD=∠FAD,又由SAS,可判定△AED≌△AFD,继而证得DE=DF.【解答】证明:连接AD,∵AB=AC,D是BC的中点,∴∠EAD=∠FAD,在△AED和△AFD中,AE=AF∠EAD=∠FAD,AD=AD∴△AED≌△AFD(SAS),∴DE=DF.【点评】此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.【变式5-4】如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E,AD与BE相交于点F.(1)求证:∠CBE=∠BAD;(2)若CE=EF,求证:AF=2BD.【分析】(1)根据∠CBE +∠C =90°,∠CAD +∠C =90°,得出∠CBE =∠CAD ,再根据等腰三角形的性质得出∠CAD =∠BAD 即可得证结论;(2)根据AAS 证△BCE ≌△AFE ,得出AF =BC ,根据BC =2BD ,即可得证结论.【解答】证明:(1)∵∠CBE +∠C =90°,∠CAD +∠C =90°,∴∠CBE =∠CAD ,∵AB =AC ,AD 是BC 边上的中线,∴∠CAD =∠BAD ,∴∠CBE =∠BAD ;(2)由(1)知∠CBE =∠CAD ,在△BCE 和△AFE 中,∠CBE =∠AFE ∠BEC =∠FEA =90°CE =EF,∴△BCE ≌△AFE (AAS ),∴AF =BC ,∵BC =2BD ,∴AF =2BD .【点评】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【例题6】(2022•建湖县一模)如图,每个小方格的边长为1,A ,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C的个数为( )A.1B.2C.3D.4【分析】根据“两圆一线”画图找点即可.【解答】解:如图,C点与P、Q、R重合时,均满足△ABC是等腰三角形,故选:C.【点评】本题考查“两圆一线”构造等腰三角形的方法,熟练使用两圆一线的方法是解题关键.【变式6-1】如图所示,共有等腰三角形( )A.4个B.5个C.3个D.2个【分析】由已知条件,根据三角形内角和定理,求出图形中未知度数的角,即可根据等角对等边求得等腰三角形的个数.【解答】解:根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选:B.【点评】此题考查了三角形的内角和定理、三角形的外角的性质以及等腰三角形的判定方法.得到各角的度数是正确解答本题的关键.【变式6-2】(2022春•杨浦区校级期末)如图,在直角三角形ABC中,∠ACB=90°,∠B=36°,点D、E在AB上,如果BC=BD,∠CED=∠CDE,那么图中的等腰三角形共有( )个.A.3个B.4个C.5个D.6个【分析】先求出各个角的度数,然后根据等腰三角形的判定即可求出答案.【解答】解:∵∠ACB=90°,∠B=36°,∴∠A=54°,∵BC=BD,∴∠CDB=∠DCB=72°,∴∠ECB=36°,∠ACE=54°,∴CE=BE,AE=CE,∴△BCD,△CDE,△CEB,△ACE都是等腰三角形,故选:B.【点评】本题考查等腰三角形的判定,解题的关键是求出各个角的度数,本题属于基础题型.【变式6-3】如图,在△ABC中,且∠ABC=60°,且∠C=45°,AD是边BC上的高,∠ABC的平分线交AD于F,交AC于E,则图中等腰三角形的个数为( )A.2B.3C.4D.5【分析】根据三角形高线的性质及直角三角形的性质推出∠ADC=∠ADB=90°,∠BAD=90°﹣∠ABD=30°,∠DAC=90°﹣∠C=45°,从而利用等腰三角形的判定定理得到△ADC是等腰三角形,再根据角平分线的性质得到∠ABF=∠CBE=12∠ABC=30°,从而由∠ABF=∠BAD推出△ABF是等腰三角形,而∠BEA=∠EBC+∠C=45°+30°=75°,∠BAC=180°﹣60°﹣45°=75°=∠BEA,进而求解.【解答】解:∵AD是边BC上的高线,∴∠ADC=∠ADB=90°,∵∠ABC=60°,∠C=45°,∴∠BAD=90°﹣∠ABD=30°,∠DAC=90°﹣∠C=45°,∴△ADC是等腰三角形,∵BE是∠ABC的平分线,∴∠ABF=∠CBE=12∠ABC=30°,∴∠ABF=∠BAD,∴△ABF是等腰三角形,则∠BEA=∠EBC+∠C=45°+30°=75°,而∠BAC=180°﹣60°﹣45°=75°=∠BEA,故△ABE为等腰三角形,故选:B.【点评】本题考查等腰三角形的判定及直角三角形的性质,应充分运用数形结合的思想方法,结合图形从中寻找角之间的关系,结合相关定理及性质进行求解.【变式6-4】(2022秋•鼓楼区期末)如图,在3×3正方形网格中,点A,B在格点上,若点C也在格点上,且△ABC是等腰三角形,则符合条件的点C的个数为( )A.1B.2C.3D.4【分析】分别画出以A点和B点为顶点的等腰三角形,再画出C为顶点的等腰三角形即可.【解答】解:以AB为腰的等腰三角形有两个,以AB为底的等腰三角形有一个,如图:所以符合条件的点C的个数为3个,故选:C.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.掌握等腰三角形的判定方法是解题的关键.【变式6-5】(2022秋•镇江月考)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰三角形,满足条件的格点C的个数是( )A .5B .6C .8D .9【分析】分三种情况:当BA =BC 时,当AB =AC 时,当CA =CB 时,然后进行分析即可解答.【解答】解:如图:分三种情况:当BA =BC 时,以点B 为圆心,BA 长为半径作圆,点C 1,C 2,C 3即为所求;当AB =AC 时,以点A 为圆心,AB 长为半径作圆,点C 4,C 5,C 6,C 7,C 8即为所求;当CA =CB 时,作AB 的垂直平分线,与正方形网格的交点不在格点上,综上所述:满足条件的格点C 的个数是8,故选:C .【点评】本题考查了等腰三角形的判定,分三种情况讨论是解题的关键.【例题7】如图,在△ABC 中,AD 平分∠BAC ,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:△ABC是等腰三角形.【分析】由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,BD=CDDE=DF,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C;∴AB=AC∴△ABC为等腰三角形.【点评】本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质得出DE=DF 是解题的关键.【变式7-1】已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.【分析】根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.【解答】解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD∴AE=ED,∴△AED是等腰三角形.【点评】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.【变式7-2】如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD =BE,求证:△ABC为等腰三角形.【分析】要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.【解答】证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF,∵BD=BE,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.【点评】本题考查了等腰三角形的判定方法;角的等量代换是正确解答本题的关键.【变式7-3】已知:如图,△ABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.【分析】由∠1=∠2,∠3=∠4,根据三角形外角的性质,易证得∠B=∠C,然后由等角对等边,证得:△ABC 是等腰三角形.【解答】证明:∵∠B=∠3﹣∠1,∠C=∠4﹣∠2,又∵∠1=∠2,∠3=∠4,∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形.【点评】此题考查了等腰三角形的判定与三角形外角的性质.此题比较简单,注意掌握数形结合思想的应用.【变式7-4】已知如图,点D在AB上,点E在AC的延长线上,且BD=CE,FD=FE.求证:△ABC 是等腰三角形.【分析】过点D作DG∥AE于点G,利用平行线的性质得出∠GDF=∠CEF,进而利用ASA得出△GDF ≌△CEF,再利用全等三角形的性质以及等腰三角形的判定得出即可.【解答】证明:过点D作DG∥AE于点G,∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∠GDF=∠CEFDF=EF,∠DFG=∠CFE∴△GDF≌△CEF(ASA),∴DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质以及等腰三角形的判定,作出恰当的辅助线是解答此题的关键.【例题8】(2022秋•通州区校级月考)如图,BO平分∠ABC,CO平分∠ACB,MN∥BC,△AMN的周长为33,AB=15,则AC为( )A.15B.18C.20D.23【分析】根据角平分线的定义和平行线的性质可证△MBO和△NCO是等腰三角形,从而可得MO=MB,NO=NC,然后根据线段的和差关系可得,△AMN的周长=AB+AC,进行计算即可解答.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵△AMN的周长为33,AB=15,∴AM+MN+AN=33,∴AM+OM+ON+AN=33,∴AM+MB+CN+AN=33,∴AB+AC=33,∴AC=18,故选:B.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,熟练掌握根据角平分线的定义和平行线的性质可证等腰三角形是解题的关键.【变式8-1】如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为( )A.12B.16C.20D.8【分析】根据角平分线的性质,平行线的性质,可以求得∠B的度数,再根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵CM平分∠ACB交AB于点M,∴∠NCM=∠BCM,∵MN∥BC∴∠NCM=∠BCM=∠NMC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠B,∴∠ACB=2∠B,NM=NC,∴∠B=30°;∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12,故选:A.【点评】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【变式8-2】如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE,AB=5,BE=3,则AC=( )A.10B.11C.13D.15【分析】延长BE交AC于M,利用三角形内角和定理,得出∠3=∠4,AB=AM=5,BM=2BE=6,再利用∠4是△BCM的外角,利用等腰三角形判定得到CM=BM,利用等量代换即可求证.【解答】解:延长BE交AC于M,∵BE⊥AE,∴∠AEB=∠AEM=90°∴∠3=90°﹣∠1,∠4=90°﹣∠2,∵∠1=∠2,∴∠3=∠4,∴AB=AM=5,∵BE⊥AE,∴BM=2BE=6,∵∠4是△BCM的外角,∴∠4=∠5+∠C,∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5,∴3∠C=∠4+∠5=2∠5+∠C,∴∠5=∠C,∴CM=BM=6,∴AC=AM+CM=AB+2BE=11.故选:B.【点评】此题考查等腰三角形的判定与性质,利用三角形内角和定理,三角形外角的性质,准确添加辅助线构建等腰三角形是解题关键.【变式8-3】(2022春•神木市期末)如图,已知在△ABC中,AB=AC,BP、CQ是△ABC两腰上的高,BP与CQ交于点O.求证:△BCO是等腰三角形.【分析】由题意可求得∠ABC=∠ACB,再由高得∠BQC=∠CPB=90°,从而可求得∠OBC=∠OCB,即有OB=OC,从而得证△BCO是等腰三角形.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵BP、CQ是△ABC两腰上的高,∴∠BQC=∠CPB=90°,∵∠OBC=90°﹣∠ACB,∠OCB=90°﹣∠ABC,∴∠OBC=∠OCB,∴OB=OC,∴△BCO为等腰三角形.【点评】本题主要考查等腰三角形的判定,等腰三角形的性质,解答的关键是结合图形分析清楚角之间的关系.【变式8-4】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF 是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B 即可得出结论;(3)由(2)知∠DEF=∠B,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,BD=CE ∠B=∠C BE=CF,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;。
初中数学等腰三角形的性质教案优秀9篇
初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。
)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。
想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。
)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点等边三角形的。
判定定理和直角三角形的性质定理。
教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。
等腰三角形的性质
等腰三角形性质教案武胜中学聂晓军一、教材分析1.教材的地位与作用:等腰三角形的性质是新人教版八年级数学第十二章第三节的内容,它是在认识了轴对称性以及了解了全等三角形的判定的基础上进行的。
主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一",本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。
2.教学目标:知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。
能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。
情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。
3.教学重点与难点重点:等腰三角形两底角相等,等腰三角形三线合一。
因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。
难点:等腰三角形三线合一的推理应用二、教法与学法教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。
学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。
等腰三角形教学设计(刘海峰)
教学过程
教学反思:
本节课通过对等腰三角形叠合操作引出等腰三角形是轴对称图形,进而得到等腰三角形的性质1:等边对等角,这种操作有利于学生发现等腰三角形性质的证明,给出三种不同的辅助线,是用来培养学生的发散思维能力。
新教材中例1设计与旧人教版求“人字形的角度”相比具有一定难度,为此,在讲完性质1后,设计如教案中练习1,一方面是用来巩固性质1,其中练习1中2、3、4具有变式教学思想,另一方面是为推论及性质2作准备。
教案中练习2是用来巩固性质2,重点是培养学生的几何符号语言表达能力。
让学生回顾,是为了培养学生的语言表达能力,同时加深学生对所学知识的理解,促进学生对学习过程的进行反思。
在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯,增强了学生学习数学的信心和勇于探索的思维品质,渗透了心理健康教育.总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,培养学生应用意识,提高学生学习数学素养,也促进了学生的心理健康.。
等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明
等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明第一篇:等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明例一:如图所示,已知△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC点E,若△ABC的面积为14。
问:PD+PE 的值是否确定?若能确定,是多少?若不能确定,请说明理由。
解:三角形ABC的面积为14,所以PD+PE的值为定值。
由已知:AB=AC=8,S(△ABC)=14,得S(△ABC)=1/2*AB*PD+1/2*AC*PE=1/2*8*PD+1/2*8*PE)=141/2*8*(PD+PE)=14PD+PE=14/4=3.5即 PD+PE=3.5这道题得出的结论是:等腰三角形底边上任一点到两腰上的距离之和等于一腰上的高。
结论虽简单,我们又应当如何证明呢?关于这道题的证明方法有很多种。
求证;等腰三角形底边上任一点到两腰的距离之和等于一腰上的高。
这是一道常见的几何证明问题,难度不大,但很经典,证明方法也很多。
已知:等腰三角形ABC中,AB=AC,BC上任意点D,DE⊥AB,DF⊥AC,BH⊥AC求证: DE+DF=BH证法一:连接AD则△ABC的面积=AB*DE/2+AC*DF/2=(DE+DF)*AC/2而△ABC的面积=BH*AC/2所以:DE+DF=BH即:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高证法二:作DG⊥BH,垂足为G因为DG⊥BH,DF⊥AC,BH⊥AC所以四边形DGHF是矩形所以GH=DF因为AB=AC所以∠EBD=∠C因为GD//AC所以∠GDB=∠C所以∠EBD=∠GDB又因为BD=BD所以△BDE≌△DBG(ASA)所以DE=BG所以DE+DF=BG+GH=BH证法三:提示:过B作直线DF的垂线,垂足为M运用全等三角形同样可证另外运用三角函数也能进行证明如果D在BC或CB的延长线上,有下列结论:|DE-DF|=BH 问题:这个问题的另外一个表达形式:将此结论推广到等边三角形:等边三角形中任意一点到三边的距离的和等于等边三角形的一条高。
《等腰三角形》word教案 (公开课获奖)2022沪科版 (3)
16.3等腰三角形性质教学目标:1、知识与技能1)探究并掌握等腰三角形的性质定理及推论;2)能根据等腰三角形的性质解决有关计算和证明的问题2、过程与方法采用探究学习法,学生在折叠的过程中观察、发现问题,猜测结论,并进行证明,形成定理3、情感态度与价值观1)通过探究性学习实验,使学生发现等腰三角形“等边对等角”及“顶角的平分线、底边上的中线、底边上的高互相重合”的性质;2)通过性质的证明和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;3)使学生进一步了解发现真理的方法(探究- 猜想--论证).教学重点等腰三角形性质的探索、证明和应用;教学难点:等腰三角形性质的证明教学方法:实验探究法教学用具:三角板,用纸做的一个等腰三角形,几何画板,多媒体教学过程:有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《与等腰三角形有关的图形变式证明》导学案
学习目标:1、探究等腰三角形底边或底边延长线上任意一点到两腰的距离和一腰上
的高之间的规律。
2、会用这种规律解决相关问题。
使用说明:1、先自主完成课前独学内容;然后课上进行学习成果展示。
2、群学部分主要以组内合作研讨为主,探究出一些规律性的知识。
【独学·勤复习】
1、说说等腰三角形有哪些性质?
2、画一画等腰三角形腰上的高并判断两高的关系。
【群学·找规侓】
【学法指导】:先独立试解,然后小组交流。
1、如图,在△ABC 中,AB=AC,P 是BC 上的一点,PE ⊥ AB,PF ⊥ AC, 垂足分别为E 、F, BD 是等腰三角形的腰AC 上的高。
试探索BD, PF, PE 三者关系。
2、如图,在△ABC 中,AB=AC, P 是BC 延长线上的一点,PE ⊥ AB,PF ⊥ AC, 垂足分别为E 、F, BD 是等腰三角形的腰AC 上的高。
试再探索BD , PE , PF 三者关系。
如果上述两个问题变成钝角三角形,它们的结论是否成立?
我发现,我归纳
1、等腰三角形底边上一点_________________________________________。
2、等腰三角形底边延长线上一点_____________________________________。
【群学·用规侓】
【学法指导】:要求小组讨论交流。
如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线
EC 上的一点,且PQ⊥BC 于点Q ,PR⊥BD 于点R 。
(1)如图1,当点P 为线段EC 中点时,易证:PR+PQ=
5
12
(不需证明)。
(2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,给予证明;若不成立,请说明理由。
(3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想。
E
我的感悟收获:
【独学·研作业】
1、矩形ABCD 中,AB=3cm ,BC=4cm ,E 是边AD 上一点,且BE=DE ,P 是对角线BD 上任意一点,PF ⊥BE ,PG ⊥AD 。
则PF+PG 的长为_____。
2、矩形ABCD 中,AB=3cm ,BC=4cm ,P 是边AD 上一点, PE ⊥AC ,PF ⊥BD 。
则PE+PF 的长为_____。
3、在△ABC 中,AB=AC,CG ⊥BA 交BA 的延长线于点G 。
一等腰直角三角尺按如图1所示的位置摆放,一条直角边与AC 在一条直线上,另一条直角边恰好经过点B 。
(1)在图1中猜想并写出BF 与CG
满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E 。
此时请你猜想并写出DE 、DF 、与CG 之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿
AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,(2)中的猜想是否仍然成立?若不成立请直接写出你的猜想。
(不用说明理由)
图1
A
D C B
Q
R E
P
图2
A
D C
B
Q
R
E
P
A
D
C B
Q
R
E
P
图3
B
B。