第四节 定积分与微积分基本定理
第4节 定积分与微积分基本定理[理]
①求被积函数 f(x)的一个原函数 F(x);
②计算 F(b)-F(a).
(2)利用定积分的几何意义求定积分
当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.
1
如:定积分 0
1-x2dx 的几何意义是求单位圆面积的14,所以10
1-x2dx=π4.
返回
2.定积分应用的两条常用结论 (1)当曲边梯形位于 x 轴上方时,定积分的值为正;当曲 边梯形位于 x 轴下方时,定积分的值为负;当位于 x 轴上方 的曲边梯形与位于 x 轴下方的曲边梯形面积相等时,定积分 的值为零. (2)加速度对时间的积分为速度,速度对时间的积分是 路程.
2.∫e12x+1xdx=(
)
A.e2-2
B.e-1
其原函数
是什么?
C.e2
D.e+1
解析:
∫e12x+1xdx=(x2+ln
x)|e1=e2.
积分上下限
答案: C
与分段函数
3.设 f(x)=2xx2
x x
的定义域
,则
1 −1
������(������)dx
23.
答案:
1-
3 2
返回
返回
解析: 由图象可知 A=1,T2=23π--π3=π,所以 ω=1,
f(x)=sinx-π6.图中其与 x 轴的交点横坐标为6π,所以图中的阴影部分的
面积为
π 6
0
-sin������-π6dx=cosx-π6|0π6 =1-
b
么从时刻 t=a 到 t=b 所经过的路程 s=av(t)dt. (2)变力做功:一物体在变力 F(x)的作用下,沿着与 F(x)相同方向从 x
b
=a 移动到 x=b 时,力 F(x)所做的功是 W=aF(x)dx.
第四节 定积分与微积分基本定理-高考状元之路
第四节 定积分与微积分基本定理预习设计 基础备考◎知识梳理… 1.定积分的概念(1)定积分的定义和相关概念;①函数)(x f 定义在区[a ,b]上,用分点<<<= 10x x a b x x x n i i =<<⋅<-...1将区间[a ,b]等分成n 个小区间,其长度依次为),12,1,0(1-=-+=∆n i x x x i i i 记A 为这些小区间长度的最大者,当A 趋近于0时,所有小区间长度都趋近于O ,在每个小区间任取一点i ξ作和式iin i n x f I ∆=∑-=)(1ξ当0→λ时,如果和式极限存在,则称和式n I 的极限为函数)(x f 在区间[a ,b]上的定积分,记作 ,即=⎰dx x f bu)(②在dx x f bu)(⎰中,a 与b 分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数, 叫做积分变量, 叫做被积式. (2)定积分的几何意义:①当函数)(x f 在区间[a ,b]上恒为正时,定积分dx x f ba)(⎰的几何意义是由直线0),(,==/==y b a b x a x 和曲线).(x f y =所围成的曲边梯形的面积(图①中阴影部分).②一般情况下,定积分dx x f b a)(⎰的几何意义是介于x 轴、曲线)(x f 以及直线b x a x ==、之间的曲边梯形面积的代数和(图②中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的 (3)定积分的基本性质:=⎰dx x kf ba)(①=±⎰dx x f x fa)]()([21b②=⎰dx x f ba)(③2.微积分基本定理如果)()(1x f x F =且)(x f 在[a ,b]上可积,那么=⎰dx x f ba)( ,这个结论叫做微积分基本定理,又叫做牛顿一莱布尼兹公式.为了方便,常把)()(a F b F -记成 ,即=⎰dx x f a)( ).()(a F b F -=典题热身=-⎰dx x 5)42(.1( )5.A 4.B 3.c 2.D答案:A,2ln 3)12(.21+=+⎰adx xx 且a>l ,则a 的值为 ( ) 6.A 4.B 3.C 2.D答案:D3.已知自由落体的速度为,gt v =则落体从0=t 到0t t =所走的路程为( )2031.gt A 20gt B ⋅ 2021.gt c 2041.gt D 答案:C4.曲线)230(cos π≤≤=x x y 与两坐标轴所围成图形的面积为 答案:3 5.若,1)(,1)(120-==⎰⎰dx x f dx x f 则=⎰dx x f )(21答案:-2课堂设计 方法备考题型一定积分的计算【例1】求下列定积分:;)()1(12dx x x ⎰- ;2sin )2(222dx x⎰-ππ .|23|)3(21dx x ⎰-题型二利用定积分的几何意义求定积分 【例2】利用定积分的几何意义求)0(22>-⎰-a dx x a a a的值.题型三利用定积分求曲边梯形的面积【例3】求曲线,2x y =直线x y x y 3,==围成的图形的面积.题型四定积分在物理学中的应用【例4】列车以72 km/h 的速度行驶,当制动时列车获得加速度,/4.02s m a -=问:列车应在进站前多长时间,以及离车站多远处开始制动? 技法巧点1.求定积分的一些技巧(1)对被积函数,要先化简,再求定积分.(2)求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分再求和. (3)对含有绝对值符号的被积函数,要去掉绝对值符号才能求定积分. (4)若函数,(x)为偶函数,且在区间[-a ,a]上连续,则10)(2)(dx x f dx x f aaa ⎰⎰=-若)(x f 是奇函数,且在区间[-a ,a]上连续,则.0)(=⎰-dx x f aa2.几种典型的曲边梯形面积的计算方法(1)由三条直线x b a b x a x 、、)(<==轴,一条曲线=y ]0)()[(≥x f x f 围成的曲边梯形的面积(如图1):.)(dx x f s ba⎰=(2)由三条直线x b a b x a x 、、)(<==轴、一条曲线)(x f y =]0)([≤x f 围成的曲边梯形的面积(如图2):.)(|)(|bdx x f dx x f s baa⎰⎰-==(3)由两条直线、、)(b a b x a x <==两条曲线==y x f y 、)()]()()[(x g x f x g ≥围成的平面图形的面积(如图3);dx x g x f S ba⎰-=)]()([失误防范1.被积函数若含有绝对值号,应去绝对值号,再分段积分.2若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3定积分式子中隐含的条件是积分上限不小于积分下限.4 .定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 5将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷. 随堂反馈1.(2010.湖南高考)dx x ⎰421等于 ( )2ln 2.-A 2ln 2.B 2ln .-c 2ln .D答案:D2.已知⎩⎨⎧<<≤≤-=),10(1),01()(2x x x x f 则dx x f )(11⎰-的值为( )23.A 32.-B 32. c 34.D 答案:D3.(2011. 福建高考)dx x e x ⎰+1)2(等于 ( )1.A 1.-e B e c . 1.+e D答案:C4.(2011.湖南高考)由直线0,3,3==-=y x x ππ与曲线x y cos =所围成的封闭图形的面积为( )21.A 1.B 23.c 3.D答案:D5.(2011.陕西高考)设⎪⎩⎪⎨⎧≤+>=⎰,0,3,0,lg )(2ax dt t x x x x f 若,1)]1([=f f 则=a 答案:1高效作业 技能备考一、选择题1.(2011.威海模拟)曲线)0(sin π≤≤=x x y 与直线21=y 围成的封闭图形的面积是( ) 3.A 32.-B 32.π-⋅C 33.π-D答案:D2.(2010.洛阳质检)若,0)32(02=-⎰dx x x k则k 等于( )0.A 1.B C .O 或1 D .以上均不对答案:B3.(2011.潍坊期末)若函数dx x a f a⎰+=)sin 2()(则))2((πf f 等于( ) 1.A 0.B 1cos 32.++πC 1cos 1.-D答案:C4.(2010.佛山一模)一物体在变力25)(x x F -=(力单位:N ,位移单位:m)作用下,沿与F(x)成.30方向作直线运动,则由1=x 运动到2=x 时)(x F 做的功为 ( )J A 3. J B 332. J c 334. J D 32.答案:C5.设⎩⎨⎧∈-∈=],2,1(,2],1,0[,)(2x x x x x f 则dx x f )(20⎰等于( )43.A 54.B 65.c D .不存在答案:C 6.若)()1(92R a ax x ∈-展开式中9x 的系数是,221-则xdx a sin 0⎰等于( )2cos 1.-A 1cos 2.-B 12cos .-C 2cos 1.+D答案:A 二、填空题7.已知函数,123)(2++=x x x f 若ω(2)(11f dx x f =⎰-成立,则=a答案:311或- 8.(2011.漳州模拟)已知,)2()(122dx x a ax a f ⎰-=则)(a f 的最大值是答案:929.已知,)(sin 20dx sx x a ⎰∞+=π则二项式6)1(xx a -的展开式中含2x 项的系数是答案:-192 三、解答题10.(2010.合肥模拟)若)(x f 是一次函数,且,5)(1=⎰dx x f ⋅=⎰617)(1dx x xf 求dx xx f ⎰21)(的值.11.(2010.日照模拟)如图,直线kx y =与抛物线2x x y -=与x 轴所围图形为面积相等的两部分,求k 的值.12.设函数bx ax x x f ++=23)(在点1=x 处有极值-2.(1)求常数a 、b 的值;(2)求曲线)(x f y -=与x 轴所固成的图形的面积,。
定积分与微积分基本定理
定积分与微积分基本定理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -a nf (ξi ),当n →∞时,上述和式无限接近某个□01常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )dx =limn →∞∑n i =1b -an f (ξi ).其中f (x )称为□02被积函数,a 称为积分□03下限,b 称为积分□04上限.2.定积分的几何意义3.定积分的性质性质1:⎠⎛a b kf (x )d x =□01k ⎠⎛ab f (x )d x (k 为常数).性质2:⎠⎛a b [f (x )±g (x )]d x =□02⎠⎛a b f (x )d x ±⎠⎛abg (x )d x .性质3:⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +□03⎠⎛c b f (x )d x . 4.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛a b f (x )d x=□01F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )|b a ,即⎠⎛ab f (x )dx =F (x )|b a =□02F (b )-F (a ). 5.定积分与曲边梯形面积的关系设阴影部分的面积为S. (1)S =⎠⎛ab f (x )d x ;(2)S =□01-⎠⎛ab f (x )d x ;(3)S =□02⎠⎛a c f (x )d x -⎠⎛cb f (x )d x ;(4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛a b [f (x )-g (x )]d x . 6.函数f (x )在闭区间[-a ,a ]上连续,则有: (1)若f (x )为偶函数,则⎠⎜⎛-aaf (x )d x =2⎠⎛0a f (x )d x .(2)设f (x )为奇函数,则⎠⎜⎛-aaf (x )d x =0.1.概念辨析(1)在区间[a ,b ]上连续的曲线y =f (x )和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )|d x .( )(2)若⎠⎛a b f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x轴下方.( )(3)已知质点的速度v =mt (m >0),则从t =0到t =t 0质点所经过的路程是⎠⎛0to mt d t=mt 202.( )答案 (1)√ (2)× (3)√2.小题热身(1)如图,指数函数的图象过点E (2,9),则图中阴影部分的面积等于()A.8ln 3 B .8 C.9ln 3 D .9答案A答案B(3) ⎠⎛-12|x |d x =________.答案 52解析 ⎠⎛-12|x |d x 的几何意义是函数y =|x |的图象与x 轴围成的图形(如图阴影所示)的面积,所以⎠⎛-12|x |d x =12×1×1+12×2×2=52.(4)若⎠⎛0t x 2d x =9,则常数t 的值为________.答案 3解析 ⎠⎛0t x 2d x =x 33|t 0=t 33=9,解得t =3.题型 一 定积分的计算答案 C 解析。
人教A版高中数学选修2-2课件第四节 定积分与微积分基本定理
(2)变力做功:一物体在变力 F(x)的作用下,沿着与 F(x)相同方 向从 x=a 移动到 x=b 时,力 F(x)所做的功是 W=bF(x)dx.
a
课下限时答案
B AD
9、(1) ln 2 5 6
AC 1 4
329
(2)1 e
1
1 e
4、解:如图,分别画出对应图形,比较围成图形的面积
(2)一物体在力 F(x)=53,x+0≤4,x≤x>2,2 (单位:N)的作用下沿与力 F 相同的方向,从 x=0 处运动到 x=4(单位:m)处,则力 F(x)做的功为 ________焦.
(2)由题意知,力 F(x)所做的功为
W=4F(x)dx=25dx+4(3x+4)dx
面积为92,则 k 等于( )
A.2
B.1
C.3
D.4
解:选 C 由yy= =xk2x, 消去 y 得 x2-kx=0,所以 x=0 或 x
=k,则阴影部分的面积为0k(kx-x2)dx=12kx2-13x3 -13k3=92,解得 k=3.
=92.即12k3
2.由抛物线 y=x2-1,直线 x=0,x=2 及 x 轴围成的图形面 积为________. 解:如图,由 x2-1=0,得抛物线与 x 轴的交点分别为(-1,0)和(1,0)
7、
10、解:∵f′(x) =3x2-2x+1
设在点(1,2)处的切线的斜率为 k,则 k=f′(1)=2
∴在点(1,2)处的切线方程为 y-2=2(x-1),即 y=2x
y=2x 与函数 g(x)=x2 围成的图形如图:
y 2x
由
y
x2
可得交点
A(2,4)
3-4 定积分与微积分基本定理(共54张PPT)
将 区 间 1<xi<…<xn=b,
-
n个 小 区 间 , 在 每 个 区 间
1
, xi] 上取一点
ξi (i = 2 1 , , … , n) ,作和式 , 当 n→+∞时 , 上 述 和 式 无 限 接 近 某 个 常 数 , f(x)在 区 间 [a,b]上 定 积 分 , 记 作 .
b
= 这 个 常 数 叫 做 函 数 f(x)dx=
f(x)dx b ,即 a
a
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
其定义体现求定积分的四个步骤: ① 分割 ;② 近似代替 ;③ 取和 ;④ 取极限 .
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
y是 自 0、1、 BE、AE 和抛
AB 围 成 的 区 域 的 面 积 .
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
7 【答案】 6
课前自助餐
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
3 x2 x 因 为 ( 2 )′=x,(x2- 3 )′=2x-x2, 故 所 求 的 面 积 2 3 x x 1 2 1 2 2 1 2 | | S = (2x-x)dx+ (2x-x )dx= 2 0+(x - 3 ) 1=2-0+(4- 0 1
x2 x3 x2 2, 又 ( 2 )′=x,( 3 - 2 )′=x2-x.故
2 3 2 x x x 8 2 2 2 2 2 | | S= (2x-x)dx- (x -x)dx= 2 0-( 3 - 2 ) 1=2-(3-2 ) + 0 1
定积分与微积分基本定理
定积分与微积分基本定理1.定积分的概念在⎠⎛ab f (x )dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式. 2.定积分的几何意义设函数y =f (x )在区间[a ,b ]上连续且恒有f (x )≥0,则定积分⎠⎛ab f (x )dx表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积. 3.定积分的性质(1)⎠⎛a b kf (x )dx =k ⎠⎛ab f (x )dx (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]dx =⎠⎛ab f 1(x )dx ±⎠⎛ab f 2(x )dx ;(3)⎠⎛ab f (x )dx =⎠⎛ac f (x )dx +⎠⎛cb f (x )dx (其中a <c <b ).4.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )dx =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪ba ,即⎠⎛abf (x )dx =F (x )⎪⎪⎪ba =F (b )-F (a ).判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛ab f (x )dx =⎠⎛ab f (t )dt .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )dx =2⎠⎛0a f (x )dx .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )dx =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )dx .( )答案:(1)√ (2)√ (3)√ (4)×⎠⎛01e x dx 的值等于( )A .eB .1-eC .e -1 D.12(e -1)解析:选C.⎠⎛01e x dx =e x |10=e 1-e 0=e -1.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是()A .1 B.43 C. 3 D .2解析:选B .由⎩⎨⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)dx =⎠⎛02(-x 2+2x )dx =⎝ ⎛⎭⎪⎫-x 33+x 2|20=-83+4=43.若∫π20(sin x -a cos x )dx =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )|π20=1-a =2,a =-1. 答案:-1设f (x )=⎩⎨⎧x 2,x ∈[0,1],1x ,x ∈(1,e ](e 为自然对数的底数),则⎠⎛0e f (x )dx 的值为________.解析:因为f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e ],所以⎠⎛0e f (x )dx =⎠⎛01x 2dx +⎠⎛1e 1x dx=13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+ln e =43.答案:43定积分的计算[典例引领]利用微积分基本定理求下列定积分: (1)⎠⎛12(x 2+2x +1)dx ;(2)⎠⎛0π(sin x -cos x )dx ; (3)⎠⎛02|1-x |dx ;(4)⎠⎛12⎝ ⎛⎭⎪⎫e 2x +1x dx . 【解】 (1)⎠⎛12(x 2+2x +1)dx=⎠⎛12x 2dx +⎠⎛122xdx +⎠⎛121dx=x 33⎪⎪⎪21+x 2⎪⎪⎪21+x ⎪⎪⎪21=193. (2)⎠⎜⎛π(sin x -cos x )dx=⎠⎜⎛0πsin xdx -⎠⎜⎛0πcos xdx =(-cos x )⎪⎪⎪⎪π0-sin x ⎪⎪⎪⎪π0=2. (3)⎠⎛02|1-x |dx =⎠⎛01(1-x )dx +⎠⎛12(x -1)dx=⎝ ⎛⎭⎪⎫x -12x 2|10+⎝ ⎛⎭⎪⎫12x 2-x |21 =⎝ ⎛⎭⎪⎫1-12-0+⎝ ⎛⎭⎪⎫12×22-2-⎝ ⎛⎭⎪⎫12×12-1=1. (4)⎠⎛12⎝⎛⎭⎪⎫e 2x +1x dx =⎠⎛12e 2x dx +⎠⎛121x dx=12e 2x ⎪⎪⎪21+ln x ⎪⎪⎪21=12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln 2.若本例(3)变为“⎠⎛03|x 2-1|dx ”,试求之.解:⎠⎛03|x 2-1|dx=⎠⎛01(1-x 2)dx +⎠⎛13(x 2-1)dx=⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪31 =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫6+23=223.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[通关练习]1.⎠⎛-11e |x |dx 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎜⎛-11e |x |dx =⎠⎜⎛-1e -x dx +⎠⎛01e x dx =-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C .2.若⎠⎛01(x +mx )dx =0,则实数m 的值为( )A .-13B .-23C .-1D .-2解析:选B.由题意知⎠⎛01(x 2+mx )dx =⎝ ⎛⎭⎪⎫x 33+m x 22|10=13+m2=0,得m =-23.3.(优质试题·泉州模拟)⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =________.解析:⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =⎠⎛011-x 2dx +⎠⎛0112xdx ,⎠⎛0112xdx =14,⎠⎛011-x 2dx 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分计算平面图形的面积(高频考点)利用定积分计算平面图形的面积是近几年高考考查定积分的一个重要考向;主要以选择题、填空题的形式出现,一般难度较小.高考对定积分求平面图形的面积的考查有以下两个命题角度: (1)根据条件求平面图形的面积;(2)利用平面图形的面积求参数.[典例引领]角度一 根据条件求平面图形的面积(优质试题·新疆第二次适应性检测)由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( ) A .3 B.103 C.73D.83【解析】 由题可知题中所围成的图形如图中阴影部分所示,由⎩⎨⎧y =x 2+1y =-x +3,解得⎩⎨⎧x =-2y =5(舍去)或⎩⎨⎧x =1,y =2,即A (1,2),结合图形可知,所求的面积为⎠⎛01(x 2+1)dx +12×22=⎝ ⎛⎭⎪⎫13x 3+x |10+2=103,选B .【答案】B角度二 利用平面图形的面积求参数已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.【解析】 f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)dx =112a 4=112,所以a =-1. 【答案】 -1用定积分求平面图形面积的四个步骤(优质试题·山西大学附中第二次模拟)曲线y =2sinx (0≤x ≤π)与直线y =1围成的封闭图形的面积为________. 解析:令2sin x =1,得sin x =12, 当x ∈[0,π]时,得x =π6或x =5π6,所以所求面积S =⎠⎜⎛π65π6 (2sin x -1)dx =(-2cos x -x ) ⎪⎪⎪5π6π6=23-2π3.答案:23-2π3定积分在物理中的应用[典例引领]设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J (x 的单位:m ;力的单位:N ).【解析】 变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )dx =⎠⎛110(x 2+1)dx=⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J ). 【答案】342定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )dt .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )dx .以初速40 m /s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 m C.403 mD.203 m解析:选A.由v =40-10t 2=0, 得t 2=4,t =2.所以h =⎠⎛02(40-10t 2)dt =⎝ ⎛⎭⎪⎫40t -103t 3⎪⎪⎪20=80-803=1603(m).求定积分的方法(1)利用微积分基本定理求定积分步骤如下: ①求被积函数f (x )的一个原函数F (x ); ②计算F (b )-F (a ).(2)利用定积分的几何意义求定积分.求曲边多边形面积的步骤(1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分.易错防范(1)若积分式子中有几个不同的参数,则必须先分清谁是积分变量. (2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积为正,而定积分的结果可以为负.1.定积分⎠⎛01(3x +e x )dx 的值为( )A .e +1B .eC .e -12D .e +12。
定积分、微积分基本定理-高中数学知识点讲解
定积分、微积分基本定理1.定积分、微积分基本定理【定积分】定积分就是求函数在区间中图线下包围的面积.即由所围成图(f X)[a,b] y=0,x=a,x=b,y=(f X)形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个面积,是一个数.定积分的求法:求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.【微积分基本定理】在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.其中,微积分的核心(基本)定理是푏푎F(x)=(f x)(f x)푓(푥)푑푥= 퐹(푏)―퐹(푎),其中,而必须在区间(a,b)内连续.2例 1:定积分|3 ―2푥|푑푥=1解:1 | 3﹣2x | dx2=321(3 ―2푥)푑푥+232(2푥―3)푑푥3=(﹣2)1 +(x2﹣3x)|233x x |221/ 2=12通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有;第二,每一段对应的被积分函数的表dx达式要与定义域相对应;第三,求出原函数代入求解.例 2:用定积分的几何意义,则39 ―푥2푑푥.―3解:根据定积分的几何意义,则39 ―푥2푑푥表示圆心在原点,半径为3的圆的上半圆的面积,―3故3―39 ―푥2푑푥=12 × 휋× 32 =9휋.2这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.【考查】定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.2/ 2。
定积分与微积分基本定理
定积分与微积分基本定理1.定积分的定义给定一个在区间[a,b]上的函数y=f(x):将[a,b]区间分成n份,分点为a=x0<x1<x2<…<x n-1<x n=b.第i个小区间为[x i-1,x i],设其长度为Δx i,在这个小区间上取一点ξi,使f(ξi)在[x i-1,x i]上的值最大.设S=f(ξ1)Δx1+f(ξ2)Δx2+…+f(ξi)Δx i+…+f(ξn)Δx n.在这个小区间上取一点ζi,使f(ζi)在[x i-1,x i]上的值最小,设s=f(ζ1)Δx1+f(ζ2)Δx2+…+f(ζi)Δx i+…+f(ζn)Δx n.如果每次分割后,最大的小区间的长度趋于0,S与s的差也趋于0,此时S与s同时趋于某一个固定的常数A,称A是函数y=f(x)在区间[a,b]上的定积分.记作ʃb a f(x)d x,即ʃb a f(x)d x=A.2.定积分的性质①ʃb a1d x=b-a.②ʃb a kf(x)d x=kʃb a f(x)d x.③ʃb a[f(x)±g(x)]d x=ʃb a f(x)d x±ʃb a g(x)d x.④ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x.3.微积分基本定理如果连续函数f(x)是函数F(x)的导函数,即f(x)=F′(x),则有ʃb a f(x)d x=F(b)-F(a).概念方法微思考ʃbf(x)d x是否总等于曲线f(x)和直线x=a,x=b,y=0所围成的曲边梯形的面积?a提示不是.函数y=f(x)在区间[a,b]上连续且恒有f(x)≥0时,定积分ʃb a f(x)d x表示由直线x =a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f(x)d x<0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.(×)(4)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × )题组二 教材改编2.ʃe +121x -1d x = . 答案 1 解析 ʃe +121x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 3.ʃ0-11-x 2d x = . 答案 π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积,∴ʃ0-11-x 2d x =π4. 4.汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是 m. 答案132解析 s =ʃ21(3t +2)d t =⎝⎛⎭⎫32t 2+2t |21 =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 题组三 易错自纠5.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A.1B.43C. 3D.2答案 B解析 所求面积=ʃ20(-x 2+2x )d x =⎝⎛⎭⎫-13x 3+x 2|20=-83+4=43. 6.一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为 m.答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得61361113221()d 2d 2d 1d 3s t t t t t t t ⎛⎫==+++ ⎪⎝⎭⎰⎰⎰⎰v213261132149|2||(m).64t t t t ⎛⎫=+++= ⎪⎝⎭所以物体在12 s ~6 s 间的运动路程是494 m.7.d 4x x π⎛⎫+ ⎪⎝⎭= .答案 2 解析由题意得d 4x x π⎛⎫+ ⎪⎝⎭220(sin +cos )d (sin cos )|x x x x x ππ==-⎰=⎝⎛⎭⎫sin π2-cos π2-(sin 0-cos 0)=2.题型一 定积分的计算利用微积分基本定理求下列定积分:(1)ʃ21(x 2+2x +1)d x ;(2)ʃπ0(sin x -cos x )d x ; (3)ʃ20|1-x |d x ;(4)ʃ21⎝⎛⎭⎫e 2x +1x d x ; (5)ʃ1-1e |x |d x ;(6)若ʃ10(x 2+mx )d x =0,求m .解 (1)ʃ21(x 2+2x +1)d x =ʃ21x 2d x +ʃ212x d x +ʃ211d x=x 33|21+x 2|21+x |21=193. (2)ʃπ0(sin x -cos x )d x =ʃπ0sin x d x -ʃπ0cos x d x =(-cos x )|π0-sin x |π0=2.(3)ʃ20|1-x |d x =ʃ10(1-x )d x +ʃ21(x -1)d x=⎝⎛⎭⎫x -12x 2|10+⎝⎛⎭⎫12x 2-x |21=⎝⎛⎭⎫1-12-0+⎝⎛⎭⎫12×22-2-⎝⎛⎭⎫12×12-1=1. (4)ʃ21⎝⎛⎭⎫e 2x +1x d x =ʃ21e 2x d x +ʃ211xd x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e x d x=-e -x |0-1+e x |10=-1+e +e -1=2e -2.(6)∵ʃ10(x 2+mx )d x =⎝⎛⎭⎫x 33+m 2x 2|10=13+m 2=0,∴m =-23.思维升华 计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积分函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例1 设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1),x 2-1,x ∈[1,2],则ʃ2-1f (x )d x 的值为 .答案 π2+43解析 根据定积分性质可得ʃ2-1f (x )d x =ʃ1-11-x 2d x +ʃ21(x 2-1)d x ,根据定积分的几何意义可知,ʃ1-11-x 2d x 是以原点为圆心,以1为半径的圆面积的12,∴ʃ1-11-x 2d x =π2,∴ʃ2-1f (x )d x =π2+⎝⎛⎭⎫13x 3-x |21=π2+43. 命题点2 求平面图形的面积例2 (1)曲线y =2x 与直线y =x -1,x =1所围成的封闭图形的面积为 .答案 2ln 2-12解析 解方程组⎩⎪⎨⎪⎧y =2x ,y =x -1,得⎩⎪⎨⎪⎧x =2,y =1,则曲线y =2x 与直线y =x -1,x =1所围成的封闭图形如图所示,所求的面积S =ʃ21⎝⎛⎭⎫2x -x +1d x=⎝⎛⎭⎫2ln x -12x 2+x |21=(2ln 2-2+2)-⎝⎛⎭⎫0-12+1=2ln 2-12. (2)曲线y =14x 2和曲线在点(2,1)处的切线以及x 轴围成的封闭图形的面积为 .答案 16解析 设曲线y =14x 2在点(2,1)处的切线为l ,∵y ′=12x ,∴直线l 的斜率k =y ′|x =2=1,∴直线l 的方程为y -1=x -2,即y =x -1. 当y =0时,x -1=0,即x =1, 所围成的封闭图形如图所示,∴所求面积S =ʃ2014x 2d x -12×1×1=112x 3|20-12=16.思维升华 (1)根据定积分的几何意义可计算定积分. (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图像; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.跟踪训练1 (1)定积分ʃ309-x 2d x 的值为 .答案9π4解析 由定积分的几何意义知,ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积.故ʃ39-x 2d x =π·324=9π4.(2)(2018·郑州模拟)曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为 . 答案 23-2π3解析 令2sin x =1,得sin x =12,当x ∈[0,π]时,得x =π6或x =5π6,所以所求面积S =66(2sin 1)d x x 5ππ-⎰=(-2cos x -x )66|5ππ=23-2π3.题型三 定积分在物理中的应用例3 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离是 m. 答案 4+25ln 5解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40(7-3t +251+t)d t =⎣⎡⎦⎤7t -32t 2+25ln (1+t )|40 =28-24+25ln 5=4+25ln 5(m). 思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .跟踪训练2 一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 JC.433 JD.2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x =⎣⎡⎦⎤5x -13x 3×32|21=433, 所以F (x )做的功为433 J.1.ʃ10(1-x )d x 等于( ) A.1 B.-1 C.12 D.-12答案 C解析 ʃ10(1-x )d x =⎝⎛⎭⎫x -12x 2|10=12. 2.ʃ2π0|sin x |d x 等于( ) A.1 B.2 C.3 D.4 答案 D解析 ʃ2π0|sin x |d x =2ʃπ0sin x d x =2(-cos x )|π0=2×(1+1)=4.3.ʃ1-1(1-x 2+x )d x 等于( )A.πB.π2 C.π+1 D.π-1答案 B解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =π2+12x 2|1-1=π2. 故选B.4.220sin d 2xx π⎰等于( ) A.0 B.π4-12 C.π4-14 D.π2-1 答案 B 解析222001cos sin d d 22x x x x ππ-=⎰⎰=⎝⎛⎭⎫12x -12sin x 20|π=π4-12. 5.若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2(a >1),则a 的值是( ) A.2 B.3 C.4 D.6 答案 A解析 由题意知ʃa 1⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|a 1 =a 2+ln a -1=3+ln 2,解得a =2(舍负).6.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( )A.43 B.54 C.65 D.76答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x +ʃe 11x d x =13x 3|10+ln x |e 1=13+1=43.故选A. 7.设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A.a >bB.a +b <1C.a <bD.a +b =1答案 A解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin 1.∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos 1.∵sin 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A.8.已知函数y =f (x )的图像为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( )A.2B.-2C.1D.-1答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1,所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x + ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x=⎝⎛⎭⎫-13x 3-x 2-x |0-1+⎝⎛⎭⎫13x 3-x |10=-13-23=-1,故选D. 9.ʃ21⎝⎛⎭⎫1x +2x d x = . 答案 ln 2+2ln 2解析ʃ21⎝⎛⎭⎫1x +2x d x =⎝⎛⎭⎫ln x +2xln 2|21=ln 2+4ln 2-2ln 2=ln 2+2ln 2. 10.(2019·黄山模拟)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为 . 答案3解析 所求面积3333cos d sin |s x x x ππππ--==⎰=sin π3-⎝⎛⎭⎫-sin π3= 3. 11.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a = . 答案 49解析 封闭图形如图所示,则332220022|033ax x a a ==-=⎰,解得a =49.12.(2018·郑州模拟)设函数f (x )=ax 2+b (a ≠0),若ʃ30f (x )d x =3f (x 0),x 0>0,则x 0= .答案 3解析 ∵f (x )=ax 2+b ,ʃ30f (x )d x =3f (x 0), ∴ʃ30(ax 2+b )d x =⎝⎛⎭⎫13ax 3+bx |30=9a +3b ,则9a +3b =3ax 20+3b ,∴x 20=3,又x 0>0,∴x 0= 3.13.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14 D.15答案 A解析 由题意得,所求阴影部分的面积31231200211)d |333s x x x x ⎛⎫==-= ⎪⎝⎭⎰,故选A. 14.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,试判断S 1,S 2,S 3的大小关系. 解 方法一 S 1=13x 3|21=83-13=73,S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图(图略)易知S 2<S 1<S 3.15.若函数f (x )在R 上可导,且f (x )=x 2+2xf ′(1),求ʃ20f (x )d x 的值.解 因为f (x )=x 2+2xf ′(1),所以f ′(x )=2x +2f ′(1). 所以f ′(1)=2+2f ′(1),解得f ′(1)=-2, 所以f (x )=x 2-4x . 故ʃ20f (x )d x =ʃ20(x 2-4x )d x =⎝⎛⎭⎫x 33-2x 2|20=-163.16.在平面直角坐标系xOy 中,将直线y =x 与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积V 圆锥=ʃ10πx 2d x =π3x 3|10=π3.据此类比:将曲线y =2ln x 与直线y =2及x 轴、y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,求旋转体的体积.解 类比已知结论,将曲线y =2ln x 与直线y =2及x 轴、y 轴所围成的图形绕y 轴旋转一周得到旋转体的体积应为一定积分,被积函数为2e y π()=πe y ,积分变量为y ,积分区间为[0,2],即V =ʃ20πe y d y =πe y |20=π(e 2-1).。
定积分与微积分基本定理
定积分与微积分基本定理定积分与微积分基本定理知识点一:定积分的概念如果函数在区间上连续,用分点将区间分为n个小区间,在每个小区间上任取一点(i=1,2,3…,n),作和式,当时,上述和式无限趋近于某个常数,这个常数叫做在区间上的定积分.记作.即,,这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式.说明:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:?分割;?近似代替;?求和;?取极限.知识点二:定积分的几何意义设函数在区间上连续.在上,当时,定积分在几何上表示由曲线以及直线与轴围成的曲边梯形的面积;在上,当时,由曲线以及直线与轴围成的曲边梯形位于轴下方,定积分在几何上表示曲边梯形面积的相反数;在上,当既取正值又取负值时,曲线的某些部分在轴的上方,而其他部分在轴下方,如果我们将在轴上方的图形的面积赋予正号,在轴下方的图形的面积赋予负号;在一般情形下,定积分的几何意义是曲线,两条直线与轴所围成的各部分面积的代数和.知识点三:定积分的性质(1)(为常数),(2),(3)(其中),(4)利用函数的奇偶性求积分:若函数在区间上是奇函数,则;若函数在区间上是偶函数,则.知识点四:微积分基本定理微积分基本定理(或牛顿,莱布尼兹公式):如果在上连续,且,则。
其中叫做的一个原函数.注意:求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.由此,求导运算与求原函数运算互为逆运算.由于也是的原函数,其中c为常数.知识点五:应用定积分求曲边梯形的面积1. 如图,由三条直线,,轴(即直线)及一条曲线()围成的曲边梯形的面积:2(如图,由三条直线,,轴(即直线)及一条曲线()围成的曲边梯形的面积:3(由三条直线轴及一条曲线(不妨设在区间上,在区间上)围成的图形的面积:,,.4. 如图,由曲线及直线,围成图形的面积: 知识点六:定积分在物理中的应用变速直线运动的路程作变速直线运动的物体所经过的路程,等于其速度函数在时间区间上的定积分,即.变力作功物体在变力的作用下做直线运动,并且物体沿着与相同的方向从移动到,那么变力所作的功.规律方法指导1(如何正确理解定积分的概念定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即(称为积分形式的不变性),另外定积分与积分区间[a,b]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如与的值就不同。
定积分与微积分基本定理
定积分与微积分基本定理1.定积分(1)定积分的相关概念: 在()baf x dx ⎰中,∫叫作积分号,a 叫作积分的下限,b 叫作积分的上限,f(x)叫作被积函数.(2)定积分的性质: ①∫b a 1d x =b -a ;②⎠⎛a bkf (x )d x =k ⎠⎛a bf (x )d x (k 为常数);③⎠⎛a b [f (x )±g (x )]d x =⎠⎛a b f (x )d x ±⎠⎛a bg (x )d x ;④⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x . (3)定积分的几何意义:①当函数f (x )在区间[a ,b ]上恒为正时,定积分()baf x dx ⎰的几何意义是由直线x =a ,x =b ,y =0和曲线y =f (x )所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、曲线f (x )以及直线x =a 、x =b 之间的曲边梯形面积的代数和(如图中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.2.微积分基本定理如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则()baf x dx ⎰=F (b )-F (a ).这个式子称为牛顿——莱布尼茨公式.通常称F (x )是f (x )的一个原函数.为了方便,常把F (b )-F (a )记成F (x )|b a ,即∫b a f (x )d x =F (x )|ba =F (b )-F (a ).1.()baf x dx ⎰与()baf t dt ⎰相等吗?相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 3.定积分[()()]baf xg x dx -⎰ (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积.1.(2013·江西高考)若S 1=221x dx ⎰,S 2=211dx x⎰,S 3=21e x dx ⎰,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:选B S 1=32113x =83-13=73,S 2=2ln 1x =ln 2<ln e =1,S 3=2e 1x =e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.2.已知质点的速度v =10t ,则从t =0到t =t 0质点所经过的路程是( )A .10t 20B .5t 20 C.103t 20 D.53t 20 解析:选B S =10t tdt ⎰=0250t t =5t 20.3.设f (x )=⎩⎪⎨⎪⎧x 2(x ≥0)2x (x <0),则11()f x dx -⎰的值是( )A. 121x dx -⎰ B. 112x dx -⎰C.21x dx -⎰+102x dx ⎰ D. 012x -⎰d x +120x ⎰d x解析:选D11()f x dx -⎰=012x -⎰d x +120x ⎰d x .4.直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________. 解析:22x dx ⎰=32103x =83.5.(2013·湖南高考)若20Tx dx ⎰=9,则常数T 的值为________.解析:20Tx dx ⎰=3103T x =13T 3=9,解得T =3.[例1] (1) 120(2)x x dx -+⎰; (2) 0(sin cos )x x dx π-⎰;(3)2211(e )x dx x+⎰; (4) 201x dx -⎰.[自主解答] (1) 120(2)x x dx -+⎰=120()x dx -⎰+102xdx ⎰=31103x -+210x =-13+1=23.(2)(sin cos )x x dx π-⎰=0sin xdx π⎰-0cos xdx π⎰=(cos )x π--sin 0xπ=2.(3)2211(e )x dx x +⎰=221e x dx ⎰+211dx x ⎰=221e 12x +2ln 1x =12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln 2.(4)|x -1|=⎩⎪⎨⎪⎧1-x (0≤x <1),x -1 (1≤x ≤2),故10(1)x dx -⎰=10(1)x dx -⎰+21(1)x dx -⎰=2102x x ⎛⎫- ⎪⎝⎭+2212x x ⎛⎫- ⎪⎝⎭=12+12=1.【互动探究】若将本例(1)中的“-x 2+2x ”改为“-x 2+2x ”,如何求解?解:⎰表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y =-x 2+2x ,得(x -1)2+y 2=1(y ≥0),故⎰表示圆(x -1)2+y 2=1的面积的14,即⎰=14π.定积分的求法(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加.(2)根据定积分的几何意义可利用面积求定积分. (3)若y =f (x )为奇函数,则()aaf x dx -⎰=0.1.=________.解析:=20sin cos x x dx π-⎰=()40cos sin d x x x π-⎰+()24sin cos d x x x ππ-⎰=()sin cos 40x x π++()2cos sin 4x x ππ--=2-1+(-1+2)=22-2.2.若()20sin cos d x a x x π+⎰=2,则实数a =________.解析:∵(a sin x -cos x )′=sin x +a cos x ,∴46212243(34)d 4()d 22x x x x v t t ⎛⎫++ ⎪⎝⎭⎰⎰=(sin cos )20a x x π-=⎝⎛ a sin π2-⎭⎫cos π2-(a sin 0-cos 0)=a +1=2,∴a =1. 3.x ⎰=________.解析:由定积分的几何意义知,x ⎰是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故x ⎰=π·324=9π4.[例2] v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( C ) A .1+25ln 5 B .8+25ln 113C .4+25ln 5D .4+50ln 2 1)由v (t )=7-3t +151+t=0,可得t =4⎝⎛⎭⎫t =-83舍去,因此汽车从刹车到停止一共行驶了4 s ,此期间行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎫7-3t +151+t d t =⎣⎡⎦⎤7t -32t 3+25ln (1+t ) 40=4+25ln 5. (2)一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( B )A .44 JB .46 JC .48 JD .50 J [自主解答](2)力F (x )做功为2010d x ⎰+42(34)d x x +⎰=10x 20+243422x x ⎛⎫+ ⎪⎝⎭=20+26=46.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________.解析:由图象可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t <3,13t +1,3≤t ≤6,所以12s ~6 s 间的运动路程s =()331122322222021022132()d d e 33363kx xx x kx x x x x x x kx x x ππ-⎡⎤''⎛⎫⎛⎫⎛⎫⎢⎥--=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭-⎣⎦⎰⎰则=1122d t t ⎰+312d t ⎰+6311d 3t t ⎛⎫+ ⎪⎝⎭⎰=t 2112+2t 31+⎝⎛⎭⎫16t 2+t 63=494.1(1)知图形求曲线围成图形的面积;(2)知函数解析式求曲线围成图形的面积; (3)知曲线围成图形的面积求参数的值.[例3] (1)(2012·湖北高考)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43 C.32 D.π2(2)(2011·新课标全国卷)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163D .6 (3)(2012·山东高考)设a >0.若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. [自主解答] (1)由题意知二次函数f (x )=-x 2+1,它与x 轴所围图形的面积为11()d f x x -⎰=102()d f x x ⎰=2 120(1)d x x -+⎰=2⎝⎛⎭⎫x -13x 3 10=2⎝⎛⎭⎫1-13=43.(2)作出曲线y =x ,直线y =x -2的草图(如图所示),所求面积为阴影部分的面积.由⎩⎨⎧y =x ,y =x -2得交点A (4,2).因此y =x 与y =x -2及y 轴所围成的图形的面积为 4(2)d x x ⎤-⎦⎰=)42d x x +⎰=3224212032x x x ⎛⎫-+ ⎪⎝⎭=23×8-12×16+2×4=163.(3)由题意知x ⎰=a 2.又332222033a x x '⎛⎫= ⎪⎝⎭则=a 2.即23a 32=a 2,所以a =49.1.曲线y =x 2和曲线y 2=x 围成的图形的面积是( ) A.13 B.23 C .1 D.43解析:选A 解方程组⎩⎪⎨⎪⎧y =x 2,y 2=x ,得两曲线的交点为(0,0),(1,1).所以)120d x x ⎰=332121033x x ⎛⎫- ⎪⎝⎭=13,即曲线y =x 2和曲线y 2=x 围成的图形的面积是13. 2.由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________.解析:如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0).所以S =2201d x x -⎰=()1201d x x -⎰+()2211d x x -⎰=⎪⎪⎝⎛⎭⎫x -x 3310+⎪⎪⎝⎛⎭⎫x 33-x 21=⎝⎛⎭⎫1-13+⎣⎡⎦⎤83-2-⎝⎛⎭⎫13-1=2. 2条结论——定积分应用的两条常用结论(1)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.(2)加速度对时间的积分为速度,速度对时间的积分是路程. 4条性质——定积分的性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差;(3)积分可分段进行;(4)f (x )在区间[-a ,a ]上连续,若f (x )为偶函数,则()d aaf x x -⎰=2()d af x x ⎰;若f (x )为奇函数,则()d aaf x x -⎰=0.利用定积分求平面图形面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1与x 轴围成图形的面积为122010d x x ⎰+()12121010d x x x -⎰=3110230x +⎝⎛⎭⎫5x 2-103x 3112=54.曲线y =x 2+2与直线5x -y -4=0所围成的图形的面积等于________.解析:由⎩⎪⎨⎪⎧y =x 2+2,5x -y -4=0,消去y ,得x 2-5x +6=0,解得x 1=2,x 2=3.如图所示,当2<x <3时,直线5x -y -4=0在曲线y =x 2+2的上方,所以所求面积为()32254(2)d x x x ⎡⎤--+⎣⎦⎰=()32256d x x x ⎡⎤--⎣⎦⎰=⎝⎛⎭⎫52x 2-13x 3-6x ⎪⎪⎪32=⎝⎛⎭⎫52×32-13×33-6×3-⎝⎛⎭⎫52×22-13×23-6×2=⎝⎛⎭⎫-92-⎝⎛⎭⎫-143=16. [冲击名校]1.一物体在变力F (x )=5-x 2(x 的单位:m ,F 的单位:N)的作用下,沿着与F (x )成30°角的方向做直线运动,则从x =1处运动到x =2处时变力F (x )所做的功为( )A.233 JB. 3 JC.433 J D .2 3 J解析:选C 由已知条件可得,F (x )所做的功为32()2215d x x -⎰=433J. 2.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S2,则点P 的坐标为________.解析:设直线OP 的方程为y =kx ,点P 的坐标为(x ,y ),则()20d xkx x x -⎰=()22d x x kx x -⎰,即⎝⎛⎭⎫12kx 2-13x 30x =⎝⎛⎭⎫13x 3-12kx 22x,整理得12kx 2-13x 3=83-2k -⎝⎛⎭⎫13x 3-12kx 2, 解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为⎝⎛⎭⎫43,169. [高频滚动]已知函数f (x )=ax 2-b ln x 在点(1,f (1))处的切线方程为y =3x -1.(1)若f (x )在其定义域内的一个子区间(k -1,k +1)内不是单调函数,求实数k 的取值范围; (2)若对任意x ∈(0,+∞),均存在t ∈[1,3],使得13t 3-c +12t 2+ct +ln2+16≤f (x ),试求实数c 的取值范围.解:(1)f ′(x )=2ax -b x ,由⎩⎪⎨⎪⎧ f ′(1)=3,f (1)=2,得⎩⎪⎨⎪⎧a =2,b =1,f (x )=2x 2-ln x ,f ′(x )=4x -1x =4x 2-1x ,令f ′(x )=0,得x =12,则函数f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增, 所以⎩⎪⎨⎪⎧k -1≥0,k -1<12,解得1≤k <32.k +1>12,故实数k 的取值范围为⎣⎡⎭⎫1,32. (2)设g (t )=13t 3-c +12t 2+ct +ln 2+16,根据题意可知g (t )min ≤f (x )min ,由(1)知f (x )min =f ⎝⎛⎭⎫12=12+ln 2,g ′(t )=t 2-(c +1)t +c =(t -1)(t -c ), 当c ≤1时,g ′(t )≥0,g (t )在t ∈[1,3]上单调递增,g (t )min =g (1)=c2+ln 2,满足g (t )min ≤f (x )min .当1<c <3时,g (t )在t ∈[1,c ]时单调递减,在t ∈[c,3]时单调递增,g (t )min =g (c )=-16c 3+12c 2+ln 2+16,由-16c 3+12c 2+ln 2+16≤12+ln 2,得c 3-3c 2+2≥0,(c -1)(c 2-2c -2)≥0,此时1+3≤c <3.当c ≥3时,g ′(t )≤0,g (t )在t ∈[1,3]上单调递减,g (t )min =g (3)=-3c 2+143+ln 2,g (3)=-3c 2+143+ln 2≤-3×32+143+ln 2≤12+ln 2.综上,c 的取值范围是(-∞,1]∪[1+3,+∞).。
定积分与微积分基本定理课件
欢迎来到本次课程,我们将深入探讨定积分与微积分的基本定理。
定积分的概念与性质
1 概念
定积分是用来计算曲线下面的面积或者计算变化率的数学工具。
2 性质
定积分具有加法性、线性性、保号性、保序性等基本性质。
3 重要定理
有界函数定积分存在性定理、定积分的中值定理等。
定积分的定义
1 黎曼和
定积分定义为用无穷小矩形逼近曲线下面的面积,并在极限存在时得出结果。
2 积分上限与下限
定义了定积分的区间,上限与下限决定了曲线下面的范围。
3 求解方法
可以进行直接计算、几何意义、等价改写等方式求解定积分。
计算定积分的方法
1
换元法
通过变量代换,把原有的积分式子转化为更简单的形式,以便求解。
2
分部积分法
通过将积分式子分解成两个函数的乘积,再逐步求解得到结果。
3
级数法
将函数展开成幂级数,再通过对级数求积分计算定积分。
微积分基本定理的内容
第一基本定理
定积分与原函数之间的关系,使得我们可以通 过求导得到定积分。
第二基本定理
计算定积分时,我们可以通过寻找原函数的算 法来简化计和推导来证明微积分基本定理的正确性,为其在实际使用中奠定基础。
微积分基本定理的应用
物理学
微积分在物理学中常用于描述运 动、力学和电磁学等领域。
经济学
工程学
经济学家使用微积分来研究需求 和供给、垄断和竞争等经济现象。
工程学中的建模和设计过程依赖 于微积分来解决复杂的问题。
展望与总结
通过学习定积分与微积分的基本定理,你将更深入理解数学背后的美妙,并能应用于各个领域。
定积分与微积分基本定理
定积分与微积分基本定理1.定积分的概念 在⎰b af (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质 (1)⎰b akf (x )d x =k⎰b af (x )d x (k 为常数);(2)⎰b a[f 1(x )±f 2(x )]d x =⎰baf 1(x )d x ±⎰b af 2(x )d x ;(3⎰b af (x )d x =⎰b af (x )d x +⎰b af (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎰baf (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F (x )叫做f (x )的一个原函数. 为了方便,常把F (b )-F (a )记作F (x )|b a ,即f ⎰b a(x )d x =F (x ) |b a =F (b )-F (a ).基本积分公式表⑴C dx =⎰0 ⑵C x m dx x m m++=+⎰111 ⑶C x dx x+=⎰ln 1⑷C e dx e xx+=⎰⑸C aa dx a xx+=⎰ln ⑹⎰+=C x xdx sin cos ⑺⎰+-=C x x cos sin ⑻⎰+-=C x x x xdx ln ln 1.(2013·江西高考)若S 1=⎰21x 2d x ,S 2=⎰211xd x ,S 3=⎰21e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3 .C .S 2<S 3<S 1D .S 3<S 2<S 12.(2013北京,5分)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直, 则l 与C 所围成的图形的面积等于( ) A.43B .2 C.83 . D. 16233.(2013湖南,5分)若∫T 0x 2d x =9,则常数T 的值为________.4.(2012福建,5分)如图所示,在边长为1的正方形OABC 中任取 一点P ,则点P 恰好取自阴影部分的概率为( ) A.14 B.15 C.16 D.175.(2012湖北,5分)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ) A.2π5 B.43 . C.32 D.π26.(2011湖南,5分)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12B .1 C.32D.3. 7.(2010山东,5分)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112B.14C.13D.712 8.(2010湖南,5分)⎰421xd x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2.9.(2009·福建,5分)⎰-22ππ(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2.10.(2011陕西,5分)设f (x )=⎪⎩⎪⎨⎧≤+>⎰0,30,lg 2x dt t x x x a 若f (f (1))=1,则a =________. 11、(2008海南)由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A.415B. 417 C. 2ln 21 D. 2ln 2.12、(2010海南)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 定积分与微积分基本定理高考概览:1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;2.了解微积分基本定理的含义.[知识梳理]1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1nb -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f(x)d x ,即⎠⎛a b f (x )d x =lim n →∞∑i =1nb -an f (ξi ).在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质3.微积分基本定理4.定积分的几何和物理应用[辨识巧记]1.两个结论(1)当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.(2)加速度对时间的积分为速度,速度对时间的积分是路程.2.两个性质函数f(x)在闭区间[-a,a]上连续,则有[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数y =f (x )在区间[a ,b ]上连续,则⎠⎛ab f (x )d x =⎠⎛ab f (t )d t .( )(2)若⎠⎛ab f (x )d x <0,则由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )[答案] (1)√ (2)× (3)× (4)√[解析] ⎠⎛-11|x |d x =⎠⎛-1(-x )d x +⎠⎛1x d x =⎝⎛⎭⎪⎫-12x 2⎪⎪⎪⎪⎪⎪ 0-1+12x 210=12+12=1.[答案] A3.(选修2-2P 65A 组T 5改编)曲线y =x 2+2x 与直线y =x 所围成的封闭图形的面积为( )A.16B.13C.56D.23[解析] 如图,两函数图象交点为(-1,-1)和(0,0),所求面积S=⎠⎛-1 0[x -(x 2+2x )]d x=⎠⎛-10(-x 2-x )d x=⎝ ⎛⎭⎪⎫-13x 3-12x 2⎪⎪⎪-1=16. [答案] A4.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则⎠⎛02f (x )d x 等于( )A.34B.45C.56 D .不存在 [解析] 如图,[答案] C5.定积分⎠⎛0416-x 2d x =________.[解析] 令y =16-x 2,则x 2+y 2=16(y ≥0),点(x ,y )的轨迹为半圆,⎠⎛416-x 2d x 表示以原点为圆心,4为半径的圆面积的14,所以⎠⎛0416-x 2d x =14×π×42=4π.[答案] 4π考点一 定积分的计算【例1】 计算下列定积分: (1)⎠⎛01(2x +e x )d x ;(2)⎠⎛02(x -1)d x ; (3)⎠⎛01(-x 2+2x )d x ;[思路引导] 定理法→数形结合法→性质 [解]微积分基本定理求定积分的注意点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.(4)若被积函数具有明确的几何意义或奇偶性,可利用定积分的几何意义和性质求解.[对点训练]计算下列定积分: (1)⎠⎛122x d x ;(2)⎠⎛13⎝⎛⎭⎪⎫2x -1x 2d x ;[解]考点二 利用定积分求图形的面积【例2】 (1)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A.2 2 B .4 2 C .2 D .4(2)曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为________. (3)曲线f (x )=sin x ,x ∈⎣⎢⎡⎦⎥⎤0,54π与x 轴围成的图形的面积为________.[思路引导] 作出图形→求交点→转化为定积分 [解析][答案] (1)D (2)136 (3)3-22利用定积分求平面图形面积的4个步骤[对点训练]1.(2018·河北张家口质检)如图,由曲线y=x2-4,直线x=0,x=4和x轴围成的封闭图形的面积是()[解析][答案] C2.曲线y =sin x 在[0,2π]上与x 轴围成的封闭图形的面积为________.[解析] S =⎠⎛0πsin x d x -∫2ππsin x d x =2⎠⎛0πsin x d x =4.[答案] 4考点三 定积分在物理中的应用【例3】 (1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25 ln5B .8+25 ln 113 C .4+25 ln5D .4+50 ln2(2)一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向做直线运动,则由x =1运动到x =2时F (x )做的功为( )A. 3 JB.233 JC.433 JD .2 3 J[解析] (1)令v (t )=0,即7-3t +251+t =0,化简为3t 2-4t -32=0.又∵t >0, 解得t =4或t =-83(舍去), 所以s =⎠⎛4v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t=⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪4=7×4-32×42+25ln5=4+25 ln5,故选C. (2)W =⎠⎛12F (x )cos30°d x =⎠⎛1232(5-x 2)d x=32⎝ ⎛⎭⎪⎫5x -x 33| 21=433(J).[答案] (1)C (2)C定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[对点训练]1.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1的方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ,力的单位:N).[解析] 由题意知变力F (x )对质点M 所做的功为[答案]3422.一物体做变速直线运动,其v-t曲线如图所示,则该物体在1 2s~6 s间的运动路程为________.[解析]由图可知,[答案]494m课后跟踪训练(十九)基础巩固练一、选择题[解析][答案] C[解析]a =-1.故选A. [答案] A3.设f (x )=⎩⎨⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0ef (x )d x 的值为( )A.43B.54C.65D.76[解析] ⎠⎛0e f (x )d x =⎠⎛01f (x )d x +⎠⎛1e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1x d x =13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+1=43.故选A. [答案] A4.(2018·武汉武昌区调研)物体A 以速度v =3t 2+1(t 的单位:s ,v 的单位:m/s)在一直线上运动,在此直线上与物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t (t 的单位:s ,v 的单位:m/s)的速度与A 同向运动,当两物体相遇时,相遇地与物体A 的出发地的距离是( )A .120 mB .130 mC .140 mD .150 m[解析] 设t 秒后两物体相遇,则⎠⎛0t (3t 2+1)d t -⎠⎛0t 10t d t =5,即t 3+t -5t 2=5,(t 2+1)(t -5)=0,t =5(s),此时物体A 离出发地的距离为⎠⎛05(3t 2+1)d t =(t 3+t )| 50=53+5=130 (m).[答案] B5.由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163 D .6[解析] 作出曲线y =x ,直线y =x -2的草图(如图所示),所求面积为阴影部分的面积.由⎩⎪⎨⎪⎧y =x ,y =x -2得交点A (4,2). 因此y =x 与y =x -2及y 轴所围成的图形的面积为⎠⎛04[x -(x -2)]d x =⎠⎛04(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2+2x | 4=23×8-12×16+2×4=163. [答案] C 二、填空题6.(2019·湖南省长沙市高三统一模拟)⎠⎛0π(cos x +1)d x =________.[解析][答案] π[解析][答案]π-2 4[解析][答案]4 3三、解答题9.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),求原始的最大流量与当前最大流量的比值.[解]建立如图所示的直角坐标系.设抛物线的方程为x2=2py(p>0),由图易知(5,2)在抛物线上,可得p=254,抛物线方程为x2=252y,所以当前最大流量对应的截面面积为2⎠⎛5⎝⎛⎭⎪⎫2-225x2d x=403,原始的最大流量对应的截面面积为2×(6+10)2=16,所以原始的最大流量与当前最大流量的比值为16403=1.2.10.在区间[0,1]上给定曲线y=x2.试在此区间内确定t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.[解]S1面积等于边长分别为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=t·t2-⎠⎛t x2d x=23t3.S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形边长分别为t2,1-t面积,即S2=⎠⎛t1x2d x-t2(1-t)=23t3-t2+13.所以阴影部分的面积S (t )=S 1+S 2=43t 3-t 2+13(0≤t ≤1).令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0,得t =0或t =12. t =0时,S (t )=13;t =12时,S (t )=14;t =1时,S (t )=23. 所以当t =12时,S (t )最小,且最小值为14.能力提升练[解析][答案] D12.(2019·宁夏银川质检)如图,阴影部分的面积是( )A .2 3B .-2 3 C.353 D.323 [解析][答案] D13.(2019·福建师大附中期中)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x=________.[解析] 设⎠⎛01f (x )d x =c ,则f (x )=x 2+2c ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2c )d x =⎝ ⎛⎭⎪⎫13x 3+2cx ⎪⎪⎪10=13+2c =c ,解得c =-13,所以⎠⎛1f (x )d x =-13.[答案] -1314.学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽AB 为2米,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为O ,对称轴与地面垂直,沟深2米,沟中水深1米.(1)求水面宽;(2)如图①所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图②所示),问改挖后的沟底宽为多少米时,所挖的土最少?[解] (1)建立如图所示的平面直角坐标系,设抛物线方程为y =ax 2(-1≤x ≤1).则由抛物线过点B (1,2),可得a =2.于是抛物线方程为y =2x 2,-1≤x ≤1.当y =1时,x =±22,由此知水面宽为2米.(3)为使挖的土最少,等腰梯形的两腰必须与抛物线相切.设切点P (t,2t 2)(0<t ≤1)是抛物线弧OB 上的一点,过点P 作抛物线的切线得到如图所示的直角梯形OCDE ,则切线CD 的方程为y -2t 2=4t (x -t ),于是C ⎝ ⎛⎭⎪⎫12t ,0,D ⎝ ⎛⎭⎪⎫12t +12t ,2. 记梯形OCDE 的面积为S ,则S =⎝ ⎛⎭⎪⎫t 2+t 2+12t ≥2,当且仅当t =12t ,即t =22时等号成立,所以改挖后的沟底宽为22米时,所挖的土最少.拓展延伸练15.(2019·安徽淮北质检)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83 D.1623[解析] 由题意知,抛物线的焦点坐标为(0,1),故直线l 的方程为y =1,该直线与抛物线在第一象限的交点坐标为(2,1).根据图形的对称性和定积分的几何意义可得,所求图形的面积是2⎠⎛02⎝⎛⎭⎪⎫1-x 24d x =2⎝ ⎛⎭⎪⎫x -x 312⎪⎪⎪20=83. [答案] C16.(2018·四川绵阳期中)如图,直线y =kx 将抛物线y =x -x 2与x 轴所围图形分成面积相等的两部分,则k =________.[解析] 因为⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪10=16,所以∫1-k 0[(x -x 2)-kx ]d x =⎝ ⎛⎭⎪⎫1-k 2x 2-13x 3⎪⎪⎪1-k 0=(1-k )36=112,所以(1-k )3=12,解得k =1-312=1-342.[答案] 1-342。