人教版小学四年级数学下册《三角形内角和》课件

合集下载

四年级下《三角形的内角和》PPT课件

四年级下《三角形的内角和》PPT课件
按边可分为等边三角形、等腰三角 形和一般三角形;按角可分为锐角 三角形、直角三角形和钝角三角形。
三角形边长与角度关系
三角形边长关系
任意两边之和大于第三边,任意两边 之差小于第三边。
三角形角度关系
三角形内角和等于180°,外角和等于 360°。
特殊三角形性质介绍
等腰三角形
有两条边相等,两 个底角相等。
学生自主发言,分享学习心得
分享对三角形内角和定理的理解
01
学生可以分享自己在学习过程中对三角形内角和定理的理解,
包括定理的表述、证明方法以及在实际问题中的应用等。
交流学习方法和经验
02
学生可以交流自己在学习三角形内角和定理过程中采用的方法
和经验,如如何记忆定理、如何应用定理解决问题等。
提出问题和困惑
锐角三角形
三个角都是锐角 (小于90°)。
等边三角形
三边相等,三个角 都是60°。
直角三角形
有一个角是90°,其 余两个角互余。
钝角三角形
有一个角是钝角 (大于90°),其余 两个角是锐角。
02 三角形内角和定理推导
直观感知法
01
通过测量不同类型的三角形的三个 内角,并求和,观察结果是否接近 或等于180度。
1 2
三角形内角和
已知三角形的内角和为180°。
多边形内角和公式 多边形的内角和 = (n - 2) × 180°,其中n为多 边形的边数。
3
公式推导
根据多边形划分为三角形的策略,多边形可以划 分为(n - 2)个三角形,因此多边形的内角和等于 三角形内角和的(n - 2)倍。
典型例题分析
例题1
求一个六边形的内角和。
已知三角形两边及夹角,判断三 角形形状

人教版四年级数学下册《三角形的内角和》PPT课件

人教版四年级数学下册《三角形的内角和》PPT课件

70°
180°-70°×2=40° 70°
我们今天学到了:
三角形的内角和是180°
作业:
1、教材69页第1、2题。 2、找一找、读一读数学家
帕斯卡的故事。
(×)
在一个三角形中,∠1=140°, ∠3=25° ,求∠2的度数。
∠2=180°-140°- 25°=15°
一个等腰三角形的风筝,它的一个 底角是70°,他的顶角是多少度?
一个等腰三角形的风筝,它的一个底角 是70°,它的顶角是多少度?
40°
180°-(70°+70°)=40°
180°-70°-70°=40°
量一量、算一算、拼一拼三个内角的和 是多少度?
我发现:
三角形的内角和是180°。
拼一拼三角形的内角和
3
1
2
3
1
平角:1800
3
平角:1800
平角:1800
我发现: 三角形的内角和是180°。
判断:
(1)三角形的内角和是180°。(√ )
(2)钝角三角形的内角和比锐角三角
形的大。
(×)
(3)三角形越大,它的内角和就越大。
人教版四年级下册第五单元
三角形的内角和
这些三角形都有什么共同特点?
你知道三角尺 内角的度数分 别是多少吗?
每个三角尺的 内角度数之和 都是180°。
90°
45°
90°
60°
30°
45°
拼成的大三 角形内角和 是多少度?
内角和还是180°Βιβλιοθήκη 60°60°30°
30°
三角形的内角和是180°
任意画不同类型的三角形。

人教版四年级数学下册《三角形的内角和》(1)PPT课件

人教版四年级数学下册《三角形的内角和》(1)PPT课件
绿色圃中小学教育网
75° 35°

180°-75°-35°
=180°-(75°+35°) =180°-110° =70°
巩固练习 看图,求三角形中未知角的度数。
180o-75o-65o=40o 180o-(75o+65o)=40o
180o-125o-25o=30o 180o-(125o+25o)=30o
三角形的内角和
临潭县术布中心小学
执教者:张青平
任意画不同类型的三角形。 量一量、算一算三个内角的和是多少度。
测量三角形的角
1.观察下列三角形并分类。
2 2 1 3 1 3 3 2
1

( 直角三角形) ( 锐角三角形 ) (钝角三角形 ) 量一量每个三角形中三个角的度数,完成下表。
三角形类型 直角三角形

1800-700 -700 1800-700×2 700 700
一个等腰三角形的 风筝,它的一个底角是 700,它的顶角是多少 度?
(每组卡片中,哪三个角可以组成三角形?)
游戏:帮角找朋友
600
900
450 300
540 460 520 800
考考你:你知道下面的三角形各个 角的度数吗?
我有一个 锐角是40 度 180°÷3=60° (180°-96°) ÷2=42° 90°-40°=50°
我三边都相等
我是等腰三角 形,顶角是96 度
我是小判官:(下列说法对的打“√”,错的打“×”)
1、一个三角形最多有1个钝角(或1个直角),最少有两个 锐角。( √ )
2、钝角三角形有内角和大于锐角三角形的内角和。( × ) 3、把一个等腰三角形分成两个完全一样的小三角形,每个 三角形的内角和都是900。( ) ×

三角形内角和 课件

 三角形内角和 课件
人教版义务教育教科书四年级下册
三角形的内角和
数学文化
法国著名的数学家帕斯卡在12岁 的某一天正在拿着粉笔在地上画各 种图形,画着画着,他突然发现了 一个惊人的秘密,从此,图形的世界 更加流光溢彩,我们的探究之旅也 由此展开……
帕斯卡的验证过程
直角三角形内角和
360°÷ 2 = 180°
直角三角形内角和

600
锐角三角形
480
720
600+480+720=1800

380
钝角三角形
260
1160
1160+260+380=1800

3
1
2
3
21
平角:180°

1
22 3 3
平角:180°
1

180° 180°
180°×2-90°-90°=180°

180° 180°
180°×2-90°-90°=180°
45°
60°
45°
30°


所有直角三角形的内角和是180°
小组合作要求
1.请把三角形的三个角涂成不同的颜色,并 标出∠1 ∠2 ∠3。
2.想办法验证手中不同的三角形的内角和是多少。
小组汇报要求
1.汇报流程:
选了什么三角形 用什么方法验证 结论是什么
2.其他小组汇报后,如果同意请送出掌声; 如果不同意请举手发言。
结论:
所有三角形的内角和都是180 °
1.算出笑脸所遮盖角的度数。
70° 80° 30°

பைடு நூலகம்65°
25°
180 °— 80 °— 30 °=70 ° 180 °— 90 °— 25 °=65 °

《三角形的内角和》标准课件(人教版)1

《三角形的内角和》标准课件(人教版)1
主动建构新的认知结构,了解获取知识的途径和技巧。 二、自主探究,得出结论
四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,
通过交流、比较、评价寻找解决问题的途径和策略。
学法:合作交流法、动手实践法、自主探究法
这节课我设计了以“猜想一验证一归纳一运用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最 后达成共识。 43 ° 小学数学人教版四年级下册第五单元 直角三角形的内角和是180° 。 =40°-25° 结论不重要,重要的是让学生体会得到结论的过程,学会用转化的思想来解决生活中的问题。 3、在探索发现的过程中,培养学生大胆猜想,细心验证的数学思维。 直角三角形的内角和是180° 。 结论 三角形的内角和是180度 三角形的内角和都是180°
(一)复习引入,引发猜想 三角形的内角和都是180°
三角形的内角和都是180°
(一)复习引入,引发猜想 39°
通过复习上节课三角形按角分可
以分为哪几类,从而引入学习新课 三角形的内角和都是180°
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最
直角三角形的内角和是180° 。
两个大小一样的直角三角形
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最
后达成共识。
数学讲究严谨性,为了得到准确的值,学生用拼、折等多种方法得出三角形内角和是180度,验证了自己的猜想

人教版数学四年级下册:第5单元三角形第4课时三角形内角和(一) 课件

人教版数学四年级下册:第5单元三角形第4课时三角形内角和(一) 课件
5 三角形
第 4 课时
三角形内角和(一)
R 四年级下册
你知道三角尺内角的
度数分别是多少吗?
90°
45°
90°
60° 30°
每个三角尺的内角 度数之和都是180°。
45°
1
课堂探究点
(1)三角形的内角和 (2)三角形内角和的应用
2
课时流程
探索 新知
课堂 小结
当堂 检测
课后 作业
探究点 1
三角形的内角和
%E8%B4%A2%E5%8A%A1%E6%8A%A5%E8%A1%A8&orderby=m
3 1
(180-110°)÷2=35°
小试牛刀(选题源于教材P67做一做)
180 ° - 140 ° - 25 °= 15°
2. 把下面这个三角形沿虚线简称两个小三角形, 每个小三角形的内角和是多少度?
三角形内角和(一):
三角形的内角和是180 °。
夯实基础 (选题源于《典中点》)
1.填空。 (1)一个三角形中,其中两个角的度数分别是42°和73°,第三 个角的度数是( 65°)。 (2)如果一个三角形有两个内角的度数之和等于90°,那么这个 三角形一定是( 直角 )三角形。 (3)等边三角形的三个内角都是( 60°)。 50°)。 36°)。

画几个不同类型的三角形。量一量,算一算,三角形3个
内角的和各是多少度,填写在下面表格中。
三角形 锐角三角形 ∠1 ∠2 ∠3 ∠1+∠2+∠3
直角三角形
钝角三角形
通过刚才的量一量,你有什么感受?
除了刚才我们运用的量一量,算一算的方法,你还 能有办法求出三角形3个内角的和是多少度吗?利用 手中的学具试一试吧,有困难的可以在小组内完成。

11.2.1三角形的内角和 公开课ppt课件

11.2.1三角形的内角和 公开课ppt课件
22
我不但三边之和比你长, 你的三边之和。是比我长,
而且三个内角之和也比 但三个内角之和并不比我
你大!

你同意谁的说法呢?为什么?
23
这节课你学到了什么?
P13 练习
24
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°
A
∴∠A+∠B+∠ACB=180° (等量代换) B
E
1 2
C
D
12
证法三 内错角+同旁内角
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E
A
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
13
三角形内角和定理: 三角形的内角和等于1800. 即在△ABC中, ∠A +∠B +∠C=180 °
14
பைடு நூலகம்
15
例1、 如图:在△ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线。 求∠ADB的度数?
在△ABD中,
A
∠ADB=180°-∠B-∠BAD,
19
例:
已知△ABC, ∠A +∠B= 90 °,求∠C的度数。
解:∵ ∠A+∠B+ ∠C=180 ° ∴ ∠C=180 °-( ∠A +∠B) =180 °- 90 ° = 90 °
20
例3
我的一个角是多少 度?
1800÷3=60°

《三角形内角和》课件

《三角形内角和》课件

特殊三角形的内角和
直角三角形的内角和
直角三角形具有特殊的角度关 系,让我们一起来解析它们的 内角和。
等腰三角形的内角和
等腰三角形也有其独特的内角 和特点,让我们一起来了解它 们。
等边三角形的内角和
等边三角形是三角形中最特殊 的,让我们一起来揭示它们的 内角和。
三角形内角和的相关练习
1
练习题解析
通过解析一些典型题目,我们将更好地理解三角形内角和的计算方法。
《三角形内角和》PPT课 件
欢迎来到《三角形内角和》PPT课件,让我们一起探索三角形内角和的奇妙 世界!通过本课件,你将了解三角形内角和的定义、性质、推论以及特殊三 角形的内角和。
什么是三角形内角和?
三角形内角和是指三角形内部三个角度之和。我们将探讨内角和的定义以及 计算公式,帮助你理解三角形的内部结构。
2
黄色网格纸练习
让我们亲自动手练习计算三角形内角和,并使用黄色网格纸来辅助计算。
总结
三角形内角和的重要性
掌握三角形内角和的计算方法对于数学学习和实际 问题解决都具有重要意义。自己,你可以进一步巩固对三角形内 角和的理解和掌握。
三角形内角和的性质
1
性质及证明
三角形内角和具有一些特定的性质,并且这些性质可以通过简单的证明得出。
2
应用举例
我们将通过一些实际问题的例子来展示三角形内角和的应用。
三角形内角和的推论
各角度之间的关系
三角形内角和之间存在一些有趣的推论,让我们 一起来探索它们。
应用实例分析
通过实际问题的分析,我们将看到三角形内角和 的推论如何应用。

人教版小学四年级下册数学《三角形的内角和》教学课件

人教版小学四年级下册数学《三角形的内角和》教学课件

判断下列说法对吗? ①钝角三角形的内角和大于锐角三角形的内 角和。( × ) ②在直角三角形中,两个锐角的和等于90 º 。 (√ ) ③在钝角三角形中,两个锐角的和大于90 º 。 (×) ④三角形中有一个角是60 º ,那么这个三角形 一定是个锐角三角形。( ×) ⑤一个三角形中一定不可能有两个钝角。(√ )
小结
拓展
知识的升华
你能根据自己的知识求出四边形 和正六边形的内角和吗?
2个三角形:180°×2=360 ° 4个三角形:180°×4=720°
总结:通过今天的学习, 大家有什么收获?
三角形内角和180°
直角三角形
•小组活动:
请你通过相互讨论交流 办法验证三角形的内角和。
活动一:
合作要求:
(1)小组分工 (2)用量角器测量你们小组 内的三角形每个内角的度数。 (3)最后要求计算出三个角 的和是多少?填在表格里。
∠1 锐角三角形 直角三角形 钝角三角形
∠2
∠3
内角和 发现规律
你还有其他办法证明 三角形的内角和是180° 吗?
折一折,撕一 撕,看看能不能把 三角形的三个内角 拼成什么呢?
活动二:
撕一撕 拼一拼
活动三:
折一折 拼一拼
1
2
2
1
3
3
结论:
三角形内角和180°。
在一个三角形中,已知∠1=1400,∠3=250, 求∠2的度数? 1800-1400-250 =400-250 =150
答:∠2的度数为150。
三角形∠1=140°∠3=25° 求∠2的度数。
180°-140°-25°=15°
180 °-(140° +25°)=15 °

《三角形的内角和》ppt课件

《三角形的内角和》ppt课件
在数学教育中的价值
三角形内角和定理是初中数学中的重要内容之一,对于培养学生的逻辑思维、推理能力和数学素 养具有重要意义。
02
三角形内角和的基本概念
角度与三角形的关系
三角形是由三条边和三个角组成的几何图形。 角度是描述两条射线之间的夹角大小的量度。 三角形中的角度与边长之间存在一定的关系,如正弦、余弦定理等。
基于三角形内角和定理,可以推 导出许多三角恒等式,这些恒等 式在解决三角函数问题时非常有 用。例如,正弦定理、余弦定理
等。
三角函数的应用
在物理学、工程学、天文学等领 域中,经常需要使用三角函数来 解决实际问题。而三角形内角和 定理是解决这些问题的关键之一。
在实际问题中的应用
建筑设计
在建筑设计中,经常需要使用三 角形内角和定理来计算角度、长 度等参数,以确保建筑物的稳定
性和美观性。
地图绘制
在地图绘制中,三角形内角和定理 被用来确定地图上两点之间的角度, 从而保证地图的准确性和可靠性。
导航定位
在导航定位中,三角形内角和定理 被用来计算航向、俯仰角等参数, 以确保飞机、船舶等交通工具的正 确航行方向。
05
总结与回顾
三角形内角和的总结
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。
培养空间思维
学习三角形内角和定理有 助于培养学生的空间思维 能力和几何直觉。
回顾与思考
01
回顾三角形内角和定理的证明过程,加深对定 理的理解。
02
思考三角形内角和定理在现实生活中的应用, 提高解决实际问题的能力。
03
探究其他几何图形的内角和性质,拓展几何知 识面。
THANKS
内角和为180度的结论。

四年级数学下册课件三角形的内角和

四年级数学下册课件三角形的内角和
任意三角形的内角和等于180度。
三角形内角和的证明方法
通过将三角形划分为其他三角形,利用已知角度进行证明。
下节课预告与准备
下节课主题
平面图形的面积计算。
需要准备的工具
直尺、三角板、纸张等。
预习内容
了解基本平面图形(如矩形、三角形、圆形)的 面积计算公式。
学习反馈与建议
01
02
03
作业与练习
完成相关练习题,巩固所 学知识。
学习难点
理解三角形内角和的证明 过程,尤其是如何将三角 形划分为其他三角形。
学习建议
多做练习,加深对三角形 内角和概念的理解;尝试 自己探索证明方法,培养 数学思维能力。
THANKS
感谢观看
四年级数学下册课件 三角形的内角和
目录
• 引言 • 三角形内角和的基本概念 • 证明三角形内角和定理 • 三角形内角和的应用 • 练习与巩固 • 总结与回顾
01
引言
主题引入
三角形在生活中的实例
通过展示生活中的三角形实例,如红 领巾、风筝等,引导学生认识到三角 形在日常生活中的应用。
三角形内角和的神秘性
在几何图形中的应用
三角形内角和定理
任何三角形的内角和等于180度。这个定理在几何学中有 着广泛的应用,是解决各种几何问题的基础。
角度计算
在解决与几何图形相关的问题时,三角形内角和定理常常 被用来计算角度。例如,在多边形的问题中,可以通过三 角形内角和定理来计算出其他角度。
图形分类
三角形内角和定理也可以用于图形的分类。例如,可以根 据三角形内角和的大小来区分不同类型的三角形。
三角形内角和定理是三角形几何学中 的基本定理之一,也是三角形性质的 重要体现。

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。

人教版小学数学四年下册第五单元《三角形的内角和》教学PPT课件

人教版小学数学四年下册第五单元《三角形的内角和》教学PPT课件

教师讲评时,着重让学生说一说每道题的计算方法及依据,鼓励学生用 不同的方法解答。 讲解(2)、(3)题时,问:一个三角形可能有两个 直角吗?一个三角形可能有两个钝角吗?你能用今天的知识说明吗? 课堂小结:学了这节课,你有什么收获?
七、说板书设计
根据四年级的年龄特点,本课板书内容简单明了,重难点突 出。
(3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个 平角,一个平角是180°,所以得出三角形的内角和是180°。 (4)画:根据长方形的内角和来验证三角形内角和是180°。 一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°, 每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和 就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
板块四、深化 质疑:大小不同的三角形,它们的内角和会是一样吗? 观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原 因,三角形变大了,但角的大小没有变。) 结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。
【设计意图】小学生由于年龄小,容易受图形或物体的外在形式的影响。 教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角 的大小与边的长短无关”的旧知识来理解说明。
板块三、验证 (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量, 然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是 多少度? (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三 个内角撕下来拼在一起,成为一个平角?请学生同桌合作,从学具中选 出一个三角形,撕下来拼一拼。
总之,在本节课的教学中,我力求充分体现以下特点:以学生为主体, 教师为主导,以观察比较为主线,以师生互动、生生互动,自主探索,分组 讨论交流为主要方式。让数学贴近实际,贴近生活,贴近原有经验。使学生 主动学数学,探究学数学,快乐学数学。并进一步促进学生思维的发展。

人教版四年级数学下册 三角形的内角和三角形角的探索与发现(课件)

 人教版四年级数学下册 三角形的内角和三角形角的探索与发现(课件)

会不会有平角三角 形和周角三角形呢?
小组活动
讨论: 试试看能不能画出一个平角三角形和周角 三角形?为什么呢? 试着用自己的话说服老师。
这会不会又与三角
形的角有关呢?
你发现了什么?
3、折一折
1
2
3
3、折 一折
锐角三角形的内角和等于
1800沿虚线向内折叠直角三 角形和钝角三角形的三个内角,你又发现 了什么?
了什么?
三角形的分类
三个角都是锐角 有一个角是直角 有一个角是钝角
锐角三角形 直角三角形 钝角三角形
P61
练习巩固 画出蚂蚁进洞的路线
猜 角一形猜猜猜猜一看猜各,是这什是么三什么三角形?
直角三角形
钝角三角形
锐角三角形 直角三角形 钝角三角形
三角形的分类
锐角 三角形
钝角 三角形
直角 三角形
角与三角形的联系
三角形角的探索与发现
三角形单元整体教学设计 第二课时
复习导入
想一想:观察三角形,回忆三角形的定义?
由三条 线段 围成的图形(每 相邻两条线段的端
点相连)叫做三角形。
复习导入
触摸三角形卡纸,告诉老师它们有什么共同点呢?
三角形有3条边,3个顶点,3个角,3条高
探究新知
观察三角形卡纸,你觉得它们长得一样吗?是什 么原因造成的呢?
三角形的内角和
三个内角都能拼成一个平角
三角形的内角和为180°
同学们,你现在知道为什么不存在平角三 角形或周角三角形了吧? 三角形的内角和为180°
三角形任意一个内角都<180°
不可能存在平角/周角三角形
练习巩固
小猪佩奇不小心打碎了两块三角形玻璃,如下图, 现在猪爸爸要帮忙修复这两块碎玻璃,你知道它们 原来各是什么三角形吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学重点: 理解掌握三角形的内角和是180°。
教学难点:运用三角形的内角和知识 解决实际问题。
• 三角形的三个内角和是多少度?

3
1
2
3
平角:1800
一个等腰三角形的风筝,它的一个底角是700,它 的顶角是多少度?
400
1800-700 -700
1800-700×2
700
700
一个等腰三角形的风筝,它的一个底角是700,它 的顶角是多少度?



根据三角形内角和是 180 °, 你能求出 下面四边形的内角 和吗?
两个三角形
180°×2﹦360°
根据三角形内角和是 180 ° , 你能求 出下面五边形的 内角和吗?
三个三角形
180°×3﹦540°
你能运用所学知识求出六边 形、七边形、八边形… …的内角 和吗?
结合本节课学习的内容看看同学们 能回答下述问题吗?课下同学之间 讨论一下!
人教版
四年级 数学 下册
4 三角形的内角和
1.知识目标:理解和掌握三角形的内角和是 180°,运用三角形的内角和知识解决实际问题 和拓展性问题。
2.能力目标:通过测量、撕拼、折叠等方法, 探索和发现三角形三个内角的和等于180°,发 展学生动手操作、观察比较和抽象概括的能力。
3.情感目标:让学生体验数学活动的探索乐趣, 通过教学中的活动体会数学的转化思想。
1、如果一个三角形有两个直角,结果会怎样?
2、一个三角形至少有几个锐角呢?为什么?
同学们,通过今天的研究你有什么 收获吗?
1.理解和掌握了三角形的内角和是180°,运用 三角形的内角和知识解决实际问题和拓展性问题。 2.通过测量、撕拼、折叠等方法,探索和发现 三角形三个内角的和等于180°,发展了动手操 作、观察比较和抽象概括的能力。
(3) 30°,40°,50°
(4) 50°,50°,80°
(5) 60°,60°,60°
2.三角形∠1=140°∠3=25°求 ∠2的度数。
140°
25°
180°-140°-25°=15° 180 °-(140°+ 25°)=15°
3.爸爸给小红买了一 个等腰三角形的风筝,它的一 个底角是70°,顶角多少度?
180°-70°-70°= 40° 180°- 70°×2 = 40° 70° 70°
4.一个直角三角形,一个锐 角是50°,另一个锐角是多少度?
50°
180°-90°- 50°= 40°
180°-(90°+ 50°)= 40 °
5.某同学把一块三角形的玻 璃打碎成三片,现在他要到玻璃店去 配一块形状完全一样的玻璃,那么最 省事的办法是带( )去。为什么?
一、量一量
1.画一个三角形。
2.用量角器测量出所画的三角形 每个内角的度数。
三角形 ∠1 ∠2 ∠3 三角之和
二、撕一撕(剪一剪)
平角
三、折一折
中点
中点
1中点中点源自三角形的内角和是 180°
∠1+∠2+∠3=180°
1.(口答)下列各组角能是同 一个三角形的内角吗?为什么?
(1) 80°,95°,5° (2) 60°,70°,90°
相关文档
最新文档