高中数学1.1.2集合间的基本关系课件新人教A版必修B
集合间的基本关系ppt课件
A.2
)
B.3
C.4
【解析】集合M满足M ⫋ {1,2},集合{1,2}的元素个数为2,
则满足题意的M的个数为22 − 1 = 3.
D.5
例3-7 已知集合A = {x ∈ | − 2 < x < 3},则集合A的所有非空真子集的个数是
( A
)
A.6
B.7
C.14
D.15
【解析】A = {x ∈ | − 2 < x < 3} = {0,1,2},
图形语言:
符号语言:若A⊆B,且B⊆A,则A=B
例如:A={x|x是两条边相等的三角形}
B={x|x是等腰三角形}
B (A)
2、集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,此时集合A与集合B中的元素是一样的,那
么集合A与集合B相等,记作:A=B.
【解析】B = {1,2,4,8},可知集合A中的任意一个元素都是集合B中的元素,故
A ⫋ B.用Venn图表示更加直观,如图1.2-8.
图1.2-8
(2)A = {x| − 1 < x < 5},B = {x|0 < x < 5};
【解析】在数轴上表示出集合A,B,如图1.2-9所示,由图可知B ⫋ A.
方法1 (列举法) 满足条件的集合有:{0},{1},{2},{0,1},{0,2},{1,2},共6个.
方法2 (公式法) 集合A的元素个数为3,则集合A的所有非空真子集的个数为
23 − 2 = 6.
高考题型1 集合间关系的判断
例10 指出下列各组集合之间的关系:
(1)A = {1,2,4},B = {x|x是8的正约数};
新教材高中数学第一章集合与常用逻辑用语1-2集合间的基本关系课件新人教A版必修第一册
综上,-1≤a<1.
解析:∅⊊M⊆{1,2,3},可按元素个数分类依次写出集合M为{1},{2},{3}, {1,2},{1,3},{2,3},{1,2,3},共7个.
题型 3 根据集合的包含关系求参数 例3 已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A. 求实数m的取值范围.
解析:∵B⊆A, ①当B=∅时,m+1≤2m-1,解得m≥2.
B.B∈A
C.A⊆B
D.B⊆A
答案:D 解析:由Venn图易知B是A的子集,即B⊆A,故选D.
3.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0} D.{x|x>4}
答案:B
解析:x>8,且x<5的数x不存在,∴选项B中的集合不含有任何元素,故选B.
1.2 集合间的基本关系
新知初探·课前预习
题型探究·课堂解透
新知初探·课前预习
课程标准 (1)理解集合之间包含和相等的含义,并会用符号和Venn图表示.(2) 会识别给定集合的真子集,会判断给定集合间的关系,并会用符号和 Venn图表示.(3)在具体情境中理解空集的含义.
教材要点 要点一 子集、集合相等、真子集 1.子集、真子集、集合相等的相关概念
解析:由A⊆B,讨论集合A如下: 当A=∅时,Δ=4a2-4<0,可得-1<a<1;
当A={1}时,2+2a=0,可得a=-1,此时A={x|x2-2x+1=0}={1}符合题
意;
当A={2}时,5+4a=0,可得a=-54,此时A=
x
x2 − 5 x + 1 = 0
2
=
人教A版高中数学必修一《1.1.2集合间的基本关系》课件
2.a与{a}的区别:一般地,a表示一个元素, 而{a}表示只有一个元素的一个集合,我们常称之为 单元素集.1∈{1},不能写成1⊆{1}.
3.关于空集∅:空集是不含任何元素的集合, 它既不是有限集又不是无限集,不能认为∅={0}, 也不能认为{∅}=∅或{空集}=∅.
高中数学课件
(金戈铁骑 整理制作)
1.1.2集合间的基本关系
冠县一中 姚增珍
2012.9.7
1.理解集合之间包含与相等的含义,能识别给 定集合的子集.
2.在具体情境中,了解空集的含义.
自学导引
1.一般地,对于两个集合A、B,如果集合A中 _任__意__一__个__元素都是集合B中的元素,我们就说这两 个集合有包含关系,称集合A为集合B的子集,记作 _A_⊆__B_(或_B__⊇_A_),读作“_A_含__于__B_”(或“_B_包__含__A__”).
误区解密 因忽略空集而出错
【例4】设A={x|2≤x≤6},B={x|2a≤x≤a+ 3},若B⊆A,则实数a的取值范围是( )
A.{a|1≤a≤3}B.{a|a>3} C.{a|a≥1}D.{a|1<a<3}
错解:∵B⊆A,∴2aa+≥32≤6 , 解得 1≤a≤3,故选 A.
错因分析:空集是任何集合的子集,忽视这一 点,会导致漏解,产生错误结论.对于形如 {x|a<x<b}一类的集合,当a≥b时,它表示空集,解 题中要引起注意.
解析:(1)为元素与集合的关系,(2)(3)(4)为集 合与集合的关系.
易知a∈{a,b,c}; ∵x2+1=0在实数范围内的解集为空集, 故∅={x∈R|x2+1=0}; ∵{x|x2=x}={0,1}, ∴{0} {x|x2=x}; ∵x2-3x+2=0的解为x1=1,x2=2. ∴{2,1}={x|x2-3x+2=0}. 答案:(1)∈ (2)= (3) (4)=
高中数学新人教A版必修第一册 1.2 集合间的基本关系 课件(37张)
判断以下各组中集合之间的关系:
(1)A={x|x是12的约数},B={x|x是36的约数};
(2)A={x|x2-x=0},B={x∈R|x2+1=0};
(3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x是正方
形};
(4)M= {x|x=n,nZ} ,N= {x|x=1+n,nZ}.
【解析】由题意得1-2a=3或1-2a=a,解得a=-1或a= 1 .当a=-1时,A={1,3,-1},
3
B={1,3},符合条件.
当a= 1 时,A= { 1 ,3 ,1 } ,B= { 1 , 1 } ,符合条件.所以a的值为-1或 1 .
3
3
3
3
答案:-1或 1
3
本课结束
【知识生成】 1.子集:对于两个集合A,B,如果集合A中_任__意__一__个__元素都是集合B中的元素,那么 称集合A为集合B的子集. 记作:_A_⊆__B_(或_B_⊇__A_). 读作:“A包含于B〞(或“B包含A〞). 2.真子集:如果集合A⊆B,但存在元素__x_∈_B__,_且__x_∉_A,称集合A是集合B的真子集. 记作:A B(或B A).
3.以下四个集合中是空集的是 ( )
A.{∅}
B.{x∈R|x2+1=0}
C.{x|x<4或x>8}
D.{x|x2+2x+1=0}
【解析】选B.A,D选项各有一个元素,C项中有无穷多个元素,x2+1=0无实数解.
4.设集合A={1,3,a},B={1,1-2a},且B⊆A,那么a的值为________.
2
2
探究点二 子集、真子集的个数问题 【典例2】(1)集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},那么满足条件 A C B的集合C的个数为 ( )
集合间的基本关系【新教材】人教A版高中数学必修第一册课件PPT3
集合与常用逻辑用语
1.2 集合间的基本关系
• 【素养目标】 • 1.理解集合之间包含和相等的含义,并会用符号和Venn图表示.(直观想
象) • 2.会识别给定集合的真子集,会判断给定集合间的关系,并会用符号
和Venn图表示.(直观想象) • 3.在具体情境中理解空集的含义.(数学抽象)
• 【学法解读】
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
•知识点4 Venn图 • 在 Ve数nn学图中,,这经种常表用示平集面合上的_方__法__叫_封_做_闭_图_曲_示_线的法内.部代表集合,这种图称为 • 注意:1.用Venn图可以直观、形象地表示出集合之间的关系.
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
• [归纳提升] 判断集合间关系的常用方法 • (1)列举观察法 • 当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之
间的关系. • (2)集合元素特征法 • 首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元
合 A 与集合 B 相等,记作 A=B.
符号语言
A⊆B 且 B⊆A⇔A=B
图形语言
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人教A版(2019)高中数学必修第一册讲义
新教材必修第一册1.2:集合间的基本关系课标解读:1.子集的含义.(理解)2.真子集的含义.(理解)3.集合相等的含义.(理解)4.空集的含义.(理解)5.Veen图.(了解)学习指导:1.准确理解子集的概念,把握子集与真子集之间的关系.2.注意灵活运用集合的三种语言(文字语言、符号语言、图形语言)分析解决有关问题.3.谨防掉进“空集”陷阱.4.本节难点是对相似概念及符号的理解,例如:区别元素与集合,属于与包含等概念及其符号表示.知识导图:教材全解知识点1:Veen图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Veen图.例1-1:用Veen图表示集合之间的关系:}xxB=,是平行四边形xA=x|{|}{是菱形,xxD=是矩形xC=x}|}.,{|{是正方形答案:知识点2:子集例2-2:给出下列说法:①任意集合必有子集;②若集合BA⊆,则A中元素的个数一定少于集合B中的元素个数;③若集合A是集合B的子集,集合B是集合C的子集,集合C是集合D的子集,则集合A是集合D的子集;④若不属于集合A的元素也一定不属于集合B,则集合B是集合A的子集,其中正确的是()A. ②③B.①③④C.①③D.①②④ 答案:B例2-3:设集合}1,1{},,3,1{2+-==a a B a A ,且A B ⊆,则a 的值为 . 答案:-1或2知识点3:集合的相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A=B.也就是说,若B A ⊆且A B ⊆,则A=B.例3-4:集合},12|{Z n n x x X ∈+==,},14|{z k k y y Y ∈±==,试证明Y X =. 答案:(1)设X x ∈0,则,1200+=n x 且.0Z n ∈①若0n 是偶数,可设Z m m n ∈=,20,则Z m m x ∈+=,140,∴Y x ∈0②若0n 是奇数,可设Z m m n ∈-=,120,则Z m m m x ∈-=+-=,141)12(20,∴Y x ∈0 ∴不论0n 是奇数还是偶数,都有Y x ∈0. ∴Y X ⊆. (2)设Y y ∈0,则.,141400000Z k k y k y ∈-=+=,或∵Z k k k y k k y ∈+-⋅=-=+⋅=+=00000001)12(21412214,,或, ,12,200Z k Z k ∈-∈ ∴X y ∈0,则X Y ⊆ 由(1)(2)得,Y X =. 知识点4:真子集例4-5:在“新冠肺炎”疫情期间,某社区男、女党员自发组成自愿者队伍,参加社区防疫工作.若集合A={参与防疫工作的志愿者},集合B={参与防疫工作的男党员},集合C={参与防疫工作的女党员},则下列关系正确的是( ) A. B A ⊆ B. C B ⊆ C.A C ⊄ D.B ⫋A 答案:D例4-6:指出下列各组集合之间的关系: (1))};1,1(),1,1(),1,1(),1,1{(},1,1{----=-=B A (2)}6,3,2{=A ,B=}12|{的约数是x x ;(3)}|{}|{是等腰三角形,是等边三角形x x B x x A ==; (4)},12|{+∈-==N n n x x M ,},12|{+∈+==N n n x x N .答案:(1)A 与B 无包含关系;(2)A ⫋B ;(3)A ⫋B ;(4)N ⫋M .知识点5:空集 1.空集的定义一般地,我们把不含任何元素的集合叫做空集,记为∅. 2.空集的性质(1)空集是任何集合的子集;(2)空集的任何非空集合的真子集,即∅⫋A (A 为非空集合). 由上述性质可知空集只有一个子集,即它本身. 辨析明理:∅、0、{0}、{ ∅}之间的关系:例5-7:下面四个集合中,表示空集的是( ). A. {0} B.},01|{2R x x x ∈=+ C.},01|{2R x x x ∈>- D.},,0|),{(22R y R x y x y x ∈∈=+ 答案:B例5-8:若集合==+-=}02|{2m x x x A ∅,则实数m 的取值范围是( ) A.1-<m B.1<m C.1>m D.1≥m 答案:C知识点6:有限集合的子集个数 对于集合A 的子集我们有如下结论: 集合AA的所有子集子集个数 真子集个数 非空真子集个数}{a ∅,}{a 122= 1 0 },{b a ∅,}{a ,}{b ,},{b a 224=3 2 },,{c b a∅,}{a ,}{b ,}{c ,},{b a ,},{c a ,},{c b ,},,{c b a328=76猜想:A=},...,,{21n a a a n 2 12-n 22-n例6-9:已知集合},,01234|),{(++∈∈<-+=N y N x y x y x A ,则集合A 的子集个数为( ).A.3B.4C.7D.8 答案:D例6-10:已知集合M 满足}2,1{⫋M }5,4,3,2,1{⊆,则有满足条件的集合M 的个数是( ).A.6B.7C.8D.9 答案:B知识点7:集合的图示法 1.Veen 图(1)用Veen 图表示集合间基本关系,如图所示:(2)用Veen图表示集合之间的关系:A⫋B⫋C可表示为如图:2.数轴法对于由连续实数组成的集合,通常用数轴表示,这也属于集合表示的图示法.在数轴上,若端点值是集合中元素,则用实心点表示;若端点值不是集合中的元素,则用空心点表示.集合}3<-xx≤xx与用数轴分别表示如图:{{≥}5|1|例7-11:图中反映的是“文学作品”、“散文”、“小说”、“叙事散文”这四个文学概念之间的关系,请在下面的空格上填入适当的内容:A为;B为;C为;D为 .答案:{小说} {文学作品} {叙述散文} {散文}例7-12:已知集合A=}2{<≤-xx,则集合A与B的关系是 .|2{-≥x|x,集合B=}8答案:B⫋A题型与方法例13:指出下列各组集合之间的关系: (1)}.50|{},51|{<<=<<-=x x B x x A (2)}.,4|{},,2|{Z n n x x B Z n n x x A ∈==∈==(3)}.,2)1(1|{},0|{2Z n x x B x x x A n∈-+===-= (4)}.0,00,0|),{(},0|),{(<<>>=>=y x y x y x B xy y x A 或 (5)}.,54|),{(},,1|{22++∈+-==∈+==N a a a x y x B N a a x x A答案:(1)B ⫋A ;(2)B ⫋A ;(3)A=B ;(4)A=B ;(5)B A ⊆;(6)A ⫋B.例14:已知集合}|{},3,2,1{A x x Y A ⊆==,则下列结论错误的是( ) A.Y ⊆}1{ B.Y A ∈ C.∅Y ⊆ D.{∅}⫋Y 答案:A变式训练:已知集合},612|{},312|{},,61|{Z c c x x C Z b b x x B Z a a x x A ∈+==∈-==∈+==,,则A ,B ,C 满足的关系是( )A. A=B ⫋CB. A ⫋B=CC. A ⫋B ⫋CD.B ⫋C ⫋A 答案:B题型2:确定集合的子集、真子集例15:设}0)45)(16(|{22=++-=x x x x A ,写出集合A 的子集,并指出其中哪些是它的真子集.答案:集合A 的子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}、{-4、-1、4},集合A 的真子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}.例16:已知集合A={1,3,5},则集合A 的所有非空子集的元素之和为 . 答案:36变式训练:已知集合A=}065|{},033|{22=+-∈==++∈x x R x B x x R x ,A P ⊆⫋B ,求满足条件的集合P. 答案:∅或{2}或{3}例17:已知}012|{},082|{222=-++∈==+-∈=a ax x R x B x x R x A ,若A=B ,则实数a 的取值范围为 . 答案:}44|{>-<a a a 或例18:已知集合}.121|{},52|{-≤≤+=≤≤-=m x m x B x x A (1)若B ⫋A ,求实数m 的取值范围; (2)若B A ⊆,求实数m 的取值范围.答案:(1)}.3|{≤m m (2)不存在m 使得B A ⊆.变式训练:已知}|{},31|{a x x B x x A <=<<-=,若B A ⊄,则实数a 的取值范围是( ). A.}3|{<a a B.}3|{≤a a C.}1|{->a a D.}1|{-≥a a 答案:A例19:已知集合},|{},,12|{},1,1|{2A x x z z C A x x y y B R a a a x x A ∈==∈-==∈->≤≤-=且,是否存在实数a 使得B C ⊆?若存在,求出实数a 的取值范围;若不存在,请说明理由. 答案:当1=a 时,B C ⊆易错题型易错1:混淆属于关系和包含关系例20:已知集合A={0,1},B=}|{A x x ⊆,则下列关于集合A 与B 的关系正确的是( ) A.A B ⊆ B.A ⫋B C.B ⫋A D.B A ∈ 答案D易错2:忽略对参数的讨论例21:已知集合},0)1(|{},0|{22=--===x a x x F x x E 判断集合E 和F 的关系. 答案:①当1=a 时,E=F ;②当1≠a 时,E ⫋F.易错3:忽略空集例22:已知集合A={-1,1},B=A B ax x x ⊆+=若},1|{,则实数a 的所有可能取值组成的集合为( ).A.{-1}B.{1}C.{-1,1}D.{-1,0,1} 答案:D易错4:利用数轴求参数范围时,忽略端点值是否能取到例23:已知集合},31|{},54|{R a a x a x B x x x A ∈+≤≤+=-<≥=或,若A B ⊆,则a 的取值范围为 .答案:}38|{≥-<a a a 或创新升级例24:已知非空集合21A A ,是集合A 的子集,若同时满足两个条件:(1)若21A a A a ∉∈,则;(2)若12A a A a ∉∈,则,则称),(21A A 是集合A 的“互斥子集”,并规定),(21A A 与),(12A A 为不同的“互斥子集组”,则集合A={1,2,3,4}的不同“互斥子集组”的个数是 . 答案:50组感知高考考向1:集合间关系判定及应用例25:已知集合A={1,2,3},B={2,3},则( )A.A=BB.A B ∈C.A ⫋BD.B ⫋A答案:D例26:已知集合A=},1{a ,B={1,2,3},那么( ).A.若3=a ,则B A ⊆B.若B A ⊆,则3=aC.若3=a ,则B A ⊄D.若B A ⊆,则2=a 答案:C 考向2 :子集的个数 例27:已知集合A=},023|{2R x x x x ∈=+-,B=},50|{N x x x ∈<<,则满足条件B C A ⊆⊆的集合C 的个数为( ).A. 1B. 2C. 3D. 4答案:D基础巩固:1.已知下列四个命题:①;则且若C A C B B A ⊆⊆⊆,②且若B A ⊆B ⫋C ,则A ⫋C ;③若A ⫋B 且B ⊆C ,则A ⫋C ;④若A ⫋B 且B ⫋C ,则A ⫋C.其中正确命题的个数是( )A. 1B. 2C. 3D. 42.满足M a ⊆}{⫋},,,{d c b a 的集合M 共有( )A.6个B. 7个C. 8个D.15个3.已知集合U=R ,则正确表示集合U ,M={-1,0,1},N=}0|{2=+x x x 之间的Veen 图是().4.集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则( )A.N M =B.N ⫋MC.M ⫋ND.M 与N 没有相同的元素5.设结合A={-1,1},集合B=},1|{R a ax x ∈=,则使得A B ⊆的a 的所有取值构成的集合是 .6.已知7.已知集合A=}.52|{≤≤-x x(1)若}126{-≤≤-=⊆m x m B B A ,,求实数m 的取值范围;(2)是否存在实数m ,使得A=B ,}126{-≤≤-=m x m B ?若存在,求出实数m 的范围;若不存在,请说明理由.综合提升:8.集合A=},,1{y x ,B=}2,,1{2y x ,若A=B ,则实数x 的取值集合为( ) A.{21} B.{2121-,} C.{210,} D.{21210-,,}9.下列四个结合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-10.集合},54|{2R a a a x x A ∈+-==,},344|{2R b b b y y B ∈++==,则下列关系正确的是( ). A. A=B B.B ⫋A C.A B ⊆ D.A B ⊄11.同时满足①}5,4,3,2,1{⊆M ,②M a M a ∈-∈6,且的非空集合M 的个数为( )A. 16B.15C. 7D. 612.若一个集合中含有n 个元素,则称该元素集合为“n 元集合”,已知集合}4,3,21,2{-=A ,则其“2元子集”的个数为( )A. 6B. 8C. 9D. 1013.设集合A=}023|{2=+-x x x ,集合B=},04|{2为常数a a x x x =+-,若A B ⊆,则实数a 的取值范围是 .14.已知集合A=}40|{≤<∈x Z x ,若A M ⊆,且M 中至少有一个偶数,则这样的集合M 的个数为 .15.若规定E=},...,,{1021a a a 的子集},...,,{21ni i i a a a 为E 的第k 个子集,其中1112...2221---+++=ni i i k ,则:(1)},{31a a 是E 的第 个子集;(2)E 的第211个子集为 .16.已知三个集合}02|{}01|{},023|{222=+-==-+-==+-=bx x x C a ax x x B x x x A ,,同时满足B ⫋A ,C ⊆A 的实数b a ,是否存在?若存在,求出b a ,的所有值;若不存在,请说明理由.参考答案1. D2. B3. B4. C5. {-1,0,1}6. }41|{≤a a7. (1)}43|{≤≤m m ;(2)不存在.8. A9. D10.B11.C12.A13.}4|{≥a a14. 1215.(1)5;(2)},,,,{87521a a a a a .16.存在2222,23,2<<-===b a b a 或满足要求.。
高中数学人教A版必修1课件:1.1.2 集合间的基本关系
题型一
题型二
题型三
题型四
题型五
【变式训练1】 已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N}, 则满足A⊆C⫋B的集合C的个数是 ( ) A.1 B.2 C.3 D.4 解析:由已知可得集合A={1,2},B={1,2,3,4},又因为A⊆C⫋B,所以 集合C可以是{1,2},{1,2,3},{1,2,4}. 答案:C
)
1
2
3
4
【做一做4-2】 有下列命题:①空集没有子集;②任一集合至少有 两个子集;③空集是任何集合的真子集;④若⌀⫋A,则A≠⌀.其中正确 的个数为( ) A.0 B.1 C.2 D.3 解析:对于①,空集是任何集合的子集,故⌀⊆⌀,①错;对于②,⌀只有 一个子集,是其自身,②错;对于③,空集不是空集的真子集,③错;空 集是任何非空集合的真子集,④正确. 答案:B
【例3】 已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且 B⊆A,B≠⌀,求实数m的取值范围. 分析:先在数轴上表示出集合A.由于B⊆A,故集合B只能在集合A 的内部. 解:由题意,在数轴上表示出集合A,B,如图所示,
-3 ≤ 2������-1, 则有 ������ + 1 ≤ 4, 解得-1≤m<2. 2������-1 < ������ + 1,
1
2
3
4
【做一做3-1】 已知M={1,2,3,4,5},N={1,4},则有 ( ) A.M>N B.N⫋M C.N∈M D.M=N 答案:B 【做一做3-2】 下列集合与集合{x|x2-x=0}相等的是( ) A.{0} B.{1} C.{0,1} D.{1,2} 解析:集合{x|x2-x=0}是方程x2-x=0的解集,解方程x2-x=0,得x=0或 x=1,则{x|x2-x=0}={0,1}. 答案:C
《集合间的基本关系》人教A版高中数学实用课件
2n-2
个。
启 强
9
山东省滕州市第一中学人教版高中数 学新教 材必修 第一册 课件:1 .2 集合间的基本关系(共16张PPT)
学习新知 山东省滕州市第一中学人教版高中数学新教材必修第一册课件:1.2 集合间的基本关系(共16张PPT)
用心体会,理解记忆
5.关于子集的两个结论. ( 1 )任 何 一 个 集 合 是 它 本 身 的 子 集 , 即 A A ( 2 )对 于 集 合 A ,B ,C ,如 果 A B , B C , 那 么 A C .
x-2
则 A , B 的关 _ B Ü_ 系 A__ 是 __.
3 .已 A 知 {x| 2x5 }B ,{x|a 1x2 a 1 },
a≤3 B A 求 , a 实 的数 取 . 值范围
讲 课
人
:
邢
启 强
13
山东省滕州市第一中学人教版高中数 学新教 材必修 第一册 课件:1 .2 集合间的基本关系(共16张PPT)
a=-1,b=1
12
当堂达标 山东省滕州市第一中学人教版高中数学新教材必修第一册课件:1.2 集合间的基本关系(共16张PPT)
练习巩固 提高能力
1、下列命题:
(1)空集没有子集; (2)任何集合至少有两个子集;
(3)空集是任何集合的真子集; (4)若 A,则A.
其中正确的有( B )
A.0个 B.1个 C.2个 D.3个 2.设 x,y R , A {(yx|y ),-3x-2B } ,{(yx|)y,-31},
如:A={x|(x-3)(x+4)=0}, B={3, -4} 你能举出几个具有包含关系、
A(B)
相等关系的集合实例吗?试试看。
2021_2022学年新教材高中数学第一章集合与常用逻辑用语1.2集合间的基本关系课件新人教A版必修
例2判断下列集合间的关系:
(1)A={x|-1<x<4},B={x|x-5<0}.
(2)A={x|x=2n,n∈Z},B={y|y=k+2,k∈Z}.
(3)A= x x= + 1,k∈Z ,B= x x= + 1,k∈Z .
2
4
(4)A={y|y=x+1},B={(x,y)|y=x+1}.
4
2
解 (1)集合B={x|x<5},用数轴表示集合A,B如下图所示,由图可知A⫋B.
解析 由题知,A⫋{1,2,3},且A中至少含有一个奇数,故集合
A={1},{3},{1,2},{1,3},{2,3},共5个.
(3)解 化简集合A,可得A={x∈Z|-2≤x≤5}.
∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集的个数
探究二
集合之间关系的判断
(2)由题意结合集合在数轴上的表示确定两集合的关系即可.如图所示,由
图可知,B⫋A.
知识点二:集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
名师点析 对集合相等的理解
∴x≠0,xy≠0,故x-y=0,即x=y.
此时A={x,x2,0},B={0,|x|,x},
∴x2=|x|,解得x=±1.
当x=1时,x2=1,与集合中元素的互异性矛盾,
)
(2)(2020浙江台州高一检测)已知集合A={x|x2+x=0,x∈R},则集合
A=
.若集合B满足{0}⫋B⊆A,则集合B=
人教版高一数学必修一集合间的基本关系课件PPT
管好课堂时间的五点建议 1.计划充分。教师要为课堂教学准备出足够的内容(要有意义
目标升华
一、掌握子集,真子集,非空子集,非 空真子集的概念与关系
二、了解空集的特殊性,强调空集的存 在性,在解题过程中考虑空集的存在性 之后灵活运用集合与集合之间的关系解 题。
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
(×)
(√)
3.集合相等
集合A中任何一个元素都是集合B中的元素, 同时,集合B中任何一个元素都是集合A中的 元素.这样集合A与集合B的元素是一样的.
例2.指出下列各组中集合之间的关系
(1) A={-1,1} B=Z
A ≠ B
2,3,5,7
(2) A={x︱x是小于10的素数} B={2,3,5,7}
是的,教学是一件很费心思的事情,世界上不可能存在一 种万能的教学方法,至少我还没听说过那些低效的教师 在课堂上往往只是简单地给全体学生布置一项任务(而 且很可能没有仔细考虑自己布置的任务是不是学生感兴 趣的或是需要的),然后要求学生用二十分钟完成。同样, 不用亲历现场你也能猜到,有些学生五分钟就能完成任 务,而这段时间里还有些学生甚至都没有开始,总有些学 生无法在二十分钟内完成任务因此,这个二十分钟的规 定会带来课堂纪律的问题。教师需要不断提醒学生集中 注意力,但有的学生会抱怨自己还没听懂,而那些提前完 成的学生则会感到无聊,并且着急地等着新任务。
新教材人教A版数学必修第一册课件:第一章1.2集合间的基本关系
(3)集合M:所有等腰三角形,集合N:所有等边三角形
可以发现,在(1)(2)(3)中的两个集合A和B,集合B中的
每一个元素都是集合A中的元素,我们就说集合A包含集合B,或者说
集合B包含于集合A。像这样,对于两个集合A,B,如果集合B中任意
一个元素都是集合A中的元素,就称集合B为集合A的子集,
也可以是其他封闭曲线
②Venn图的优点是形象直观,缺点是公共特征不明显,画图时要注意
区分大小关系。
即时巩固
A和B两个集合的大小情况如图所示,则A和B的关系是(
A. ∈
B. ∈
B
A
C. ⊆
D. ⊆
【解】由Venn图易知B是A的子集,即 ⊆ ,选D
D
)
两个集合相等是什么意思?
a∈{ a, b, c }
由上述集合间的基本关系,我们可以得到如下结论:
(1)任何一个集合是它本身的子集,即 ⊆ ;
(2)对于集合A,B,C,如果 ⊆ ,且 ⊆ ,那么 ⊆
即:包含关系具有传递性
即时巩固
1.用适当的数学符号填空。
∈
∈
(1) _____ {, , }
(2) 0 _____ { 2 = 0}
举例说明,若A={1,2,3},B={1,2,3,4},C={1,2,5},则有
⊆ , ⊈ , ⊉
即时巩固
设集合A={0,1,2},集合B={ | = + , ∈ , ∈ },求A与B的关系。
【解】由题意易知的情况有如下几种:
= 0+0=0, = 0+1=1, = 0+2=2, = 1+1=2,