2017届高三文科数学二轮复习:第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质 Word版含解析

合集下载

(完整版)圆锥曲线的定义、方程和性质知识点总结

(完整版)圆锥曲线的定义、方程和性质知识点总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

高三圆锥曲线知识点总结

高三圆锥曲线知识点总结

高三圆锥曲线知识点总结高三是学生们备战高考的关键一年,其中数学是许多学生感到困惑和挑战的一门学科。

在数学学习中,圆锥曲线是一个重要的知识点。

本文将对高三圆锥曲线的知识点进行总结和归纳,帮助学生们更好地理解和应用这一部分内容。

一、圆锥曲线的定义和基本性质圆锥曲线是由一个平面与一个圆锥相交而产生的曲线。

常见的圆锥曲线包括椭圆、双曲线和抛物线。

圆锥曲线具有许多重要的性质,例如,椭圆和双曲线是有界的,抛物线是无界的。

此外,每个圆锥曲线都有两个对称轴,并且具有焦点和准线等重要特征。

二、椭圆的性质和方程椭圆是圆锥曲线中最常见的形式之一。

椭圆的定义是平面上到两个给定点(焦点)的距离之和等于常数的点的集合。

椭圆有许多有趣的性质,例如,长轴和短轴的长度相等,焦点到曲线上任意一点的距离之和等于常数,以及椭圆对称于两个轴等。

椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心,a和b分别是长轴和短轴的长度。

三、双曲线的性质和方程双曲线是圆锥曲线中另一种常见的形式。

与椭圆不同,双曲线的定义是平面上到两个给定点(焦点)的距离之差等于常数的点的集合。

双曲线也具有许多有趣的性质,例如,焦点到曲线上任意一点的距离之差等于常数,以及双曲线有两条渐近线等。

双曲线的标准方程为(x-h)²/a² - (y-k)²/b² = 1或(x-h)²/a² - (y-k)²/b² = -1,其中(h,k)是双曲线的中心,a和b分别是距离差和水平距离的一半。

四、抛物线的性质和方程抛物线是圆锥曲线中另一种重要的形式。

抛物线的定义是平面上到一个给定点(焦点)和一条给定直线(准线)的距离相等的点的集合。

抛物线具有许多有趣的性质,如对称性、焦距等于准线到抛物线顶点的垂直距离的两倍,并且焦点到曲线上任意一点的距离等于焦准距的一半。

圆锥曲线高二文科知识点

圆锥曲线高二文科知识点

圆锥曲线高二文科知识点圆锥曲线是高中数学中的一个重要内容,也是文科生需要掌握的知识点之一。

圆锥曲线包括圆、椭圆、双曲线和抛物线四种形态,每种形态都有其独特的性质和应用。

下面将逐一介绍这些知识点。

一、圆圆是由平面上到一个固定点距离相等的所有点构成的集合。

圆的特点是:1. 圆心:圆上所有点到圆心的距离相等;2. 半径:圆心到圆上任一点的距离。

圆的方程可以表示为:(x - a)² + (y - b)² = r²,其中(a, b)是圆心的坐标,r是半径的长度。

圆的性质可以应用于日常生活中的测量、建筑等方面。

在几何中,圆的相关定理也是很重要的内容。

二、椭圆椭圆是圆锥曲线中的一种形态,其特点是:1. 两个焦点F₁和F₂:椭圆上任意一点到两个焦点的距离之和等于两个固定值2a;2. 短轴:过圆心的直径,一般记为2b;3. 长轴:连接两个焦点并通过圆心的直径,一般记为2a。

椭圆的标准方程可以表示为:(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)是椭圆的中心坐标。

椭圆在几何学、天文学等领域有广泛的应用。

如行星运动的轨道、航天器发射中的轨迹分析等。

三、双曲线双曲线是圆锥曲线中的一种形态,其特点是:1. 两个焦点F₁和F₂:双曲线上任意一点到焦点距离之差等于两个固定值2a;2. 短轴:通过两个焦点且垂直于连接两焦点的直线的直径,一般记为2b。

双曲线的标准方程可以表示为:(x - h)²/a² - (y - k)²/b² = 1,其中(h, k)是双曲线的中心坐标。

双曲线在物理学、天文学等领域有广泛应用,例如天体运动轨迹、电磁场分布等。

四、抛物线抛物线是圆锥曲线中的一种形态,其特点是:1. 焦点F:抛物线上任意一点到焦点的距离等于该点到准线的垂直距离;2. 准线:与抛物线对称轴平行且与焦点的距离相等的直线。

高三数学圆锥曲线知识点总结大全

高三数学圆锥曲线知识点总结大全

高三数学圆锥曲线知识点总结大全在高三数学学习中,圆锥曲线是一个非常重要的知识点,它可以帮助我们更好地理解数学的几何性质和关系。

本文将对圆锥曲线的相关知识进行总结和归纳,希望可以帮助大家更好地掌握这一部分的内容。

一、什么是圆锥曲线圆锥曲线是以两条总称为焦点的直线为边界的平面曲线。

根据焦点的相对位置和离心率的不同,圆锥曲线可以分为四种类型:椭圆、双曲线、抛物线和圆。

二、椭圆1. 椭圆的定义:椭圆可由平面内的一动点 M 和两焦点 F1、F2的距离之和等于常数 2a 的点的轨迹定义。

2. 椭圆的性质:- 椭圆的离心率 e 小于 1,且焦点位于长轴上。

- 椭圆的长轴和短轴分别对应着两个标准方程的分子和分母。

- 椭圆的离心率越小,形状越趋于圆形。

- 椭圆的焦点到直角坐标轴的垂直距离分别为 a 和 b。

三、双曲线1. 双曲线的定义:双曲线可由平面内的一动点M 和两焦点F1、F2 的距离之差等于常数 2a 的点的轨迹定义。

2. 双曲线的性质:- 双曲线的离心率 e 大于 1,且焦点位于长轴上。

- 双曲线的长轴和短轴分别对应着两个标准方程的分子和分母。

- 双曲线的离心率越大,形状越扁平。

- 双曲线的焦点到直角坐标轴的垂直距离分别为 a 和 b。

四、抛物线1. 抛物线的定义:抛物线可由平面内的动点 M 和直线 l 的距离点 F 的距离等于焦距 PF 点的轨迹定义。

2. 抛物线的性质:- 抛物线的焦点位于焦线的中垂线上。

- 抛物线的顶点为最低点或最高点,轴称为准线,焦距 PF 的两倍称为参数。

- 抛物线的标准方程为 y² = 2px。

五、圆1. 圆的定义:圆可由平面内的一动点 M 到定点 O 的距离等于定长 r 的点的轨迹定义。

2. 圆的性质:- 圆的离心率 e 等于 0,焦距为零。

- 圆的半径为定长 r,焦距为零。

- 圆心到任意点的距离都相等,这个距离称为半径 r。

总结:通过以上对圆锥曲线的介绍,我们可以发现每一种曲线都有各自的定义和性质。

圆锥曲线知识点梳理(文科)

圆锥曲线知识点梳理(文科)

高考数学圆锥曲线部分知识点梳理一、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。

(4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交⇔有两个公共点;直线与圆相切⇔有一个公共点;直线与圆相离⇔没有公共点。

②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离22BA C Bb Aa d +++=与半径r 的大小关系来判定。

二、圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线。

其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率。

当0<e <1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e >1时,轨迹为双曲线。

三、椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F 1F2|<2a=点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222=+byax(ba>>0) 12222=-byax(a>0,b>0) pxy22=范围─a≤x≤a,─b≤y≤b |x| ≥ a,y∈R x≥0中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b)(a,0), (─a,0) (0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0) F1(c,0), F2(─c,0) )0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c (c=22ba-)2c (c=22ba+)离心率)10(<<=e ace )1(>=e ace e=1【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλby ax .【备注2】抛物线: (1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下.(2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221px AF p x x +==(AF 叫做焦半径).四、常用结论:1.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PFS b γ∆=. 且γcos 12221+=b PF PF2.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点,记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2).2cot221θb S FPF =∆3.)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.4. 通径为2p ,这是过焦点的所有弦中最短的.px y 22= px y 22-=py x 22= py x 22-=图形▲y xO▲yxO▲yxO▲yxO焦点 )0,2(pF )0,2(p F -)2,0(p F )2,0(p F -准线 2p x -= 2p x = 2p y -= 2p y =范围 R y x ∈≥,0 R y x ∈≤,0 0,≥∈y R x 0,≤∈y R x 对称轴 x 轴y 轴顶点 (0,0)离心率 1=e焦半径 12x pPF +=12x pPF +=12y pPF +=12y pPF +=。

高考数学圆锥曲线的定义及应用

高考数学圆锥曲线的定义及应用

圆锥曲线的定义及应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

二、圆锥曲线的方程。

1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)X围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)X围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)X围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。

解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。

高二文科圆锥曲线专题复习(含答案)

高二文科圆锥曲线专题复习(含答案)

圆锥曲线文科专题复习知识回顾:一、圆锥曲线的两个定义:1、椭圆:第一定义:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,(当常数等于时,轨迹是线段FF;当常数小于时,无轨迹)第二定义:与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)2、双曲线:第一定义:双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F-F|,(定义中的“绝对值”与<|F-F|不可忽视。

若=|FF|,则轨迹是以F,F为端点的两条射线;若﹥|FF|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

)第二定义:与定点和直线的距离之比为定值e的点的轨迹.(e>1)3、抛物线:与定点和直线的距离相等的点的轨迹.二、圆锥曲线的标准方程(1)椭圆:焦点在轴上时()(为参数),焦点在轴上时=1()(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。

(3)抛物线:开口向右时, 开口向左时,开口向上时, 开口向下时。

三:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。

如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

【特别提醒】在椭圆中,最大,,在双曲线中,最大,。

四、圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,(越小,椭圆越圆;越大,椭圆越扁。

)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤两条渐近线:⑥离心率:,双曲线,(越小,开口越小,越大,开口越大;)(3)抛物线(以为例)-----的几何意义是:焦点到准线的距离:①范围:;②焦点:一个焦点,③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

圆锥曲线的定义

圆锥曲线的定义

序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!
抛物线——平面内与一定点F和一定直线l的距离相等 的点的轨迹叫做抛物线.点F叫做抛物线的焦点。直线l 叫做抛物线的准线。
2、第二定义 点M(x,y)到定点F的距离与它到定直线l的距离的 比是常数e(e>0)的点的轨迹,0<e<1时是椭圆; e=1 时是抛物线; e>1时是双曲线.e为离心率。
例1、椭圆
Y
P M
F1 O
F2
X
例倾斜4、角若为过60椭°圆的X_a直_22 线+交Y_b_22椭圆= 于1(aA>、bB>两0点)的,左且焦点F 1 、
|AF1|=2|BF1|,求椭圆的离心率。

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。

下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。

根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。

1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。

即|PF1| + |PF2| = 2a。

椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。

3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。

即|PF| = |PM|,其中M是直线L上的一点。

抛物线对应的方程为\(y^2 = 2px\)。

二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。

B. 椭圆的离心率e的范围为0<e<1。

C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。

3. 抛物线的性质:A. 抛物线的焦点为定点F。

B. 抛物线的离心率e=1。

C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。

三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。

2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。

3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。

高三关于圆锥曲线的知识点

高三关于圆锥曲线的知识点

高三关于圆锥曲线的知识点圆锥曲线是高中数学学科中一个重要的知识点,它涉及了从代数、几何以及计算器操作等多个方面。

下面就让我们来系统性地了解和掌握圆锥曲线的相关知识。

一、圆锥曲线的定义和分类圆锥曲线是由一个固定点(称为焦点)和到这个点的距离与到一条直线(称为准线)的距离之比等于一个常数(称为离心率)的点构成的集合。

根据离心率的不同,圆锥曲线分为三类:当离心率为0时,是椭圆;当离心率为1时,是抛物线;当离心率大于1时,是双曲线。

二、椭圆的性质和方程椭圆是圆锥曲线中最简单的一类曲线。

它具有很多有趣的性质。

例如,椭圆的对称轴是准线上的线段,焦点在对称轴上,并且椭圆上的任意一点到焦点的距离和到准线的距离之和是一个常数。

椭圆的方程一般为x²/a²+y²/b²=1,其中a和b分别是椭圆的长半轴和短半轴。

三、抛物线的性质和方程抛物线与椭圆相比,更加特殊一些。

它的准线是水平的直线,焦点在准线之上。

抛物线有一个很重要的性质,就是焦点到准线的距离等于焦点到抛物线上任意一点的距离。

抛物线的方程可以有多种形式,例如:y²=4ax和x²=4ay。

其中,焦点在原点,准线与x轴平行,a是一个常数。

四、双曲线的性质和方程双曲线是圆锥曲线中最复杂的一类曲线。

它的准线有两条,且并不平行。

双曲线有两个焦点和两个顶点,同时还有两条渐近线。

它具有很多有趣的性质,例如,双曲线的各个点到焦点的距离差的绝对值等于到准线的距离差的绝对值之比等于一个常数。

双曲线的方程一般有两种形式:x²/a²-y²/b²=1和y²/b²-x²/a²=1,其中a和b分别是双曲线的半轴。

五、圆锥曲线的应用除了了解圆锥曲线的性质和方程,我们还可以通过几何和代数的方法来解决实际问题。

例如,我们可以利用椭圆的性质来解决地球上船只航行问题;我们可以利用抛物线的性质来解决物体抛射问题;我们可以利用双曲线的性质来解决电磁波传播问题等等。

2017届高三文科数学二轮复习:第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质

2017届高三文科数学二轮复习:第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质

突破点12圆锥曲线的定义、方程、几何性质提炼1 圆锥曲线的定义 (1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M (l 为抛物线的准线). 提炼2 圆锥曲线的重要性质 (1)椭圆、双曲线中a ,b ,c 之间的关系 ①在椭圆中:a 2=b 2+c 2;离心率为e =ca =1-b 2a 2; ②在双曲线中:c 2=a 2+b 2;离心率为e =ca =1+b 2a 2.(2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ;焦点坐标F 1(-c,0),F 2(c,0);②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±ab x ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=±2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫±p 2,0,准线方程为x =∓p 2; ②抛物线x 2=±2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,±p 2,准线方程为y =∓p 2. 提炼3 弦长问题 (1)直线与圆锥曲线相交时的弦长斜率为k 的直线与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2或|AB |=1+⎝ ⎛⎭⎪⎫1k 2|y 1-y 2|=1+⎝ ⎛⎭⎪⎫1k 2(y 1+y 2)2-4y 1y 2. (2)抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则①x 1x 2=p 24,y 1y 2=-p 2;②弦长|AB |=x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角);③1|F A |+1|FB |=2p ;④以弦AB 为直径的圆与准线相切.回访1 圆锥曲线的定义与方程1.(2016·天津高考)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1D 由题意知双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b4+b 2,或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b4+b2,即第一象限的交点为⎝ ⎛⎭⎪⎫44+b 2,2b 4+b 2. 由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b 4+b2,故8×4b 4+b 2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.故选D.]2.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B.6C.12D.7 3C ∵F 为抛物线C :y 2=3x 的焦点, ∴F ⎝ ⎛⎭⎪⎫34,0,∴AB 的方程为y -0=tan 30°⎝ ⎛⎭⎪⎫x -34, 即y =33x -34.联立⎩⎨⎧y 2=3x ,y =33x -34,得13x 2-72x +316=0.∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p , ∴|AB |=212+32=12.]回访2 圆锥曲线的重要性质3.(2016·全国乙卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B.]4.(2016·北京高考)双曲线x2a2-y2b2=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=________.2不妨令B为双曲线的右焦点,A在第一象限,则双曲线如图所示.∵四边形OABC为正方形,|OA|=2,∴c=|OB|=22,∠AOB=π4.∵直线OA是渐近线,方程为y=ba x,∴ba=tan∠AOB=1,即a=b.又∵a2+b2=c2=8,∴a=2.] 回访3弦长问题5.(2015·全国卷Ⅰ)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=() A.3 B.6C.9D.12B抛物线y2=8x的焦点为(2,0),∴椭圆中c=2,又ca=12,∴a=4,b2=a2-c2=12,从而椭圆方程为x216+y212=1.∵抛物线y2=8x的准线为x=-2,∴x A=x B=-2,将x A=-2代入椭圆方程可得|y A|=3,由图象可知|AB|=2|y A|=6.故选B.]6.(2013·全国卷Ⅰ)O为坐标原点,F为抛物线C:y2=42x的焦点,P为C 上一点,若|PF|=42,则△POF的面积为()A.2 B.2 2C.2 3D.4C设P(x0,y0),则|PF|=x0+2=42,∴x0=32,∴y20=42x0=42×32=24,∴|y0|=2 6.∵F(2,0),∴S△POF =12|OF|·|y0|=12×2×26=2 3.]热点题型1 圆锥曲线的定义、标准方程题型分析:圆锥曲线的定义、标准方程是高考常考内容,主要以选择、填空的形式考查,解题时分两步走:第一步,依定义定“型”,第二步,待定系数法求“值”.(1)(2016·全国乙卷)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3) B.(-1,3) C.(0,3)D.(0,3)(2)(2016·通化一模)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP→=4FQ →,则|QF |=( ) A.72 B.3 C.52D.2(1)A (2)B (1)若双曲线的焦点在x 轴上,则⎩⎨⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎨⎧1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为 y 2n -3m 2-x 2-m 2-n =1,即⎩⎨⎧n -3m 2>0,-m 2-n >0, 即n >3m 2且n <-m 2,此时n 不存在.故选A.(2)如图所示,因为FP→=4FQ →,所以|PQ ||PF |=34,过点Q 作QM ⊥l 垂足为M ,则MQ ∥x 轴,所以|MQ|4=|PQ ||PF |=34,所以|MQ |=3,由抛物线定义知|QF |=|QM |=3.]求解圆锥曲线标准方程的方法是“先定型,后计算”1.定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.2.计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).变式训练1] (1)(2016·郑州二模)经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( )【导学号:85952050】A.x 2113-y 211=1 B.x 22-y 2=1 C.y 2113-x 211=1 D.y 211-x 2113=1(2)(2016·合肥二模)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .±3 B.±1 C.±34D.±33(1)A (2)A (1)设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b 2=1,则有⎩⎪⎨⎪⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,故选A. (2)设M (x 0,y 0),由题意x 0+p2=2p ,则x 0=3p 2,从而y 20=3p 2,则M ⎝ ⎛⎭⎪⎫3p 2,3p 或M ⎝ ⎛⎭⎪⎫3p 2,-3p ,又F ⎝ ⎛⎭⎪⎫p 2,0,则k MF=±3.]热点题型2 圆锥曲线的几何性质题型分析:圆锥曲线的几何性质是高考考查的重点和热点,其中求圆锥曲线的离心率是最热门的考点之一,建立关于a ,c 的方程或不等式是求解的关键.(1)(2016·全国丙卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34(2)(2016·西安三模)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B ,C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3x B.y =±22x C.y =±(3+1)xD.y =±(3-1)x(1)A (2)C (1)如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 由PF ⊥x 轴得P ⎝ ⎛⎭⎪⎫-c ,b 2a .设E (0,m ),又PF∥OE,得|MF||OE|=|AF||AO|,则|MF|=m(a-c)a.①又由OE∥MF,得12|OE||MF|=|BO||BF|,则|MF|=m(a+c)2a.②由①②得a-c=12(a+c),即a=3c,所以e=ca=13.故选A.(2)由题意作出示意图,易得直线BC的斜率为ab,cos∠CF1F2=bc,又由双曲线的定义及|BC|=|CF2|可得|CF1|-|CF2|=|BF1|=2a,|BF2|-|BF1|=2a⇒|BF2|=4a,故cos∠CF1F2=bc=4a2+4c2-16a22×2a×2c⇒b2-2ab-2a2=0⇒⎝⎛⎭⎪⎫ba2-2⎝⎛⎭⎪⎫ba-2=0⇒ba =1+3,故双曲线的渐近线方程为y=±(3+1)x.]1.求椭圆、双曲线离心率(离心率范围)的方法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a,b,c 的等量关系或不等关系,然后把b用a,c代换,求ca的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得.(2)用法:①可得ba或ab的值.②利用渐近线方程设所求双曲线的方程.变式训练2] (1)(2016·全国甲卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.2(2)(名师押题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )【导学号:85952051】A.22B.2- 3C.5-2D.6- 3(1)A (2)D (1)法一:如图,因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.法二:如图,因为MF 1⊥x 轴,所以|MF 1|=b 2a.在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得 tan ∠MF 2F 1=24.所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24, 整理得c 2-22ac -a 2=0,两边同除以a2得e2-22e-1=0.解得e=2(负值舍去).(2)设|F1F2|=2c,|AF1|=m,若△F1AB是以A为直角顶点的等腰直角三角形,∴|AB|=|AF1|=m,|BF1|=2m.由椭圆的定义可知△F1AB的周长为4a,∴4a=2m+2m,m=2(2-2)a.∴|AF2|=2a-m=(22-2)a.∵|AF1|2+|AF2|2=|F1F2|2,∴4(2-2)2a2+4(2-1)2a2=4c2,∴e2=9-62,e=6- 3.]。

圆锥曲线的定义与基本性质

圆锥曲线的定义与基本性质

圆锥曲线的定义与基本性质圆锥曲线是仿射空间中的一类特殊曲线,由一个固定点(焦点)到一个固定直线(准线)上所有点的距离与一个常数之比为定值的点构成。

圆锥曲线包括椭圆、双曲线和抛物线三种类型。

在本文中,我们将探讨圆锥曲线的一些基本定义及性质。

一、圆锥曲线的定义圆锥曲线是由一个固定点 p(称为焦点)和一个不包含 p 点的直线 l(称为准线)所确定的曲线。

圆锥体沿着准线 l 延伸,取一个点 r,使得 pr:rd 是定值,其中 d 为点 r 到直线 l 的距离。

设 F1,F2 是焦点,l 为准线,e 为离心率,则 e=PF1/PS,其中 S 是公共焦点。

- 当 e<1 时,得到椭圆;- 当 e=1 时,得到抛物线;- 当 e>1 时,得到双曲线。

例如,下图中,以点 F 为焦点,线段 CD 为准线,且焦距PF/CD=1/2,得到的曲线就是抛物线。

二、圆锥曲线的参数方程对于椭圆而言,可以使用参数方程来描述:x=a cos⁡ty=b sin⁡t其中 a 和 b 分别代表椭圆在 x 轴和 y 轴方向上的半径,t 为变量。

类似的,可以得到双曲线和抛物线的参数方程。

三、圆锥曲线的焦点和直径对于圆锥曲线,焦点和直径是十分重要的性质之一。

对于椭圆而言,每一条直径的中点都会落在坐标系的第一象限中,且椭圆的两个焦点都位于坐标轴上。

对于双曲线而言,每一条直径的中点都会落在 x 轴中线上,且双曲线的两个焦点都位于 x 轴上。

对于抛物线而言,它没有焦点,但总存在一个顶点,即曲线的最高点或最低点,每一条与顶点连线垂直于开口的那一侧的直线都称为该抛物线的一条直径。

四、圆锥曲线的离心率和倾角离心率 e 是一个很重要的度量曲线形状的参数,表示焦点与准线之间距离的比值。

其定义为 e=PF/PS,其中 PF 为焦点到曲线表面上一点的距离,PS 为焦点到准线的距离。

而圆锥曲线的倾角则是准线与 x 轴的夹角。

对于椭圆和双曲线而言,倾角的值随着离心率的增大而减小,对于抛物线而言,则为 45 度。

圆锥曲线的定义、概念与定理

圆锥曲线的定义、概念与定理

圆锥曲线的定义、概念与定理圆锥曲线包括椭圆,抛物线,双曲线。

那么你对圆锥曲线的定义了解多少呢?以下是由店铺整理关于圆锥曲线的定义的内容,希望大家喜欢!圆锥曲线的定义几何观点用一个平面去截一个二次锥面,得到的交线就称为圆锥曲线(conic sections)。

通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。

具体而言:1) 当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。

2) 当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

3) 当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。

4) 当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。

5) 当平面只与二次锥面一侧相交,且过圆锥顶点,结果为一点。

6) 当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。

7) 当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

代数观点在笛卡尔平面上,二元二次方程的图像是圆锥曲线。

根据判别式的不同,也包含了椭圆、双曲线、抛物线以及各种退化情形。

焦点--准线观点(严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。

但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质)。

给定一点P,一直线L以及一非负实常数e,则到P的距离与L距离之比为e的点的轨迹是圆锥曲线。

根据e的范围不同,曲线也各不相同。

具体如下:1) e=0,轨迹为圆(椭圆的特例);2) e=1(即到P与到L距离相同),轨迹为抛物线 ;3) 0<e<1,轨迹为椭圆;4) e>1,轨迹为双曲线的一支。

圆锥曲线的概念(以下以纯几何方式叙述主要的圆锥曲线通用的概念和性质,由于大部分性质是在焦点-准线观点下定义的,对于更一般的退化情形,有些概念可能不适用。

)考虑焦点--准线观点下的圆锥曲线定义。

高三文科数学(通用版)二轮复习第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质 Word版含解析

高三文科数学(通用版)二轮复习第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质 Word版含解析

突破点圆锥曲线的定义、方程、几何性质提炼圆锥曲线的定义()椭圆:+=(>).()双曲线:-=(<).()抛物线:=,点不在直线上,⊥于(为抛物线的准线).提炼圆锥曲线的重要性质()椭圆、双曲线中,,之间的关系①在椭圆中:=+;离心率为==;②在双曲线中:=+;离心率为==.()双曲线的渐近线方程与焦点坐标①双曲线-=(>,>)的渐近线方程为=±;焦点坐标(-),();②双曲线-=(>,>)的渐近线方程为=±,焦点坐标(,-),(,).()抛物线的焦点坐标与准线方程①抛物线=±(>)的焦点坐标为,准线方程为=∓;②抛物线=±(>)的焦点坐标为,准线方程为=∓.提炼弦长问题()直线与圆锥曲线相交时的弦长斜率为的直线与圆锥曲线交于点(,),(,)时,=-=或=-=.()抛物线焦点弦的几个常用结论设是过抛物线=(>)焦点的弦,若(,),(,),则①=,=-;②弦长=++=(α为弦的倾斜角);③+=;④以弦为直径的圆与准线相切.回访圆锥曲线的定义与方程.(·天津高考)已知双曲线-=(>),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于,,,四点,四边形的面积为,则双曲线的方程为( )-=-=-=-=由题意知双曲线的渐近线方程为=±,圆的方程为+=,联立(\\(+=,=(),))解得错误!或错误!即第一象限的交点为.由双曲线和圆的对称性得四边形为矩形,其相邻两边长为,,故=,得=.故双曲线的方程为-=.故选.].(·全国卷Ⅱ)设为抛物线:=的焦点,过且倾斜角为°的直线交于,两点,则=( )∵为抛物线:=的焦点,∴,∴的方程为-=°,即=-.联立错误!得错误!-错误!+错误!=.∴+=-=,即+=.由于=++,∴=+=.]回访圆锥曲线的重要性质.(·全国乙卷)直线经过椭圆的一个顶点和一个焦点,若椭圆中心到的距离为其短轴长的,则该椭圆的离心率为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点12圆锥曲线的定义、方程、几何性质提炼1 圆锥曲线的定义 (1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M (l 为抛物线的准线). 提炼2 圆锥曲线的重要性质 (1)椭圆、双曲线中a ,b ,c 之间的关系 ①在椭圆中:a 2=b 2+c 2;离心率为e =ca =1-b 2a 2; ②在双曲线中:c 2=a 2+b 2;离心率为e =ca =1+b 2a 2.(2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ;焦点坐标F 1(-c,0),F 2(c,0);②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±ab x ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=±2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫±p 2,0,准线方程为x =∓p 2; ②抛物线x 2=±2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,±p 2,准线方程为y =∓p 2. 提炼3 弦长问题 (1)直线与圆锥曲线相交时的弦长斜率为k 的直线与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2或|AB |=1+⎝ ⎛⎭⎪⎫1k 2|y 1-y 2|=1+⎝ ⎛⎭⎪⎫1k 2(y 1+y 2)2-4y 1y 2. (2)抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则①x 1x 2=p 24,y 1y 2=-p 2;②弦长|AB |=x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角);③1|F A |+1|FB |=2p ;④以弦AB 为直径的圆与准线相切.回访1 圆锥曲线的定义与方程1.(2016·天津高考)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1D 由题意知双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b4+b 2,或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b4+b2,即第一象限的交点为⎝ ⎛⎭⎪⎫44+b2,2b 4+b 2. 由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b 4+b2,故8×4b 4+b 2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.故选D.]2.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B.6C.12D.7 3C ∵F 为抛物线C :y 2=3x 的焦点, ∴F ⎝ ⎛⎭⎪⎫34,0,∴AB 的方程为y -0=tan 30°⎝ ⎛⎭⎪⎫x -34, 即y =33x -34.联立⎩⎨⎧y 2=3x ,y =33x -34,得13x 2-72x +316=0.∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p , ∴|AB |=212+32=12.]回访2 圆锥曲线的重要性质3.(2016·全国乙卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B.]4.(2016·北京高考)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.2 不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线如图所示. ∵四边形OABC 为正方形,|OA |=2, ∴c =|OB |=22,∠AOB =π4. ∵直线OA 是渐近线,方程为y =ba x , ∴ba =tan ∠AOB =1,即a =b . 又∵a 2+b 2=c 2=8,∴a =2.] 回访3 弦长问题5.(2015·全国卷Ⅰ)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3 B.6 C.9D.12B 抛物线y 2=8x 的焦点为(2,0), ∴椭圆中c =2,又c a =12,∴a =4,b 2=a 2-c 2=12, 从而椭圆方程为x 216+y 212=1. ∵抛物线y 2=8x 的准线为x =-2, ∴x A =x B =-2,将x A =-2代入椭圆方程可得|y A |=3,由图象可知|AB|=2|y A|=6.故选B.]6.(2013·全国卷Ⅰ)O为坐标原点,F为抛物线C:y2=42x的焦点,P为C 上一点,若|PF|=42,则△POF的面积为()A.2 B.2 2C.2 3D.4C设P(x0,y0),则|PF|=x0+2=42,∴x0=32,∴y20=42x0=42×32=24,∴|y0|=2 6.∵F(2,0),∴S△POF =12|OF|·|y0|=12×2×26=2 3.]热点题型1 圆锥曲线的定义、标准方程题型分析:圆锥曲线的定义、标准方程是高考常考内容,主要以选择、填空的形式考查,解题时分两步走:第一步,依定义定“型”,第二步,待定系数法求“值”.(1)(2016·全国乙卷)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3) B.(-1,3) C.(0,3)D.(0,3)(2)(2016·通化一模)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP→=4FQ →,则|QF |=( ) A.72 B.3 C.52D.2(1)A (2)B (1)若双曲线的焦点在x 轴上,则⎩⎨⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎨⎧1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎨⎧n -3m 2>0,-m 2-n >0, 即n >3m 2且n <-m 2,此时n 不存在.故选A.(2)如图所示,因为FP→=4FQ →,所以|PQ ||PF |=34,过点Q 作QM ⊥l 垂足为M ,则MQ ∥x 轴,所以|MQ |4=|PQ ||PF |=34,所以|MQ |=3,由抛物线定义知|QF |=|QM |=3.]求解圆锥曲线标准方程的方法是“先定型,后计算”1.定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.2.计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).变式训练1] (1)(2016·郑州二模)经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( )【导学号:85952050】A.x 2113-y 211=1 B.x 22-y 2=1 C.y 2113-x 211=1 D.y 211-x 2113=1(2)(2016·合肥二模)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .±3 B.±1 C.±34D.±33(1)A (2)A (1)设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b 2=1,则有⎩⎪⎨⎪⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,故选A. (2)设M (x 0,y 0),由题意x 0+p2=2p ,则x 0=3p 2,从而y 20=3p 2,则M ⎝ ⎛⎭⎪⎫3p 2,3p 或M ⎝ ⎛⎭⎪⎫3p 2,-3p ,又F ⎝ ⎛⎭⎪⎫p 2,0,则k MF =±3.]热点题型2 圆锥曲线的几何性质题型分析:圆锥曲线的几何性质是高考考查的重点和热点,其中求圆锥曲线的离心率是最热门的考点之一,建立关于a ,c 的方程或不等式是求解的关键.(1)(2016·全国丙卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34(2)(2016·西安三模)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B ,C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3x B.y =±22x C.y =±(3+1)xD.y =±(3-1)x(1)A (2)C (1)如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 由PF ⊥x 轴得P ⎝ ⎛⎭⎪⎫-c ,b 2a .设E (0,m ),又PF ∥OE ,得|MF ||OE |=|AF ||AO |, 则|MF |=m (a -c )a .①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |, 则|MF |=m (a +c )2a .②由①②得a -c =12(a +c ),即a =3c , 所以e =c a =13.故选A.(2)由题意作出示意图,易得直线BC 的斜率为ab ,cos ∠CF 1F 2=bc ,又由双曲线的定义及|BC |=|CF 2|可得|CF 1|-|CF 2|=|BF 1|=2a , |BF 2|-|BF 1|=2a ⇒|BF 2|=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a 22×2a ×2c⇒b 2-2ab -2a 2=0⇒⎝ ⎛⎭⎪⎫b a 2-2⎝ ⎛⎭⎪⎫b a -2=0⇒b a=1+3,故双曲线的渐近线方程为y =±(3+1)x .]1.求椭圆、双曲线离心率(离心率范围)的方法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca 的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或ab 的值.②利用渐近线方程设所求双曲线的方程.变式训练2] (1)(2016·全国甲卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.2(2)(名师押题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )【导学号:85952051】A.22B.2- 3C.5-2D.6- 3(1)A (2)D (1)法一:如图,因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =c a = 2.法二:如图,因为MF 1⊥x 轴,所以|MF 1|=b 2a.在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得 tan ∠MF 2F 1=24.所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24, 整理得c 2-22ac -a 2=0,数学学习资料数学学习资料 两边同除以a 2得e 2-22e -1=0.解得e =2(负值舍去).(2)设|F 1F 2|=2c ,|AF 1|=m , 若△F 1AB 是以A 为直角顶点的等腰直角三角形, ∴|AB |=|AF 1|=m ,|BF 1|=2m . 由椭圆的定义可知△F 1AB 的周长为4a , ∴4a =2m +2m ,m =2(2-2)a . ∴|AF 2|=2a -m =(22-2)a . ∵|AF 1|2+|AF 2|2=|F 1F 2|2,∴4(2-2)2a 2+4(2-1)2a 2=4c 2, ∴e 2=9-62,e =6- 3.]。

相关文档
最新文档