高三数学第3周教学设计(第4节 二次函数与幂函数)

合集下载

2017数学(理)一轮教学案:第二章第4讲 二次函数与幂函数

2017数学(理)一轮教学案:第二章第4讲 二次函数与幂函数

第4讲二次函数与幂函数考纲展示命题探究1二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a≠0).(2)顶点式:y=a(x-h)2+k(a≠0),其中(h,k)为抛物线顶点坐标.(3)两点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x 轴交点的横坐标.2二次函数的图象与性质y min=4ac-b24a y max=4ac-b24a注意点解决二次函数问题应用数形结合思想二次函数、一元二次方程和一元二次不等式统称为三个“二次”.它们常结合在一起,而二次函数又是其核心.因此,利用二次函数的图象数形结合是探求这类问题的基本策略.1.思维辨析(1)形如y=ax2+bx+c的函数一定是二次函数.()(2)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.()(3)二次函数y=ax2+bx+c,x∈[m,n]的最值一定是4ac-b24a.()(4)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.()(5)已知f(x)=x2-4x+5,x∈[0,3),则f(x)max=f(0)=5,f(x)min=f(3)=2.()答案(1)×(2)×(3)×(4)×(5)×2.已知函数f(x)=-x2+4x+a,x∈[0,1].若f(x)有最小值-2,则f(x)的最大值为()A.-1 B.0C.1 D.2答案 C解析函数f(x)=-x2+4x+a的对称轴为直线x=2,开口向下,f(x)=-x2+4x+a在[0,1]上单调递增,则当x=0时,f(x)的最小值为f(0)=a=-2;当x=1时,f(x)的最大值为f(1)=3+a=3-2=1,选C.3.(1)已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a 的取值范围是________.(2)已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则y =f (x )的值域为______.答案 (1)(0,8) (2)⎣⎢⎡⎦⎥⎤1,3127 解析 (1)由题意知,Δ=(-a )2-8a <0,解得0<a <8. (2)∵f (x )=ax 2+bx +3a +b 是偶函数, ∴其定义域[a -1,2a ]关于原点对称, ∴即a -1=-2a ,∴a =13, ∵f (x )=ax 2+bx +3a +b 是偶函数, 即f (-x )=f (x ),∴b =0,∴f (x )=13x 2+1,x ∈⎣⎢⎡⎦⎥⎤-23,23,其值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪1≤y ≤3127.[考法综述] 高考中以考查二次函数的图象、单调性、最值为主,有二次不等式恒成立问题以及二次方程根的分布问题等.命题法 二次函数的图象及性质的应用典例 (1)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( ) A .②④ B .①④ C .②③D .①③(2)已知对任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <2或x >3[解析] (1)因为图象与x 轴有两个交点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误; 由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.(2)f (x )=x 2+(a -4)x +4-2a =(x -2)a +(x 2-4x +4).记g (a )=(x -2)a +(x 2-4x +4),由题意可得⎩⎨⎧g (-1)>0,g (1)>0,即⎩⎨⎧g (-1)=x 2-5x +6>0,g (1)=x 2-3x +2>0,解得x <1或x >3.故选B.[答案] (1)B (2)B【解题法】 二次函数问题的求解策略(1)二次函数的最值问题一般先配方,通过对称轴,开口方向等特征求得,有时需要讨论,如动轴定区间问题和定轴动区间问题.(2)与二次函数图象有关的问题采用数形结合的方法,需尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标轴的交点要标清楚.1.如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( ) A .16 B .18C .25 D.812答案 B解析 由已知得f ′(x )=(m -2)x +n -8,又对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以⎩⎨⎧f ′⎝ ⎛⎭⎪⎫12≤0f ′(2)≤0,即⎩⎪⎨⎪⎧m ≥0,n ≥0m +2n ≤182m +n ≤12,画出该不等式组表示的平面区域如图中阴影部分所示,令mn =t ,则当n =0时,t =0,当n ≠0时,m =tn .由线性规划的相关知识知,只有当直线2m +n =12与曲线m =tn 相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-126-12n =tn,解得n =6,t =18,所以(mn )max =18,选B.2.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0答案 A解析 由f (0)=f (4)得f (x )=ax 2+bx +c 的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),∴f (x )先减后增,∴a >0,选A.3.两个二次函数f (x )=ax 2+bx +c 与g (x )=bx 2+ax +c 的图象可能是( )答案 D解析 函数f (x )图象的对称轴为x =-b2a ,函数g (x )图象的对称轴为x =-a 2b ,显然-b 2a 与-a2b 同号,故两个函数图象的对称轴应该在y 轴的同侧,只有D 满足.故选D.4.若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,则a 的取值范围是________.答案 (-∞,2]解析 f (x )=cos2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝ ⎛⎭⎪⎫π6,π2,则t ∈⎝ ⎛⎭⎪⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1上是减函数,结合抛物线图象可知,a 4≤12,所以a ≤2.5.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.答案 2或-1解析 f (x )=-(x -a )2+a 2-a +1,在x ∈[0,1]时, 当a ≥1时,f (x )max =f (1)=a ; 当0<a <1时,f (x )max =f (a )=a 2-a +1; 当a ≤0时,f (x )max =f (0)=1-a .根据已知条件得,⎩⎨⎧a ≥1,a =2或⎩⎨⎧0<a <1,a 2-a +1=2或⎩⎨⎧a ≤0,1-a =2.解得a =2或a =-1.6.对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c 的最小值为________.答案 -2解析 设2a +b =t ,则2a =t -b ,由已知得关于b 的方程(t -b )2-b (t -b )+4b 2-c =0有解,即6b 2-3tb +t 2-c =0有解.故Δ=9t 2-24(t 2-c )≥0,所以t 2≤85c ,所以|t |max =210c 5,此时c =58t 2,b =14t ,2a =t -b =3t4,所以a =3t 8.故3a -4b +5c =8t -16t +8t 2=8⎝ ⎛⎭⎪⎫1t 2-1t=8⎝ ⎛⎭⎪⎫1t -122-2≥-2. 7.已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.答案 (0,1)∪(9,+∞)解析 在同一坐标系中分别作出函数f (x )与y =a |x -1|的图象,由图知,当a =0时,两函数的图象只有2个交点,当a <0时,两图象没有交点,故必有a >0.若曲线y =-x 2-3x (-3≤x ≤0)与直线y =-a (x -1)(x ≤1)相切,联立方程得x 2+(3-a )x +a =0,则由Δ=0得a =1(a =9舍去),因此当0<a <1时,f (x )的图象与y =a |x -1|的图象有4个交点;若曲线y =x 2+3x (x >0)与直线y =a (x -1)(x >1)相切,联立方程得x 2+(3-a )x +a =0,则由Δ=0可得a =9(a =1舍去),因此当a >9时,f(x)的图象与y=a|x-1|的图象有4个交点,故当方程有4个互异实数根时,实数a的取值范围是(0,1)∪(9,+∞).1幂函数的定义一般地,形如y=xα(α∈R)的函数称为幂函数.2五种幂函数图象的比较3幂函数的性质比较注意点α的大小对幂函数图象的影响幂函数在第一象限的图象中,以直线x=1为分界,当0<x<1时,α越大,图象越低(即图象越靠近x轴,可记为“指大图低”);当x>1时,α越大,图象越高(即图象离x轴越远,不包含y=x0).1.思维辨析(1)函数y=2x 12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当n<0时,幂函数y=x n是定义域上的减函数.()(4)当n>0时,幂函数y=x n是定义域上的增函数.()(5)幂函数的图象都经过点(1,1)和点(0,0).()答案(1)×(2)√(3)×(4)×(5)×2.当x∈(1,+∞)时,下列函数中图象全在直线y=x下方的增函数是()A.y=x 12B.y=x2C.y=x3D.y=x-1答案 A解析y=x2,y=x3在x∈(1,+∞)时,图象不在直线y=x下方,排除B、C,而y=x-1是(-∞,0),(0,+∞)上的减函数.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b )答案 C解析 因为函数f (x )=x 12 在(0,+∞)上是增函数,又0<a <b <1b <1a ,故选C.[考法综述] 考查幂函数的概念、图象及性质,以及利用幂函数性质求参数范围,有时会结合指数、对数比较大小,难度不大.命题法 幂函数的图象及性质的应用典例 (1)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( )(2)若a =⎝ ⎛⎭⎪⎫12 23 ,b =⎝ ⎛⎭⎪⎫15 23 ,c =⎝ ⎛⎭⎪⎫12 13,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c[解析] (1)因为a >0,所以f (x )=x a 在(0,+∞)上为增函数,故A 不符合;在B 中,由f (x )的图象知a >1,由g (x )的图象知0<a <1,矛盾,故B 不符合;在C 中,由f (x )的图象知0<a <1,由g (x )的图象知a >1,矛盾,故C 不符合;在D 中,由f (x )的图象知0<a <1,由g (x )的图象知0<a <1,相符.(2)因为y =x 23 在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫12 23 >b =⎝ ⎛⎭⎪⎫15 23 ,因为y =⎝ ⎛⎭⎪⎫12x 是减函数,所以a =⎝ ⎛⎭⎪⎫12 23 <c =⎝ ⎛⎭⎪⎫12 13,所以b <a <c .[答案] (1)D (2)D【解题法】 幂函数的图象与性质问题的解题策略 (1)关于图象辨识问题,关键是熟悉各类幂函数的图象特征,如过特殊点、凹凸性等.(2)关于比较幂值大小问题,结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较或应用.1.若幂函数f (x )的图象经过点⎝⎛⎭⎪⎫3,33,则其定义域为( )A .{x |x ∈R ,且x >0}B .{x |x ∈R ,且x <0}C .{x |x ∈R ,且x ≠0}D .R答案 A解析 设f (x )=x α,∴3α=33,α=-12,f (x )=x -12, ∴其定义域为{x |x >0},选A 项.2.下面给出4个幂函数的图象,则图象与函数的大致对应是( )A .①y =x 13 ,②y =x 2,③y =x 12,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1 D .①y =x 13 ,②y =x 12,③y =x 2,④y =x -1 答案 B解析 ②的图象关于y 轴对称,②应为偶函数,故排除选项C 、D.①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A.选B.3.若f (x )=x 23 -x - 12,则满足f (x )<0的x 的取值范围是________.答案 (0,1)解析 令y 1=x 23 ,y 2=x - 12 ,则f (x )<0即为y 1<y 2.函数y 1=x 23,y 2=x - 12 的图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).4.已知幂函数f (x )=(m 2-m -1)·x -5m -3在(0,+∞)上是增函数,则m =________.答案 -1 解析由已知得⎩⎨⎧m 2-m -1=1,-5m -3>0,解得m =-1.已知x ∈[-1,1]时,f (x )=x 2-ax +a2>0恒成立,则实数a 的取值范围是( )A .(0,2)B .(2,+∞)C .(0,+∞)D.⎝ ⎛⎭⎪⎫-23,2[错解][正解] 二次函数图象开口向上,对称轴为x =a2,又x ∈[-1,1]时,f (x )=x 2-ax +a2>0恒成立,即f (x )最小值>0.①当a 2≤-1,即a ≤-2时,f (-1)=1+a +a 2>0,解得a >-23,与a ≤-2矛盾;②当a 2≥1,即a ≥2时,f (1)=1-a +a2>0,解得a <2,与a ≥2矛盾;③当-1<a2<1,即-2<a <2时,f ⎝ ⎛⎭⎪⎫a 2=14a 2-12a 2+a 2>0,解得0<a <2.综上得实数a 的取值范围是(0,2).[答案] A [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学周测]已知幂函数f (x )=(n 2+2n -2)x n2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1适合题意,故选B.2.[2016·冀州中学热身]若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )答案 A解析 函数f (x )=x 2+bx +c 图象的顶点坐标为⎝ ⎛⎭⎪⎪⎫-b 2,4c -b 24,则-b 2>0.f ′(x )=2x +b ,令f ′(x )=0,得x =-b2>0,即导函数f ′(x )的图象与x 轴的交点位于x 轴正半轴上,且斜率为正,故选A.3.[2016·枣强中学周测]定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈[0,1]时,f (x )=x 2-x ,则当x ∈[-2,-1]时,f (x )的最小值为( )A .-116B .-18 C .-14 D .0答案 A解析 设x ∈[-2,-1],则x +2∈[0,1],则f (x +2)=(x +2)2-(x +2)=x 2+3x +2,又f (x +2)=f [(x +1)+1]=2f (x +1)=4f (x ),∴f (x )=14(x 2+3x +2)∴当x =-32时,取到最小值为-116.4. [2016·冀州中学预测]对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1)答案 D解析 解不等式x 2-1-(4+x )≥1,得x ≤-2或x ≥3.所以f (x )=⎩⎨⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3).其图象如下图实线所示,由图可知,当-2≤k <1时,函数y =f (x )+k 的图象与x 轴恰有三个不同交点,故选D.5.[2016·衡水中学期末]幂函数f (x )=x α的图象过点(2,4),那么函数f (x )的单调递增区间是( )A .(-2,+∞)B .[-1,+∞)C .[0,+∞)D .(-∞,-2)答案 C解析 因为函数过点(2,4),所以4=2α,α=2,故f (x )=x 2,单调增区间为[0,+∞),选C.6.[2016·武邑中学期中]设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若a =c ,则函数f (x )的图象不可能是( )答案 D解析 由A 、B 、C 、D 四个选项知,图象与x 轴均有交点,记两个交点的横坐标分别为x 1,x 2,若只有一个交点,则x 1=x 2.因为a =c ,所以x 1x 2=ca =1,比较四个选项,可知选项D 的x 1<-1,x 2<-1,所以D 不满足.故选D.7. [2016·衡水中学期中]已知函数f (x )=a sin x -12cos2x +a -3a +12(a ∈R ,a ≠0),若对任意x ∈R 都有f (x )≤0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0 B .[-1,0)∪(0,1] C .(0,1] D .[1,3]答案 C解析 化简函数得f (x )=sin 2x +a sin x +a -3a .令t =sin x (-1≤t ≤1),则g (t )=t 2+at +a -3a ,问题转化为使g (t )在[-1,1]上恒有g (t )≤0,即⎩⎪⎨⎪⎧g (-1)=1-3a ≤0,g (1)=1+2a -3a ≤0,解得0<a ≤1,故选C.8.[2016·枣强中学猜题]若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,则f (x )的表达式为( )A .f (x )=-x 2-x -1B .f (x )=-x 2+x -1C .f (x )=x 2-x -1D .f (x )=x 2-x +1答案 D解析 设f (x )=ax 2+bx +c (a ≠0),由题意得 故⎩⎪⎨⎪⎧2a =2,a +b =0,c =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =1,则f (x )=x 2-x +1.故选D.9.[2016·衡水中学月考]“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分又不必要条件答案 B解析 函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数,则满足对称轴--4a2=2a ≤2,即a ≤1,所以“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的充分不必要条件.10.[2016·武邑中学周测]已知二次函数f (x )=ax 2+bx +c 满足条件:①f (3-x )=f (x );②f (1)=0;③对任意实数x ,f (x )≥14a -12恒成立. 则其解析式为f (x )=________. 答案 x 2-3x +2解析 依题意可设f (x )=a ⎝ ⎛⎭⎪⎫x -322+k ,由f (1)=14a +k =0,得k =-14a , 从而f (x )=a ⎝ ⎛⎭⎪⎫x -322-a 4≥14a -12恒成立,则-a 4≥14a -12,且a >0,即14a +a 4-12≤0,即a 2-2a +14a ≤0,且a >0,∴a =1. 从而f (x )=⎝ ⎛⎭⎪⎫x -322-14=x 2-3x +2. 11.[2016·冀州中学月考]已知二次函数图象的对称轴为x =-2,截x 轴所得的弦长为4,且过点(0,-1),求函数的解析式. 解 ∵二次函数图象的对称轴为x =-2,∴可设所求函数的解析式为f (x )=a (x +2)2+b .∵二次函数f (x )的图象截x 轴所得的弦长为4,∴f (x )过点(-2+2,0)和(-2-2,0).又二次函数f (x )的图象过点(0,-1),∴⎩⎨⎧4a +b =02a +b =-1,解得⎩⎪⎨⎪⎧a =12b =-2.∴f (x )=12(x +2)2-2.即f (x )=12x 2+2x -1.12.[2016·衡水中学周测]已知函数f (x )=ax 2-2ax +2+b (a ≠0)在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-2m x 在[2,4]上单调,求m 的取值范围. 解 (1)f (x )=a (x -1)2+2+b -a .①当a >0时,f (x )在[2,3]上为增函数,故⎩⎨⎧ f (3)=5,f (2)=2,∴⎩⎨⎧ 9a -6a +2+b =5,4a -4a +2+b =2,∴⎩⎨⎧a =1,b =0.②当a <0时,f (x )在[2,3]上为减函数,故⎩⎨⎧f (3)=2,f (2)=5,∴⎩⎨⎧9a -6a +2+b =2,4a -4a +2+b =5,∴⎩⎨⎧a =-1,b =3.∴a =1,b =0或a =-1,b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-2m x =x 2-(2+2m )x +2. 若g (x )在[2,4]上单调,则2+2m 2≤2或2m +22≥4,∴2m ≤2或2m ≥6,即m ≤1或m ≥log 26.故m 的取值范围是(-∞,1]∪[log 26,+∞).能力组13.[2016·枣强中学一轮检测]已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( )A .先减后增B .先增后减C .单调递减D .单调递增答案 D解析 当m =1时,f (x )=2x +3不是偶函数;当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增,故选D.14.[2016·武邑中学模拟]函数f (x )=ax 2+ax -1在R 上恒满足f (x )<0,则a 的取值范围是( )A .a ≤0B .a <-4C .-4<a <0D .-4<a ≤0答案 D解析 当a =0时,f (x )=-1在R 上恒有f (x )<0; 当a ≠0时,∵f (x )在R 上恒有f (x )<0,∴⎩⎪⎨⎪⎧a <0a 2+4a <0,∴-4<a <0. 综上可知:-4<a ≤0.15.[2016·冀州中学预测]当0<x <1时,函数f (x )=x ,g (x )=x ,h (x )=x -2的大小关系是________.答案 h (x )>g (x )>f (x )解析 如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知,h (x )>g (x )>f (x ).16.[2016·枣强中学周测]是否存在实数a ,使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,说明理由.解 f (x )=(x -a )2+a -a 2.当a <-1时,f (x )在[-1,1]上为增函数,∴⎩⎨⎧f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去);当-1≤a ≤0时,⎩⎨⎧f (a )=a -a 2=-2,f (1)=1-a =2⇒a =-1;当0<a ≤1时,⎩⎨⎧f (a )=a -a 2=-2,f (-1)=1+3a =2⇒a 不存在;当a >1时,f (x )在[-1,1]上为减函数,∴⎩⎨⎧f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在.综上可得a =-1.。

高三数学一轮总复习第二章函数导数及其应用2.4二次函数与幂函数课件

高三数学一轮总复习第二章函数导数及其应用2.4二次函数与幂函数课件

解析:(1)由于 f(x)有两个零点 0 和-2, 所以可设 f(x)=ax(x+2)(a≠0)。 这时 f(x)=ax(x+2)=a(x+1)2-a, 由于 f(x)有最小值-1,
所以必有-a>a0=,-1, 解得 a=1。 因此 f(x)的解析式是 f(x)=x(x+2)=x2+2x。
25
(2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式。 解析:(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点 P′(-x, -y)必在 f(x)图象上, 所以-y=(-x)2+2(-x), 即-y=x2-2x,y=-x2+2x, 故 g(x)=-x2+2x。
解析:因为函数 f(x)=4x2-mx+5 的单调递增区间为m8 ,+∞,所以m8 ≤2,即 m≤16。
答案:(-∞,16]
16
5.设函数 f(x)=mx2-mx-1,若 f(x)<0 的解集为 R,则实数 m 的取值范围是 __________。
m<0, 解析:当 m=0 时,显然成立;当 m≠0 时,Δ=-m2+4m<0, 解得-4<m <0。 综上可知,实数 m 的取值范围是(-4,0]。 答案:(-4,0]
26
►名师点拨 二次函数解析式的求法 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点坐标,宜选用一般式; (2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与 x 轴两交点坐标,宜选用两根式。
27
通关特训 2 已知二次函数 f(x)同时满足条件: (1)f(1+x)=f(1-x); (2)f(x)的最大值为 15; (3)f(x)=0 的两根平方和等于 17。 求 f(x)的解析式。 解析:依条件, 设 f(x)=a(x-1)2+15 (a<0), 即 f(x)=ax2-2ax+a+15。 令 f(x)=0,即 ax2-2ax+a+15=0, ∴x1+x2=2,x1x2=1+1a5。 x21+x22=(x1+x2)2-2x1x2=4-21+1a5=2-3a0=17, ∴a=-2,∴f(x)=-2x2+4x+13。

2.4幂函数与二次函数课件高三数学一轮复习

2.4幂函数与二次函数课件高三数学一轮复习

单调递减,则 n 的值为( B )
A.-3
B.1
C.2
D.1 或 2
【解析】 由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只 有 n=1 符合题意,故选 B.
12
12
11
3.若 a= 2 3 ,b= 5 3 ,c= 2 3 ,则 a,b,c 的大小关系是( D )
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
【解析】
∵y=x
2 3
(x>0)是增函数,∴a=12
2 3
>b=15
2 3
.∵y=12x 是减函数,
∴a=12
2 3
<c=12
1 3
,∴b<a<c.故选
D.
考点二 求二次函数的解析式
【例 1】 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是 8,试确 定此二次函数的解析式.
【思路探索】 根据 f(2),f(-1)可设一般式;根据 f(x)的最大值为 8,可设顶点式; 根据隐含的 f(2)+1=0,f(-1)+1=0 可考虑零点式.
【解】 解法一(利用一般式): 设 f(x)=ax2+bx+c(a≠0),
4a+2b+c=-1, 由题意得4aa-c4-ba+b2c==8-,1,
上单调
在x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba 对称
提醒:二次函数系数的特征 (1)二次函数 y=ax2+bx+c(a≠0)中,系数 a 的正负决定图象的开口方向及开口大小. (2)-2ba的值决定图象对称轴的位置. (3)c 的取值决定图象与 y 轴的交点. (4)b2-4ac 的正负决定图象与 x 轴的交点个数.

高考数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案理新人教A版

高考数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案理新人教A版

第四节 二次函数与幂函数2019考纲考题考情1.幂函数(1)定义:一般地,函数y =x α叫做幂函数,其中底数x 是自变量,α是常数。

(2)幂函数的图象比较:2.二次函数 (1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0)。

顶点式:f (x )=a (x -h )2+k (a ≠0)。

两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0)。

(2)图象与性质:与二次函数有关的不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0;(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0;(3)a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min 。

一、走进教材1.(必修1P 79习题T 1改编)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A .12B .1C .32D .2 解析 因为f (x )=k ·x α是幂函数,所以k =1。

又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,所以α=12,所以k +α=1+12=32。

故选C 。

答案 C2.(必修1P 38B 组T 1改编)函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值为________。

解析 函数y =2x 2-6x +3=2⎝ ⎛⎭⎪⎫x -322-32的图象的对称轴为直线x =32>1,所以函数y =2x 2-6x +3在[-1,1]上为单调递减函数,所以y min =2-6+3=-1。

答案 -1 二、走近高考3.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b 。

高考数学大一轮总复习 第二章 函数、导数及其应用 2.4 二次函数与幂函数名师课件 文 北师大版

高考数学大一轮总复习 第二章 函数、导数及其应用 2.4 二次函数与幂函数名师课件 文 北师大版

_奇__函__数____
__非__奇__非__偶_ __函__数_____
__奇__函__数___
函数
单调 性
y=x
y=x2
y=x3
在__(_-__∞__,__0_) _
_在__R_上__单___ 上__单__调__递__减__,_ _在__R__上__单__ 调__递__增___ 在__(_0_,__+__∞__)上_ _调__递__增____
2


D.

52-1,2
【解析】 因为函数 y=x21的定义域为[0,+∞), 且在定义域内为增函数,
所以不等式等价于 2mm2++m1≥-01,≥0, 2m+1>m2+m-1。
解 2m+1≥0,得 m≥-12;
- 解 m2+m-1≥0,得 m≤
25-1或 m≥
52-1。
解 2m+1>m2+m-1,得-1<m<2,
1
(2)幂函数 y=x,y=x2,y=x3,y=x2,y=x-1 的图像与性质
函数
y=x
定义域
R
值域
R
奇偶性 _奇__函__数____
y=x2 R
_{_y_|y_≥__0_}_
_偶__函__数Biblioteka __y=x3y=x-1
R
__{x_|_x_≥__0_}_ _{_x_|x_≠__0_}__
R
__{_y|_y_≥__0_} __{_y_|y_≠__0_}_
解析 正确。由幂函数的图像可知。
(6)关于
x
的不等式
ax2+bx+c>0
a>0, 恒成立的充要条件是b2-4ac<0。
( × )解析 错误。当 a=0,b=0,c>0 时也恒成立。ax2+bx+c>0(a≠0)恒

高三数学复习(理):第4讲 二次函数与幂函数

高三数学复习(理):第4讲 二次函数与幂函数

第4讲 二次函数与幂函数[学生用书P23]1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a 单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于x =-b2a 对称常用结论一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”;(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数y=2x 12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当n<0时,幂函数y=x n是定义域上的减函数.()(4)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(5)二次函数y=ax2+bx+c,x∈R不可能是偶函数.()(6)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案:(1)×(2)√(3)×(4)×(5)×(6)√二、易错纠偏常见误区|K(1)二次函数图象特征把握不准; (2)二次函数单调性规律掌握不到位;(3)忽视对二次函数的二次项系数的讨论出错; (4)对幂函数的概念理解不到位.1.如图,若a <0,b >0,则函数y =ax 2+bx 的大致图象是________.(填序号)解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a <0,b >0,所以二次函数图象的对称轴为x =-b2a >0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________.解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m <0,-12m ≤3,即m ≤-16. 答案:⎝ ⎛⎦⎥⎤-∞,-163.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 解析:因为函数f (x )=ax 2+x +5的图象在x 轴上方,所以⎩⎪⎨⎪⎧a >0,Δ=12-20a <0,解得a >120.答案:⎝ ⎛⎭⎪⎫120,+∞4.当x ∈(0,1)时,函数y =x m 的图象在直线y =x 的上方,则m 的取值范围是________.答案:(-∞,1)[学生用书P24]幂函数的图象及性质(自主练透)1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:选C.设幂函数f (x )=x α,代入点(3,33),得33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增.2.若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<mC .-1<m <0<nD .-1<n <0<m <1解析:选D.幂函数y =x α,当α>0时,y =x α在(0,+∞)上为增函数,且0<α<1时,图象上凸,所以0<m <1;当α<0时,y =x α在(0,+∞)上为减函数,不妨令x =2,根据图象可得2-1<2n ,所以-1<n <0,综上所述,选D.3.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析:选D.因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .4.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎢⎡⎭⎪⎫-1,23(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.二次函数的解析式(师生共研)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 方法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8, 即4a (-2a -1)-a 24a =8.解得a =-4,所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R .都有f (1+x )=f (1-x )成立,则f (x )的解析式为____________.解析:由f (0)=3,得c =3, 又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称, 所以b2=1,所以b =2, 所以f (x )=x 2-2x +3. 答案:f (x )=x 2-2x +32.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________________.解析:设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0),方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个根分别为x1,x2,则|x1-x2|=2-49a=7,所以a=-4,所以f(x)=-4x2-12x+40.答案:f(x)=-4x2-12x+40二次函数的图象与性质(多维探究)角度一通过图象识别二次函数如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结论是()A.②④B.①④C.②③D.①③【解析】因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x =-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.【答案】 B确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向.二是看对称轴和最值,它确定二次函数图象的具体位置.三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.角度二 二次函数的单调性函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是单调递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a 2a ,由f (x )在[-1,+∞)上单调递减知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]【迁移探究】 (变条件)若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),求a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调递减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.对于二次函数的单调性,关键是确定其图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.角度三 二次函数的最值问题设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.角度四 一元二次不等式恒成立问题(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为____________.【解析】 (1)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.(2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.所以g (x )min =g (-1)=1.所以k <1.故k 的取值范围为(-∞,1).【答案】 (1)⎝ ⎛⎭⎪⎫-22,0 (2)(-∞,1)由不等式恒成立求参数取值范围一般有两个解题思路:一是分离参数,二是不分离参数.两种思路都是将问题归结为求函数的最值,若不分离参数,则一般需要对参数进行分类讨论求解;若分离参数,则a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D.A 项,因为a <0,-b 2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错.B 项,因为a <0,-b 2a >0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错.C 项,因为a >0,-b 2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b 2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D.2.函数f (x )=ax 2-2x +3在区间[1,3]上为增函数的充要条件是( )A .a =0B .a <0C .0<a ≤13D .a ≥1解析:选D.当a =0时,f (x )为减函数,不符合题意;当a ≠0时,函数f (x )=ax 2-2x +3图象的对称轴为x =1a ,要使f (x )在区间[1,3]上为增函数,则⎩⎪⎨⎪⎧a <0,1a≥3或⎩⎪⎨⎪⎧a >0,1a≤1,解得a ≥1.故选D. 3.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16, 因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 答案:⎝ ⎛⎭⎪⎫-∞,12[学生用书P26]思想方法系列4 分类讨论思想在二次函数问题中的应用已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值.【解】 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减,所以f (x )min =f (1)=-2;(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a .①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,1上单调递增. 所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a ; ②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减.所以f (x )min =f (1)=a -2;(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减,所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1且a ≠0,-2,a =0,-1a ,a ≥1.二次函数是单峰函数(在定义域上只有一个最值点的函数),x =-b 2a 为其最值点的横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系进行分类讨论确定各种情况的最值,建立方程求解参数.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.[学生用书P281(单独成册)][A 级 基础练]1.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( )A .-1B .0C .1 D.-2解析:选D.函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.2.设函数f (x )=x 23,若f (a )>f (b ),则( )A .a 2>b 2B .a 2<b 2C .a <bD .a >b解析:选A.函数f (x )=x 23=(x 2)13,令t =x 2,易知y =t 13,在第一象限为单调递增函数.又f (a )>f (b ),所以a 2>b 2.故选A.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一直角坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:选A.由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a =2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0,故选A.5.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4]B .⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎣⎢⎡⎦⎥⎤32,3 解析:选D.二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示)可得m ∈⎣⎢⎡⎦⎥⎤32,3.6.已知函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上递减,则实数m=________.解析:根据幂函数的定义和性质,得m2-m-1=1.解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2.答案:27.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=13.所以y=13(x-3)2=13x2-2x+3.答案:y=13x2-2x+38.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是________.解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x=2+x+2-x2=2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.答案:[0,4]9.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴x=-32∈[-2,3],所以f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意.综上可知,a =-13或a =-1.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).[B 级 综合练]11.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a 2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a 2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关.故选B.12.已知函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与x 的值无关解析:选C.由题知二次函数f (x )的图象开口向下,图象的对称轴为x =14,因为x 1+x 2=0,所以直线x =x 1,x =x 2关于直线x =0对称,由x 1<x 2,结合二次函数的图象可知f (x 1)<f (x 2).13.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).答案:(0,2)14.已知幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增.(1)求m 的值及f (x )的解析式;(2)若函数g (x )=-3f 2(x )+2ax +1-a 在[0,2]上的最大值为3,求实数a的值.解:(1)幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增,故⎩⎪⎨⎪⎧(m -1)2=1,m 2-4m +3>0,解得m =0,故f (x )=x 3. (2)由f (x )=x 3,得g (x )=-3f (x )2+2ax +1-a =-x 2+2ax +1-a , 函数图象为开口方向向下的抛物线,对称轴为x =a .因为在[0,2]上的最大值为3,所以①当a ≥2时,g (x )在[0,2]上单调递增,故g (x )max =g (2)=3a -3=3,解得a =2.②当a ≤0时,g (x )在[0,2]上单调递减,故g (x )max =g (0)=1-a =3,解得a =-2.③当0<a <2时,g (x )在[0,a ]上单调递增,在[a ,2]上单调递减,故g (x )max =g (a )=a 2+1-a =3,解得a =-1(舍去)或a =2(舍去).综上所述,a =±2.[C 级 提升练]15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0. 故b 的取值范围是[-2,0].。

第三高考数学一轮复习 二次函数幂函数教案

第三高考数学一轮复习 二次函数幂函数教案

城东蜊市阳光实验学校第三中学高考数学一轮复习二次函数幂函数教案对称轴 顶点坐标 单调区间3、二次函数在区间上的最值问题。

设()2f x ax bx c =++,那么二次函数在闭区间[]n m ,上的最大、最小值有二次函数的图像与性质 〔1〕假设[]n m a b ,2∈-,那么()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,max max ,()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,min min ;〔2〕假设[]n m ab,2∉-,那么()()(){}n f m f x f ,m ax max =,()()(){}n f m f x f ,m in min =另外,当二次函数开口向上时,自变量的取值分开对称轴越远,那么对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值分开对称轴轴越远,那么对应的函数值越小. 4、一元二次方程根的非零分布——k 分布设一元二次方程ax2+bx +c =0〔a≠0〕的两实根为x1,x2,且x1≤x2。

k 为常数。

那么一元二次方程根的k 分布〔即x1、x2相对于k 的位置〕有以下假设干结论。

〔1〕k <x1≤x2xy1x 2x 0>a O•ab x 2-=0)(>k f kxy1x 2x O•a b x 2-=k<a 0)(<k f〔2〕x1≤x2<k 。

x y1x 2x 0>a O•ab x 2-=k 0)(>k f xy1x 2x O•ab x 2-=k<a 0)(<k f特殊地①x1<0<x2 ac <0。

②x1<1<x2 a(a +b +c)<0。

5、幂函数:定义域、值域、单调性、定点根底自测1、函数f(x)=x2-2x+2的单调增区间是()y x =2y x =3y x=12y x=1y x -=在第Ⅰ象限单调 在第Ⅰ象限单调 在第Ⅰ象限单调 在第Ⅰ象限单调 在第Ⅰ象限单调 〔,〕 〔,〕〔,〕〔,〕〔,〕〔4〕假设一个大于0,一个小于0求m 的取值范围;有两个实数根,那么有:∆=4(m+3)^2-4(2m+14)=4m^2+24m+36-8m-56=4m^2+16m-20>=0m^2+4m-5>=0 (m+5)(m-1)>=0m>=1或者者者m<=-5一根比4大,另一根比4小,那么有:f(4)<0 即:4^2+2(m+3)*4+2m+14<016+8m+24+2m+14<010m<-54 m<- 综上所述,m<- 例3、幂函数223()m m f x x --=()m ∈Z 是偶函数,且在区间()0,+∞上是减函数.(1)求函数()f x 的解析式;(2)讨论()()()bF x a f x xf x =-的奇偶性(,)a b ∈R . 解析:〔1〕为偶函数,那么m²-2m-3为偶数,在区间〔0,正无穷〕上是单调减函数,那么有m²-2m-3<0,即-1<m<3, m ∈Z ,m=0或者者1或者者2只有当m=1时,m²-2m-3=-4为偶数,此时f(x)=x^(-4)〔2〕由题意F(x)=a[x^(-4)]^(1/2)-b/[x*x^(-4)]=ax^(-2)+bx^3,a=0且b≠0时F(x)=bx^3,为奇函数 b=0且a≠0时F(x)=ax^(-2),为偶函数 当a*b 不等于0时,F(x)既不是奇函数又不是偶函数当堂达标1、函数f(x)=x2+bx +c 的图象的对称轴为直线x =1,那么(B)A .f(-1)<f(1)<f(2)B .f(1)<f(2)<f(-1)C .f(2)<f(-1)<f(1)D .f(1)<f(-1)<f(2) 2、函数y =-x2-10x +11在区间[-1,2]上的最小值是____-13____3、方程x2+2px+1=0有一个根大于1,有一个根小于1,那么P 的取值为p <-1。

高中数学幂函数的教案

高中数学幂函数的教案

高中数学幂函数的教案
一、教学目标:
1. 理解幂函数的基本概念和特点;
2. 掌握幂函数的图像特征和性质;
3. 能够解决幂函数相关的问题。

二、教学重点:
1. 幂函数的定义和基本特点;
2. 幂函数的图像性质。

三、教学难点:
1. 幂函数的特殊情况的解决方法;
2. 幂函数的应用问题的解决。

四、教学过程:
1. 导入:通过实际生活中的例子引入幂函数的概念,引发学生的兴趣。

2. 概念讲解:介绍幂函数的定义和基本特点,解释幂函数的图像特征和性质。

3. 实例演练:通过案例分析,让学生运用所学知识解决幂函数相关的问题。

4. 拓展应用:引导学生探讨幂函数在实际问题中的应用,开拓思维。

五、课堂讨论:组织学生讨论幂函数的特殊情况和解决方法,促进学生之间的交流和思考。

六、练习测试:布置与幂函数相关的习题,检验学生对知识的掌握程度。

七、总结反思:引导学生总结本节课的重点知识,反思学习过程中的问题和感悟。

八、课后复习:提醒学生及时复习幂函数相关知识,完成作业,并准备下节课内容。

九、教学手段:采用多媒体教学、案例分析、讨论互动等方式,激发学生学习兴趣。

十、教学评估:根据学生的学习情况和表现,及时调整教学策略,确保教学效果。

十一、教学延伸:鼓励学生主动学习,拓展幂函数相关知识,提高数学思维能力。

以上是高中数学幂函数的教案范本,仅供参考。

祝教学顺利!。

新课标2023版高考数学一轮总复习第2章函数第4节二次函数与幂函数教师用书

新课标2023版高考数学一轮总复习第2章函数第4节二次函数与幂函数教师用书

第四节 二次函数与幂函数考试要求:1.通过具体实例,结合y =x ,y =x -1,y =x 2,y =x 12,y =x 3的图象,理解它们的变化规律,了解幂函数.2.理解简单二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.一、教材概念·结论·性质重现 1.幂函数的概念一般地,函数y =x α称为幂函数,其中α为常数.幂函数的特征(1)自变量x 处在幂底数的位置,幂指数α为常数. (2)x α的系数为1. (3)解析式只有一项. 2.常见的五种幂函数的图象3.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,因此在第一象限内都有图象,并且图象都通过点(1,1).(2)如果α>0,则幂函数的图象通过原点,并且在(0,+∞)上是增函数.(3)如果α<0,则幂函数在(0,+∞)上是减函数,且在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方且无限逼近y 轴;当x 无限增大时,图象在x 轴上方且无限逼近x 轴.4.二次函数的图象与性质解析式f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0)图象定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递增; 在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数 顶点 ⎝⎛⎭⎪⎫-b 2a ,4ac -b 24a 对称性 图象关于直线x =-b2a成轴对称图形二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关. (1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0且Δ<0”. 二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)函数y =2x 12是幂函数.( × )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (3)当n <0时,幂函数y =x n是定义域上的减函数. ( × ) (4)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( × )2.已知幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f (2)=( ) A .14 B .4 C .22D . 2C 解析:设f (x )=x α,因为图象过点⎝ ⎛⎭⎪⎫4,12,所以f (4)=4α=12,解得α=-12,所以f (2)=2-12=22.3.二次函数f (x )的图象经过(0,3),(2,3)两点,且f (x )的最大值是5,则该函数的解析式是( )A .f (x )=2x 2-8x +11 B .f (x )=-2x 2+8x -1 C .f (x )=2x 2-4x +3D .f (x )=-2x 2+4x +3D 解析:二次函数f (x )的图象经过(0,3),(2,3)两点,则图象的对称轴为x =1.又由函数的最大值是5,可设f (x )=a (x -1)2+5(a ≠0).于是3=a +5,解得a =-2.故f (x )=-2(x -1)2+5=-2x 2+4x +3.故选D .4.(多选题)(2022·海南中学月考)若幂函数y =f (x )的图象经过点(3,27),则幂函数f (x )是( )A .奇函数B .偶函数C .增函数D .减函数AC 解析:设幂函数为f (x )=x α(α为常数),因为其图象经过点(3,27),所以27=3α,解得α=3,所以幂函数f (x )=x 3.因为f (x )的定义域为R ,且f (-x )=(-x )3=-x 3=-f (x ),所以f (x )是奇函数,又α=3>0,所以f (x )在R 上是增函数.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是__________.-1 解析:因为函数y =2x 2-6x +3的图象的对称轴为x =32>1,所以函数y =2x 2-6x+3在[-1,1]上单调递减.当x =1时,y 取得最小值,所以y min =2-6+3=-1.考点1 幂函数的图象和性质——基础性1.幂函数y =f (x )的图象经过点(3,3),则f (x )是( ) A .偶函数,且在区间(0,+∞)上是增函数 B .偶函数,且在区间(0,+∞)上是减函数 C .奇函数,且在区间(0,+∞)上是减函数 D .非奇非偶函数,且在区间(0,+∞)上是增函数D 解析:设幂函数f (x )=x a ,则f (3)=3a=3,解得a =12,所以f (x )=x 12=x ,是非奇非偶函数,且在区间(0,+∞)上是增函数.2.(2021·南昌月考)若幂函数y =(m 2-3m +3)·x m 2-m -2的图象不过原点,则( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1B 解析:因为幂函数y =(m 2-3m +3)xm 2-m -2的图象不过原点,所以⎩⎪⎨⎪⎧m 2-m -2≤0,m 2-3m +3=1,解得m =1或2,符合题意.故选B .3.与函数y =x 12-1的图象关于x 轴对称的图象大致是( )B 解析:y =x 12的图象位于第一象限且函数图象是上升的,函数y =x 12-1的图象可看作由y =x 12的图象向下平移一个单位长度得到的(如选项A 中的图象所示).将y =x 12-1的图象关于x 轴对称后即为选项B .4.若(a +1)-2>(3-2a )-2,则a 的取值范围是___________.(-∞,-1)∪⎝ ⎛⎭⎪⎫-1,23∪(4,+∞) 解析:因为(a +1)-2>(3-2a )-2,又f (x )=x -2为偶函数,且在(0,+∞)上单调递减, 所以⎩⎪⎨⎪⎧|a +1|<|3-2a |,a +1≠0,3-2a ≠0,解得a <23且a ≠-1或a >4.1.解决这类问题要优先考虑幂函数的定义以及解析式,然后结合幂函数的图象与性质来求解.2.有些题目,如第4题利用幂函数的推广性质以及函数有关性质共同得出结论.考点2 二次函数的解析式——综合性已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.解:(方法一:利用二次函数的一般式)设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故f (x )=-4x 2+4x +7.(方法二:利用二次函数的顶点式)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x =2+-12=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4, 所以f (x )=-4×⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.(方法三:利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1),a ≠0, 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8,即4a-2a -1-a24a=8,解得a =-4.故f (x )=-4x 2+4x +7.求二次函数解析式的策略1.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关B 解析:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点, 则m =x 21+ax 1+b ,M =x 22+ax 2+b .所以M -m =x 22-x 21+a (x 2-x 1),显然与a 有关,与b 无关.2.(2022·青岛模拟)设a ,b 为不相等的实数,若二次函数f (x )=x 2+ax +b 满足f (a )=f (b ),则f (2)=( )A .7B .5C .4D .2C 解析:由f (x )=x 2+ax +b 可得函数f (x )图象的对称轴为直线x =-a2.又由a ≠b ,f (a )=f (b )得f (x )图象的对称轴为直线x =a +b 2,所以-a 2=a +b2,得2a +b =0,所以f (2)=4+2a +b =4.故选C .考点3 二次函数的图象和性质——应用性考向1 二次函数的图象应用(1)已知函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),则函数y =f (-x )的图象为( )D 解析:因为函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),所以-2,1是方程ax2-x -c =0的两根.把x =-2,1分别代入方程得⎩⎪⎨⎪⎧4a +2-c =0,a -1-c =0,联立解得a =-1,c=-2.所以f (x )=-x 2-x +2.所以函数y =f (-x )=-x 2+x +2,可知其图象开口向下,与x 轴的交点坐标分别为(-1,0)和(2,0).故选D .(2)对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )A 解析:若0<a <1,则y =log a x 在(0,+∞)上单调递减;y =(a -1)x 2-x 的图象开口向下,对称轴在y 轴左侧,排除C ,D .若a >1,则y =log a x 在(0,+∞)上单调递增,y =(a -1)x 2-x 的图象开口向上,且对称轴在y 轴右侧,因此B 不正确,只有A 满足.1.解决二次函数图象问题的基本方法 (1)排除法.抓住函数的特殊性质或特殊点.(2)讨论函数图象,依据图象特征,得到参数间的关系. 2.分析二次函数图象问题的要点一是看二次项系数的符号;二是看对称轴和顶点;三是看函数图象上的一些特殊点.从这三方面入手,能准确地判断出二次函数的图象.反之,也能从图象中得到如上信息.考向2 二次函数的单调性若函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上单调递减,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-3]C .[-2,0]D .[-3,0]D 解析:当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的图象对称轴为x =3-a2a .由f (x )在[-1,+∞)上单调递减知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),则a =________. -3 解析:由题意知f (x )必为二次函数且a <0. 又3-a2a=-1,所以a =-3.利用二次函数的单调性解题时的注意点(1)对于二次函数的单调性,关键是看图象的开口方向与对称轴的位置.若开口方向或对称轴的位置不确定,则需要分类讨论.(2)利用二次函数的单调性比较大小,一定要将待比较的两数(或式)通过二次函数的图象的对称性转化到同一单调区间上比较.考向3 二次函数的最值已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .①当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去. ②当a >0时,函数f (x )在区间[-1,2]上单调递增,最大值为f (2)=8a +1=4,解得a =38.③当a <0时,函数f (x )在区间[-1,2]上单调递减,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解:f (x )=(x +a )2+1-a 2,f (x )的图象是开口向上的抛物线,对称轴为直线x =-a .①当-a <12,即a >-12时,f (x )max =f (2)=4a +5.②当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.二次函数的最值问题的类型二次函数的最值问题主要有以下几类:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系.当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.考向4 二次函数中的恒成立问题已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围.解:由题意可知,f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0.令g (x )=x 2-3x +1-m ,要使g (x )>0在[-1,1]上恒成立,只需使函数g (x )在[-1,1]上的最小值大于0即可.因为g (x )=x 2-3x +1-m 在[-1,1]上单调递减, 所以g (x )min =g (1)=-m -1, 由-m -1>0得m <-1.因此,满足条件的实数m 的取值范围是(-∞,-1).由不等式恒成立求参数的取值范围将问题归结为求函数的最值,依据是a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.(2021·洛阳一中检测)已知函数f (x )=ax 2+bx +c .若a >b >c 且a +b +c =0,则f (x )的图象可能是( )D 解析:由a >b >c 且a +b +c =0,得a >0,c <0,所以函数图象开口向上,排除选项A ,C .又f (0)=c <0,排除选项B .故选D .2.(多选题)设函数f (x )=ax 2+bx +c (a ≠0),对任意实数t 都有f (4+t )=f (-t )成立,则f (-1),f (1),f (2),f (5)中,最小的可能是( )A .f (-1)B .f (1)C .f (2)D .f (5)ACD 解析:因为对任意实数t 都有f (4+t )=f (-t )成立,所以函数f (x )=ax 2+bx +c (a ≠0)图象的对称轴是x =2.当a >0时,函数值f (-1),f (1),f (2),f (5)中,最小的是f (2);当a <0时,函数值f (-1),f (1),f (2),f (5)中,最小的是f (-1)和f (5).3.函数f (x )=ax 2-(a -1)x -3在区间[-1,+∞)上是增函数,则实数a 的取值范围是( )A .⎝⎛⎦⎥⎤-∞,13 B .(-∞,0)C .⎝ ⎛⎦⎥⎤0,13D .⎣⎢⎡⎦⎥⎤0,13 D 解析:若a =0,则f (x )=x -3,f (x )在区间[-1,+∞)上是增函数,符合题意.若a ≠0,因为f (x )在区间[-1,+∞)上是增函数,故⎩⎪⎨⎪⎧a >0,a -12a≤-1,解得0<a ≤13.综上,0≤a ≤13.故选D .4.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为___________.⎝ ⎛⎭⎪⎫-∞,12 解析:2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立; 当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16,易知1x ∈(-∞,-1]∪[1,+∞),所以当x =1时,函数f (x )取最小值12,所以a <12.综上,实数a 的取值范围是⎝⎛⎭⎪⎫-∞,12.。

高三学案:二次函数与幂函数

高三学案:二次函数与幂函数

平陆中学高三理科数学学案编写人:孙月明课题:第4讲二次函数与幂函数学习目标:1.通过辨识幂函数的图像和比较幂值的大小,掌握幂函数的图像与性质,体会数形结合的数学思想;2.通过求解二次函数的最值问题和恒成立问题,掌握二次函数的图像与性质,体会数形结合、分类讨论和转化与化归的数学思想。

教学重点:1.幂函数的图像和性质;2.二次函数的单调性、最值、恒成立问题。

教学难点:二次函数的最值和恒成立问题。

一、知识梳理1.幂函数(1)定义:形如的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义.②当α>0时,幂函数的图象都过点和,且在(0,+∞)上单调,并且当α>1时,函数值增长的越来越快;当0<α<1时,函数值增长的越来越慢。

③当α<0时,幂函数的图象都过点,且在(0,+∞)上单调.2.二次函数的图象和性质解析式f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0) 图象定义域值域单调性对称性3.若一元二次函数f(x)=ax 2+bx +c(a ≠0)与x 轴有两个不同的交点12(,0),(,0)x x ,则12x x += ;12x x ⋅= 。

二、自我检测1. 判断正误(正确的打“√”,错误的打“×”)(1)函数y =2x 13是幂函数.( )(2)当n >0时,幂函数y =x n 在(0,+∞)上是增函数.( )(3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b 24a .( ) 2.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,120B.⎝ ⎛⎭⎪⎫-∞,-120C.⎝ ⎛⎭⎪⎫120,+∞D.⎝ ⎛⎭⎪⎫-120,0 3. 已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为( )A .[0,1]B .[1,2]C .(1,2]D .(1,2)4.已知幂函数f (x )的图象经过点(9,3),则f (2)-f (1)=________.5.(教材习题改编)函数g (x )=x 2-2x (x ∈[0,3])的值域是________.三、典例分析例1.(幂函数的图象及性质) (1)已知幂函数f (x )=(m 2-3m +3)·x m +1为偶函数,则m =( )A .1B .2C .1或2D .3(2)(2016·高考全国卷Ⅲ)已知a =432,b =254,c =1325,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b 例2.(二次函数的单调性)函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-3]C .[-2,0]D .[-3,0]例3.(二次函数的最值问题,分类讨论思想)已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.例4.(一元二次不等式恒成立问题,转化与化归思想)(2018·河北武邑第三次调研)已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3,若不等式f(-4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是( )A.(-∞,-2) B.(-2,0)C.(-∞,0)∪(2,+∞) D.(-∞,-2)∪(2,+∞) 四、巩固练习1.(2018·西安模拟)函数y=3x2的图象大致是( )2.(2017·高考北京卷)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是________.3.若函数f(x)=x2-2x+1在区间[a,a+2]上的最小值为4,则a的取值集合为________.4.已知函数f(x)=x2-2ax+5(a>1).(1)若函数f(x)的定义域和值域均为[1,a],求实数a的值;(2)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.五、课堂小结1.幂函数y=xα(α∈R)图象的特征α>0时,图象过原点和(1,1)点,在第一象限的部分“上升”;α<0时,图象不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立.2.二次函数求最值的三种常见类型二次函数的最值由所给区间,对称轴及开口方向等因素确定.(1)一般在轴定区间定的条件下有以下三种情况:①若所给区间为R,则在顶点处取最值.②在所给区间[m,n],y=ax2+bx+c(a≠0)的对称轴x=-b2a∈[m,n]时,其最值为一个是在顶点处取得.另一个则距轴较远的端点处取得.③在所给区间[m,n],-b2a∉[m,n]时,则利用函数的单调性求得最值(在区间的两个端点处).(2)若二次函数自变量的区间确定,但对称轴位置是变化的,则需要根据对称轴位置变化情况分对称轴在给定区间内变化与在给定区间外变化两种情况讨论,若对称轴只能在给定区间内变化,则只考虑对称轴与区间端点的距离即可.若对称轴在区间外,应分在区间左侧或右侧内讨论.(3)若所给区间变化,而对称轴位置确定,则对于区间变化时,是否包含对称轴与x轴交点的横坐标必须进行分类讨论,其分类标准为变化区间中包含对称轴与x轴交点的横坐标与变化区间中不包含对称轴与x轴交点的横坐标.具体分类可分四类.①对称轴在区间左侧.②对称轴在区间右侧.③对称轴在闭区间内且在中点的左侧.④对称轴在闭区间内且在中点的右侧(或过中点).3.会用两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.4.易错防范(1)对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.六、作业1.如图是①y=x a;②y=x b;③y=x c在第一象限的图象,则a,b,c的大小关系为( )A.c<b<a B.a<b<c C.b<c<a D.a<c<b2.已知函数f(x)=-x2+4x在区间[-1,n]上的值域是[-5,4],则n的取值范围是( )A.[2,5] B.[1,5] C.[-1,2] D.[0,5]3.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是( )4.f(x)=(m-1)x2+2mx+3是偶函数,则f(-1),f(-2),f(3)的大小关系为( )A.f(3)>f(-2)>f(-1) B.f(3)<f(-2)<f(-1)C.f(-2)<f(3)<f(-1) D.f(-1)<f(3)<f(-2)5.已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点右侧,则实数m的取值范围是( )A.[0,1] B.(0,1) C.(-∞,1) D.(-∞,1]6.已知幂函数f(x)=xα的图象过点(2,4),那么函数f(x)的单调递增区间是________.7.已知二次函数为y=x2+2kx+3-2k,则顶点位置最高时抛物线的解析式为________.8.已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.9.已知幂函数f(x)=x(m2+m)-1(m∈N*)的图象经过点(2,2),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.10.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.。

第4节幂函数与二次函数

第4节幂函数与二次函数

第4节幂函数与二次函数幂函数和二次函数是数学中的两个重要概念,它们在不同的场景中起着不同的作用。

本文将介绍这两个函数的定义、性质以及它们的关系。

一、幂函数的定义与性质幂函数是指由x的正整数幂次构成的函数,其一般形式可以表示为f(x)=ax^n,其中a为非零实数,n为正整数。

幂数n决定了函数图像的性质,下面我们来看几个不同幂次的幂函数。

1. 当n=1时,幂函数就是一次函数,即f(x)=ax。

它的图像是一条斜率为a的直线。

2. 当n=2时,幂函数就是二次函数,即f(x)=ax^2、它的图像是一个开口向上或向下的抛物线。

3. 当n=3时,幂函数就是三次函数,即f(x)=ax^3、它的图像是一个类似于字母"S"形状的曲线。

幂函数的性质如下:1.当n为奇数时,函数图像关于y轴对称;当n为偶数时,函数图像关于原点对称。

2.当a>0时,函数递增;当a<0时,函数递减。

3.当n>1时,函数在原点附近增长或下降得非常快;当n=1时,函数图像为一条直线,增长或下降速度相对较慢。

二、二次函数的定义与性质二次函数是指由x的二次幂和一次幂构成的函数,其一般形式可以表示为f(x)=ax^2+bx+c,其中a、b、c为实数且a不为0。

二次函数的图像是一个开口向上或向下的抛物线。

二次函数的性质如下:1.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 抛物线的顶点坐标为(-b/2a, c-b^2/4a),其中b^2-4ac<0时,抛物线没有实根;b^2-4ac=0时,抛物线与x轴相切;b^2-4ac>0时,抛物线与x轴有两个交点。

3.如果a>0,则抛物线的最小值为c-b^2/4a;如果a<0,则抛物线的最大值为c-b^2/4a。

三、幂函数与二次函数的关系从上面的定义与性质可以看出,二次函数是幂函数的一个特例,即二次函数是幂函数在幂次n=2时的情况。

2019-2020年高三数学总复习 幂函数教案 理

2019-2020年高三数学总复习 幂函数教案 理

2019-2020年高三数学总复习幂函数教案理教材分析幂函数是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,全面掌握有理指数幂和根式的基础上来研究的一种特殊函数,是对函数概念及性质的应用.从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y=x-1三种幂函数,这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.知识的安排环环紧扣,非常紧凑,充分体现了知识的发生、发展过程.对幂函数进行系统的理论研究,在研究过程中得出相应的结论固然重要,但更为重要的是,要让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究.教学目标1. 通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力.2. 使学生理解并掌握幂函数的图像与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力.任务分析学生对抽象的幂函数及其图像缺乏感性认识,不能够在理解的基础上来运用幂函数的性质.为此,在教学过程中让学生自己去感受幂函数的图像和性质是这一堂课的突破口.因此,这节课的难点是幂函数图像和性质的发现过程,教学重点是幂函数的性质及运用.首先,从学生已经掌握的最简单的幂函数y=x,y=x2和y=x-1的知识出发,利用实例,由师生共同归纳、总结出幂函数的定义,认清幂函数的特点,深刻理解其定义域.其次,举出几个简单的幂函数引导学生从定义出发研究其定义域、值域、奇偶性、单调性、是否过公共定点这几个性质,让学生自己去探究,把主动权交给学生.然后,再由学生自己结合性质去画幂函数的图像,让学生在获得一定的感性认识的基础上,通过归纳、比较上升为理性认识,从而形成对概念与性质的完整认识.最后通过例题3与练习,让学生利用图像与性质,比较两个数的大小,从而提高学生获取知识的能力.教学设计一、问题情景下列问题中的函数各有什么共同特征?(1)如果张红购买了每千克1元的蔬菜w(kg),那么她应支付p=w元.这里p是w的函数.(2)如果正方形的边长为a,那么正方形的面积为S=a2.这里S是a的函数.(3)如果立方体的边长为a,那么立方体的体积为V=a3.这里V是a的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长为a=.这里a是S的函数.(5)如果某人t(s)内骑车行进了1km,那么他骑车的平均速度为v=t-1(km/s).这里v是t的函数.由学生讨论,总结,即可得出:p=w,s=a2,a=,v=t-1都是自变量的若干次幂的形式.教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数.二、建立模型定义:一般地,函数y=x a叫作幂函数,其中x是自变量,a是实常数.教师指出:由于无理指数幂的意义我们还没学到,因此目前只讨论a是有理数的情况.思考讨论:在幂函数y=x n中,当n=0时,其表达式怎样?定义域、值域、图像如何?教师指出:此时y=x0=1;定义域为(-∞,0)∪(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图像是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外.三、解释应用[例题一]1. 求下列函数的定义域.解:(1)R.(2)R.(3){x|x≥0}.(4){x|x∈R且x≠0).(5){x|x >0}.2. 求下列函数的定义域,并判断函数的奇偶性.解:(1){x|x∈R且x≠0)},偶函数.(2)R,非奇非偶函数.(3)R,奇函数.(4){x|x>0},非奇非偶函数.[问题探究]1. 对于幂函数y=x a,讨论当a=1,2,3,,-1时的函数性质.表13-1以上问题给学生留出充分时间去探究,教师引导学生从函数解析式出发来研究函数性质.2. 在同一坐标系中,画出y=x,y=x2,y=x3,y=,y=x-1的图像,并归纳出它们具有的共同性质.教师讲评:幂函数的性质.(1)所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1).(2)如果a>0,则幂函数的图像通过原点,并在区间[0,+∞)上是增函数.(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴.思考讨论:(1)在幂函数y=x a中,当a是正偶数时,这一类函数有哪种重要性质?(2)在幂函数y=x a中,当a是正奇数时,这一类函数有哪种重要性质?教师讲评:(1)在幂函数y=x a中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数.(2)在幂函数y=x a中,当a是正奇数时,函数是奇函数,在第一象限内是增函数.[例题二]比较下列各题中两个值的大小.解:(1)∵幂函数y=x1.5是增函数,又0.7>0.6,∴0.71.5>0.61.5.(2)∵幂函数y=是减函数,又2.2>1.8,∴注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1.5与y=的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路.[练习]比较下列各题中两个值的大小.四、拓展延伸1. 如果把函数图像向上凸的函数称为凸函数,把函数图像向下凸的函数称为凹函数,对于幂函数y=x a,x∈[0,+∞),当a>0且a≠1时,研究其凸凹性.2. 研究幂指数与幂函数奇偶性的关系.3. 研究幂指数与幂函数单调性的关系.(以上问题的探究可以借助计算机来完成)点评这篇案例的突出特点是,紧紧围绕教学目标,遵循直观式、启发式原则而展开.在这节课中,教师放手让学生去探索与研究,并在一旁适时地引导学生根据几个实例函数的公共特点归纳、总结幂函数的定义,对几个特殊幂函数的性质先进行初步探索,再根据研究的结果结合描点作图画出幂函数的图像,让学生观察和分析所作的图像,归纳得出图像特征,并由图像特征得到相应的函数性质,让学生充分体会系统研究函数的方法.整个教学过程的绝大部分时间都给了学生,让学生动脑动手.通过对同类旧知识的回忆,充分引导学生利用数形结合,找出与新知识的连接点,并在对照、类比分析中找出规律.这些均提高了学生学习的积极性和自学能力,培养了他们的科学精神和创新思维习惯.最后“拓展延伸”的设计又把学生的思维推向了更广阔的空间.2019-2020年高三数学总复习平面与平面垂直教案理教材分析两个平面垂直的判定定理及性质定理是平面与平面位置关系的重要内容.通过这节的学习可以发现:直线与直线垂直、直线与平面垂直及平面与平面垂直的判定和性质定理形成了一套完整的证明体系,而且可以实现利用低维位置关系推导高维位置关系,利用高维位置关系也能推导低维位置关系,充分体现了转化思想在立体几何中的重要地位.这节课的重点是判定定理及性质定理,难点是定理的发现及证明.教学目标1. 掌握两平面垂直的有关概念,以及两个平面垂直的判定定理和性质定理,能运用概念和定理进行有关计算与证明.2. 培养学生的空间想象能力,逻辑思维能力,知识迁移能力,运用数学知识和数学方法观察、研究现实现象的能力,整理知识、解决问题的能力.3. 通过对实际问题的分析和探究,激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.任务分析判定定理证明的难点是画辅助线.为了突破这一难点,可引导学生这样分析:在没有得到判定定理时,只有根据两平面互相垂直的定义来证明,那么,哪个平面与这两个平面都垂直呢?对性质定理的引入,不是采取平铺直叙,而是根据数学定理的教学是由发现与论证这两个过程组成的,所以应把“引出命题”和“猜想”作为本部分的重要活动内容.教学设计一、问题情境1. 建筑工人在砌墙时,常用一根铅垂的线吊在墙角上,这是为什么?(为了使墙面与地面垂直)2. 什么叫两个平面垂直?怎样判定两平面垂直,两平面垂直有哪些性质?二、建立模型如图19-1,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.容易看到,∠ABE为直角时,给我们两平面垂直的印象,于是有定义:如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β.[问题]1. 建筑工人在砌墙时,铅垂线在墙面内,墙面与地面就垂直吗?如图19-1,只要α经过β的垂线BA,则BA⊥β,∴BA⊥BE,∠ABE=Rt∠.依定义,知α⊥β.于是,有判定定理:定理如果一个平面经过另一个平面的一条垂线,则两个平面互相垂直.2. 如果交换判定定理中的条件“BA⊥β”和结论“α⊥β”.即,也就是从平面与平面垂直出发,能否推出直线与平面垂直?平面α内满足什么条件的直线才能垂直于平面β呢?让学生用教科书、桌面、笔摆模型.通过模型发现:当α⊥β时,只有在一个平面(如α)内,垂直于两平面交线的直线(如BA)才会垂直于另一个平面(如β).于是,有定理:定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(先分析命题的条件和结论,然后画出图形,再结合图形,写出已知,求证)已知:如图,α⊥β,α∩β=CD,ABα,AB⊥CD,求证:AB⊥β.分析:要证AB⊥β,只需在β内再找一条直线与AB垂直,但β内没有这样的直线,如何作出这条直线呢?因为α⊥β,所以可根据二面角的定义作出这个二面角的平面角.在平面β内过点B作BE⊥CD.因为AB⊥CD,所以∠ABE是二面角α-CD-β的平面角,并且∠ABE=90°,即AB⊥BE.又因为CDβ,BEβ,所以AB⊥β.三、解释应用[例题]1. 已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD长.解:连接BC.因为AC⊥AB,所以AC⊥β,AC⊥BD.因为BD⊥AB,所以BD⊥α,BD⊥BC.所以,△CBD是直角三角形.在Rt△BAC中,BC==5(cm),在Rt△CBD中,CD==13(cm).2. 已知:在Rt△ABC中,AB=AC=a,AD是斜边BC的高,以AD为折痕使∠BDC折成直角(如图19-4).求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)∠BAC=60°.证明:(1)如图19-4(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC.因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如图19-4(1),在Rt△BAC中,因为AB=AC=a,所以BC=a,BD=DC=.如图19-4(2),△BDC是等腰直角三角形,所以BC=BD=2×=a.得AB=AC=BC.所以∠BAC=60°.[练习]1. 如图19-5,有一个正三棱锥体的零件,P是侧面ACD上一点.问:如何在面ACD上过点P画一条与棱AB垂直的线段?试说明理由.2. 已知:如图19-6,在空间四边形ABCD中,AC=AD,BC=BD,E是CD 的中点.求证:(1)平面ABE⊥平面BCD.(2)平面ABE⊥平面ACD.四、拓展延伸能否将平面几何中的勾股定理推广到立体几何学中去?试写一篇研究性的小论文.点评这篇案例结构完整,构思新颖.案例开始以一个生活中常见的例子引入问题,得到了两平面垂直的定义.还是这个例子,改变了问法又得到了两平面垂直的判定定理.即把学科理论和学生的生活实际相结合,激起了学生探索问题的热情.对性质定理和判定定理的引入和证明也不是平铺直叙,而是充分展现了定理的发现和形成过程.通过学生的认真参与,师生之间的民主交流,培养了学生的主体意识和乐于探索、勇于创新的科学精神.。

高三 课时作业 第二章 第4节 二次函数与幂函数(教师版)

高三 课时作业 第二章 第4节   二次函数与幂函数(教师版)

第4节 二次函数与幂函数(课时作业)1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B .13C .7D .5答案 B解析 函数f (x )的图象关于直线x =-2对称,∴m =-8,∴f (1)=2+8+3=13.2.幂函数24m m y x -=(m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .3答案 C解析 ∵24m m y x -=(m ∈Z )的图象与坐标轴没有交点,∴m 2-4m <0,即0<m <4.又∵函数的图象关于y 轴对称且m ∈Z ,∴m 2-4m 为偶数,因此m =2.3.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)答案 C解析 由题意可知函数f (x )的图象开口向下,对称轴为x =2(如图),若f (a )≥f (0),从图象观察可知0≤a ≤4.4.若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是( ) A .[0,4]B .[32,4]C .[32,+∞) D .[32,3] 答案 D 解析 二次函数图象的对称轴为x =32且f (32)=-254,f (3)=f (0)=-4,由图得m ∈[32,3]. 5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( )A .-1B .1C .2D .-2答案 B解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点处取得,∵f (0)=-a ,f (2)=4-3a , ∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 6.已知二次函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与a 值有关 答案 C解析 该二次函数图象的开口向下,对称轴为直线x =14, 又依题意,得x 1<0,x 2>0,又x 1+x 2=0,则14-x 1>x 2-14,故f (x 1)<f (x 2).7.已知幂函数()12f x x-=,若f (a +1)<f (10-2a ),则a 的取值范围为________.答案 (3,5) 解析 ∵幂函数()12f x x -=单调递减,定义域为(0,+∞),∴由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧ a +1>0,10-2a >0,a +1>10-2a ,解得3<a <5. 8.当0<x <1时,函数f (x )=x 1.1,g (x )=x 0.9,h (x )=x-2的大小关系是________________.答案 h (x )>g (x )>f (x ) 解析 如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知,h (x )>g (x )>f (x ).9.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立,即m <-(x +4x)对x ∈(1,2)恒成立, 令y =x +4x ,则函数y =x +4x在x ∈(1,2)上是减函数. ∴4<y <5,∴-5<-(x +4x)<-4,∴m ≤-5. 方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,f (x )<0恒成立⇔⎩⎨⎧ f (1)≤0,f (2)≤0⇒⎩⎪⎨⎪⎧m ≤-5,m ≤-4⇒m ≤-5. *10.若函数f (x )=x 2-a |x -1|在[0,+∞)上单调递增,则实数a 的取值范围是________. 答案 [0,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-ax +a ,x ∈[1,+∞),x 2+ax -a ,x ∈(-∞,1), x ∈[1,+∞)时,f (x )=x 2-ax +a =(x -a 2)2+a -a 24, x ∈(-∞,1)时,f (x )=x 2+ax -a =(x +a 2)2-a -a 24. ①当a 2>1,即a >2时,f (x )在[1,a 2)上单调递减,在(a 2,+∞)上单调递增,不合题意; ②当0≤a 2≤1,即0≤a ≤2时,符合题意; ③当a 2<0,即a <0时,不符合题意. 综上,a 的取值范围是[0,2].11.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5].∵f (x )的对称轴为x =1,∴当x =1时,f (x )取最小值1;当x =-5时,f (x )取最大值37.(2)f (x )=x 2+2ax +2=(x +a )2+2-a 2的对称轴为x =-a ,∵f (x )在[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≤-5或a ≥5.故实数a 的取值范围为a ≤-5或a ≥5.12.已知幂函数()21()m m f x x -+=(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解: (1)因为m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,所以m 2+m 为偶数,所以函数()21()m m f x x -+=(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)因为函数f (x )的图象经过点(2,2),21()2m m -+,即211()222m m -+=, 所以m 2+m =2,解得m =1或m =-2.又因为m ∈N *,所以m =1,12(),f x x =又因为f (2-a )>f (a -1),所以⎩⎪⎨⎪⎧ 2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32, 故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).。

幂函数教学设计(优秀5篇)

幂函数教学设计(优秀5篇)

幂函数教学设计(优秀5篇)1、总体设计说明幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。

函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。

基于以上认识,确定本节课的教学目标如下(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。

(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。

(3)能够利用幂函数的性质比较两个数的大小教学重点与难点如下教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。

本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用2、教学过程剖析2.1创设情境建构概念问题1(1)正方形的边长a与面积S之间是函数关系吗?(2)正方体的边长a与体积V之间是函数关系吗?学生找到两个变量之间的函数关系,并给出函数的解析式:和师:我们把形如的函数称为幂函数。

直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。

师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊,图像长什么样子?生:是一条直线。

师:你确定是一条直线吗?生:是一条直线去掉一个点师:为什么?生:定义域中x不能取到0。

师:我们研究函数一般先看函数的定义域。

师:我们可以先研究的情况,你打算研究为哪些值?【设计意图】引导学生思考如何选取的研究起来比较方便,一般学生会选择为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。

高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第四节 二次函数与幂函数

高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第四节 二次函数与幂函数

∈[2,3]上恒成立,故 a≤4.故选 D.
名师点析幂函数的图象与性质应用技巧
(1)由于幂函数解析式中只含有一个参数,因此只需一个条件,利用待定系
数法即可确定幂函数的解析式.
(2)对于幂函数的图象,可结合5个常见幂函数的图象特点进行分析判断.
(3)对于幂函数f(x)=xα,当α>0时f(x)在(0,+∞)上单调递增,当α<0时f(x)在
叫做幂函数,其中x是自变量,α是常数.
注意幂函数与指数函数的区别
2.常用5个简单幂函数的图象与性质
函数
y=x
y=x2
定义域
R
R
值域
R
{y|y≥0} R
奇偶性 奇函数 偶函数
在R上 在(-∞,0)上单调
单调性 单调
递增
递减,在(0,+∞)
上单调递增
1
x2
y=x3
y=
R
{x|x≥0}
{y|y≥0}
奇函数
单调递减.
3.一般地,对于幂函数f(x)=


(m,n∈N*,m与n互质),当m为偶数时,f(x)为
偶函数;当m,n均为奇数时,f(x)为奇函数;当n为偶数时,f(x)为非奇非偶函数.
4.如果幂函数的图象与坐标轴相交,则交点一定是原点.
对点演练
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”.
(1-)2 -4 × (-2) ≤ 0,

> -1,
是(
)
答案 D
考向2.二次函数的单调性
典例突破
例4.(2023四川南山中学一模)已知函数f(x)=x2-2x在定义域[-1,n]上的值域

数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案含解析

数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案含解析

第四节二次函数与幂函数最新考纲考情分析1。

了解幂函数的概念.2.结合函数y=x,y=x2,y=x3,y=1x,y=的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题。

1。

幂函数一般不单独命题,而常与指数函数,对数函数交汇命题,题型一般为选择题、填空题,主要考查幂函数的图象和性质.2.对二次函数相关性质的考查是命题热点,大多以选择题、填空题出现.3.试题难度以中、低档题为主,个别试题难度较大.知识点一二次函数的图象和性质1。

二次函数解析式的三种形式:(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).2.一元二次不等式恒成立的条件:(1)ax2+bx+c〉0(a≠0)恒成立的充要条件是“a〉0且Δ〈0”;(2)ax2+bx+c〈0(a≠0)恒成立的充要条件是“a<0且Δ<0”.知识点二幂函数1.定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.2.常见的五种幂函数的图象和性质比较1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)函数y=是幂函数.(×)(2)当n>0时,幂函数y=x n在(0,+∞)上是增函数.(√)(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.(×)(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是错误!.(×)解析:(1)由于幂函数的解析式为f(x)=xα,故y=不是幂函数,(1)错.(3)由于当b=0时,y=ax2+bx+c=ax2+c为偶函数,故(3)错.(4)对称轴x=-错误!,当-错误!小于a或大于b时,最值不是4ac-b24a,故(4)错.2.小题热身(1)已知幂函数f(x)=k·xα的图象过点错误!,则k+α=(C)A。

数学一轮复习第二章2.4二次函数与幂函数学案理含解析

数学一轮复习第二章2.4二次函数与幂函数学案理含解析

第四节二次函数与幂函数【知识重温】一、必记2个知识点1.幂函数(1)定义:形如①________________的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y =12x,y=x-1.(2)性质(ⅰ)幂函数在(0,+∞)上都有定义;(ⅱ)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(ⅲ)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式(ⅰ)一般式:f(x)=②________________________;(ⅱ)顶点式:f(x)=③________________________;(ⅲ)零点式:f(x)=④________________________。

(2)二次函数的图象和性质(-∞,+∞)(-∞,+∞)二、必明2个易误点1.研究函数f(x)=ax2+bx+c的性质,易忽视a的取值情况的讨论而盲目认为f(x)为二次函数.2.形如y=xα(α∈R)才是幂函数,如y=123x不是幂函数.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)函数y=132x是幂函数.()(2)当n〉0时,幂函数y=x n在(0,+∞)上是增函数.()(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.()(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。

()二、教材改编2.已知幂函数y=f(x)的图象过点(2,错误!),则函数y=f(x)的解析式为________.3.函数y=ax2-6x+7a(a≠0)的值域为[-2,+∞),则a 的值为()A.-1 B.-错误!C.1 D.2三、易错易混4.函数y=2x2-6x+3,x∈[-1,1],则y的最小值是() A.-1 B.-2 C.1 D.25.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图所示,则a,b,c,d的大小关系是()A.d>c〉b>a B.a>b〉c〉dC.d〉c〉a〉b D.a〉b〉d〉c四、走进高考6.[2020·江苏卷]已知y=f(x)是奇函数,当x≥0时,f(x)=23x,则f(-8)的值是________.考点一幂函数的图象及性质[自主练透型]1.已知点错误!在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数2.幂函数y=xm2-2m-3(m∈Z)的图象如图所示,则m 的值为()A.-1 B.0C.1 D.23.[2021·江西九江联考]已知a=0.40.3,b=0.30。

4 第4讲 二次函数与幂函数

4 第4讲 二次函数与幂函数

上一页
返回导航
下一页
第二章 函数概念与基本初等函数
18
2.当 0<x<1 时,f(x)=x1.1,g(x)=x0.9,h(x)=x-2 的大小关系是________. 解析:如图所示为函数 f(x),g(x),h(x)在(0,1)上的图象,由此可知 h(x)>g(x)>f(x).
答案:h(x)>g(x)>f(x)
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
15
(2)易知函数 y=x12的定义域为[0,+∞),在定义域内为增函数,所以a3+ -12≥ a≥0, 0, 解得 a+1<3-2a,
-1≤a<23. 【答案】 (1)C (2)-1,23
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
16
幂函数的性质与图象特征的关系 (1)幂函数的形式是 y=xα(α∈R),其中只有一个参数 α,因此只需一个条件即可确定其解 析式. (2)判断幂函数 y=xα(α∈R)的奇偶性时,当 α 是分数时,一般将其先化为根式,再判断. (3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0,+∞)上单调递减,则 α<0.
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
17
1.已知幂函数 f(x)=xm2-2m-3(m∈Z)的图象关于 y 轴对称,并且 f(x)在第一象限是单调递 减函数,则 m=________. 解析:因为幂函数 f(x)=x m2-2m-3 (m∈Z)的图象关于 y 轴对称, 所以函数 f(x)是偶函数,所以 m2-2m-3 为偶数,所以 m2-2m 为奇数,又 m2-2m<0, 故 m=1. 答案:1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数第四节 二次函数与幂函数考点: 1.二次函数掌握二次函数的图象与性质,会求二次函数的最值(值域)、单 调区间. 2.幂函数(1)了解幂函数的概念.(2)结合函数y =x ,y =x 2,y =x 3,y =1x,y =x 12的图象,了解它们的变化情况.主干知识:知识点一 五种常见幂函数的图象与性质 五种常见幂函数的图象与性质易误提醒 形如y =x α(α∈R )才是幂函数,如y =3x 12不是幂函数.[自测练习]1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12 B .1 C.32D .2 解析:因为函数f (x )=k ·x α是幂函数,所以k =1,又函数f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32. 答案:C知识点二 二次函数1.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0). (2)顶点式:f (x )=a (x -m )2+n (a ≠0). (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象和性质易误提醒 研究函数f (x )=ax 2+bx +c 的性质,易忽视a 的取值情况而盲目认为f (x )为二次函数.必备方法1.函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x ),如果定义域内有不同两点x 1,x 2且f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 22对称.(2)二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图象关于直线x =a 对称(a 为常数).2.与二次函数有关的不等式恒成立两个条件(1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[自测练习]2.已知二次函数的图象如图所示,那么此函数的解析式可能是( )A .y =-x 2+2x +1 B .y =-x 2-2x -1 C .y =-x 2-2x +1 D .y =x 2+2x +1解析:设二次函数的解析式为f (x )=ax 2+bx +c (a ≠0),由题图得:a <0,b <0,c >0.选C. 答案:C3.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a=0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =44.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎢⎡⎭⎪⎫m 8,+∞,所以m8≤2,即m ≤16.答案:(-∞,16]考点练习:考点一 幂函数的图象与性质|1.(2015·济南二模)若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值为( )A.13B.12C.23D.43解析:设f (x )=x a ,又f (4)=3f (2),∴4a =3×2a,解得a =log 23,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log 23=13.答案:A2.若四个幂函数y =x a,y =x b,y =x c,y =x d在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:幂函数a =2,b =12,c =-13,d =-1的图象,正好和题目所给的形式相符合,在第一象限内,x =1的右侧部分的图象,图象由下至上,幂指数增大,所以a >b >c >d .故选B.答案:B3.(2015·安庆三模)若(a +1)-13<(3-2a )-13,则实数a 的取值范围是________.解析:不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a .解得a <-1或23<a <32.答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32 规律与方法幂函数图象与性质应用的三个关注点(1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0. (3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.考点二 二次函数的图象与性质|(1)为了美观,在加工太阳镜时将下半部分轮廓制作成二次函数图象的形状(如图所示).若对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,则右轮廓线DFE 所在的二次函数的解析式为( )A .y =14(x +3)2B .y =-14(x -3)2C .y =-14(x +3)2D .y =14(x -3)2[解析] 由题图可知,对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,所以点C 的纵坐标为0,横坐标的绝对值为42+22=3,即C (-3,0),因为点F与点C 关于y 轴对称,所以F (3,0),因为点F 是右轮廓线DFE 所在的二次函数图象的顶点,所以设该二次函数为y =a (x -3)2(a >0),将点D (1,1)代入得,a =14,即y =14(x -3)2,故选D.[答案] D(2)函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( ) A .f (1)≥25 B .f (1)=25 C .f (1)≤25D .f (1)>25[解析] 函数f (x )=4x 2-mx +5的增区间为⎣⎢⎡⎭⎪⎫m 8,+∞,由已知可得m8≤-2⇒m ≤-16,所以f (1)=4×12-m ×1+5=9-m ≥25.[答案] A解决二次函数图象与性质问题时两个注意点(1)抛物线的开口、对称轴位置、定义区间三者相互制约常见的题型中这三者有两定一不定,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题,先“定性”(作草图),再“定量”(看图求解),事半功倍.1.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围.解:(1)f (x )=ax 2-2ax +2+b =a (x -1)2+2+b -a ,若a >0,则f (x )在区间[2,3]上是增函数.则有⎩⎪⎨⎪⎧ f=2+b =2,f =3a +2+b =5,解得⎩⎪⎨⎪⎧b =0,a =1.若a <0,则f (x )在区间[2,3]上是减函数,则有⎩⎪⎨⎪⎧f =2+b =5,f=3a +2+b =2,解得⎩⎪⎨⎪⎧b =3,a =-1.综上可知,a =1,b =0或a =-1,b =3. (2)由b <1知,a =1,b =0,则f (x )=x 2-2x +2, 所以g (x )=x 2-(m +2)x +2.因为g (x )在区间[2,4]上是单调函数,所以m +22≥4或m +22≤2,解得m ≥6或m ≤2.考点三 二次函数的综合应用|设二次函数f (x )=ax 2+bx (a ≠0)满足条件:①f (-1+x )=f (-1-x );②函数f (x )的图象与直线y =x 只有一个公共点.(1)求f (x )的解析式; (2)若不等式πf (x )>⎝ ⎛⎭⎪⎫1π2-tx在t ∈[-2,2]时恒成立,求实数x 的取值范围. [解] (1)∵由①知f (x )=ax 2+bx (a ≠0)的对称轴是直线x =-1,∴b =2a .∵函数f (x )的图象与直线y =x 只有一个公共点,∴方程组⎩⎪⎨⎪⎧y =ax 2+bx ,y =x有且只有一个解,即ax 2+(b -1)x =0有两个相同的实根,∴Δ=(b -1)2=0,即b =1,∴a =12.∴f (x )=12x 2+x .(2)∵π>1,∴πf (x )>⎝ ⎛⎭⎪⎫1π2-tx等价于f (x )>tx -2,即12x 2+x >tx -2在t ∈[-2,2]时恒成立⇔函数g (t )=xt -⎝ ⎛⎭⎪⎫12x 2+x +2<0在t ∈[-2,2]时恒成立,∴⎩⎪⎨⎪⎧g,g -,即⎩⎪⎨⎪⎧x 2-2x +4>0,x 2+6x +4>0,解得x <-3-5或x >-3+5,故实数x 的取值范围是(-∞,-3-5)∪(-3+5,+∞).不等式恒成立的求解方法由不等式恒成立求参数取值范围,常用分离参数法,转化为求函数最值问题,其依据是a ≥f (x )⇔a ≥f (x )max ,a ≤f (x )⇔a ≤f (x )min .2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值,都有f (x )>0,求实数a 的取值范围. 解:由f (x )>0,即ax 2-2x +2>0,x ∈(1,4), 得a >-2x +2x在(1,4)上恒成立.令g (x )=-2x 2+2x =-2⎝ ⎛⎭⎪⎫1x -122+12,1x ∈⎝ ⎛⎭⎪⎫14,1,∴g (x )max =g (2)=12, 所以要使f (x )>0在(1,4)上恒成立, 只要a >12即可.3.分类讨论思想在二次函数最值中的应用【典例】 已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.[思路分析] 参数a 的值确定f (x )图象的形状;a ≠0时,函数f (x )的图象为抛物线,还要考虑开口方向和对称轴位置.[解] (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =1a.①当1a≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a=1a -2a=-1a.②当1a>1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减. ∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2, a <1,-1a, a ≥1.[思想点评] (1)本题在求二次函数最值时,用到了分类讨论思想,求解中既对系数a 的符号进行了讨论,又对对称轴进行讨论.在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不无原则的分类讨论.(2)在有关二次函数最值的求解中,若轴定区间动,仍应对区间进行分类讨论. [跟踪练习] 设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (x ),求g (x ). 解:∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1,∵x =1不一定在区间[-2,a ]内, ∴应进行讨论.当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,y 取得最小值,即y min =a 2-2a ; 当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y 取得最小值,即y min =-1.综上,g (x )=⎩⎪⎨⎪⎧a 2-2a ,-2<a ≤1,-1,a >1.练习A 组 考点能力演练1.当ab >0时,函数y =ax 2与f (x )=ax +b 在同一坐标系中的图象可能是下列图象中的( )解析:因为ab >0,所以,当a <0,b <0时,函数y =ax 2的图象开口向下,函数f (x )=ax +b 的图象在x ,y 轴上的截距均为负值,显然D 项满足条件;而当a >0,b >0时,函数y =ax 2的图象开口向上,函数f (x )=ax +b 的图象在x 轴上的截距为负值,在y 轴上的截距为正值,没有符合条件的选项,故选D.答案:D2.已知函数f (x )=x 2+x +c .若f (0)>0,f (p )<0,则必有( ) A .f (p +1)>0 B .f (p +1)<0 C .f (p +1)=0D .f (p +1)的符号不能确定解析:函数f (x )=x 2+x +c 的图象的对称轴为直线x =-12,又∵f (0)>0,f (p )<0,∴-1<p <0,p+1>0,∴f (p +1)>0.答案:A3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2D .m =1解析:由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.答案:B4.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4]B.⎣⎢⎡⎦⎥⎤32,4C.⎣⎢⎡⎭⎪⎫32,+∞D.⎣⎢⎡⎦⎥⎤32,3 解析:二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,由图得m ∈⎣⎢⎡⎦⎥⎤32,3.答案:D5.(2015·沧州质检)如果函数f (x )=x 2+bx +c 对任意的x 都有f (x +1)=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2)解析:由f (1+x )=f (-x )知f (x )的图象关于直线x =12对称,又抛物线f (x )开口向上,∴f (0)<f (2)<f (-2).答案:D6.二次函数f (x )=x 2+(2-log 2m )x +m 是偶函数,则实数m =________.解析:利用偶函数性质求解.因为偶函数的图象关于y 轴对称,所以-2-log 2m2=0,解得m =4.答案:47.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:∵f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5. 答案:(3,5)8.已知函数f (x )=x 2-2x ,x ∈[a ,b ]的值域为[-1,3],则b -a 的取值范围是________. 解析:由题意知,f (x )=x 2-2x =(x -1)2-1,因为函数f (x )在[a ,b ]上的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a ≤1,所以b -a ∈[2,4].答案:[2,4]9.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝⎛⎭⎪⎫x -k -222+1-k -24.由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).10.已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.解:(1)∵f (x )=(x -a )2+5-a 2(a >1), ∴f (x )在[1,a ]上是减函数. 又定义域和值域均为[1,a ].∴⎩⎪⎨⎪⎧f =a ,f a =1,即⎩⎪⎨⎪⎧1-2a +5=a ,a 2-2a 2+5=1,解得a =2.(2)∵f (x )在区间(-∞,2]上是减函数, ∴a ≥2.又x =a ∈[1,a +1],且(a +1)-a ≤a -1, ∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.∵对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,∴f (x )max -f (x )min ≤4,得-1≤a ≤3.又a ≥2,∴2≤a ≤3.故实数a 的取值范围是[2,3].B 组 高考题型专练1.(2014·高考浙江卷)在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图象可能是( )解析:函数y =x a(x ≥0)与y =log a x (x >0),选项A 中没有幂函数图象,不符合;对于选项B ,y =x a (x ≥0)中a >1,y =log a x (x >0)中0<a <1,不符合;对于选项C ,y =x a (x ≥0)中,0<a <1,y =log a x (x >0)中a >1,不符合,对于选项D ,y =x a(x ≥0)中0<a <1,y =log a x (x >0)中,0<a <1,符合,故选D.答案:D2.(2014·高考北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟解析:由已知得⎩⎪⎨⎪⎧ 9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-15⎝⎛⎭⎪⎫t -1542+1316, ∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.故选B. 3.(2013·高考辽宁卷)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( )A .a 2-2a -16B .a 2+2a -16C .-16D .16 解析:f (x )=g (x ),即x 2-2(a +2)x +a 2=-x 2+(a -2)x -a 2+8,即x 2-2ax +a 2-4=0,解得x=a +2或x =a -2.f (x )与g (x )的图象如图.由图及H1(x)的定义知H1(x)的最小值是f(a+2),H2(x)的最大值为g(a-2),A-B=f(a+2)-g(a-2)=(a+2)2-2(a+2)2+a2+(a-2)2-2(a-2)2+a2-8=-16.答案:C4.(2015·高考福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于________.解析:依题意有a,b是方程x2-px+q=0的两根,则a+b=p,ab=q,由p>0,q>0可知a>0,b>0.由题意可知ab=(-2)2=4=q,a-2=2b或b-2=2a,将a-2=2b代入ab=4可解得a=4,b=1,此时a+b=5,将b-2=2a代入ab=4可解得a=1,b=4,此时a+b=5,则p=5,故p+q=9.答案:9。

相关文档
最新文档