2013北京朝阳区高三一模数学(理)试题
北京市朝阳区高三数学一模试题 理(含解析)北师大版
2013年北京市朝阳区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•朝阳区一模)i为虚数单位,复数的虚部是()解:复数=的虚部是.2.(5分)(2013•朝阳区一模)已知集合M={x|﹣2<x<3},N={x|lg(x+2)≥0},则M∩N=3.(5分)(2013•朝阳区一模)已知向量,.若,则实数m的值为()先求得得=,再由=,若4.(5分)(2013•朝阳区一模)在极坐标系中,直线与曲线ρ=2cosθ相交于A,即,曲线中,∵cos∠ACO=,∴∠ACO=,,∴∠AOB=2∠AOC=5.(5分)(2013•朝阳区一模)在下列命题中,①“”是“sinα=1”的充要条件;②的展开式中的常数项为2;③设随机变量ξ~N(0,1),若P(ξ≥1)=p,则.=,得,是能推得或其的通项为(C﹣6.(5分)(2013•朝阳区一模)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()12×=87.(5分)(2013•朝阳区一模)抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()又∵ab≤()((得到|AB|≥≤=,即的最大值为.的最大值,着重考查抛物线的定义和8.(5分)(2013•朝阳区一模)已知函数f(x)=2x+1,x∈N*.若,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.函数f,得或,解出即可.,得或,解得或二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)(2013•朝阳区一模)在等比数列{a n}中,2a3﹣a2a4=0,则a3= 2 ,{b n}为等差数列,且b3=a3,则数列{b n}的前5项和等于10 .,代入已知可解得==0=10.(5分)(2013•朝阳区一模)在△ABC中,a,b,c分别为角A,B,C所对的边.已知角A为锐角,且b=3asinB,则tanA= .sinA=,∴cosA== tanA==,11.(5分)(2013•朝阳区一模)执行如图所示的程序框图,输出的结果S= 20 .12.(5分)(2013•朝阳区一模)如图,圆O是△ABC的外接圆,过点C作圆O的切线交BA 的延长线于点D.若,AB=AC=2,则线段AD的长是 1 ;圆O的半径是 2 .即可.CD=cos∠ACD=,,∴根据弦切角定理可得∠ABC=∠DCA===413.(5分)(2013•朝阳区一模)函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x.若在区间[﹣2,3]上方程ax+2a﹣f(x)=0恰有四个不相等的实数根,则实数a的取值范围是.==,,故答案为:14.(5分)(2013•朝阳区一模)在平面直角坐标系xOy中,已知点A是半圆x2﹣4x+y2=0(2≤x≤4)上的一个动点,点C在线段OA的延长线上.当时,则点C的纵坐标的取值范围是[﹣5,5] .=,)时,由与的方向相同,故)时,)时,三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)(2013•朝阳区一模)已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.,求得(Ⅱ)因为答:=所以,,得(Ⅱ)因为,所以所以16.(13分)(2013•朝阳区一模)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字﹣1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为ξ,η,试求随机变量X=ξ•η的分布列与数学期望EX.;)...答:在四次试验中,至少有两次卡片上的数字都为正数的概率为P.17.(14分)(2013•朝阳区一模)如图,在四棱锥P﹣ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)当时,求异面直线BF与CD所成角的余弦值;(Ⅲ)是否存在实数λ,使得平面A FD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.(Ⅰ)由=两两垂直,以之为轴建立空间直角坐标系,可求得与=,=(Ⅰ)由已知,==时,(,=(﹣,,<,=所成角的余弦值为=,==,因为=即,=,即,解得.时,平面18.(13分)(2013•朝阳区一模)已知函数f(x)=x2﹣(a+2)x+alnx+2a+2,其中a≤2.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2]上有且只有一个零点,求实数a的取值范围.=a≤0,即或,得)的单调递减区间为,,或<﹣)在,所以当<=e﹣(alne ,,<﹣19.(14分)(2013•朝阳区一模)已知中心在原点,焦点在x轴上的椭圆C过点,离心率为,点A为其右顶点.过点B(1,0)作直线l与椭圆C相交于E,F两点,直线AE,AF与直线x=3分别交于点M,N.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.(Ⅰ)设椭圆的方程为,依题意可得为,依题意得的方程为易得.…(6分)由,则所以,所以=,所以,即综上所述,20.(13分)(2013•朝阳区一模)设τ=(x1,x2,…,x10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义,其中x11=x1.(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;(Ⅱ)求S(τ)的最大值;(Ⅲ)求使S(τ)达到最大值的所有排列τ的个数.==。
2013年北京市朝阳区高考数学一模试卷(理科)(附答案解析)
2013年北京市朝阳区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. i 为虚数单位,复数11−i 的虚部是( )A.12 B.−12C.−12iD.12i2. 已知集合M ={x|−2<x <3},N ={x|lg (x +2)≥0},则M ∩N =( ) A.(−2, +∞) B.(−2, 3) C.(−2, −1] D.[−1, 3)3. 已知向量OA →=(3, −4),OB →=(6, −3),OC →=(2m, m +1).若AB →∥OC →,则实数m 的值为( ) A.15 B.−35C.−3D.−174. 在极坐标系中,直线ρcos θ=12与曲线ρ=2cos θ相交于A ,B 两点,O 为极点,则∠AOB 的大小为( )A.π3 B.π2C.2π3D.5π65. 在下列命题中,①“α=π2”是“sin α=1”的充要条件; ②(x 32+1x )4的展开式中的常数项为2;③设随机变量ξ∼N(0, 1),若P(ξ≥1)=p ,则P(−1<ξ<0)=12−p .其中所有正确命题的序号是( ) A.② B.③C.②③D.①③6. 某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为( )A.4B.4√2C.6√2D.87. 抛物线y 2=2px(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120∘.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN||AB|的最大值为( )A.√33 B.1C.2√33D.28. 已知函数f(x)=2x +1,x ∈N ∗.若∃x 0,n ∈N ∗,使f(x 0)+f(x 0+1)+...+f(x 0+n)=63成立,则称(x 0, n)为函数f(x)的一个“生成点”.函数f(x)的“生成点”共有( ) A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.在等比数列{a n }中,2a 3−a 2a 4=0,则a 3=________,{b n }为等差数列,且b 3=a 3,则数列{b n }的前5项和等于________.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边.已知角A 为锐角,且b =3a sin B ,则tan A =________.执行如图所示的程序框图,输出的结果S =________.如图,圆O 是△ABC 的外接圆,过点C 作圆O 的切线交BA 的延长线于点D .若CD =√3,AB =AC =2,则线段AD 的长是________;圆O 的半径是________.函数f(x)是定义在R 上的偶函数,且满足f(x +2)=f(x).当x ∈[0, 1]时,f(x)=2x .若在区间[−2, 3]上方程ax +2a −f(x)=0恰有四个不相等的实数根,则实数a 的取值范围是________.在平面直角坐标系xOy 中,已知点A 是半圆x 2−4x +y 2=0(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当OA →⋅OC →=20时,则点C 的纵坐标的取值范围是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知函数f(x)=√32sin ωx −sin 2ωx 2+12(ω>0)的最小正周期为π.(1)求ω的值及函数f(x)的单调递增区间;(2)当x ∈[0,π2]时,求函数f(x)的取值范围.盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字−1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响). (1)在一次试验中,求卡片上的数字为正数的概率;(2)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(3)在两次试验中,记卡片上的数字分别为ξ,η,试求随机变量X =ξ⋅η的分布列与数学期望EX .如图,在四棱锥P −ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2.四边形ABCD 满足BC // AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点,且PEPB =PFPC =λ.(1)求证:EF // 平面PAD ;(2)当λ=12时,求异面直线BF 与CD 所成角的余弦值;(3)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由.已知函数f(x)=x 2−(a +2)x +a ln x +2a +2,其中a ≤2. (1)求函数f(x)的单调区间;(2)若函数f(x)在(0, 2]上有且只有一个零点,求实数a 的取值范围.已知中心在原点,焦点在x 轴上的椭圆C 过点(1,√32),离心率为√32,点A 为其右顶点.过点B(1, 0)作直线l 与椭圆C 相交于E ,F 两点,直线AE ,AF 与直线x =3分别交于点M ,N . (1)求椭圆C 的方程;(2)求EM →⋅FN →的取值范围.设τ=(x 1, x 2,…,x 10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义S(τ)=∑|10k=12x k −3x k+1|,其中x 11=x 1.(1)若τ=(10, 9, 8, 7, 6, 5, 4, 3, 2, 1),求S(τ)的值;(2)求S(τ)的最大值;(3)求使S(τ)达到最大值的所有排列τ的个数.参考答案与试题解析2013年北京市朝阳区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.【答案】 A【考点】复数的基本概念复数代数形式的乘除运算【解析】利用复数的除法法则,把分子、分母分别乘以分母的共轭复数即可得出. 【解答】 解:复数11−i=1+i (1−i)(1+i)=12+12i 的虚部是12.故选A . 2.【答案】 D【考点】 交集及其运算 【解析】解对数不等式可以求出集合N ,进而根据集合交集及其运算,求出M ∩N . 【解答】解:∵ N ={x|lg (x +2)≥0}=[−1, +∞), 集合M ={x|−2<x <3}, 则M ∩N =[−1, 3) 故选D . 3.【答案】 C【考点】平行向量(共线) 平面向量的坐标运算 【解析】先求得得AB →=OB →−OA →=(3, 1),再由AB →∥OC →,则这两个向量的坐标对应成比例,解方程求得实数m 的值,可得结论. 【解答】由题意可得AB →=OB →−OA →=(3, 1),若AB →∥OC →,则这两个向量的坐标对应成比例,即 2m 3=m+11,解得m =−3, 4.【答案】 C【考点】直线的极坐标方程与直角坐标方程的互化 【解析】把极坐标方程化为直角坐标方程,求出AC ,DC 的值,可得∠AOC 的值,从而得到∠AOB =2∠AOC 的值. 【解答】直线ρcos θ=12即 x =12,曲线ρ=2cos θ 即 ρ2=2ρcos θ,即 (x −1)2+y 2=1, 表示以C(1, 0)为圆心,以1为半径的圆.如图. Rt △ADC 中,∵ cos ∠ACO =CD AC=12,∴ ∠ACO =π3,在△AOC 中,AC =OC ,∴ ∠AOC =π3,∴ ∠AOB =2∠AOC =2π3,5.【答案】 C【考点】命题的真假判断与应用 【解析】 ①利用特殊值α=5π2,判断出为假命题.②利用二项展开式的通项公式求出第r +1项,令x 的指数为0得常数项.③根据随机变量ξ∼N(0, 1),正态曲线关于x =0对称,得到对称区间对应的概率相等,根据大于1的概率得到小于−1的概率,根据对称轴一侧的区间的概率是12,得到结果.【解答】解:①是假命题.α=π2,是能推得sin α=1,反之,sin α=1,α可以为5π2或其他数值.②:(x 32+1x )4的通项为T r+1=C r 4 (x 32)4−r (1x )r =2r−4C 4r x 12−4r令12−4r =0得r =3∴ 展开式的常数项为T 4=12C 43=2;正确;③:∵ 随机变量ξ∼N(0, 1), ∴ 正态曲线关于x =0对称, ∵ P(ξ≥1)=p , ∴ P(ξ<−1)=p ,∴ P(−1<ξ<0)=12−p ,正确.故选C .6.【答案】D【考点】由三视图求体积【解析】三视图复原的几何体是长方体的三分之二,依据三视图的数据,得出长方体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3,所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的三分之二,如图所示,则这个几何体的体积为12×23=8.故选D.7.【答案】A【考点】抛物线的性质【解析】设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2−ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.【解答】设|AF|=a,|BF|=b,连接AF、BF由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2−2ab cos120∘=a2+b2+ab配方得,|AB|2=(a+b)2−ab,又∵ab≤(a+b2) 2,∴(a+b)2−ab≥(a+b)2−14(a+b)2=34(a+b)2得到|AB|≥√32(a+b).所以|MN||AB|≤12(a+b)√32(a+b)=√33,即|MN||AB|的最大值为√33.8.【答案】B【考点】函数的求值数列的求和【解析】由f(x0)+f(x0+1)+...+f(x0+n)=63,得(2x0+1)+[2(x0+1)+1]+...+[2(x0+n)+1]=63,化简可得(n+1)(2x0+n+1)=63,由x0,n∈N∗,得{n+1=72x0+n+1=9或{n+1=32x0+n+1=21,解出即可.【解答】解:由f(x0)+f(x0+1)+...+f(x0+n)=63,得(2x0+1)+[2(x0+1)+1]+...+[2(x0+n)+1]=63所以2(n+1)x0+2(1+2+...n)+(n+1)=63,即(n+1)(2x0+n+1)=63,由x0,n∈N∗,得{n+1=72x0+n+1=9或{n+1=32x0+n+1=21,解得{n=6x0=1或{n=2x0=9,所以函数f(x)的“生成点”为(1, 6),(9, 2).故选B.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.【答案】2,10【考点】等比数列的通项公式等比数列的前n项和【解析】由题意可得a2a4=a32,代入已知可解得a3=2,进而可得b3=a3=2,代入等差数列的求和公式可得S5=5(b1+b5)2=5×2b32,计算即可.【解答】解:由等比数列的性质可得a2a4=a32,代入可得2a3−a32=0,解得a3=2,或a3=0(舍去);故b3=a3=2,由等差数列的求和公式和性质可得:数列{b n}的前5项和S5=5(b1+b5)2=5×2b32=5×2=10故答案为:2;10【答案】√24【考点】正弦定理【解析】由条件,利用正弦定理可得sin B=3sin A sin B,求得sin A的值,再由同角三角函数的基本关系求得tan A的值.【解答】解:在△ABC中,角A为锐角,且b=3a sin B,由正弦定理可得sin B=3sin A sin B,∵sin A≠0,故sin A=13,∴cos A=√1−sin2A=2√23tan A=sin Acos A=√24,故答案为√24.【答案】20【考点】程序框图【解析】题目首先给累加变量S和循环变量i赋值,S=0,i=0.先执行一次运算S=S+2i−1,然后判断i≥6是否成立,不成立继续执行i=i+2,S=S+2i−1,成立时结束循环,输出S.【解答】解:框图首先给累加变量S和循环变量i赋值,S=0,i=0.执行S=0+2×0−1=−1;判断0≥6不成立,执行i=0+2=2,S=−1+2×2−1=2;判断2≥6不成立,执行i=2+2=4,S=2+2×4−1=9;判断4≥6不成立,执行i=4+2=6,S=9+2×6−1=20;判断6≥6成立,跳出循环,输出S的值为20.故答案为20.【答案】1,2【考点】与圆有关的比例线段【解析】①由切割线定理得CD2=DA⋅DB,即可得出DA;②由余弦定理可得∠DCA,利用弦切角定理可得∠ABC=∠DCA,再利用正弦定理得2R=ACsin∠ABC即可.【解答】解:①∵CD是⊙O的切线,由切割线定理得CD2=DA⋅DB,CD=√3,DB=DA+AB=DA+2,∴(√3)2=DA(DA+2),又DA>0,解得DA=1.②在△ACD中,由余弦定理可得cos∠ACD=AC2+CD2−DA22AC⋅CD =2√3)222×2×√3=√32,∵0<∠ACD<π,∴∠ACD=π6.根据弦切角定理可得∠ABC=∠DCA=π6.由正弦定理可得2R=ACsin∠ABC =2sinπ6=4,∴R=2.故答案分别为1,2.【答案】(25, 2 3)【考点】函数与方程的综合运用【解析】问题等价于在区间[−2, 3]上函数f(x)与y=a(x+2)的图象有四个不同的交点,由函数的性质可作出它们的图象,由斜率公式可得边界,进而可得答案.【解答】在区间[−2, 3]上方程ax+2a−f(x)=0恰有四个不相等的实数根,等价于在区间[−2, 3]上函数f(x)与y=a(x+2)的图象有四个不同的交点,由f(x+2)=f(x)可得函数的周期为2,且为偶函数,函数y=a(x+2)的图象为过定点(−2, 0)且斜率为a的直线,作出它们的图象可得:由图图可知,当直线介于CB和CA之间符合题意,而由斜率公式可得k CB=2−01−(−2)=23,k CA=2−03−(−2)=25,故实数a的取值范围是:(25,23),【答案】[−5, 5]【考点】平面向量数量积的运算【解析】设点C(a, b),由题意可得OC→=λOA→,且λ>0,当点A在点M(2, 2)时,由OC→⋅OA→=20,且a=b,解得b的值.当点A在点N(2, −2)时,由OC→⋅OA→=20,且a=−b,解得b的值,从而求得C的纵坐标的取值范围.【解答】解:半圆x2−4x+y2=0(2≤x≤4)即(x−2)2+y2=4(2≤x≤4),设点C(a, b),由于OA→与OC→的方向相同,故OC→=λOA→,且λ>0,当点A在点M(2, 2)时,OC→⋅OA→=2a+2b=20,且a=b,解得b=5.当点A在点N(2, −2)时,OC→⋅OA→=2a+(−2b)=20,且a=−b,解得b=−5.综上可得,则点C的纵坐标的取值范围是[−5, 5],故答案为[−5, 5].三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 【答案】解:(1)f(x)=√32sinωx−1−cosωx2+12=√32sinωx+12cosωx=sin(ωx+π6).…因为f(x)最小正周期为π,所以ω=2.…所以f(x)=sin(2x+π6).由2kπ−π2≤2x+π6≤2kπ+π2,k∈Z,得kπ−π3≤x≤kπ+π6.所以函数f(x)的单调递增区间为[kπ−π3,kπ+π6],k∈Z.…(2)因为x∈[0,π2],所以2x+π6∈[π6,7π6],…所以−12≤sin(2x+π6)≤1.…所以函数f(x)在[0,π2]上的取值范围是[−12,1].…【考点】求二倍角的余弦求两角和与差的正弦求二倍角的正弦正弦函数的单调性【解析】(1)利用两角和的正弦公式,二倍角公式化简函数f(x)的解析式为sin(ωx+π6),由此求得它的最小正周期.令2kπ−π2≤2x+π6≤2kπ+π2,求得x的范围,即可得到函数f(x)的单调递增区间.(2)因为x∈[0,π2],根据正弦函数的定义域和值域求得函数f(x)的取值范围.【解答】解:(1)f(x)=√32sinωx−1−cosωx2+12=√32sinωx+12cosωx=sin(ωx+π6).…因为f(x)最小正周期为π,所以ω=2.…所以f(x)=sin(2x+π6).由2kπ−π2≤2x+π6≤2kπ+π2,k∈Z,得kπ−π3≤x≤kπ+π6.所以函数f(x)的单调递增区间为[kπ−π3,kπ+π6],k∈Z.…(2)因为x∈[0,π2],所以2x+π6∈[π6,7π6],…所以−12≤sin(2x+π6)≤1.…所以函数f(x)在[0,π2]上的取值范围是[−12,1].…【答案】在一次试验中,卡片上的数字为正数的概率是12.(2)设事件B:在四次试验中,至少有两次卡片上的数字都为正数.由(1)可知在一次试验中,卡片上的数字为正数的概率是12.所以P(B)=1−[C40(12)0⋅(12)4+C4112⋅(12)3]=1116.答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.(3)由题意可知,ξ,η的可能取值为−1,0,1,2,所以随机变量X的可能取值为−2,−1,0,1,2,4.P(X=−2)=24×4=18;P(X=−1)=24×4=18;P(X=0)=74×4=716;P(X=1)=24×4=18;P(X=2)=24×4=18;P(X=4)=14×4=116.所以随机变量X的分布列为所以E(X)=−2×18−1×18+0×716+1×18+2×18+4×116=14.【考点】离散型随机变量及其分布列离散型随机变量的期望与方差 【解析】(1)根据古典概型概率计算公式求解:P(A)=n(A)n(Ω);(2)设事件B :在四次试验中,至少有两次卡片上的数字都为正数,则P(B)=1−P(B ¯),根据独立重复试验中某事件发生k 次的概率计算公式即可求得;(3)由题意可知ξ,η的可能取值为−1,0,1,2,从而随机变量X 的可能取值为−2,−1,0,1,2,4.根据古典概型该类计算公式求得X 取各值时的概率即可写出分布列,利用期望公式即可求得期望值; 【解答】解:(1)设事件A :在一次试验中,卡片上的数字为正数,则P(A)=24=12.答:在一次试验中,卡片上的数字为正数的概率是12.(2)设事件B :在四次试验中,至少有两次卡片上的数字都为正数. 由(1)可知在一次试验中,卡片上的数字为正数的概率是12.所以P(B)=1−[C 40(12)0⋅(12)4+C 4112⋅(12)3]=1116.答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116. (3)由题意可知,ξ,η的可能取值为−1,0,1,2, 所以随机变量X 的可能取值为−2,−1,0,1,2,4. P(X =−2)=24×4=18;P(X =−1)=24×4=18;P(X =0)=74×4=716;P(X =1)=24×4=18;P(X =2)=24×4=18;P(X =4)=14×4=116. 所以随机变量X 的分布列为所以E(X)=−2×18−1×18+0×716+1×18+2×18+4×116=14.【答案】证明:(1)由已知,PEPB =PFPC =λ, 所以EF // BC .因为BC // AD ,所以EF // AD . 而EF ⊄平面PAD ,AD ⊂平面PAD ,所以EF // 平面PAD . …(2)因为平面ABCD ⊥平面PAC ,平面ABCD ∩平面PAC =AC ,且PA ⊥AC , 所以PA ⊥平面ABCD . 所以PA ⊥AB ,PA ⊥AD . 又因为AB ⊥AD ,所以PA ,AB ,AD 两两垂直. … 如图所示,建立空间直角坐标系, 因为AB =BC =1,PA =AD =2,所以A(0, 0, 0),B(1, 0, 0),C(1, 1, 0),D(0, 2, 0),P(0, 0, 2). 当λ=12时,F 为PC 中点, 所以F(12, 12, 1),所以BF →=(−12, 12, 1),CD →=(−1, 1, 0).设异面直线BF 与CD 所成的角为θ, 所以cos θ=|cos <BF →,CD →>|=|(−12,12,1)⋅(−1,1,0)|√14+14+1×√2=√33, 所以异面直线BF 与CD 所成角的余弦值为√33.…(3)设F(x 0, y 0, z 0),则PF →=(x 0, y 0, z 0−2),PC →=(1, 1, −2). 由已知PF →=λPC →,所以(x 0, y 0, z 0−2)=λ(1, 1, −2),所以{x 0=λy 0=λz 0=2−2λ,∴ AF →=(λ, λ, 2−2λ).设平面AFD 的一个法向量为n 1=(x 1, y 1, z 1),因为AD →=(0, 2, 0),所以{n 1⋅AD →=0˙即{λx 1+λy 1+(2−2λ)z 1=02y 1=0,令z 1=λ,得n 1=(2λ−2, 0, λ).设平面PCD 的一个法向量为n 2=(x 2, y 2, z 2), 因为PD →=(0, 2, −2),CD →=(−1, 1, 0), 所以{n 2⋅CD →=0˙即{2y 2−2z 2=0−x 2+y 2=0令x 2=1,则n 2=(1, 1, 1).若平面AFD ⊥平面PCD ,则n 1⋅n 2=0,所以(2λ−2)+λ=0,解得λ=23. 所以当λ=23时,平面AFD ⊥平面PCD .… 【考点】直线与平面平行的判定 异面直线及其所成的角 平面与平面垂直的判定 【解析】 (1)由PE PB=PF PC=λ可知,EF // BC ,依题意,可求得EF // AD ,再利用线面平行的判断定理即可证得结论; (2)可证得PA ,AB ,AD 两两垂直,以之为轴建立空间直角坐标系,可求得BF →与CD →的坐标,利用向量的数量积即可求得异面直线BF 与CD 所成角的余弦值;(3)设F(x 0, y 0, z 0),则PF →=(x 0, y 0, z 0−2),PC →=(1, 1, −2),由PF →=λPC →,可求得F(λ, λ, 2−2λ),再设出平面AFD 的一个法向量为n 1=(x 1, y 1, z 1),平面PCD 的一个法向量为n 2=(x 2, y 2, z 2),可求得这两个法向量的坐标,利用n 1⋅n 2=0,即可求得λ的值. 【解答】证明:(1)由已知,PE PB=PF PC=λ,所以EF // BC .因为BC // AD ,所以EF // AD . 而EF ⊄平面PAD ,AD ⊂平面PAD ,所以EF // 平面PAD . …(2)因为平面ABCD ⊥平面PAC ,平面ABCD ∩平面PAC =AC ,且PA ⊥AC , 所以PA ⊥平面ABCD . 所以PA ⊥AB ,PA ⊥AD . 又因为AB ⊥AD ,所以PA ,AB ,AD 两两垂直. … 如图所示,建立空间直角坐标系, 因为AB =BC =1,PA =AD =2,所以A(0, 0, 0),B(1, 0, 0),C(1, 1, 0),D(0, 2, 0),P(0, 0, 2).当λ=12时,F 为PC 中点,所以F(12, 12, 1),所以BF →=(−12, 12, 1),CD →=(−1, 1, 0).设异面直线BF 与CD 所成的角为θ, 所以cos θ=|cos <BF →,CD →>|=|(−12,12,1)⋅(−1,1,0)|√14+14+1×√2=√33, 所以异面直线BF 与CD 所成角的余弦值为√33.…(3)设F(x 0, y 0, z 0),则PF →=(x 0, y 0, z 0−2),PC →=(1, 1, −2). 由已知PF →=λPC →,所以(x 0, y 0, z 0−2)=λ(1, 1, −2), 所以{x 0=λy 0=λz 0=2−2λ,∴ AF →=(λ, λ, 2−2λ).设平面AFD 的一个法向量为n 1=(x 1, y 1, z 1),因为AD →=(0, 2, 0),所以{n 1⋅AD →=0˙即{λx 1+λy 1+(2−2λ)z 1=02y 1=0,令z 1=λ,得n 1=(2λ−2, 0, λ).设平面PCD 的一个法向量为n 2=(x 2, y 2, z 2), 因为PD →=(0, 2, −2),CD →=(−1, 1, 0), 所以{n 2⋅CD →=0˙即{2y 2−2z 2=0−x 2+y 2=0令x 2=1,则n 2=(1, 1, 1).若平面AFD ⊥平面PCD ,则n 1⋅n 2=0,所以(2λ−2)+λ=0,解得λ=23. 所以当λ=23时,平面AFD ⊥平面PCD .… 【答案】解:(1)函数定义域为x >0,且f′(x)=2x −(a +2)+ax =(2x−a)(x−1)x…①当a ≤0,即a 2≤0时,令f ′(x)<0,得0<x <1,函数f(x)的单调递减区间为(0, 1), 令f ′(x)>0,得x >1,函数f(x)的单调递增区间为(1, +∞). ②当0<a 2<1,即0<a <2时,令f ′(x)>0,得0<x <a2或x >1,函数f(x)的单调递增区间为(0,a2),(1, +∞).令f ′(x)<0,得a2<x <1,函数f(x)的单调递减区间为(a2,1).③当a2=1,即a =2时,f ′(x)≥0恒成立,函数f(x)的单调递增区间为(0, +∞).…(2)①当a ≤0时,由(1)可知,函数f(x)的单调递减区间为(0, 1),f(x)在(1, 2]单调递增.所以f(x)在(0, 2]上的最小值为f(1)=a +1, 由于f(1e 2)=1e 4−2e 2−a e 2+2=(1e 2−1)2−a e 2+1>0,要使f(x)在(0, 2]上有且只有一个零点,需满足f(1)=0或{f(1)<0f(2)<0解得a =−1或a <−2ln 2.②当0<a ≤2时,由(1)可知,(1)当a =2时,函数f(x)在(0, 2]上单调递增;且f(e −4)=1e 8−4e 4−2<0,f(2)=2+2ln 2>0,所以f(x)在(0, 2]上有且只有一个零点. (2)当0<a <2时,函数f(x)在(a2,1)上单调递减,在(1, 2]上单调递增; 又因为f(1)=a +1>0,所以当x ∈(a2,2]时,总有f(x)>0. 因为e−2a+2a<1<a +2,所以f(e −2a+2a)=e −2a+2a[e −2a+2a−(a +2)]+(a ln e −2a+2a+2a +2)<0.所以在区间(0, a2)内必有零点.又因为f(x)在(0, a2)内单调递增, 从而当0<a ≤2时,f(x)在(0, 2]上有且只有一个零点. 综上所述,0<a ≤2或a <−2ln 2或a =−1时,f(x)在(0, 2]上有且只有一个零点.…【考点】利用导数研究函数的单调性 函数的零点【解析】(1)先求函数的定义域再求函数的导数,当导数大于0时函数单调递增,当导数小于0时单调递减.(2)此题考查的是函数的零点存在问题.在解答的过程当中要先结合函数f(x)在区间(0, 2]内有且只有一个零点的条件,结合(1)中确定函数的增减区间,求出函数的极小值和极大值,再转化出不等关系,利用此不等关系即可获得问题的解答. 【解答】解:(1)函数定义域为x >0,且f′(x)=2x −(a +2)+ax =(2x−a)(x−1)x…①当a ≤0,即a 2≤0时,令f ′(x)<0,得0<x <1,函数f(x)的单调递减区间为(0, 1), 令f ′(x)>0,得x >1,函数f(x)的单调递增区间为(1, +∞). ②当0<a2<1,即0<a <2时,令f ′(x)>0,得0<x <a2或x >1, 函数f(x)的单调递增区间为(0,a2),(1, +∞).令f ′(x)<0,得a2<x <1,函数f(x)的单调递减区间为(a2,1).③当a2=1,即a =2时,f ′(x)≥0恒成立,函数f(x)的单调递增区间为(0, +∞).…(2)①当a ≤0时,由(1)可知,函数f(x)的单调递减区间为(0, 1),f(x)在(1, 2]单调递增. 所以f(x)在(0, 2]上的最小值为f(1)=a +1, 由于f(1e 2)=1e4−2e2−a e2+2=(1e2−1)2−a e 2+1>0,要使f(x)在(0, 2]上有且只有一个零点,需满足f(1)=0或{f(1)<0f(2)<0解得a =−1或a <−2ln 2.②当0<a ≤2时,由(1)可知,(1)当a =2时,函数f(x)在(0, 2]上单调递增;且f(e −4)=1e 8−4e 4−2<0,f(2)=2+2ln 2>0,所以f(x)在(0, 2]上有且只有一个零点. (2)当0<a <2时,函数f(x)在(a2,1)上单调递减,在(1, 2]上单调递增; 又因为f(1)=a +1>0,所以当x ∈(a 2,2]时,总有f(x)>0.因为e−2a+2a<1<a +2, 所以f(e−2a+2a)=e−2a+2a[e−2a+2a−(a +2)]+(a ln e−2a+2a+2a +2)<0.所以在区间(0, a 2)内必有零点.又因为f(x)在(0, a2)内单调递增,从而当0<a ≤2时,f(x)在(0, 2]上有且只有一个零点.综上所述,0<a ≤2或a <−2ln 2或a =−1时,f(x)在(0, 2]上有且只有一个零点.… 【答案】解:(1)由题意,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),依题意得{ a 2=b 2+c 2c a=√321a 2+34b 2=1解之可得a 2=4,b 2=1. 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)可知点A 的坐标为(2, 0).①当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得E(1,√32),F(1,−√32),M(3,−√32),N(3,√32),所以EM→⋅FN →=1.②当直线l 的斜率存在时,由题意可设直线l 的方程为y =k(x −1),显然k =0时,不符合题意.由{y =k(x −1)x 2+4y 2−4=0消y 并整理得(4k 2+1)x 2−8k 2x +4k 2−4=0. 设E(x 1, y 1),F(x 2, y 2),则x 1+x 2=8k 24k 2+1,x 1x 2=4k 2−44k 2+1.直线AE ,AF 的方程分别为:y =y 1x 1−2(x −2),y =y 2x 2−2(x −2),令x =3,则M(3,y 1x1−2),N(3,y 2x2−2).所以EM →=(3−x 1,y 1(3−x 1)x 1−2),FN →=(3−x 2,y 2(3−x 2)x 2−2). 所以EM →⋅FN →=(3−x 1)(3−x 2)+y 1(3−x 1)x 1−2⋅y 2(3−x 2)x 2−2=(3−x 1)(3−x 2)(1+y 1y 2(x 1−2)(x 2−2))=(3−x 1)(3−x 2)(1+k 2⋅(x 1−1)(x 2−1)(x 1−2)(x 2−2))=[x 1x 2−3(x 1+x 2)+9]×[1+k 2⋅x 1x 2−(x 1+x 2)+1x 1x 2−2(x 1+x 2)+4]=(4k 2−44k 2+1−3⋅8k 24k 2+1+9)⋅(1+k 2⋅4k 2−44k 2+1−8k 24k 2+1+14k 2−44k 2+1−2⋅8k 24k 2+1+4)=(16k 2+54k 2+1)⋅(1+−3k 24k 2)=16k 2+516k 2+4=1+116k 2+4.因为k 2>0,所以16k 2+4>4,所以1<16k 2+516k 2+4<54,即EM →⋅FN →∈(1,54).综上所述,EM →⋅FN →的取值范围是[1,54). 【考点】平面向量数量积的运算 椭圆的标准方程 【解析】(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),依题意可得a 、b 、c 的方程组,解之可得方程;(2)由(1)可知点A 的坐标为(2, 0).①当直线l 的斜率不存在时,不妨设点E 在x 轴上方,可得EM →⋅FN →=1;②当直线l 的斜率存在时,写直线的方程,联立方程组,消y 并整理得(4k 2+1)x 2−8k 2x +4k 2−4=0.进而由根与系数的关系表示出向量的数量积为1+116k 2+4,由k 的范围可得其范围,综合可得. 【解答】解:(1)由题意,设椭圆的方程为x 2a2+y 2b 2=1(a >b >0),依题意得{ a 2=b 2+c 2c a =√321a 2+34b 2=1解之可得a 2=4,b 2=1. 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)可知点A 的坐标为(2, 0).①当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得E(1,√32),F(1,−√32),M(3,−√32),N(3,√32),所以EM→⋅FN →=1.②当直线l 的斜率存在时,由题意可设直线l 的方程为y =k(x −1),显然k =0时,不符合题意. 由{y =k(x −1)x 2+4y 2−4=0消y 并整理得(4k 2+1)x 2−8k 2x +4k 2−4=0. 设E(x 1, y 1),F(x 2, y 2),则x 1+x 2=8k 24k 2+1,x 1x 2=4k 2−44k 2+1. 直线AE ,AF 的方程分别为:y =y 1x 1−2(x −2),y =y 2x2−2(x −2),令x =3,则M(3,y 1x1−2),N(3,y 2x2−2).所以EM →=(3−x 1,y 1(3−x 1)x 1−2),FN →=(3−x 2,y 2(3−x 2)x 2−2). 所以EM →⋅FN →=(3−x 1)(3−x 2)+y 1(3−x 1)x 1−2⋅y 2(3−x 2)x 2−2=(3−x 1)(3−x 2)(1+y 1y 2(x 1−2)(x 2−2))=(3−x 1)(3−x 2)(1+k 2⋅(x 1−1)(x 2−1)(x 1−2)(x 2−2))=[x 1x 2−3(x 1+x 2)+9]×[1+k 2⋅x 1x 2−(x 1+x 2)+1x 1x 2−2(x 1+x 2)+4]=(4k 2−44k 2+1−3⋅8k 24k 2+1+9)⋅(1+k 2⋅4k 2−44k 2+1−8k24k 2+1+14k 2−44k 2+1−2⋅8k 24k 2+1+4)=(16k 2+54k 2+1)⋅(1+−3k 24k 2)=16k 2+516k 2+4=1+116k 2+4. 因为k 2>0,所以16k 2+4>4,所以1<16k 2+516k +4<54,即EM →⋅FN →∈(1,54). 综上所述,EM →⋅FN →的取值范围是[1,54).【答案】解:(1)∵ τ=(10, 9, 8, 7, 6, 5, 4, 3, 2, 1),x 11=x 1, 依题意,S(τ)=∑|10k=12x k −3x k+1|, ∴ S(T)=∑|10k=12x k −3x k+1|=7+6+5+4+3+2+1+0+1+28=57,.… (2)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为203−72=131,所以S(τ)≤131. 对于排列τ0=(1, 5, 6, 7, 2, 8, 3, 9, 4, 10),此时S(τ0)=131, 所以S(τ)的最大值为131.…(3)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使S(τ)取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设x 1=1,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当x 1=1时,使S(τ)达到最大值的所有排列τ的个数为6×24×4×5=2880,由轮换性知,使S(τ)达到最大值的所有排列τ的个数为28800.… 【考点】排列及排列数公式 数列的求和【解析】(1)依题意,τ=(x 1, x 2,…,x 10)=(10, 9, 8, 7, 6, 5, 4, 3, 2, 1),代入S(τ)=∑|10k=12x k −3x k+1|计算即可求得S(τ)的值;(2)可求得数10,9,8,7,6,5,4,3,2,1的2倍与3倍,从而可求得其中较大的十个数之和与较小的十个数之和的差,从而可得S(τ)的最大值;(3)利用数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,从而使S(τ)取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面,利用排列组合知识即可求得答案. 【解答】 解:(1)∵ τ=(10, 9, 8, 7, 6, 5, 4, 3, 2, 1),x 11=x 1, 依题意,S(τ)=∑|10k=12x k −3x k+1|, ∴ S(T)=∑|10k=12x k −3x k+1|=7+6+5+4+3+2+1+0+1+28=57,.… (2)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为203−72=131,所以S(τ)≤131. 对于排列τ0=(1, 5, 6, 7, 2, 8, 3, 9, 4, 10),此时S(τ0)=131, 所以S(τ)的最大值为131.…(3)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使S(τ)取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设x 1=1,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当x 1=1时,使S(τ)达到最大值的所有排列τ的个数为6×24×4×5=2880,由轮换性知,使S(τ)达到最大值的所有排列τ的个数为28800.…。
北京市朝阳区高三数学理科一模试题及答案
北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2013.4一、选择题:本大题共8小题,每小题5分,共40分. (1)i 为虚数单位,复数11i-的虚部是 A.12 B.12- C .1i 2- D . 1i 2(2)已知集合{}23M x x =-<<,{}lg(2)0N x x=+≥,则MN=A. (2,)-+∞ B. (2,3)- C. (2,1]-- D. [1,3)-(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35- D .35(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的 大小为 A .3π B .2π C .32π D .65π(5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2; ③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-.其中所有正确命题的序号是 A .② B .③ C .②③ D .①③(6)某个长方体被一个平面所截,得到的几何体的三 视图如图所示,则这个几何体的体积为A. 4B.C.D. 8正视图侧视图俯视图(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.B. 1C. D. 2 (8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有 A. 1个 B .2个 C .3个 D .4个二、填空题:本大题共6小题,每小题5分,共30分.(9)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且3sin b a B =,则tan A = .(11)执行如图所示的程序框图,输出的结果S= .(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切 线交BA 的延长线于点D .若CD =2AB AC ==,则线段AD 的长是 ;圆O 的 半径是 . (13)函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程2()0ax a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是 .(14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 .D三、解答题:本大题共6小题,共80分. (15)(13分)已知函数21()sin sin 222x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间;(Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围.(16)(13分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01-,,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响). (Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为ξη,,试求随机变量X=ξη⋅的分布列与数学期望EX .(17)(14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由.(18)(13分)已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤.PDABCFE(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.(19)(14分)已知中心在原点,焦点在x 轴上的椭圆C 过点(1,)2,离心率为2,点A 为其右顶点.过点(10)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .(Ⅰ)求椭圆C 的方程; (Ⅱ)求EM FN ⋅的取值范围.(20)(13分)设1210(,,,)x x x τ=是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)2013.4三、解答题:(15)(本小题满分13分)解:(Ⅰ)1cos 1()222x f x x ωω-=-+1cos 22x x ωω=+ sin()6x ωπ=+. …………………………………………4分因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+.由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+.所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分 所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A :在一次试验中,卡片上的数字为正数,则 21()42P A ==. 答:在一次试验中,卡片上的数字为正数的概率是12.…………………………3分(Ⅱ)设事件B :在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是12. 所以041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 (Ⅲ)由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯;21(=2)448P X ==⨯; 11(=4)4416P X ==⨯.所以随机变量X 的分布列为所以1()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分(17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分(Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥. 又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分如图所示,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=-.设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|3BF CD θ-⋅-=〈〉==, 所以异面直线BF 与CD 9分 (Ⅲ)设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC =-=-. 由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ=-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (18)(本小题满分1 3分)解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1), 令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e e a a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点, 需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,(ⅰ)当2a =时,函数()f x 在(0,2]上单调递增;且48414(e )20,(2)22ln 20e ef f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点. (ⅱ)当02a <<时,函数()f x 在(,1)2a上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2ax ∈时,总有()0f x >.因为22e12a aa +-<<+,所以22222222(e)e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增, 从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 (19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,1314a b c c a ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. ………………………………………………4分 (Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得(1,E F,(3,),(3,22M N -,所以1EM FN ⋅=. …………………………………………6分 (2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---, 令3x =,则1212(3,),(3,)22y yM N x x --.所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ……………………10分 所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅-- 121212(3)(3)(1)(2)(2)y y x x x x =--+-- 2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅-- 2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++ 222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++ 22221653()(1)414k k k k+-=⋅++ 22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈. 综上所述,EM FN ⋅的取值范围是5[1,)4. ……………………………………14分(20)(本小题满分13分)解:(Ⅰ)1011()|23|7654321012857k k k S xx τ+==-=+++++++++=∑. ……3分(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤.对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分(Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设11x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ达到最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ达到最大值的所有排列τ的个数为28800. ……………………………13分。
北京市朝阳区2013-2014学年度3月高三一模数学理科
(第6题图)北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2014.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)复数i(2+i)z =在复平面内对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)已知集合1{|(1}2xA x =<,集合{|lg 0}B x x =>,则A B =(A ){|0}x x > (B ){|1}x x > (C ) {|1}{|0}x x x x >< (D ) ∅ (3)已知平面向量a ,b 满足2==a b ,(2)()=2⋅--a +b a b ,则a 与b 的夹角为(A )6π (B ) 3π (C ) 32π (D ) 65π (4)如图,设区域{(,)01,01}D x y x y =≤≤≤≤,向区域D 内随机投一点,且投入到区域内任一点都是等可能的,则点落 入到阴影区域3{(,)01,0}M x y x y x =≤≤≤≤的概率为(A )14(B )13(C ) 25 (D ) 27(5)在ABC △中,π4A =,BC =“AC =是“π3B =”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)执行如图所示的程序框图,输出的S 值为(A )2 (B )2- (C )4 (D )4-(7)已知函数2sin ()1xf x x =+.下列命题: ①函数()f x 的图象关于原点对称; ②函数()f x 是周期函数; ③当2x π=时,函数()f x 取最大值;④函数()f x 的图象与函数1y x=的图象没有公共点,其中正确命题的序号是(A ) ①③ (B )②③ (C ) ①④ (D )②④(8)直线y x m =+与圆2216x y +=交于不同的两点M ,N ,且M N O N ≥+,其中O 是坐标原点,则实数m 的取值范围是(A )(- (B)(⎡--⎣(C ) [2,2]- (D )[-第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. (9)在各项均为正数的等比数列{}n a 中,12a =,2312a a +=,则该数列的前4项和为 .(10)在极坐标系中,A 为曲线2cos ρθ=上的点,B 为曲线cos 4ρθ=上的点,则线段AB 长度的最小值是 .(11)某三棱锥的三视图如图所示,则这个三棱锥的体积为 ;表面积为 .(12)双曲线2221(0)y x b b-=>的一个焦点到其渐近线的距离是2,则b = ;此双曲线的离心率为 .(13)有标号分别为1,2,3的红色卡片3张,标号分别为1,2,3的蓝色卡片3张,现将全部的6张卡片放在2行3列的格内 (如图).若颜色相同的卡片在同一行,则不同的放法种数 为 .(用数字作答)正视图俯视图(14)如图,在四棱锥S ABCD -中,SB ⊥底面ABCD .底面ABCD 为梯形,AB AD ⊥,AB ∥CD ,1,3AB AD ==,2CD =.若点E 是线段AD 上的动点,则满足90SEC ∠=︒的点E 的个数是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数22()2sin()cos sin cos f x x x x x =π-⋅+-,x ∈R . (Ⅰ)求()2f π的值及函数()f x 的最小正周期; (Ⅱ)求函数()f x 在[]0,π上的单调减区间.(16)(本小题满分13分)某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:例如,只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为25. (I )求a ,b 的值;(II )从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;(III )从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列及其数学期望E ξ.BCDESA(17)(本小题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧面PAD ⊥底面ABCD .PAD △为等腰直角三角形,且PA AD ⊥. E ,F 分别为底边AB 和侧棱PC 的中点.(Ⅰ)求证:EF ∥平面PAD ; (Ⅱ)求证:EF ⊥平面PCD ; (Ⅲ)求二面角E PD C --的余弦值.(18)(本小题满分13分)已知函数21()ln 2f x ax x =-,a ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间[1,e]的最小值为1,求a 的值.(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>经过点(Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.(20)(本小题满分13分)从1,2,3,,n 中这n 个数中取m (,m n *∈N ,3m n ≤≤)个数组成递增等差数列,所有可能的递增等差数列的个数记为(,)f n m .(Ⅰ)当5,3n m ==时,写出所有可能的递增等差数列及(5,3)f 的值; (Ⅱ)求(100,10)f ;(Ⅲ)求证:()(1)(,)2(1)n m n f n m m -+>-.A E BCDPF北京市朝阳区高三年级第一次综合练习数学答案(理工类) 2014.3三、解答题15. (本小题满分13分) 解: ()f x =sin 2cos 2x x -)4x π=-.(Ⅰ)())12242f πππ=⋅-==.显然,函数()f x 的最小正周期为π. …………… 8分 (Ⅱ)令ππ3π2π22π242k x k +-+≤≤得 37ππππ88k x k ++≤≤,k ∈Z .又因为[]0,πx ∈,所以3π7π,88x ⎡⎤∈⎢⎥⎣⎦. 函数()f x 在[]0,π上的单调减区间为3π7π,88⎡⎤⎢⎥⎣⎦. …………… 13分 16. (本小题满分13分)解:(I )设事件A :从20位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.由题意可知,运动协调能力或逻辑思维能力优秀的学生共有(6)a +人. 则62()205a P A +==. 解得 2a =.所以4b =. …………… 4分(II )设事件B :从20人中任意抽取2人,至少有一位运动协调能力或逻辑思维能力优秀的学生.由题意可知,至少有一项能力测试优秀的学生共有8人.则21222062()1()195C P B P B C =-=-=. …………… 7分(III )ξ的可能取值为0,1,2.20位学生中运动协调能力或逻辑思维能力优秀的学生人数为8人.所以21222033(0)95C P C ξ===,1112822048(1)95C C P C ξ===,2822014(2)95C P C ξ===.所以ξ的分布列为所以,0E ξ=⨯33951+⨯48952+⨯1495764955==. …………… 13分17. (本小题满分14分)(Ⅰ)证明:取PD 的中点G ,连接FG ,AG .因为F ,G 分别是PC ,PD 的中点, 所以FG 是△PCD 的中位线. 所以FG ∥CD ,且12FG CD =. 又因为E 是AB 的中点,且底面ABCD 为正方形,所以1122AE AB CD ==,且AE ∥CD . 所以AE ∥FG ,且AE FG =. 所以四边形AEFG 是平行四边形. 所以EF ∥AG .又EF ⊄平面PAD ,AG ⊂平面PAD ,AE BCDPFG所以EF 平面PAD . ……………4分 (Ⅱ)证明: 因为平面PAD ⊥平面ABCD ,PA AD ⊥,且平面PAD 平面ABCD AD =, 所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥.又因为ABCD 为正方形,所以AB AD ⊥, 所以,,AB AD AP 两两垂直.以点A 为原点,分别以, , AB AD AP 为, , x y z 轴, 建立空间直角坐标系(如图). 由题意易知AB AD AP ==, 设2AB AD AP ===,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(1,0,0)E ,(1,1,1)F .因为(0,11)EF = ,,(022)PD =- ,,,(200)CD =- ,,, 且(0,11)(0,2,2)0EF PD ⋅=⋅-= ,,(0,11)(2,00)0EF CD ⋅=⋅-=,,所以EF PD ⊥,EF CD ⊥.又因为PD ,CD 相交于D ,所以EF ⊥平面PCD . …………… 9分(Ⅲ)易得(102)EP =- ,,,(0,22)PD =- ,.设平面EPD 的法向量为(, , )x y z =n ,则0,0.EP PD ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 20,220. x z y z -+=⎧⎨-=⎩即2,. x z y z =⎧⎨=⎩令1z =,则(2,1,1)=n .由(Ⅱ)可知平面PCD 的法向量是(0,11)EF =,,所以cos ,EF EF EF⋅〈〉===⋅n n n .由图可知,二面角E PD C --的大小为锐角,所以二面角E PD C --的余弦值为3. ……………14分 18. (本小题满分13分)解:函数()f x 的定义域是(0,)+∞, 1()f x ax x '=-21ax x-=.(Ⅰ)(1)当0a =时,1()0f x x'=-<,故函数()f x 在(0,)+∞上单调递减. (2)当0a <时,()0f x '<恒成立,所以函数()f x 在(0,)+∞上单调递减.(3)当0a >时,令()0f x '=,又因为0x >,解得x =①当x ∈时,()0f x '<,所以函数()f x 在单调递减.②当)x ∈+∞时,()0f x '>,所以函数()f x 在)+∞单调递增. 综上所述,当0a ≤时,函数()f x 的单调减区间是(0,)+∞,当0a >时,函数()f x 的单调减区间是,单调增区间为)+∞.…7分 (Ⅱ)(1)当0a ≤时,由(Ⅰ)可知,()f x 在[1,e]上单调递减,所以()f x 的最小值为21(e)e 112f a =-=,解得240ea =>,舍去. (2)当0a >时,由(Ⅰ)可知,1,即1a ≥时,函数()f x 在[1,e]上单调递增, 所以函数()f x 的最小值为1(1)12f a ==,解得2a =.②当1e <<,即211e a <<时,函数()f x 在上单调递减,在上单调递增,所以函数()f x 的最小值为11ln 122f a =+=,解得e a =,舍去.e ,即210e a <≤时,函数()f x 在[1,e]上单调递减,所以函数()f x 的最小值为21(e)e 112f a =-=,得24ea =,舍去. 综上所述,2a =. ……………13分19. (本小题满分14分)解:(Ⅰ)由题意得22=21314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =. 所以椭圆C 的方程是2214x y +=. …………… 4分 (Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440k x k x k +-+-=. 设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --. 直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --. 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=恒成立.又因为1012(,)2y PN x x =- ,2022(,)2y QN x x =- , 所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=---- 恒成立. 又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++ 22414k k=+, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k -=-+++22314k k-=+, 所以222212000212212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得0x =.故以线段PQ 为直径的圆过x轴上的定点(. …………… 14分 20. (本小题满分13分) 解:(Ⅰ)符合要求的递增等差数列为1,2,3;2,3,4;3,4,5;1,3,5,共4个.所以(5,3)4f =. …………… 3分 (Ⅱ)设满足条件的一个等差数列首项为1a ,公差为d ,d *∈N .1019a a d =+,10110011199a a d --==≤,d 的可能取值为1,2,,11 . 对于给定的d ,11091009a a d d =--≤, 当1a 分别取1,2,3,,1009d - 时,可得递增等差数列1009d -个(如:1d =时,191a ≤,当1a 分别取1,2,3,,91 时,可得递增等差数列91个:1,2,3,,11 ;2,3,4,,12 ; ;91,92,93,,100 ,其它同理). 所以当d 取1,2,,11 时,可得符合要求的等差数列的个数为:(100,10)100119(1211)1100966506f =⋅-⋅+++=-⋅= .…………… 8分(Ⅲ)设等差数列首项为1a ,公差为d ,1(1)m a a m d =+-,1111m a a n d m m --=--≤,记11n m --的整数部分是t ,则11111n n t m m ---<--≤,即111n m n t m m --<--≤. d 的可能取值为1,2,,t ,对于给定的d ,1(1)(1)m a a m d n m d =----≤,当1a 分别取1,2,3,,(1)n m d -- 时,可得递增等差数列(1)n m d --个.所以当d 取1,2,,t 时,得符合要求的等差数列的个数2(1)121(,)(1)222t t m n m f n m nt m t t +--+=--⋅=-+ 22121(21)()22(1)8(1)m n m n m t m m --+-+=--+-- 易证21112(1)1n m n m n m m m --+-<---≤. 又因为211||12(1)2(1)n m n m m m m m --++-=---,2113||2(1)12(1)n m n m m m m -+---=---, 所以21211||||12(1)2(1)1n m n m n m n m m m m --+-+-->-----. 所以(1)(,)(1)2t t f n m nt m +=--⋅ (1)()(1)11(1)122(1)n m n m n m n m n m m n m m m --+--+-->⋅--⋅=--. 即()(1)(,)2(1)n m n f n m m -+>-. …………… 13分。
2013年高三理科数学一模试题(朝阳区含答案)
2013年高三理科数学一模试题(朝阳区含答案)北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2013.4(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)为虚数单位,复数的虚部是A.B.C.D.(2)已知集合,,则A.B.C.D.(3)已知向量,.若,则实数的值为A.B.C.D.(4)在极坐标系中,直线与曲线相交于两点,为极点,则的大小为A.B.C.D.(5)在下列命题中,①“”是“”的充要条件;②的展开式中的常数项为;③设随机变量~,若,则.其中所有正确命题的序号是A.②B.③C.②③D.①③(6)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为A.B.C.D.8(7)抛物线(>)的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为A.B.1C.D.2(8)已知函数.若,使成立,则称为函数的一个“生成点”.函数的“生成点”共有A.1个B.2个C.3个D.4个第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)在等比数列中,,则,为等差数列,且,则数列的前5项和等于.(10)在中,,,分别为角,,C所对的边.已知角为锐角,且,则.(11)执行如图所示的程序框图,输出的结果S=.(12)如图,圆是的外接圆,过点C作圆的切线交的延长线于点.若,,则线段的长是;圆的半径是.(13)函数是定义在上的偶函数,且满足.当时,.若在区间上方程恰有四个不相等的实数根,则实数的取值范围是.(14)在平面直角坐标系中,已知点是半圆(≤≤)上的一个动点,点在线段的延长线上.当时,则点的纵坐标的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)(本小题满分13分)已知函数()的最小正周期为.(Ⅰ)求的值及函数的单调递增区间;(Ⅱ)当时,求函数的取值范围.(16)(本小题满分13分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为,试求随机变量的分布列与数学期望.(17)(本小题满分14分)如图,在四棱锥中,平面平面,且,.四边形满足,,.点分别为侧棱上的点,且.(Ⅰ)求证:平面;(Ⅱ)当时,求异面直线与所成角的余弦值;(Ⅲ)是否存在实数,使得平面平面?若存在,试求出的值;若不存在,请说明理由.(18)(本小题满分13分)已知函数,其中.(Ⅰ)求函数的单调区间;(Ⅱ)若函数在上有且只有一个零点,求实数的取值范围.(19)(本小题满分14分)已知中心在原点,焦点在轴上的椭圆过点,离心率为,点为其右顶点.过点作直线与椭圆相交于两点,直线,与直线分别交于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围.(20)(本小题满分13分)设是数的任意一个全排列,定义,其中.(Ⅰ)若,求的值;(Ⅱ)求的最大值;(Ⅲ)求使达到最大值的所有排列的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)2013.4一、选择题:题号(1)(2)(3)(4)(5)(6)(7)(8)答案ADACCDAB二、填空题:题号(9)(10)(11)(12)(13)(14)答案,(注:两空的填空,第一空3分,第二空2分)三、解答题:(15)(本小题满分13分)解:(Ⅰ).…………………………………………4分因为最小正周期为,所以.………………………………6分所以.由,,得.所以函数的单调递增区间为],.………………8分(Ⅱ)因为,所以,…………………………………10分所以.………………………………………12分所以函数在上的取值范围是].……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A:在一次试验中,卡片上的数字为正数,则.答:在一次试验中,卡片上的数字为正数的概率是. (3)分(Ⅱ)设事件B:在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是.所以.答:在四次试验中,至少有两次卡片上的数字都为正数的概率为.……………7分(Ⅲ)由题意可知,的可能取值为,所以随机变量的可能取值为.;;;;;.所以随机变量的分布列为所以.……………………13分(17)(本小题满分14分)证明:(Ⅰ)由已知,,所以.因为,所以.而平面,平面,所以平面.……………………………………………………4分(Ⅱ)因为平面平面,平面平面,且,所以平面.所以,.又因为,所以两两垂直.……………………………………………………5分如图所示,建立空间直角坐标系,因为,,所以.当时,为中点,所以,所以.设异面直线与所成的角为,所以,所以异面直线与所成角的余弦值为.…………………………………9分(Ⅲ)设,则.由已知,所以,所以所以.设平面的一个法向量为,因为,所以即令,得.设平面的一个法向量为,因为,所以即令,则.若平面平面,则,所以,解得.所以当时,平面平面.…………………………………………14分(18)(本小题满分13分)解:函数定义域为,且…………2分①当,即时,令,得,函数的单调递减区间为,令,得,函数的单调递增区间为.②当,即时,令,得或,函数的单调递增区间为,.令,得,函数的单调递减区间为.③当,即时,恒成立,函数的单调递增区间为.…7分(Ⅱ)①当时,由(Ⅰ)可知,函数的单调递减区间为,在单调递增. 所以在上的最小值为,由于,要使在上有且只有一个零点,需满足或解得或.②当时,由(Ⅰ)可知,(ⅰ)当时,函数在上单调递增;且,所以在上有且只有一个零点.(ⅱ)当时,函数在上单调递减,在上单调递增;又因为,所以当时,总有.因为,所以.所以在区间内必有零点.又因为在内单调递增,从而当时,在上有且只有一个零点.综上所述,或或时,在上有且只有一个零点.…………………………………………………………………………………………13分(19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为,依题意得解得,.所以椭圆的方程为.………………………………………………4分(Ⅱ)显然点.(1)当直线的斜率不存在时,不妨设点在轴上方,易得,,所以.…………………………………………6分(2)当直线的斜率存在时,由题意可设直线的方程为,显然时,不符合题意.由得.新课标第一网设,则.直线,的方程分别为:,令,则.所以,.……………………10分所以.……………………………………………12分因为,所以,所以,即.综上所述,的取值范围是.……………………………………14分(20)(本小题满分13分)解:(Ⅰ).……3分(Ⅱ)数的倍与倍分别如下:其中较大的十个数之和与较小的十个数之和的差为,所以.对于排列,此时,所以的最大值为.……………………………………………………………8分(Ⅲ)由于数所产生的个数都是较小的数,而数所产生的个数都是较大的数,所以使取最大值的排列中,必须保证数互不相邻,数也互不相邻;而数和既不能排在之一的后面,又不能排在之一的前面.设,并参照下面的符号排列△○□△○□△○□△○其中任意填入个□中,有种不同的填法;任意填入个圆圈○中,共有种不同的填法;填入个△之一中,有种不同的填法;填入个△中,且当与在同一个△时,既可以在之前又可在之后,共有种不同的填法,所以当时,使达到最大值的所有排列的个数为,由轮换性知,使达到最大值的所有排列的个数为.……………………………13分。
北京市朝阳区2013届高三4月第一次综合练习数学理试题
北京市朝阳区高三年级第一次综合练习数学学科测试〔理工类〕2013.4〔考试时间120分钟 总分值150分〕本试卷分为选择题〔共40分〕和非选择题〔共110分〕两部分第一部分〔选择题 共40分〕一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中,选出符合题目要求的一项. 〔1〕i 为虚数单位,复数11i-的虚部是 A .12 B .12- C .1i 2- D . 1i 2〔2〕已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)- 〔3〕已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.假设//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35 〔4〕在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的大小为 A .3π B .2π C .32π D .65π 〔5〕在以下命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,假设(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .② B .③ C .②③ D .①③〔6〕某个长方体被一个平面所截,得到的几何体的三 视图如下列图,则这个几何体的体积为A. 4B. 42C. 62D. 82222 11 1 正视图侧视图俯视图〔7〕抛物线22y px =〔p >0〕的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.B. 1C. D. 2 〔8〕已知函数*()21,f x x x =+∈N .假设*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有A. 1个 B .2个 C .3个 D .4个第二部分〔非选择题 共110分〕答题卡上.〔9〕在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .〔10〕在ABC ∆中, a ,b ,c 分别为角A ,B ,C 所对的边.已知角A 为锐角,且3sin b a B =, 则tan A = .〔11〕执行如下列图的程序框图,输出的结果S= .〔12〕如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切线交BA 的延长线于点D .假设CD , 2AB AC ==,则线段AD 的长是 ;圆O 的半径是 .〔13〕函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.假设在区间[2,3]-上方程2()0ax a f x +-=恰有D四个不相等的实数根,则实数a 的取值范围是 .〔14〕在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=〔2≤x ≤4〕上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 〔15〕〔本小题总分值13分〕已知函数21()sin 222x f x x ωω=-+〔0ω>〕的最小正周期为π. 〔Ⅰ〕求ω的值及函数()f x 的单调递增区间; 〔Ⅱ〕当[0,]2x π∈时,求函数()f x 的取值范围. 〔16〕〔本小题总分值13分〕盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01-,,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验〔设每次试验的结果互不影响〕.〔Ⅰ〕在一次试验中,求卡片上的数字为正数的概率;〔Ⅱ〕在四次试验中,求至少有两次卡片上的数字都为正数的概率;〔Ⅲ〕在两次试验中,记卡片上的数字分别为ξη,,试求随机变量X=ξη⋅的分布列与数学期望EX . 〔17〕〔本小题总分值14分〕如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且 PE PFPB PCλ==. 〔Ⅰ〕求证:EF 平面PAD ;〔Ⅱ〕当12λ=时,求异面直线BF 与CD 所成角的余弦值; 〔Ⅲ〕是否存在实数λ,使得平面AFD ⊥平面PCD ?假设存在, 试求出λ的值;假设不存在,请说明理由.〔18〕〔本小题总分值13分〕已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤. 〔Ⅰ〕求函数()f x 的单调区间;〔Ⅱ〕假设函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.PDABCFE〔19〕〔本小题总分值14分〕已知中心在原点,焦点在x 轴上的椭圆C 过点,点A 为其右顶点.过点(10)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .〔Ⅰ〕求椭圆C 的方程; 〔Ⅱ〕求EM FN ⋅的取值范围. 〔20〕〔本小题总分值13分〕设1210(,,,)x x x τ=是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.〔Ⅰ〕假设(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; 〔Ⅱ〕求()S τ的最大值;〔Ⅲ〕求使()S τ到达最大值的所有排列τ的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案〔理工类〕2013.4三、解答题:〔15〕〔本小题总分值13分〕解:〔Ⅰ〕1cos 1()222x f x x ωω-=-+1cos 2x x ωω=+ sin()6x ωπ=+. …………………………………………4分 因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+. 由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+. 所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分〔Ⅱ〕因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分 所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分〔16〕〔本小题总分值13分〕解:〔Ⅰ〕设事件A :在一次试验中,卡片上的数字为正数,则 21()42P A ==. 答:在一次试验中,卡片上的数字为正数的概率是12.…………………………3分 〔Ⅱ〕设事件B :在四次试验中,至少有两次卡片上的数字都为正数.由〔Ⅰ〕可知在一次试验中,卡片上的数字为正数的概率是12. 所以041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 〔Ⅲ〕由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯; 21(=2)448P X ==⨯; 11(=4)4416P X ==⨯. 所以随机变量X 的分布列为所以1()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分 〔17〕〔本小题总分值14分〕 证明:〔Ⅰ〕由已知,PE PFPB PCλ==, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分〔Ⅱ〕因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥. 又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分如下列图,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=-.设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|BF CD θ-⋅-=〈〉==, 所以异面直线BF 与CD 9分 〔Ⅲ〕设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC =-=-. 由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ=-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .假设平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 〔18〕〔本小题总分值1 3分〕解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1), 令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e e a a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点, 需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,〔ⅰ〕当2a =时,函数()f x 在(0,2]上单调递增; 且48414(e )20,(2)22ln 20e ef f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点.〔ⅱ〕当02a <<时,函数()f x 在(,1)2a 上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2ax ∈时,总有()0f x >.因为22e12a aa +-<<+,所以22222222(e )e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增,从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 〔19〕〔本小题总分值14分〕解:〔Ⅰ〕设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,1314a b c ca ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =.所以椭圆C 的方程为2214x y +=. ………………………………………………4分 〔Ⅱ〕显然点(2,0)A .〔1〕当直线l 的斜率不存在时,不妨设点E 在x轴上方,易得(1,E F,(3,M N ,所以1EM FN ⋅=. …………………………………………6分 〔2〕当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y yy x y x x x =-=---, 令3x =,则1212(3,),(3,)22y yM N x x --. 所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ……………………10分所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅-- 121212(3)(3)(1)(2)(2)y y x x x x =--+--2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅--2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++22221653()(1)414k k k k+-=⋅++ 22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈. 综上所述,EM FN ⋅的取值范围是5[1,)4. ……………………………………14分 〔20〕〔本小题总分值13分〕 解:〔Ⅰ〕1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑. ……3分〔Ⅱ〕数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2, 30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤. 对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分 〔Ⅲ〕由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互学习文档 仅供参考 不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,411x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ到达最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ到达最大值的所有排列τ的个数为28800. ……………………………13分。
北京市朝阳区届高三一次综合练习理科数学
北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2013.4(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)i 为虚数单位,复数11i-的虚部是 A .12B .12-C .1i 2- D .1i 2(2)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)-(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点,O 为极点,则AOB ∠的大小为 A .3π B .2π C .32π D .65π (5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .②B .③C .②③D .①③(6)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为 A. 4B.D. 8(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.D.2 (8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有 A. 1个 B .2个 C .3个 D .4个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)在等比数列{}n a 中,32420a a a -=,则3a =,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于.(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且3sin b a B =,则tan A =.(11)执行如图所示的程序框图,输出的结果S= .正视图侧视图俯视图(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切线交BA的延长线于点D .若CD =,2AB AC ==,则线段AD 的长是;圆O 的半径是.(13)函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程2()0a x a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是. (14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数21()sin 22x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间; (Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围.D-,,2.称“从盒中随机抽取一盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01张,记下卡片上的数字后并放回”为一次实验(设每次实验的结果互不影响).(Ⅰ)在一次实验中,求卡片上的数字为正数的概率;(Ⅱ)在四次实验中,求至少有两次卡片上的数字都为正数的概率;,,试求随机变量X=ξη⋅的分布列与数学期望(Ⅲ)在两次实验中,记卡片上的数字分别为ξηEX.如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且P A A C ⊥, 2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由.PDABCFE已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.已知中心在原点,焦点在x轴上的椭圆C过点,离心率为,点A为其右顶点.过点B,作直线l与椭圆C相交于,E F两点,直线AE,AF与直线3(10)x=分别交于点M,N. (Ⅰ)求椭圆C的方程;⋅的取值范围.(Ⅱ)求EM FN设1210(,,,)x x x τ=是数1,2,3,4,5,6的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)2013.4一、选择题:二、填空题:(注:两空的填空,第一空3分,第二空2分) 三、解答题:(15)(本小题满分13分)解:(Ⅰ)1cos 1()22x f x x ωω-=-+1cos 2x x ωω=+ sin()6x ωπ=+. …………………………………………4分因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+.由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+. 所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分 所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A :在一次实验中,卡片上的数字为正数,则21()42P A ==. 答:在一次实验中,卡片上的数字为正数的概率是12.…………………………3分 (Ⅱ)设事件B :在四次实验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次实验中,卡片上的数字为正数的概率是12. 所以041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次实验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 (Ⅲ)由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯;21(=2)448P X ==⨯; 11(=4)4416P X ==⨯.所以随机变量X 的分布列为所以1()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分(17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分(Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥.又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分 如图所示,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=-. 设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|3BF CD θ-⋅-=〈〉==, 所以异面直线BF 与CD…………………………………9分 (Ⅲ)设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC =-=-. 由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ=-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (18)(本小题满分1 3分)解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1), 令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e ea a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点,需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,(ⅰ)当2a =时,函数()f x 在(0,2]上单调递增;且48414(e )20,(2)22ln 20e e f f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点. (ⅱ)当02a <<时,函数()f x 在(,1)2a上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2a x ∈时,总有()0f x >. 因为22e12a a a +-<<+, 所以22222222(e )e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增, 从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 (19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,1314a b c c a ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. ………………………………………………4分 (Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得(1,E F,(3,M N ,所以1EM FN ⋅=. …………………………………………6分 (2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---, 令3x =,则1212(3,),(3,)22y yM N x x --. 所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ……………………10分所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅--121212(3)(3)(1)(2)(2)y y x x x x =--+--2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅--2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++ 22221653()(1)414k k k k+-=⋅++ 22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈. 综上所述,EM FN ⋅的取值范围是5[1,)4. ……………………………………14分 (20)(本小题满分13分) 解:(Ⅰ)1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑. ……3分(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤. 对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分(Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设11x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ达到最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ达到最大值的所有排列τ的个数为28800. ……………………………13分。
北京市各区2013年高三期末和一模数学理科分类---第7、8和13、14题-1
北京市各区2013年高三期末和一模数学理科分类-----第7、8和13、14题一、 选择题〔2013朝阳一摸理〕〔7〕抛物线22y px =〔p >0〕的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 A. 33 B. 1 C. 33D. 2 〔2013朝阳一摸理〕〔8〕已知函数*()21,f x x x =+∈N .假设*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有A. 1个 B .2个 C .3个 D .4个〔2013大兴一摸理〕〔7〕假设实数,a b 满足221a b ≤,则关于x 的方程220x x a b 无.实数根的概率为 〔A 〕14 〔B 〕 34 〔C 〕3π24π〔D 〕π24π 〔2013大兴一摸理〕〔8〕抛物线2(22)y x x ≤≤绕y 轴旋转一周形成一个如下列图的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是 〔A 〕1 〔B 〕2 〔C 〕22 〔D 〕4〔2013东城一摸理〕〔7〕已知定义在R 上的函数()f x 的对称轴为3x =-,且当3x ≥-时,()23x f x =-.假设函数()f x 在区间(1,)k k -〔k ∈Z 〕上有零点,则k 的值为 A〔A 〕2或7- 〔B 〕2或8- 〔C 〕1或7- 〔D 〕1或8-〔2013东城一摸理〕〔8〕已知向量OA ,AB ,O 是坐标原点,假设AB k OA =,且AB 方向是沿OA 的方向绕着A 点按逆时针方向旋转θ角得到的,则称OA 经过一次(,)k θ变换得到AB .现有向量=(1,1)OA 经过一次11(,)k θ变换后得到1AA ,1AA 经过一次22(,)k θ变换后得到12A A ,…,如此下去,21n n A A --经过一次(,)n n k θ变换后得到1n n A A -.设1(,)n n A A x y -=,112n n θ-=,1cos n nk θ=, 则y x -等于〔A 〕1112sin[2()]211sin1sin sin 22n n --- 〔B 〕1112sin[2()]211cos1cos cos 22n n --- 〔C 〕1112cos[2()]211sin1sin sin 22n n --- 〔D 〕1112cos[2()]211cos1cos cos 22n n ---〔2013房山一摸理〕7.某三棱椎的三视图如下列图,该三棱锥的四个面的面积中,最大的是A. 43B. 8C. 47D. 83〔2013房山一摸理〕M 是R 的子集,如果点0x ∈R 满足:00,,0a x M x x a ∀>∃∈<-<,称0x 为集合M 的聚点.则以下集合中以为聚点的有:① {|}1n n n ∈+N ; ②*2{|}n n ∈N ; ③Z ; ④{|2}x y y = A.①④ B. ②③ C. ①② D. ①②④〔2013丰台一摸理〕7. 如果函数y=f(x)图像上任意一点的坐标〔x,y 〕都满足方程 lg()lg lg x y x y +=+,那么正确的选项是(A) y=f(x)是区间〔0,+∞〕上的减函数,且x+y 4≤(B) y=f(x)是区间〔1,+∞〕上的增函数,且x+y 4≥(C) y=f(x)是区间〔1,+∞〕上的减函数,且x+y 4≥(D) y=f(x)是区间〔1,+∞〕上的减函数,且x+y 4≤〔2013丰台一摸理〕8.动圆C 经过点F(1,0),并且与直线x=-1相切,假设动圆C 与直线221y x =++总有公共点,则圆C 的面积(A) 有最大值8π (B) 有最小值2π (C) 有最小值3π (D) 有最小值4π〔2013门头沟一摸理〕7.一个几何体的三视图如右图所示,则该几何体的体积是(A)21 (B) 13 (C)65 (D) 5〔2013门头沟一摸理〕8.定义在 R 上的函数()y f x =是减函数,且函数(2)y f x =+主视图 1 左视图 1 俯视图1的图象关于点(2,0)-成中心对称,假设,s t 满足不等式组()(2)0()0f t f s f t s +-≤⎧⎨-≥⎩,则当23s ≤≤时,2s t +的取值范围是(A) [3,4] (B) [3,9] (C) [4,6] (D) [4,9]〔2013西城一摸理〕7.已知函数22()log 2log ()f x x x c =-+,其中0c >.假设对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是〔A 〕1(0,]4 〔B 〕1[,)4+∞ 〔C 〕1(0,]8 〔D 〕1[,)8+∞ 〔2013西城一摸理〕8.如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE AC ⊥于E ,且PA PE =,则点P 的轨迹是 〔A 〕线段〔B 〕圆弧 〔C 〕椭圆的一部分 〔D 〕抛物线的一部分〔2013延庆一摸理〕7.一四面体的三视图如下列图,则该四面体四个面中最大的面积是A.2B. 22C.3D. 32〔2013延庆一摸理〕8.已知函数)0(2)(23≠-+=a bx ax x f 有且仅有两个不同的零点1x ,2x ,则A .当0<a 时,021<+x x ,021>x x B. 当0<a 时,021>+x x ,021<x xC. 当0>a 时,021<+x x ,021>x xD. 当0>a 时,021>+x x ,021<x x〔2013海淀一摸理〕7. 抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,又点(1,0)A -,则||||PF PA 的最 小值是A.12B.22C.32D.223〔2013海淀一摸理〕8. 设123,,l l l 为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出以下三个结论: ①i i A l ∃∈(1,2,3)i =,使得123A A A ∆是直角三角形;②i i A l ∃∈(1,2,3)i =,使得123A A A ∆是等边三角形;① 条直线上存在四点(1,2,3,4)i A i =,使得四面体1234A A A A 为在一个顶点处的三条棱两两互相垂直的四面体.其中,所有正确结论的序号是〔7题图〕A. ①B.①②C. ①③D. ②③〔2013石景山一摸理〕7.对于直线:(1)l y k x =+与抛物线2:4C y x =,1k =±是直线l 与抛物线C 有唯一交点的〔 〕条件A. 充分不必要B. 必要不充分C. 充要条件D. 既不充分也不必要〔2013石景山一摸理〕8.假设直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数)(x f y =的图像上;②P 、Q 关于原点对称.则称点对[P , Q ]是函数)(x f y =的一对“友好点对”〔注:点对[P , Q ]与[Q , P ]看作同一对“友好点对”〕.已知函数⎩⎨⎧≤-->=)0(4)0(log )(22x x x x x x f ,则此函数的“友好点对”有〔 〕对 A. 0 B. 1 C. 2 D. 3(2013昌平高三期末理)〔7〕已知一个空间几何体的三视图如下列图,根据图中标出的尺寸,可得这个几何体的全面积为A. 104342+ B .102342+C. 142342+ D. 144342+(2013昌平高三期末理)〔8〕已知函数:①2()2f x x x =-+,②()cos()22x f x ππ=-,③12()|1|f x x =-.则以下四个命题对已知的三个函数都能成立的是命题:p ()f x 是奇函数; 命题:q (1)f x +在(0),1上是增函数;命题:r 11()22f >; 命题:s ()f x 的图像关于直线1x =对称 A .命题p q 、 B .命题q s 、 C .命题r s 、 D .命题p r 、(2013朝阳高三期末理)7.设集合{}2A=230x x x +->,集合{}2B=210,0x x ax a --≤>.假设A B 中恰含有一个整数,则实数a 的取值范围是A .30,4⎛⎫ ⎪⎝⎭ B .34,43⎡⎫⎪⎢⎣⎭ C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞ (2013朝阳高三期末理)8. 在棱长为1的正方体1111ABCD A BC D -中,点1P,2P 分别是线段AB ,1BD 〔不包括端点〕上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PPAB 的体积的最大值是 A .124 B .112 C .16 D .12(2013东城高三期末理)〔7〕已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且||2|AK AF ,则△AFK 的面积为〔A 〕4 〔B 〕8 〔C 〕16 〔D 〕32(2013东城高三期末理)〔8〕给出以下命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-,3y x =中有三个是增函数;②假设log 3log 30m n <<,则01n m <<<;③假设函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;④已知函数233,2,()log (1),2,x x f x x x -⎧≤=⎨->⎩则方程 1()2f x =有2个实数根,其中正确命题的个数为〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕4(2013丰台高三期末理)7.在平面直角坐标系xOy 中,已知A(1,0),B 〔0,1〕,点C 在第二象限内,56AOC π∠=,且|OC|=2,假设OC OA OB λμ=+,则λ,μ的值是〔 〕(A)1 (B) 1(C) -11(2013丰台高三期末理)8.已知函数f(x)=2ax bx c ++,且,0a b c a b c >>++=,集合A={m|f(m)<0},则(A) ,m A ∀∈都有f(m+3)>0 (B) ,m A ∀∈都有f(m+3)<0(C) 0,m A ∃∈使得f(m 0+3)=0 (D) 0,m A ∃∈使得f(m 0+3)<0(2013石景山高三期末理)7.某三棱锥的三视图如下列图,该三棱锥的体积是〔A .38B .4C .2D .34(2013石景山高三期末理)8. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论:① []20133∈; ② []22-∈; ③ [][][][][]01234Z =∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”.其中,正确结论的个数为〔 〕.A .1B .2C .3D .4(2013通州高三期末理)7.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,则“2cos a b C =”是“ABC ∆是等腰三角形”的〔A 〕充分不必要条件 〔B 〕必要不充分条件 〔C 〕充分必要条件 〔D 〕既不充分也不必要条件(2013通州高三期末理)8.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是〔A 〕355 〔B 〕2 〔C 〕115 〔D 〕3 (2013海淀高三期末理)7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为A. 144B.120C. 108D.72(2013海淀高三期末理)8. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,假设椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是A.12(,)33B.1(,1)2C. 2(,1)3D.111(,)(,1)322二、填空题:〔2013朝阳一摸理〕〔13〕函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.假设在区间[2,3]-上方程2()0ax a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是 .〔2013朝阳一摸理〕〔14〕在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=〔2≤x ≤4〕上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 . 〔2013大兴一摸理〕〔13〕已知函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x 在区间[1,]m 上的最大值是1,则m 的取值范围是 . 〔2013大兴一摸理〕〔14〕已知函数()f x 是定义在(0,)上的单调递增函数,且N x()N f x ,假设[()]3f f n n ,则(2)=f ;(4)(5)f f〔2013东城一摸理〕〔13〕有甲、乙、丙在内的6个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有 种. 144〔2013东城一摸理〕〔14〕数列{a n }的各项排成如下列图的三角形形状,其中每一行比上一行增加两项,假设n n a a =(0)a ≠,则位于第10行的第8列的项等于 ,2013a 在图中位于 .〔填第几行的第几列〕〔2013房山一摸理〕100天内的单价()f t 与时间的函数关系是22(040,)4()52(40100,)2t t t f t t t t ⎧+≤<∈⎪⎪=⎨⎪-+≤≤∈⎪⎩N N 日销售量()g t 与时间的函数关系是109()(0100,)33t g t t t =-+≤≤∈N .则这种商品的日销售额的最大值为 . 〔2013房山一摸理〕14.已知函数()f x 的定义域是D ,假设对于任意12,x x D ∈,当12x x <时,都有12()()f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[0,1]上为非减函数,且满足以下三个条件:①(0)0f =; ②1()()52x f f x =; ③(1)1()f x f x -=-.则4()5f = ,1()2013f = . 〔2013丰台一摸理〕13.某四面体的三视图如下列图,则该四面体的四个面中,直角三角形的面积和是_______. 〔2013丰台一摸理〕14. 已知M 是集合{}1,2,3,,21(*,2)k k N k -∈≥的非空子集,且当x M ∈时,有2k x M -∈.记满足条件的集合M 的个数为()f k ,则(2)f = ;()f k = 。
北京市朝阳区2013届高三4月第一次综合练习数学理试题
北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)2013.4(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)i 为虚数单位,复数11i-的虚部是 A .12 B .12- C .1i 2- D . 1i 2(2)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)-(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的 大小为 A .3π B .2π C .32π D .65π (5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2; ③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .② B .③ C .②③ D .①③(6)某个长方体被一个平面所截,得到的几何体的三 视图如图所示,则这个几何体的体积为正视图侧视图俯视图A. 4B.C. D. 8(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为A.3 B. 1C. 3D. 2 (8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=成立,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有 A. 1个 B .2个 C .3个 D .4个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且3sin b a B =,则tan A = .(11)执行如图所示的程序框图,输出的结果S= .(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切线交BA 的延长线于点D .若CD =2AB AC ==,则线段AD 的长是 ;圆O 的半径是 .D(13)函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程2()0ax a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是 .(14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数21()sin 222x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间; (Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围. (16)(本小题满分13分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01-,,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为ξη,,试求随机变量X=ξη⋅的分布列与数学期望EX .(17)(本小题满分14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥, 2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由. (18)(本小题满分13分)已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤.PDABCFE(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.(19)(本小题满分14分)已知中心在原点,焦点在x 轴上的椭圆C 过点(1,2,离心率为2,点A 为其右顶点.过点(10)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .(Ⅰ)求椭圆C 的方程; (Ⅱ)求EM FN ⋅的取值范围. (20)(本小题满分13分)设1210(,,,)x x x τ=是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)2013.4三、解答题:(15)(本小题满分13分) 解:(Ⅰ)1cos 2x x ωω=+ sin()6x ωπ=+. …………………………………………4分因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+. 由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+. 所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分 所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A :在一次试验中,卡片上的数字为正数,则 21()42P A ==.答:在一次试验中,卡片上的数字为正数的概率是12.…………………………3分 (Ⅱ)设事件B :在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是12. 所以041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 (Ⅲ)由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯;21(=2)448P X ==⨯; 11(=4)4416P X ==⨯.所以随机变量X 的分布列为所以11()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分(17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分(Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥.又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分 如图所示,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=-.设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|3BF CD θ-⋅-=〈〉==, 所以异面直线BF 与CD 9分 (Ⅲ)设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC =-=-. 由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ=-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (18)(本小题满分1 3分)解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1), 令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e ea a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点,需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,(ⅰ)当2a =时,函数()f x 在(0,2]上单调递增;且48414(e )20,(2)22ln 20e ef f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点. (ⅱ)当02a <<时,函数()f x 在(,1)2a上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2ax ∈时,总有()0f x >.因为22e12a a a +-<<+, 所以22222222(e )e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增, 从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 (19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,21314a b c c a ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. ………………………………………………4分 (Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得(1,(1,22E F -,(3,(3,)22M N -,所以1EM FN ⋅=. …………………………………………6分 (2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---, 令3x =,则1212(3,),(3,)22y yM N x x --. 所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ……………………10分所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅--121212(3)(3)(1)(2)(2)y y x x x x =--+--2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅--2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++22221653()(1)414k k k k +-=⋅++22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈. 综上所述,EM FN ⋅的取值范围是5[1,)4. ……………………………………14分(20)(本小题满分13分)解:(Ⅰ)1011()|23|7654321012857k k k S xx τ+==-=+++++++++=∑. ……3分(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤.对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分(Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设11x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ达到最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ达到最大值的所有排列τ的个数为28800. ……………………………13分精心整理资料,感谢使用!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区高三年级第一次综合练习
数学学科测试(理工类)
2013.4
(考试时间120分钟 满分150分)
本试卷分为选择题(共40分)和非选择题(共110分)两部分
第一部分(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出
符合题目要求的一项. (1)i 为虚数单位,复数
1
1i
-的虚部是 A .12 B .12- C .1i 2- D . 1i 2
(2)已知集合{}
23M x x =-<<,{}
lg(2)0N x x =+≥,则M N =
A. (2,)-+∞
B. (2,3)-
C. (2,1]--
D. [1,3)-
(3)已知向量()()3,4,6,3OA OB =-=- ,()2,1OC m m =+
.若//AB OC ,则实数m 的
值为
A .3-
B .1
7
- C .35- D .35
(4)在极坐标系中,直线1
cos 2
ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则
AOB ∠的
大小为 A .
3π B .2π C .32π D .6
5π (5)在下列命题中,
①“2
απ
=
”是“sin 1α=”的充要条件; ②34
1()2x x
+的展开式中的常数项为2;
③设随机变量ξ~(0,1)N ,若
(1)P p ξ≥=,则1
(10)2
P p ξ-<<=
-. 其中所有正确命题的序号是 A .② B .③ C .②③ D .①③
(6)某个长方体被一个平面所截,得到的几何体的三 视图如图所示,则这个几何体的体积为
正视图
侧视图
俯视图
A. 4
B.
C. D. 8
(7)抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且
满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则
||
||
MN AB 的最大值为
A.
3 B. 1
C. 3
D. 2 (
8
)
已
知
函
数
*
()21,f x x x =+∈N .若
*
0,x n ∃∈N ,使
00
(
)
(1)()63f x f x f x n +++++= 成立,则称0(,)x n 为函数()f x 的一个“生成
点”.函数()f x 的“生成点”共有
A. 1个 B .2个 C .3个 D .4个
第二部分(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.
(9)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则
数列{}n b 的前5项和等于 .
(10)在ABC ∆中, a ,b ,c 分别为角A , B ,C 所对的边.已知角A 为锐角,且
3sin b a B =,
则tan A = .
(11)执行如图所示的程序框图,输出的结果S= .
(12)如图,圆O 是ABC ∆的外接圆,过点C 作圆O 的切 线交BA 的延长线于点D .
若CD =,
2AB AC ==,则线段AD 的长是 ;圆O 的
D
半径是 .
(13)函数)(x f 是定义在R 上的偶函数,且满足
(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程
2()0a x a f x +-=恰有
四个不相等的实数根,则实数a 的取值范围是 .
(14)在平面直角坐标系xOy 中,已知点A 是半圆2240x x y -+=(2≤x ≤4)上的一
个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=
时,则点C 的纵坐标的取值范
围是 .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)
已知函数21
()sin 22
x f x x ωω=
-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间; (Ⅱ)当[0,]2
x π∈时,求函数()f x 的取值范围. (16)(本小题满分13分)
盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字1,01-,
,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).
(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;
(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;
(Ⅲ)在两次试验中,记卡片上的数字分别为ξη,,试求随机变量X=ξη⋅的分布列与数学期望EX . (17)(本小题满分14分)
如图,在四棱锥P ABCD -中,平面PAC ⊥平面A B C D ,且P A A C ⊥,
2PA AD ==.四边形ABCD 满足BC AD ,AB AD ⊥,1AB BC ==.点,E F 分别
为侧棱,PB PC 上的点,且
PE PF
PB PC
λ==. (Ⅰ)求证:EF 平面PAD ;
(Ⅱ)当1
2
λ=
时,求异面直线BF 与CD 所成角的余弦值; (Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,
试求出λ的值;若不存在,请说明理由.
(18)(本小题满分13分)
P
D
A
F
E
已知函数2()(2)ln 22f x x a x a x a =-++++,其中2a ≤. (Ⅰ)求函数()f x 的单调区间;
(Ⅱ)若函数()f x 在(]0,2上有且只有一个零点,求实数a 的取值范围.
(19)(本小题满分14分)
已知中心在原点,焦点在x 轴上的椭圆C 过点(1,
2,离心率为
2
,点A 为其右顶点.过点(1
0)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .
(Ⅰ)求椭圆C 的方程;
(Ⅱ)求EM FN ⋅
的取值范围.
(20)(本小题满分13分)
设
1210(,,,)x x x τ= 是数1,2,3,4,5,6,7,的
任意一个全排列,定义10
11
()|23|k k k S x x τ+==-∑,其中111x x =.
(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;
(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.。