1.1.1集合的含义与表示 第1课时 集合的含义
1.1.1集合的含义与表示_7
---------------------------------------------------------------最新资料推荐------------------------------------------------------1.1.1集合的含义与表示1. 1. 1 集合的含义与表示第 1 课时集合的含义与表示(一)教学目标 1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解属于关系的意义.理解集合相等的含义. (3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合. 2.过程与方法(1)通过实例,初步体会元素与集合的属于关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法. 3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的属于关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合. (三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,1 / 8加深对概用心爱心专心用心爱心专心用心爱心专心用心爱心专心例 1(1)利用列举法表法下列集合:①{15 的正约数} ;②不大于 10 的非负偶数集. (2)用描述法表示下列集合:①正偶数集;②{1, 3, 5, 7,, 39, 41} . 【分析】考查集合的两种表示方法的概念及其应用. 用心爱心专心【解析】(1)①{1, 3, 5,15} ②{0, 2, 4, 6, 8, 10} (2)①{x | x = 2n,nN*} ②{x | x = ( 1) n 1 (2n 1) ,n N*且 n21} . 【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况. (2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集. 例 2 用列举法把下列集合表示出来:(1) A = {xN | (2) B = {9N} ; 9 x9 N | xN } ;9 x (3) C = { y = y = x2 + 6, xN , yN } ;(4)D = {(x, y) | y = x2 +6, xN } ;(5)E = {x | p= x,p + q = 5, pN , qN*} . q 【分析】先看五个集合各自的特点:集合 A 的元素是自然数 x,它必须满足条件是自然数;集合 B 中的元素是自然数 9 也 9 x9,它必须满足条件 x 也是自然数;集合C 中的元 9 x 素是自然数 y,它实际上是二次函数 y= x2 + 6 (xN ) 的函数值;集合 D 中的元素是点,这些点必须---------------------------------------------------------------最新资料推荐------------------------------------------------------在二次函数 y = x2 + 6 (xN ) 的图象上;集合 E 中的元素是x,它必须满足的条件是 x =p,其中 p + q = 5,且 p N, qN*. q 【解析】(1)当 x = 0, 6, 8 这三个自然数时, 9=1, 3, 9 也是自然数. 9 x A = {0, 6, 9} (2)由(1)知, B = {1, 3, 9} . (3)由 y = x2 + 6, xN, yN 知 y6. x= 0, 1, 2 时, y = 6, 5, 2 符合题意. C = {2, 5, 6} . (4)点 {x, y} 满足条件 y = x2 + 6, xN, y N,则有:x 0, x 1, x 2, y 6, y 5, y 2.D = {(0, 6) (1, 5) (2, 2) } (5)依题意知 p + q = 5,p N, q N*,则p 0, p 1, p 2, p 3, p 4, q 5, q 4, q 3, q 2, q 1. Px 要满足条件 x =,q 132E = {0,,,, 4} . 423【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么用心爱心专心条件,从而准确理解集合的意义. 例 3 已知 3A = {a 3, 2a 1, a2 + 1} ,求 a 的值及对应的集合 A. 3A,可知 3 是集合的一个元素,则可能 a 3 = 3,或 2a 1 = 3,求出a,再代入 A,求出集合 A. 【解析】由 3A,可知, a 3 = 3 或 2a 1 = 3,当 a 3 = 3,即 a = 0时, A = { 3,1, 1} 当 2a 1 = 3,即 a = 1 时, A = { 4, 3, 2} . 【评析】元素与集合的关系是确定的, 3 A,则必有一个式子的值为 3,以此展开讨论,便可求得 a. 用心爱心专心3 / 8HcQkYs) B5J dSm#u-D 7LfTn$w0E8N h Vp%y2GaOiXr* z3IcQkYt) B5J dSm#u-D7LfTo$w0E9NhVp%y2 GaOjXr *z4IcQ kYt) B5JeSm#u+D7LfTo$w0E9 NhVpy 2GaPjX r*z4IcQkZt) B5KeSm#u+D7Lf Uo$w0F9NhVp y2GaPjXr*A4IcQlZt) B5KeSm #v+D7L gUo$w0 F9NhVqy2GbPjXr*A4IcQlZt ) B6KeSm! v+D7 LgUo$w1F9NhWqy2GbPjXr(A 4IcRlZ t) B6Ke Sm!v+D7MgUo$x1F9NhWqy2H bPjXs( A4IcRl Zt) C6KeSn!v+D7MgUo$x1F9N iWqy3HbPjXs (A4IdRlZt-C6KeSn!v+D8MgU o%x1F9NiWqy 3HbPjYs(A4JdRlZt-C6KeTn! v+E8M gUo%x1F 9OiWqz3HbPjYs(A4JdRlZu- C6KfTn ! v+E8M gUp%x1FaOiWqz3HbPkYs(A5 JdRlZu-C6KfT n!v0E8 MgVp%x1FaOiWq*z3H bQkYs(A 5JdRl #u-C6LfTn!v0E8MgVp%x1GaO iWr*z3HbQkYs (B5JdRm#u-C6LfTn!w0E8MhV p%x1Ga OiWr*z 3HcQkYs) B5JdRm#u-C7LfTn$ w0E8Mh Vp%x2G aOiXr*z3HcQkYs) B5JdSm#u- D7LfTn$w0E8N hVp%y2GaOiXr * z3IcQkYt) B5 JdSm#u -D7LfT o$w0E9NhVp%y 2GaOjXr*z4Ic QkYt) B5JeSm# u+D7LfTo$w0E 9NhVpy2GaPj Xr*z4IcQkZt) B5KeSm#u+D7L f Uo$w0F9NhVp y2GaPjXr*A4 IcQlZt) B5KeSm#v+D7LgUo$w 0F9NhV qy2Gb PjXr*A4IcQlZt) B6KeSm!v+D 7LgUo$w1F9Nh Wqy2GbPjXr(A4IcRlZt) B6K eSm! v+ D7MgUo $x1F9NhWqy2HbPjXs(A4IcR lZt) C6KeSn!v +D7MgUo$x1F9NiWqy3HbPjX s(A4IdRlZt-C6KeSn!v+D8M g Uo%x1F9NiWq y3HbPjY s(A4 IdRlZt-C6KeT n !v+E8MgUo%x 1F9OiWq---------------------------------------------------------------最新资料推荐------------------------------------------------------z3Hb PjYs(A4JdRlZ u -C6KeTn! v+E 8MgUp%x 1FaOi Wqz3HbPkYs( A5JdRlZu-C6K fTn!v0E8MgUp %x1FaOiWq*z3 H bQkYs(A5JdR l#u-C6L fTn!v 0E8MgVp%x1Ga O iWq*z3HbQkY s(B5JdR m#u-C 6LfTn!w0E8Mh V p%x1GaOiWr* z3HcQkY s(B5J dRm#u-C7LfTn $w 0E8MhVp%x2 GaOiXr*z3HcQ kYs) B5JdSm#u - C7LfTn$w0E8 NhVp%y2GaOiX r*z3IcQkYt) B 5JdSm#u-D7Lf To$w0E8NhVp% y2GaOjXr*z4I cQkYt) B5JeSm #u+D7Lf To$w0 E9NhVpy2GaO jXr*z4IcQkZt ) B5KeSm #u+D7 LfUo$w0F9NhV py2GaPjXr*A 4IcQkZt)B5Ke Sm#vRdJ5A(sY k PbH3z qWiOaF1x%pUgM 8E+ v! nTeK6C-uZl Rd J4A(sYjPbH 3zqWiO9F 1x% oUgM8E+v!nTe K6C-tZlRdI4A (sYjPbH3y qW iN9F1x%oUgM8 D+v !nSeK6C-tZlRdI4A(sXjPbH2y qWiN9F1x$oUgM7D+v! nSeK6 C) tZlRcI4A(s XjPbH2yqWhN9F1w$oUgM7D+ v!mSeK6B) tZl RcI4A(rXjPbG 2yqWhN9F1w$ oUgL7D+v#mSe K6B) tZlQcI4 A *rXjPbG2yqV hN9F0w$oUgL7 D+v#mSeK5B)t ZkQcI4A*rXjP aG2y pVhN9F0 w$oUfL7D+u#m SeK5B) tZkQcI 4z*rX jOaG2y pVhN9E0w$oTfL7D+u#mSeJ5B ) tYkQ cI4z*rX jOaG2y%pVhN8E0w$oTfL7D-u #mSdJ 5B) tYkQ cI3z*rXiOaG2y%pVhN8E0w$n TfL7C -u#mSdJ 5B) sYkQcH3z*rXiOaG2x%pVh M8E0w$nTfL7C -u#mRdJ5B(sY kQcH3z*rWiOa G1x%p VhM8E0w !nTfL6C-u#m R dJ5B(sYkQbH3 z*qWiOaG1x%p5 / 8VgM8E0v!nTf L 6C-u#lRdJ5A( sYkQbH3z*qWi OaF1x% pUgM8E0v! nTfK6C-u ZlRdJ5A (sYkP bH3zqWiOaF1x%pUgM8E+v!n TeK6C- uZlRdJ 4A(sYjPbH3zqWiO9F1x%oUg M8E+v!nTeK6C -tZlRdI4A(sYjPbH3yqWiN9 F1x%oU gM8D+v !nSeK6C-tZlRdI4A(sXjPbH2 yqWiN9F1x$o UgM7D+v! nSeK6C) tZlRcI4A( sXjPbH 2yqWh N9F1w$oUgM7D+v!mSeK6B) tZ lRcI4A (rXjPb G2yqWhN9F1w$oUgL7D+v#mS eK6B) tZlQcI4 A*rXjPbG2yq V hN9F0w$oUgL 7D+v#mSeK5B) tZkQcHbPjXs( A 4IdRlZt) C6K eSn!v+D 8MgUo $x1F9NiWqy3 H bPjXs(A4IdR lZt-C6KeTn!v +D8MgUo%x1F9OiWqy3HbPjY s(A4Jd RlZtSe K6B) tZlQcI4A(rXjPbG2yqV hN9F1w $oUgL7 D+v#mSeK5B) tZlQcI4A*rXjP aG2yqVhN9F0w$oUfL7D+v# m SeK5B) tZkQc I4z*rXjPaG2y lZt) C6KeSn!v + D8MgUo%x1F9 NiWqy3HbPjY s(A4IdRlZt-C 6KeTn! v+D8Mg Uo%x1F9OiWq z3HbPjYs(A4J dRlZu-C6KeTn !v+E8MgU p%x1 F9OiWqz3HbP k Ys(A5JdRlZu -C6KfTn!v0E8 MgUp%x1FaOiW q* z3HbPkYs(A 5JdRl#u -C6Lf Tn!v0E8MgVp% x1GaOiWq*z3H bQkYs(B5JdRl #u-C6LfTn! w0 E 8MhVp%x1GaO iWr*z3HcQkYs (B5JdRm#u-C7 L f) tYkQcI3z* rXiOaG2y%pVh N8E0w$nTfL7D - u#mSdJ5B) sY kQcH3z* rXiOa G2x%pVhM8E0w $nTfL7C-u#mR dJ5B) sY kQcH3 z*rWiOaG1x%p V hM8E0w!nTfL 6C-u#mRd J5B( sYkQbH3z*rWi OaG1x%pVgM8E 0v! nTfL6C-u# lRdJ5A(sYkQb H 3z*qW iOaF1x%pVgM8E0v! n TfK6C-uZlRdG aOiXr*z3IcQk Ys) B5JdSm #u- D7LfTn$w0E8N hVp%y2GaOiXr *z3IcQkYt) B5 JeSm#u-D7LfTo$w0E---------------------------------------------------------------最新资料推荐------------------------------------------------------9NhVp%y 2GaOjXr*z4IcQkYt) B5JeSm# u+D7LfUo$w0E 9NhVpy2GaPjXr*z4IcQkZt) B5KeSm#u+D7L fUo$w0F9NhV q y2GaPjXr*A4 IcQlZ t) B5KeS m#v+D7r*z4Ic QkZt) B5KeSm# u+D7L fUo$w0F 9NhVqy2GaP j Xr*A4IcQlZt) B5KeSm#v+D7L gUo$w0F9NhVq y2GbPjXr(A4 IcQlZ t) B6KeS m!v+D7LgUo$w 1F9NhWqy2Gb PjXr( A4IcRlZ t) C6KeSm! v+ D 7MgUo$x1F9Nh Wqy2HbPjXs( A4IcRlZt) C6KeStZlRdI4A(s XjPbH 2yqWiN 9F1x$oUgM7D+v!mSeK6C) tZl RcI4A (rXjPbH 2yqWhN9F1w$oUgM7D+v! mSe K6B) tZlQcI4A (rXjPbG2yqVhN9F1w$oUgL7 D+v#m SeK6B) t ZlQcI4A*rXjPaG2yqVhN9F0 w$oUf L7D+v#m SeK5B) tZkQcI4PjXs(A4IdR lZt) C6KeSn!v +D8MgUo%x1F9NiWqy3HbPjY s(A4Id RlZt-C 6KeTn!v+D8MgUo%x1F9OiWq z3HbPjY s(A4J dRlZu-C6KeTn! v+E8MgUp%x1 F9OiWqz3HbP kYs(A4JdRlZu-C6KfTn! v0E8 MgUp%x1FaOiW q*z3Hb0w$oUfL7D+u#mSeK5B ) tZkQcI4z*rX jPaG2ypVhN9E0w$oTfL7D+u #mSeJ5B) tYkQ cI4z*rXjOaG2y%pVhN9E0w$o TfL7D- u#mSdJ 5B) tYkQcI3z*rXiOaG2y%pVh N8E0w$nTfL7D -u#mSdJ5B) sYkQcH3z*rXiOa G2RlZu -C6KfT n!v0E8MgVp%x 1FaOiWq*z3Hb QkYs(A5JdRl# u-C6LfTn!v0E8MgVp%x1GaOi Wr*z3H bQkYs( B5JdRm#u-C6LfTn!w0E8MhVp %x1GaO iWr*z3 HcQkYs) B5JdRm#u-C7LfTn$w 0E8MhVp%x2GaOiXpVhN8E0w $nTfL7C-u#mS dJ5B)7 / 8sY kQcH3 z*rXiOaG2x%p V hM8E0w!nTfL 7C-u#mRd J5B( sYkQcH3z*rWi O aG1x%pVhM8E 0w!nTfL 6C-u# lRdJ5B(sYkQb H3z*qWiOaG1x %pVgM8E0v!nT fL6C-u#lRdJ5 OiWr*z3HcQkY s) B5JdSm #u-C 7LfTn$w0E8Nh V p%x2GaOiXr* z3IcQkY s) B5J dSm#u-D7LfTo $w0E8NhVp%y2 GaOjXr*z3IcQ kYt) B5JeSm#u - D7LfTo$w0E9 NhVpy2GaOjX r*z4IcQkZt) B 5JeSm#u+D7Lf Uo$w0E9NhVp y2G#u-D7LfTo $w 0E9NhVpy2 GaOjXr*z4IcQ kZt) B5JeSm#u + D7LfUo$w0E9 NhVpy2G aPjX r*A4IcQkZt) B 5KeSm#v+D7Lf Uo$w0F9N hVq y2GaPjXr*A4I cQlZt) B6KeSm #v+D7LgU o$w1 F9NhVqWiO9F1 x %oUgM 8E+v!nTeK6C-tZlRd J4A(sYjPbH3y q WiO9F1x%oU gM8D+v!n SeK6 C-tZlRdI4A(sXjPbH3y qWiN9F1x$oUgM8D+v! nSeK6 C) tZlRcI4A(s XjPbH2yqWhN9F1x$oUgM7D+ v!mSeK 6C) tZl RcI4A(rXjA4IcQlZt) B6KeSm !v+D7L gUo$w1 F9NhWqy2GbPjXr(A4IcRlZt ) B6KeSm!v+D7 MgUo$x1F9NhWqy2HbPjXs(A 4IcRlZ t) C6Ke Sn!v+D7MgUo$ x1F9NiWqy3H bPjXs(A47D+v !nSeK6C) tZlR cI4A(rXjPbH2 yqWh N9F1w$o UgM7D+v!mSeK 6B) tZlRcI4A( rXjPbG2yqVh N9F1w$oUgL7D +。
【数学】1.1.1集合的含义与表示
3、元素与集合的关系
关系 元 素 与 集 合 的 关 系 概念 记法 读法
如果a是集合A中的 于 属于 元素,就说a属于集 a∈A 集合 合A 如果a不是集合A中 不 的元素,就说a不属 a∉A 属于 于集合A
a属 A a不 A
属于 集合
4、常用的数集及记法 名称 意义 记法 非负整数集 全体非负整数组成的 N (自然数集) 集合 所有正整数组成的集 * 正整数集 N 或N+ 合 整数集 有理数集 实数集 全体整数组成的集合 全体有理数组成的集 合 全体实数组成的集合 Z Q R
练习2:已知集合A={a+2,(a+1)2,a2+3a +3},若1∈A,求实数a的值.
解:若a+2=1,则a=-1,所以A={1,0,1}, 与集合中元素的互异性矛盾,应舍去; 若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3},满足题意. 当 a =- 2 时, A = {0,1,1} ,与集合中元素的互 异性矛盾,舍去; 若a2+3a+3=1,则a=-1或a=-2(均舍去). 综上可知,a=0.
例4
用适当的方法表示下列集合.
* *
(1)A={(x,y)|x+y=4,x∈N ,y∈N };
6 ; ∈ Z| x ∈ N (2)B= 1+x
(3)方程 x +y -4x+6y+13=0 的解集; (4)平面直角坐标系中所有第二象限的点.
先明确集合中元素的特点,再选择 适当的方法来表示.
(4)我国古代四大发明; (5)抛物线y=x2上的点.
知识梳理: 1、定 义 一般地, 指定的某些对象的全体称 为集合. 集合中每个对象叫做这个集合的元素.
2、集合与元素 (1)、元素:一般地,我们把研究对象统 称为元素,元素常用小写拉丁字母 a , b , c„表示. (2)、集合:把一些元素组成的总体叫做 集合 ( 简称集 ) ,集合通常用大写拉丁字 母A,B,C,„表示. (3)、集合元素的三个特性:确定性、互 异性、无序性.
第1章 1.1 1.1.1 第1课时 集合的含义
集合1.1.1 集合的含义与表示第一课时集合的含义[新知初探]1.元素与集合的概念(1)元素:一般地,把研究对象统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素的特性:确定性、无序性、互异性.[点睛] 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物.2.元素与集合的关系[点睛] 对元素和集合之间关系的两点说明(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a ∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.常用的数集及其记法[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合.( )(2)新课标数学人教A版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )答案:(1)√(2)×(3)×2.下列元素与集合的关系判断正确的是( )A.0∈N B.π∈QC.2∈Q D.-1∉Z答案:A3.已知集合A中含有两个元素1,x2,且x∈A,则x的值是( )A.0 B.1C.-1 D.0或1答案:A4.方程x2-1=0与方程x+1=0所有解组成的集合中共有________个元素.答案:2集合的基本概[例1] 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④[解析] ①中“成绩优秀”没有明确的标准,所以不能构成一个集合;②③④中的对象都满足确定性,所以能构成集合.[答案] B1.给出下列说法:①中国的所有直辖市可以构成一个集合; ②高一(1)班较胖的同学可以构成一个集合; ③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合. 其中正确的有________.(填序号)解析:②中由于“较胖”的标准不明确,不满足集合元素的确定性,所以②错误;④中的所有整数能构成集合,所以④错误.答案:①③[例2] (1)下列关系中,正确的有( ) ①12∈R ;② 2∉Q ;③|-3|∈N ;④|-3|∈Q. A .1个 B .2个 C .3个D .4个(2)集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)由题意可得:3-x 可以为1,2,3,6,且x 为自然数,因此x 的值为2,1,0.因此A 中元素有2,1,0. [答案] (1)C (2)0,1,2元素与集合的关系[活学活用]2.已知集合A 中有四个元素0,1,2,3,集合B 中有三个元素0,1,2,且元素a ∈A ,a ∉B ,则a 的值为( ) A .0 B .1 C .2D .3解析:选D ∵a ∈A ,a ∉B ,∴由元素与集合之间的关系知,a =3. 3.用适当的符号填空:已知A ={x|x =3k +2,k ∈Z},B ={x|x =6m -1,m ∈Z},则有:17________A ;-5________A ;17________B.解析:令3k +2=17得,k =5∈Z. 所以17∈A.令3k +2=-5得,k =-73∉Z.所以-5∉A.令6m -1=17得,m =3∈Z , 所以17∈B. 答案:∈ ∉ ∈[例3] 已知集合A 含有两个元素a 和a 2,若1∈A ,则实数a 的值为________.集合中元素的特性及应用[解析] 若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,不符合元素的互异性,∴a≠1;当a=-1时,集合A含有两个元素1,-1,符合元素的互异性.∴a=-1.[答案] -1[一题多变]1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.解:因2∈A,则a=2或a2=2即a=2,或a=2,或a=- 2.2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?解:因A中有两个元素a和a2,则由a≠a2解得a≠0且a≠1.3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.解:由a∈A可知,当a=1时,此时a2=1,与集合元素的互异性矛盾,所以a≠1.当a=a2时,a=0或1(舍去).综上可知,a=0.根据集合中元素的特性求解字母取值(范围)的3个步骤层级一学业水平达标1.下列说法正确的是( )A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素解析:选C A项中元素不确定.B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D项中方程的解分别是x1=1,x2=x3=-1.由互异性知,构成的集合含2个元素.2.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈AC.0∈A D.-1∉A解析:选C 很明显3,1不满足不等式,而0,-1满足不等式.3.下面几个命题中正确命题的个数是( )①集合N*中最小的数是1;②若-a∉N*,则a∈N*;③若a∈N*,b∈N*,则a+b最小值是2;④x2+4=4x的解集是{2,2}.A.0 B.1 C.2 D.3解析:选C N*是正整数集,最小的正整数是1,故①正确;当a=0时,-a∉N*,且a∉N*,故②错;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为( )A.2 B.2或4C .4D .0解析:选B 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A.故选B.5.由实数-a ,a ,|a|,a 2所组成的集合最多含有的元素个数是( ) A .1 B .2 C .3 D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a≠0时,a 2=|a|=⎩⎪⎨⎪⎧a ,a>0,-a ,a<0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.6.下列说法中:①集合N 与集合N +是同一个集合; ②集合N 中的元素都是集合Z 中的元素; ③集合Q 中的元素都是集合Z 中的元素; ④集合Q 中的元素都是集合R 中的元素. 其中正确的有________(填序号).解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b________A ,ab________A .(填∈或∉).解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A. 答案:∉ ∈8.已知集合P 中元素x 满足:x ∈N ,且2<x<a ,又集合P 中恰有三个元素,则整数a =________. 解析:∵x ∈N,2<x<a ,且集合P 中恰有三个元素, ∴结合数轴知a =6. 答案:69.设A 是由满足不等式x<6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解:∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧a<6,3a<6,解得a<2.又a ∈N ,∴a =0或1.10.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值. 解:因为集合A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.层级二 应试能力达标1.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而B 、C 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选A.2.若以集合A 的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选A 由于a ,b ,c ,d 四个元素互不相同,故它们组成的四边形的四条边都不相等. 3.若集合A 中有三个元素1,a +b ,a ;集合B 中有三个元素0,ba ,b.若集合A 与集合B 相等,则b-a =( )A .1B .-1C .2D .-2解析:选C 由题意可知a +b =0且a≠0,∴a =-b , ∴ba=-1.∴a =-1,b =1,故b -a =2. 4.已知a ,b 是非零实数,代数式|a|a +|b|b +|ab|ab 的值组成的集合是M ,则下列判断正确的是( )A .0∈MB .-1∈MC .3∉MD .1∈M解析:选B 当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.5.不等式x -a≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 解析:因为3∉A ,所以3是不等式x -a<0的解,所以3-a<0,解得a>3. 答案:a>36.若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:(1)若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.(2)若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.(3)若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由(2)知不合题意.综上可知:a=0或a=1.答案:0或17.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.解:∵9∈A,∴2a-1=9或a2=9,若2a-1=9,则a=5,此时A中的元素为-4,9,25;B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.若a2=9,则a=±3,当a=3时,A中的元素为-4,5,9;B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去.当a=-3时,A中的元素为-4,-7,9;B中的元素为9,-8,4,符合题意.综上所述,满足条件的a存在,且a=-3.8.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.11 又∵2∈A ,∴11-2=-1∈A.∵-1∈A ,∴11--1=12∈A.∵12∈A ,∴11-12=2∈A.∴A 中必还有另外两个元素,且为-1,12.(2)若A 为单元素集,则a =11-a ,即a 2-a +1=0,方程无解. ∴a≠11-a ,∴集合A 不可能是单元素集.。
1.1.1集合的含义与表示(1)
这两个集合是相等的.
(3)整数集,记作Z;
6,集合的表示方法
(1)列举法:把集合的元素一一列举出来,并且用花 括号"{}"括起来表示集合的方法. 例:我们可以把"方程(x+1)(x-2)=0的所有实数根" 组成的集合表示为{-1,2}.
例1,用列举法表示下列集合: (1)方程(x2-1)(x2+2x-8)=0的解集为________. (2)方程|x-1|=3的解集为________. (3)绝对值小于3的整数的集合为________.
构成的集合怎么表示?
福建宏翔高级中学
知识引入
其实在初中,大家也接触过“集合”一词。 那么,请大家回忆一下在初中有哪些地方接触过 “集合”一词呢?
观察下列实例:
(1) 1~20以内的所有质数; 2,3,5,7,9,11,13,17,19
(2)绝对值小于3的整数; (3)满足x-3>2 的实数;
-2,-1,0,1,2
x>5
(2)若a不是集合A的元素,就说a不属于集合A,记作 a∈ / A。
只要构成两个集合的元素是一样的,我们就称 4,集合的三个特征
(1)确定性:它的元素必须是确定的。 (2)互异性:同一集合中不应重复出现同一元素. (3)无序性:集合中的元素无顺序,可以任意排列, 调换. 5,数学中常用的数集及其记法 (1)自然数集,记作N; (2)正整数集,记作N*或N+; (4)有理数集,记作Q; (5)实数集,记作R;
(4)我国古代四大发明; 造纸术,印刷术,指南针,火药 (5)宏翔高中高一(10)班的所有同学; (6)平面上到定点O的距离等于定长的所有的点.
知识新知
1,集合的含义:一般地,我们把研究的对象统称为 元素,把一些元素组成的总体叫做集合(简称集). 2,表示方法:集合通常用{}或大写的拉丁字母 A,B,C…表示,而元素用小写的拉丁字母a,b,c…表 示。 3,元素与集合关系: (1)若a是集合A的元素,就说a属于集合A,记作a∈A。
高中数学第一章 1.1.1 第一课时 集合的含义优秀课件
3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.
必修一教案-1.1.1集合的含义与表示
1.1.1集合的含义与表示(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:x+=的解;(5)(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)全班成绩好的学生;(9)平面直角坐标系内所有第三象限的点4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用“∈”或“∉”符号填空:(1)8 N;(2)0 N;(3)-3 Z;(4)2Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。
例2.已知集合P的元素为1,m,m2-3m-1, 若3∈P且-1∉P,求实数m的值。
(一).集合的表示方法(1) 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。
1.1.1集合的含义与表示
一、集合的含义 1.什么是集合?
一般的,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素:用小写字母a,b,c...表示 集合:用大写字母A,B,C...表示
2.集合与元素的关系 • 如果a是集合A的元素,就说a属于集合A,记作 a A 如果a不是集合A中的元素,就说a不属于集合A,
• 正整数集:N*或N+ • 整数集:Z
• 有理数集:Q
• 实数集:R
二、集合的表示
• 列举法:把集合的元素一一列举出来,写在大括号内 注:1.元素之间要用逗号隔开 2.元素不能重复
如:地球上的四大洋组成的集合表示为{太平洋,大西洋, 印度洋,北冰洋}
方程(x 1)( x 2) 0 组成的集合表示为{1,-2}
梦 境
集合? 例:(1)1~20内的所有整数 1,2,3,4,5..... • (2)亚洲的所有国家 中国,韩国,日本,印度..... • (3)所有的正方形 • (4)方程x2 3x 2 0 的所有实数根 - 1 , - 2 • (5)化德一中2020年9月入学的所有高一学生
二、集合的表示
• 描述法:用集合所含元素的共同特征表示集合 注:集合的代表元素
如:不等式 x 7 3的解集,共同特征:x R ,且 x 7 3
集合表示为:{x R x 10}
列举法主要针对集合中元素个数较少的情况,而描述法 主要适用于集合中的元素个数无限或不宜一一列举的情况
记作 a A
• 例:1~20内的所有素数记为集合A,则 3 A,4 A
素数:除1和它本身外,不能被其他自然数整除的 数。
判断下列对象能否组成集合: • 1.小于6的正整数 • 2.大于3小于11的偶数 • 3.中国男子足球队中技术很差的队员 • 4.中国的富翁 • 5.爱好足球的人 • 6.世界上所有的高山
1.1.1集合的含义与表示
3
2.集合: 集合常用大写字母表示,元素常用小 写字母表示.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
4
3.集合与元素的关系: 如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA. 例如:A表示方程x2=1的解. 2A,1∈A.
Hale Waihona Puke 12• 例2试分别用列举法和描述法表示下 列集合: • (1)方程x2-2=0的所有实数根组成的集 合; • (2)由大于10小于20的所有整数组成 的集合。 思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点和 适用的对象。
13
• 练习与思考 教材P5练习1、2
14
课堂小结
那么{(1,2)},{(2,1)}是否为同一集合?
7
判断下列例子能否构成集合 中国的直辖市
√
× ×
身材较高的人
著名的数学家
高一(3)班眼睛很近视的同学
×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
8
5.集合的表示方法 1、列举法: 无序 互异
将集合中的元素一一列举出来,并 用花括号{ }括起来的方法叫做列 举法
5
4.常用的数集:
N:自然数集(含0)
N+或N*:正整数集(不含0)
Z:整数集
Q:有理数集
R:实数集
6
5.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
1.1.1集合的含义与表示
2
用列举法表示为A = { 2 ,− 2}.
(2)设大于 小于20的整数为 , 它满足条件 ∈ Z 10 x x 且10 < x < 20,因此, 用描述法表示为 B = {x ∈ Z | 10 < x < 20}. 大于 小于20的整数有 ,12,13,14,15,16,17,18, 10 11 19,因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
我们以前已经接触过的集合: 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合; 自然数集合,正分数集合,有理数集合; 到角的两边的距离相等的所有点的集合; 到角的两边的距离相等的所有点的集合;
是角平分线
到线段的两个端点距离相等的所有点的集合; 到线段的两个端点距离相等的所有点的集合;
是线段垂直平分线
1.1.1 集合的含义与表示
1、集合的含义: 、集合的含义:
把研究对象统称为元素, 把研究对象统称为元素,把一些 元素 元素组成的总体叫做集合 简称集)。 集合( 元素组成的总体叫做集合(简称集)。 用大写字母A, , 表示集合, 用大写字母 ,B,C…表示集合,用 表示集合 小写字母a,b, 小写字母 ,c …表示集合中的元素 表示集合中的元素
2、 若方程x2-5x+6=0和方程 若方程x 5x+6=0和方程 x2-x-2=0的解为元素的集合 则 2=0的解为元素的集合M,则 的解为元素的集合 M中元素的个数为 ( C) 中元素的个数为 A.1 . B.2 . 3、已知集合 、 C.3 . D.4 .
人教版数学必修一 第一章 1.1.1 集合的含义与表示
问题
如果用A表示高一( )班学生组成的集合, 表示高 如果用 表示高一(3)班学生组成的集合,a表示高 表示高一 一(3)班的一位同学,b表示高一(4)班的一位同 )班的一位同学, 表示高一( ) 表示高一 那么a、 与集合 分别有什么关系? 与集合A分别有什么关系 学,那么 、b与集合 分别有什么关系?由此看出元 那么 素与集合之间有什么关系? 素与集合之间有什么关系?
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数 的值. 求实数a的值 求实数 的值
回顾交流
今天我们学习了哪些内容? 今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性 元素与集合的关系: , 常用数集及其表示 集合的表示法:列举法、描述法
第12页 页 习题1.1 A组 第1、2、3、4题 习题 组 、 、 、 题
2.选择题 . ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数} (B) {a,b,c,d}与{c,d,b,a}是两个不同的集合 (C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
0, a, a 2 3a + 2 }中的元素, ⑵ 已知2是集合M={ 则实数 a 为( c )
判断0与N,N*,Z的关系? 课堂练习P5 第1题 解析:判断一个元素是否在某个集合中 关键在于 解析 判断一个元素是否在某个集合中,关键在于 判断一个元素是否在某个集合中 弄清这个集合由哪些元素组成的. 弄清这个集合由哪些元素组成的
集合的表示方法 如何表示“地球上的四大洋”组成的集合? 问题 (1) 如何表示“地球上的四大洋”组成的集合 (2) 如何表示“方程 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 的所有实数根” 的所有实数根 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2} 太平洋,大西洋,印度洋,北冰洋} } 把集合中的元素一一列举出来,并用花括号 并用花括号{ 把集合中的元素一一列举出来 并用花括号{}括起来表示 注意:元素与元素之间用逗号隔开) (注意:元素与元素之间用逗号隔开) 叫做列举法 集合的方法叫做列举法. 集合的方法叫做列举法 用列举法表示下列集合: 例1 用列举法表示下列集合: 一个集合中的元素 (1)小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 小于 的所有自然数组成的集合; 的书写一般不考虑 2 (2)方程 x = x 的所有实数根组成的集合; 顺 序 ( 集 合 中 元 素 的所有实数根组成的集合; 方程 的无序性). 的无序性 (3)由1~20以内的所有素数组成的集合 以内的所有素数组成的集合. 由 以内的所有素数组成的集合 解:(1)A={0,1,2,3,4,5,6,7,8,9}. , , , , , , , , , (2)B={0,1}. , (3)C={2,3,5,7,11,13,17,19}. , , , , , , , 1.确定性 确定性 2.互异性 互异性 3.无序性 无序性
1.1.1集合的含义与表示
集合
无限集(元素的个数是无数多个)
空集 ø(集合中不含有元素)
集合的另一种表示方法:图示法
为了形象,常常用一条封闭曲线的 内部表示一个集合 。 (称为韦恩图 或文氏图)
A
小结
集合与元素
集合与元素的关系: ∈ 、 集合的表示法:1、列举法;2、描述法;
3、图示法
集合的分类:有限集、无限集、空集。 集合中元素的特性: 确定性、互异性、 无序性
例1
具有下列特征的对象能否构成一个集合:
(1) 体重很重的人.
(2) 直角坐标平面内第二象限的点.
(3) 直角坐标平面内某些点.
(4) 不大于5 的实数. (5) 方程x2- 3 x=0的有理数解. 解:(1)不能. “体重很重”的标准不明确。 (2)能.横坐标小于0且纵坐标大于0的点都是第二象限的点. (3)不能.“某些”指哪些?标准不明确. (4)能.就是小于或等于5的数. (5)能.该方程的有理数解为x=0
集合的含义与表示
[来源:学_科_网]
一,集合的定义
定义大西洋,印度洋,北冰洋”组成一个集合。
集合表示方法:
A)大括号表示:{太平洋,大西洋,印度洋,北冰洋} B)大写拉丁字母表示: A={太平洋,大西洋,印度洋,北冰洋}
二,元素:集合中的每个对象叫做这个集合的
练习3 P6 4
练习4:用描述法表示下列集合:
(1){ 4,6,8,10,12 }
(2)不在坐标轴的点的集合。
(3)被5除余1的自然数的集合。
答案:(1){x|x=2k,1<k<7,k∈z}
(2){(x,y)|x≠0且y≠0}
(3){x|x=5k+1,k∈z}
1.1.1 集合的含义与表示
C={x | x=2n,n N }
四、集合的表示
(3)描述法:用集合所含元素的共同特征表示集合的 方法称为描述法。
A={x R | x<10 } B={x R | x2 -2=0 } C={x Z | 10<x<20 }
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
五、巩固练习
(1)所有偶数组成的集合:
{x | x 2k,k Z }
数集
(2)不等式2 x 3 0的解集: { x | 2 x-3<0}
不等式的解集
(3)函数y x 1的自变量的值组成的集合:
否
② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
二、集合中元素的特征
① 高一级身高较高的同学,能否构成集合?
否
② 高一级身高160cm以上的同学,能否构成集合? 能
常见的数集及其记法:
自然数集 N 整数集 Z
正整数集 N*或N 有理数集 Q
实数集 R
一、集合的含义
一般地,我们把研究的对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c ,…表示集合中的元素.
问题:如何理解“把一些元素组成的总体叫做 集合”,这些集合里的元素必须具备什么特征?
高一级所有的同学组成的集合记为A, a是高一(7)班 的同学,b是高二(7)班的同学,那么a与A,b与A之 间各自有什么关系?
1.1.1集合的含义与表示
D
)
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
9.若 x∈R,则{3,x,x2-2x}中的元素 x 应满足的条件是__________.
3≠x, 2 解析:由集合中元素的互异性知3≠x -2x, x≠x2-2x,
解之得 x≠-1,且 x≠0,且 x≠3.
答案:x≠-1,且 x≠0,且 x≠3
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
10.已知集合 A={x|ax2+2x+1=0,a∈R,x∈R}. (1)若 A 中只有一个元素,求 a 的值;(2)若 A 中至多有一个元素,求 a 的取值范围.
要点突破
典例精析
演练广场
4.设 P、Q 为两个非空实数集合,定义集合 P+Q={a+b|a∈P,b∈Q},若 P={0,2,5}, Q={1,2,6},则 P+Q 中元素的个数是( B ) (A)9 (B)8 (C)7 (D)6
解析:集合 P+Q 的含义就是 P、Q 集合中各取一个因素之和的不同值的个数,有 0+ 1,0+2,0+6,2+1,2+2,2+6,5+2,5+6,共 8 个,故选 B.
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
|a| |b| 6.设 a,b 是非零实数,那么 + 可能取的值组成的集合是______. a b
解析:当 a、b 同正时值为 2,当 a、b 同负时值为-2,当 a、b 异号时值为 0,故组成 的集合是:{-2,0,2}.
答案:{-2,0,2}
首页
要点突破
典例精析
1.1.1集合的含义与表示
拓展训练
1.设1,0,x三个元素构成集合A,若x2∈A,求实 数x的值. 解:若x2=0,则x=0,此时A中只有两个元素1,0, 这与已知集合A中含有三个元素矛盾,故舍去. 若x2=1,则x=±1. 当x=1时, 集合为{1,0,1},舍去; 当x=-1时, 集合为{1,0,-1},符合题意. 若x2=x,则x=0或x=1, 不符合互异性,都舍去. 综上可知:x=-1.
E x x 2k 1, k Z .
集合的表示方法
思考:
表示具体的集合时,如何从列举法和描述法 中作出恰当的选择?
有些集合元素的公共属性不明显,难以概括,不便用描 述法表示,只能用列举法. 如:集合 {x2 , 3x+2, 5y3 –x, x2+ y2} 有些集合的元素不能无遗漏地一一列举出来,或者不便于、 不需要一一列举出来,常用描述法. 如:集合{x|x-7>3} ; 集合{1000以内的质数}
1.1 集 合
1.1.1 集合的含义与表示
第1课时 集合的含义
新课引入 有一位牧民非常喜欢数学,但他怎么也想不明白集合的 意义,于是他请教一位数学家:“尊敬的先生,请你告诉我 集合是什么?”集合是不定义的概念,数学家很难回答.一 天,他看到牧民正在向羊圈里赶羊,等到牧民把羊全赶进羊 圈并关好门.数学家突然灵机一动,高兴地告诉牧民:“这 就是集合”.你能理解集合了吗?集合就是把需要的东西拿 到一起.
把“方程 x 1x 2 0 的所有的实数根”组成的集合 表示为:{1,-2}.
集合的表示方法
2、列举法
像这样把集合的元素一一列举出来,并 用花括号“{ }”括起来表示集合的方法叫做 “列举法” .
注意:1.元素间要用逗号隔开; 2.不管次序放在大括号内,注意元素 不重复,不遗漏. 例如:book中的字母的集合表示为:
1.1.1集合的含义与表示
例2 用符号“∊”或“
*
”填空:
(1)3.14____Q;(2) π____Q; ∊
∊ ;(4)0____N; (3)0___N
∊ (5)(-2) ___N ;(ቤተ መጻሕፍቲ ባይዱ)2 3___Z;
0 *
∊ (7)2 3____Q;(8)2 3____R.
例3 x ∊ R,则{3,x,x ² - 2x}中的元素应 满足什么条件? 分析:根据集合的三要素:确定性, 互异性,无序性. 解:由集合中元素的互异性知
三、集合与元素的关系
元素与集合的从属关系: 如果a是集合A中的元素,说a属于A,记作a∈A; 如果a不是集合A中的元素,说a不属于A,记作a A. 只要构成两个集合的元素是一样的,我们 就称这两个集合是相等的.
完成P5练习1
常用数集及其记法:
非 负 整 数 实 正 整 数 整 数 有 理 集合 ( 自 然 数 集 ) 数 集 集 数集 集 符号 N N*或 N+ Z Q R
三、集合的表示法 1、自然语言表示 2、列举法
把集合的元素一一列举出来,并用花括号 “{ }”括起来表示集合的方法叫做列举法. 例8 用列举法表示下列集合: (1)大于10小于30的所有3的倍数; (2)方程 x2 + 3x + 2 = 0 的解; (3) 小于100的所有奇数.
注意
(1)大括号不能缺失,元素间用“,”分隔。
3≠x 3≠x² - 2x x≠x² - 2x
解得x ≠ -1, x ≠ 0,且x ≠ 3
例4 集合A={1,3,5}与集合B={3,1,5}是同 一集合吗? 解:根据集合的三要素,可以知道两个 集合是同一集合. 例5 若{1,2}={a-2,2h},则求 a, h? 解:由集合的三要素知道, 1=2h 1=a-2 或 2=2h 2=a-2 所以得到a=3或4,h=1或0.5.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个特性通常被用来判断涉及的总体是否构成集合.
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
(2) 互异性:集合中的元素必须是互异的,就是说,对于 一个给定的集合,它的任何两个元素都是不同的. (3) 无序性:集合与其中元素的排列顺序无关,如由元素 a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质 通常用来判断两个集合的关系. 3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
(3) 整 体 : 集 合 是 一 个 整 体 , 已 暗 含 “ 所 有 ” “ 全 部”“全体”的含义,因此一些对象一旦组成集合,那么这个 集合就是这些对象的全体,而并非个别对象. 2.集合中元素的三个特性 (1) 确定性:指的是作为一个集合中的元素,必须是确定 的,即一个集合一旦确定,某一个元素属于或不属于这个集合 是确定的.要么是该集合中的元素要么不是,二者必居其一,
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
1.元素与集合的概念 研究对象 统称为元素. (1)元素:一般地,我们把__________ 一些元素 组成的总体叫做集合(简称为集). (2)集合:把__________ 元素 是一样的,我们就 (3)集合相等:只要构成两个集合的_____ 称这两个集合是相等的. 确定性 、________ 互异性 、_______ 无序性 . (4)集合元素的特性:________
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
解:∵-3∈A, ∴a-3=-3或2a-1=-3. 若a-3=-3, 则a=0. 此时集合A含有两个元素-3,-1,符合题意. 若2a-1=-3, 则a=-1.
此时集合A含有两个元素-4,-3,符合题意,
综上所述,满足题意的实数a的值为0或-1.
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
解析:(1)根据各数集的意义可知,①②正确,③④错误. (2)直线y=2x+3上的点的横坐标x和纵坐标y具有y=2x+3 的关系,即只要具备此关系的点就是集合P的元素. 由于当x=2时,y=2×2+3=7, 故(2,7)∈P. 答案:(1)B (2)∈
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
1.下列说法正确的是( 中的一个元素
)
A.小明身高1.78 m,则他应该是高个子的总体这一集合 B.所有大于0小于10的实数可以组成一个集合,该集合有 9个元素
C.平面上到定直线的距离等于定长的所有点的集合是一
条直线 D.任意改变一个集合中元素的顺序,所得集合仍和原来 的集合相等
第一章 集合与函数概念
1.1 1.1.1
集
合
集合的含义与表示
第1课时 集合的含义
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
1.通过实例了解集合的含义.(难点) 2.掌握集合中元素的三个特性.(重点) 3 .体会元素与集合的“属于”关系,知道常用数集的专 用记号并会应用.(重点、易混点)
答案:B
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
【纠错心得】1.分类讨论思想的运用 解答含有字母的元素与集合之间关系的问题时,要有分类 讨论的意识.如本例中由1∈A,可知a=1或a2=1. 2.集合元素互异性的作用 求解与集合有关的字母参数时,需利用集合元素的互异性 来检验所求参数值是否符合要求.如本例中对所求出的1与-1
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
2.元素与集合的表示
a,b,c,… 表示集合中 元素:通常用小写拉丁字母___________ 表示的元素; 集合:通常用大写拉丁字母_____________ A,B,C,… 表示集合.
数学 ·必修1(A)
活页作业
元素和集合的关系
(1)下列所给关系中正确的个数是(
)
①π∈R;② 3∉Q;③0∈N*;④|-4|∉N*. A.1 C.3 B.2 D.4
(2)设直线 y=2x+3 上的点集为 P,点(2,7)与点集 P 的关系 为(2,7)________P(填“∈”或“∉”).
数学 ·必修1(A)
课前自主预习
在a∈A和a∉A两种情况中有且只有一种成立.
(2)符号“∈”和“∉”只是表示元素与集合之间的关系.
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
集合的判定
下列各组对象:①接近于 0 的数的全体;②比较小的正整 数的全体;③平面上到点 O 的距离等于 1 的点的全体;④正三 角形的全体;⑤ 2的近似值的全体,其中能构成集合的组数是 ( ) A.2 C.4 B.3 D.5
=0时,3-2x=3>0,所以0不属于M,即0∉M;当x=2时,3
-2x=-1<0,所以2属于M,即2∈M. 答案:B
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
集合中元素的特性及应用 已知集合A含有两个元素a-3和2a-1,若-3∈A,试求
实数a的值.
思路点拨: 令a-3=-3或2a-1=-3 → 解方程求a → 检验得a的值
a属于集
合A a不属于 集合A
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
4.常用数集及表示符号
名称 符号
非负整数集 (自然数集) N
________ 正整数集 N*或N+
整数 集 __ Z
________ 有理数集 Q
实数 集 __ R
数学 ·必修1(A)
课前自主预习
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
1.对集合相关概念的理解
(1) 集合的含义:集合是数学中不加定义的原始概念,我们
只对它进行描述性说明,其本质是某些确定元素组成的总体. (2) 元素:集合中的“元素”所指的范围非常广泛,现实生 活中我们看到的、听到的、所触摸到的、所能想到的各种各样 的事物或一些抽象符号等,都可以看作集合的元素.
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
判断元素和集合关系的两种方法
如果集合中的元素是直接给出的,只要判断该元 直接法 素在已知集合中是否出现即可.此时应首先明确 集合是由哪些元素构成.
对于某些不便直接表示的集合,只要判断该元素
推理法 是否满足集合中元素所具有的特征即可. 此时应首 先明确已知集合的元素具有什么特征,即该集合 中元素要符合哪种表达式或满足哪些条件.
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
2.设不等式3-2x<0的解集为M,下列正确的是( A.0∈M,2∈M B.0∉M,2∈M
)
C.0∈M,2∉M
D.0∉M,2∉M
解析:从四个选项来看,本题是判断0和2与集合M间的关 系,因此只需判断 0和 2 是否是不等式 3 -2x < 0 的解即可.当 x
学业达标测试
活页作业
3 .已知集合 A 是由 0 , m , m2 - 3m + 2 三个元素组成的集 合,且2∈A,则实数m为( )
A.2
C.0或3
B.3
D.0,2,3均可
解析:若m=2,则22-3×2+2=0,不满足互异性;若m2
- 3m + 2 = 2 ,则 m = 0 或 3 ,显然当 m = 0 时不满足元素的互异
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
1.判一判(正确的打“√”,错误的打“×”)
(1)漂亮的花组成集合.( ×)
(2)高一、(6)班最高的3位同学构成集合.( √ ) (3) 由 1,2,3 组 成 的 集 合 与 由 3,1,2 组 成 的 集 合 是 同 一 个 集 合.( √ )
数学 ·必修1(A)
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
【互动探究】 题(2)中,集合P不变,则2与集合P的关系是 什么?(3,4)与集合P又有什么关系? 解:由于2是实数,而集合P是点集,故2∉P; 由于当x=3时,y=2×3+3=9≠4,故(3,4)∉P.
数学 ·必修1(A)
数学 ·必修1(A)
课前自主预习
课堂互动探究
状元笔记探秘
学业达标测试
活页作业
思路点拨: 所给对象 ―→ 作出判断
“确定”且“不同” ――――→ 逐个分析
解析:“接近于 0 的数”“比较小的正整数”标准不明确, 即元素不确定,所以①②构不成集合.同样,“ 2的近似值” 也不明确精确到什么程度,因此很难判定一个数,比如 2 是不是 它的近似值,所以⑤也构不成一个集合.③④能构成集合.所以 选 A.