苏教版高中数学必修五普通高等学校招生全国统一考试卷(上海.理)含答案.docx
苏教版高中数学必修五普通高等学校招生全国统一考试卷(天津.文)含答案.docx
高中数学学习材料马鸣风萧萧*整理制作2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效.3.本卷共10小题,每小题5分,共50分. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =( )A .{}2B .{}12,C .{}012,,D .{}1012-,,,(2)设变量x y ,满足约束条件142x y x y y --⎧⎪+⎨⎪⎩≥,≤,≥则目标函数24z x y =+的最大值为( )A.10B.12C.13D.14(3) “2a =”是“直线20ax y +=平行于直线1x y +=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(4)设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<(5)函数2log (4)(0)y x x =+>的反函数是( ) A .24(2)xy x =+> B .24(0)xy x =+> C .24(2)x y x =->D .24(0)xy x =->(6)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a α∥,b β∥,αβ∥,则a b ∥ C .若a α⊂,b β⊂,a b ∥,则αβ∥ D .若a α⊥,b β⊥,αβ⊥,则a b ⊥(7)设双曲线22221(00)x y a b a b -=>>,的离心率为3,且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= (8)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( )A.2B.4C.6D.8(9)设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数(10)设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[]2x t t ∈+,,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( )A .)2⎡+⎣,∞B .[)2+,∞C .(]02,D .2120⎡⎤⎡⎤--⎣⎦⎣⎦,,第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. (11)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下: 分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数123101则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.(12)921x x ⎛⎫+ ⎪⎝⎭的二项展开式中常数项是 (用数字作答).(13)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .(14)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的方程是 .(15)在ABC △中,2AB =,3AC =,D 是边BC 的中点,则AD BC = .(16)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在ABC △中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. (18)(本小题满分12分)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率; (19)(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,,60ABC ∠=°,PA AB BC ==,E 是PC 的中点. (Ⅰ)求PB 和平面PAD 所成的角的大小; (Ⅱ)证明AE ⊥平面PCD ;(Ⅲ)求二面角A PD C --的大小.(20)(本小题满分12分)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N .(Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立. (21)(本小题满分14分)设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. (22)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明2a b =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.ABCDPE2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)B (2)C (3)C (4)A (5)C (6)D (7)D (8)B (9)A (10)A二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. (11)70 (12)84 (13)14π (14)30x y +=(15)52(16)630三、解答题 (17)本小题考查同角三角函数的基本关系式、两角和公式、倍角公式、正弦定理等的知识,考查基本运算能力.满分12分.(Ⅰ)解:在ABC △中,2243sin 1cos 155A A ⎛⎫=-=--= ⎪⎝⎭,由正弦定理,sin sin BC ACA B=. 所以232sin sin 355AC B A BC ==⨯=.(Ⅱ)解:因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是22221cos 1sin 155B B ⎛⎫=-=-= ⎪⎝⎭,22117cos 22cos 121525B B =-=⨯-=, 221421sin 22sin cos 25515B B B ==⨯⨯=.sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭4213171252252=⨯+⨯ 1271750+=.(18)本小题主要考查互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件A ,“从乙盒内取出的2个球均为红球”为事件B .由于事件A B ,相互独立,且2327C 1()C 7P A ==,2329C 5()C 18P B ==,故取出的4个球均为红球的概率是155()()()718126P A B P A P B ==⨯=. (Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件C ,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件D .由于事件C D ,互斥,且1123442279C C C 2()C C 21P C ==,1125242275C C C 10()C C 63P D ==. 故取出的4个红球中恰有4个红球的概率为21016()()()216363P C D P C P D +=+=+=. (19)本小题考查直线与平面垂直、直线和平面所成的角、二面角等基础知识.考查空间想象能力、记忆能力和推理论证能力.满分12分. (Ⅰ)解:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,AB ⊂平面ABCD ,故P A A B ⊥. 又AB AD ⊥,PA AD A =,从而AB ⊥平面PAD .故PB 在平面PAD 内的射影为PA ,从而APB ∠为PB 和平面PAD 所成的角. 在Rt PAB △中,AB PA =,故45APB =∠. 所以PB 和平面PAD 所成的角的大小为45.(Ⅱ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故CD PA ⊥. 由条件CD PC ⊥,PA AC A =,CD ∴⊥面PAC . 又AE ⊂面PAC ,AE CD ∴⊥.由PA AB BC =,60ABC =∠,可得AC PA =.E 是PC 的中点,AE PC ∴⊥,PC CD C ∴=.综上得AE ⊥平面PCD .(Ⅲ)解:过点E 作EM PD ⊥,垂足为M ,连结AM .由(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM PD ⊥.ABCDPEM因此AME ∠是二面角A PD C --的平面角. 由已知,可得30CAD =∠.设AC a =,可得PA a =,233AD a =,213PD a =,22AE a =. 在Rt ADP △中,AM PD ⊥,AM PD PA AD ∴=,则232737213aaPA ADAM a PDa ==. 在Rt AEM △中,14sin 4AE AME AM ==. 所以二面角A PD C --的大小14arcsin4. (20)本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.满分12分. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32n n n n S -+=+. (Ⅲ)证明:对任意的n ∈*N ,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立.(21)本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(Ⅰ)解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.(Ⅱ)解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.(1)若0a >,当x 变化时,()f x '的正负如下表:x3a ⎛⎫- ⎪⎝⎭∞,3a3a a ⎛⎫ ⎪⎝⎭, a ()a +,∞()f x ' -+-因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =.(2)若0a <,当x 变化时,()f x '的正负如下表:x()a -∞,a3a a ⎛⎫⎪⎝⎭, 3a 3a ⎛⎫+ ⎪⎝⎭,∞ ()f x '-0 +-因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭.(Ⅲ)证明:由3a >,得13a>,当[]10k ∈-,时, cos 1k x -≤,22cos 1k x -≤.由(Ⅱ)知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤ ①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.(22)本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中 0y >,由于点A 在椭圆上,有22221c y a b +=,222221a b y a b-+=, 解得2b y a =,从而得到2b A c a ⎛⎫ ⎪⎝⎭,,直线2AF 的方程为2()2b y x c ac =+,整理得 2220b x acy b c -+=.由题设,原点O 到直线1AF 的距离为113OF ,即 242234c b cb a c=+, 将222c a b =-代入原式并化简得222a b =,即2a b =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,,过点O 作1OB AF ⊥,垂足为H ,易知112F BC F F A △∽△,故211BO F AOF F A= 由椭圆定义得122AF AF a +=,又113BO OF =,所以 2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即2a b =. (Ⅱ)解法一:圆222x y t +=上的任意点00()M x y ,处的切线方程为200x x y y t +=.当(0)t b ∈,时,圆222x y t +=上的任意点都在椭圆内,故此圆在点A 处的切线必交椭圆于两个不同的点1Q 和2Q ,因此点111()Q x y ,,222()Q x y ,的坐标是方程组20022222x x y y t x y b ⎧+=⎪⎨+=⎪⎩ ①②的解.当00y ≠时,由①式得 200t x xy y -=代入②式,得22220022t x x x b y ⎛⎫-+= ⎪⎝⎭,即22224220000(2)4220x y x t x x t b y +-+-=,于是2012220042t x x x x y +=+,422122200222t b y x x x y -=+ AO1F 2FHxy马鸣风萧萧 2201121201t x x t x x y y y y --= 422012012201()t x t x x x x x y ⎡⎤=-++⎣⎦ 242242200002222200000422122t x t b y t x t x y x y x y ⎛⎫-=-+ ⎪++⎝⎭4220220022t b x x y -=+. 若12OQ OQ ⊥,则42242242220000121222222200000022232()0222t b y t b x t b x y x x y y x y x y x y ---++=+==+++. 所以,42220032()0t b x y -+=.由22200x y t +=,得422320t b t -=.在区间(0)b ,内此方程的解为63t b =. 当00y =时,必有00x ≠,同理求得在区间(0)b ,内的解为63t b =. 另一方面,当63t b =时,可推出12120x x y y +=,从而12OQ OQ ⊥. 综上所述,6(0)3t b b =∈,使得所述命题成立.。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(山东.理)含答案.docx
高中数学学习材料马鸣风萧萧*整理制作2007年普通高等学校招生全国统一考试(山东卷)理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.(1)若cos isin z θθ=+(i 为虚数单位),则使21z =-的θ值可能是( ) A .6πB .4π C .3π D .2π (2)已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N =( )A .{}11-,B .{}1-C .{}0D .{}10-,(3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④(4)设11132a ⎧⎫∈-⎨⎬⎩⎭,,,,则使函数ay x =的定义域为R 且为奇函数的所有a 值为( )A .1,3B .1-,1C .1-,3D .1-,1,3(5)函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( ) ①正方形 ②圆锥 ③三棱台 ④正四棱锥A .π,1B .π,2C .2π,1D .2π,2(6)给出下列三个等式:()()()f xy f x f y =+,()()()f x y f x f y +=,()()()1()()f x f y f x y f x f y ++=-,下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =(7)命题“对任意的x ∈R ,3210x x -+≤”的否定是( ) A .不存在x ∈R ,3210x x -+≤ B .存在x ∈R ,3210x x -+≤ C .存在x ∈R ,3210x x -+> D .对任意的x ∈R ,3210x x -+>(8)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,45(9)下列各小题中,p 是q 的充要条件的是( ) ①p :2m <-或6m >;q :23y x mx m =+++有两个不同的零点. ②():1()f x p f x -=;:()q y f x =是偶函数. ③:cos cos p αβ=;:tan tan q αβ=.④:p AB A =;:U Uq B A ⊆痧.A .①②B .②③C .③④D .①④(10)阅读右边的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是( ) A .2500,2500 B .2550,25500 13 14 15 16 17 18 19秒频率/组距0.36 0.340.180.06 0.04 0.02开始 输入n22x <1n n =-T T n=+结束输出S T , s s n=+否00ST ==,C .2500,2550D .2550,2500`(11)在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB = B .2BC BA BC = C .2AB AC CD =D .22()()AC AB BA BC CD AB⨯=(12)位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位`于点(23),的概率是( )A .212⎛⎫ ⎪⎝⎭B .3231C 2⎛⎫ ⎪⎝⎭C .2231C 2⎛⎫ ⎪⎝⎭D .312231C C 2⎛⎫⎪⎝⎭第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案须填在题中横线上. (13)设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为 .(14)设D 是不等式组21023041x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≥,≤≤,≥表示的平面区域,则D 中的点()P x y ,到直线10x y +=距离的最大值是 .(15)与直线20x y +-=和曲线221212540x y x y +---=都相切的半径最小的圆的标准方程是 .(16)函数lo g (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N . (Ⅰ)求数列{}n a 的通项; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S .(18)(本小题满分12分)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(Ⅰ)求方程20x bx c ++=有实根的概率; (Ⅱ)求ξ的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率. (19)(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥.(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ; (Ⅱ)求二面角11A BD C --的余弦值.(20)(本小题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?(21)(本小题满分12分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. (22)(本小题满分14分) 设函数2()ln(1)f x x b x =++,其中0b ≠.BCD A1A1D1C1BE北 1B2B 1A2A120 105 乙甲(Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>- ⎪⎝⎭都成立.2007年普通高等学校招生全国统一考试(山东卷)理科数学参考答案第Ⅰ卷一、选择题(1)D (2)B (3)D(4)A (5)A (6)B (7)C (8)A(9)D(10)D(11)C(12)B第Ⅱ卷二、填空题 (13)212p(14)42 (15)22(2)(2)2x y -+-=(16)8三、解答题 (17)(本小题满分12分)解:(Ⅰ)211233333n n na a a a -++++=…, ① ∴当2n ≥时,22123113333n n n a a a a ---++++=…. ②①-②得1133n n a -=,13n n a =.在①中,令1n =,得113a =.13n n a ∴=.(Ⅱ)n nnb a =, 3n n b n ∴=.23323333n n S n ∴=+⨯+⨯++…, ③ 23413323333n n S n +∴=+⨯+⨯++…. ④④-③得12323(3333)n n n S n +∴=-++++….即13(13)2313n n n S n +-=--,1(21)3344n n n S +-∴=+.(18)(本小题满分12分)解:(Ⅰ)由题意知:设基本事件空间为Ω,记“方程20x bx c ++=没有实根”为事件A ,“方程20x bx c ++=有且仅有一个实根”为事件B ,“方程20x bx c ++=有两个相异实数”为事件C ,则{}()126b c b c Ω==,,,,…,,{}2()40126A b c b c b c =-<=,,,,,…,,{}2()40126B b c b c b c =-==,,,,,…,, {}2()40126C b c bc b c =->=,,,,,…,,所以Ω是的基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个. 又因为B C ,是互斥事件, 故所求概率21719()()363636P P B B C =+=+=. (Ⅱ)由题意,ξ的可能取值为012,,,则{}17036P ξ==, {}1118P ξ==,{}17236P ξ==, 故ξ的分布列为:ξ 0 1 2P1736 1181736所以ξ的数学期望171170121361836E ξ=⨯+⨯+⨯=. (Ⅲ)记“先后两次出现的点数有中5”为事件D ,“方程20x bx c ++=有实数”为事件E ,由上面分析得11()36P D =,7()36P D E =, ()7()()11P D E P E D P D ∴==.(19)(本小题满分12分)解法一:(Ⅰ)连结BE ,则四边形DABE 为正方形,11BE AD A D ∴==,且11BE AD A D ∥∥,∴四边形11A D EB 为平行四边形.11D E A B ∴∥.又1D E ⊄平面1A BD ,1A B ⊂平面1A BD ,1D E ∴∥平面1A BD .(Ⅱ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设1DA =,则(000)D ,,,(100)A ,,,(110)B ,,,(022)C ,,,1(102)A ,,, 1(102)DA ∴=,,,(110)DB =,,, 设()x y z =,,n 为平面1A BD 的一个法向量.由1DA ⊥n ,DB ⊥n , 得200.x z x y +=⎧⎨+=⎩,取1z =,则(231)=-,,n . 又2(023)DC =,,,(110)DB =,,, 设111()x y z =,,m 为平面1C BD 的一个法向量, 由DC ⊥m ,DB ⊥m , 得11112200.y z x y +=⎧⎨+=⎩,取11z =,则(111)=-,,m ,BCD A1A1D1C1BE G BCD A 1A1D1C1BEzyxF M设m 与n 的夹角为a ,二面角11A BD C --为θ,显然θ为锐角,33cos 393θ-∴===-m n m n . 3cos 3θ∴=, 即所求二面角11A BD C --的余弦为33. 解法二:(Ⅰ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设DA a =,由题意知:(000)D ,,,(00)A a ,,,(0)B a a ,,,(020)C a ,,,1(022)C a a ,,,1(02)A a a ,,,1(002)D a ,,,(00)E a ,,.1(02)D E a a ∴=-,,,1(02)DA a a =,,,(0)DB a a =,,, 又(02)(0)(02)a a a a a a -=-,,,,,,,1D E DB DA ∴=-.1DA DB ⊂,平面1A BD ,1D E ⊄平面1A BD , 1D E ∴∥平面1A BD .(Ⅱ)取DB 的中点F ,1DC 的中点M ,连结1A F ,FM , 由(Ⅰ)及题意得知:022a a F ⎛⎫ ⎪⎝⎭,,,(0)M a a ,,, 1222a a FA a ⎛⎫∴=- ⎪⎝⎭,,,22a a FM a ⎛⎫=- ⎪⎝⎭,,,12(0)022a a FA DB a a a ⎛⎫=-= ⎪⎝⎭,,,,,(0)022a a FM DB a a a ⎛⎫+=-+= ⎪⎝⎭,,,,.BCD A 1A 1D1C1BExyzF M1FA DB ∴⊥,FM DB ⊥, 1A FM ∴∠为所求二面角的平面角.111cos FA FM A FM FA FM∴=∠2222232622a a a a a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=,,,, 222223443332a a a a--+==. 所以二面角11A BD C --的余弦值为33. 解法三:(Ⅰ)证明:如解法一图,连结1AD ,AE , 设11AD A D G =,AEBD F =,连结GF ,由题意知G 是1A D 的中点,又E 是CD 的中点,∴四边形ABED 是平行四边形,故F 是AE 的中点, ∴在1AED △中,1GF D E ∥,又GF ⊂平面1A BD ,1D E ⊄平面1A BD ,1D E ∴∥平面1A BD .(Ⅱ)如图,在四边形ABCD 中,设AD a =, AB AD =,AD DC ⊥,AB DC ∥, AD AB ∴⊥. 故2BD a =,由(Ⅰ)得2222222BC BE EC a a a =+=+=,2DC a =, 90DBC ∴=∠,即BD BC ⊥.又1BD BB ⊥,BCDA1A1D1C1BEF M HBD ∴⊥平面11BCC B ,又1BC ⊂平面11BCC B ,1BD BC ∴⊥,取1DC 的中点M ,连结1A F ,FM , 由题意知:1FM BC ∴∥,FM BD ∴⊥.又11A D A B =,1A F BD ∴⊥.1A FM ∴∠为二面角11A BD C --的平面角.连结1A M ,在1A FM △中, 由题意知:1322A F a =,2211116222FM BC BC CC a ==+=, 取11D C 的中点H ,连结1A H ,HM , 在1Rt A HM △中,12A H a =,HM a =, 13A M a ∴=.2221111cos 2A F FM A M A FM A F FM +-∴=∠ 2229332236222a a a a a +-= 33=. ∴二面角11A BD C --的余弦值为33. (20)(本小题满分12分)解法一:如图,连结11A B ,由已知22102A B =,北2B2A120122030210260A A =⨯=, 1221A A A B ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形,1212102A B A A ∴==,由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22220(102)2201022=+-⨯⨯⨯200=.12102B B ∴=.因此,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里.解法二:如图,连结21A B ,由已知1220A B =,122030210260A A =⨯=,112105B A A =∠, cos105cos(4560)=+cos 45cos60sin 45sin 60=- 2(13)4-=, sin105sin(4560)=+sin 45cos60cos 45sin 60=+ 2(13)4+=. 北1B2B1A2A120 105 乙甲在211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-222(13)(102)202102204-=+-⨯⨯⨯100(423)=+.1110(13)A B ∴=+.由正弦定理1112111222202(13)2sin sin 4210(13)A B A A B B A A A B +===+∠∠, 12145A A B ∴=∠,即121604515B A B =-=∠,2(13)cos15sin1054+==.在112B A B △中,由已知12102A B =,由余弦定理,22212112221222cos15B B A B A B A B A B =++2222(13)10(13)(102)210(13)1024+=++-⨯+⨯⨯200=.12102B B ∴=,乙船的速度的大小为1026030220⨯=海里/小时. 答:乙船每小时航行302海里. (21)(本小题满分12分)解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:3a c +=,1a c -=,2a ∴=,1c =,2223b a c ∴=-=.∴椭圆的标准方程为22143x y +=. (Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=,22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,则, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 因为以AB 为直径的圆过椭圆的右焦点(20)D ,,1AD BD k k ∴=-,即1212122y y x x =---,1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k --∴+++=+++,2291640m mk k ∴++=.解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫ ⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.(22)(本小题满分14分)解:(Ⅰ)由题意知,()f x 的定义域为(1)-+∞,,322()211b x x bf x x x x ++'=+=++ 设2()22g x x x b =-+,其图象的对称轴为1(1)2x =-∈-+∞,, max 11()22g x g b ⎛⎫∴=-=-+ ⎪⎝⎭.当12b >时,max 1()02g x b =-+>, 即2()230g x x x b =+->在(1)-+∞,上恒成立,∴当(1)x ∈-+∞,时,()0f x '>, ∴当12b >时,函数()f x 在定义域(1)-+∞,上单调递增. (Ⅱ)①由(Ⅰ)得,当12b >时,函数()f x 无极值点.②12b =时,3122()01x f x x ⎛⎫+ ⎪⎝⎭'==+有两个相同的解12x =-, 112x ⎛⎫∈-- ⎪⎝⎭,时,()0f x '>,12x ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '>,12b ∴=时,函数()f x 在(1)-+∞,上无极值点. ③当12b <时,()0f x '=有两个不同解,11122b x ---=,21122b x -+-=,0b <时,111212b x ---=<-,211202bx ---=>,即1(1)x ∈-+∞,,[)21x ∈-+∞,.0b ∴<时,()f x ',()f x 随x 的变化情况如下表:x1(1)x -, 1x 2()x +∞,()f x ' -+()f x极小值由此表可知:0b <时,()f x 有惟一极小值点11122bx ---=,当102b <<时,111212b x ---=>-, 12(1)x x ∴∈-+∞,,此时,()f x ',()f x 随x 的变化情况如下表:x1(1)x -,1x 12()x x , 1x 1()x -∞, ()f x ' +-+()f x极大值极小值由此表可知:102b <<时,()f x 有一个极大值11122b x ---=和一个极小值点21122bx -+-=;综上所述:0b <时,()f x 有惟一最小值点1122bx -+-=;102b <<时,()f x 有一个极大值点1122b x ---=和一个极小值点112b x x -+-=;12b ≥时,()f x 无极值点.(Ⅲ)当1b =-时,函数2()ln(1)f x x x =-+, 令函数222()()ln(1)h x x f x x x x =-=-++,则22213(1)()3211x x h x x x x x +-'=-+=++. ∴当[)0x ∈+∞,时,()0f x '>,所以函数()h x 在[)0+∞,上单调递增,又(0)0h =.(0)x ∴∈+∞,时,恒有()(0)0h x h >=,即23ln(1)x x x >-+恒成立.故当(0)x ∈+∞,时,有23ln(1)x x x +>-. 对任意正整数n 取1(0)x n =∈+∞,,则有23111ln 1n n n⎛⎫+>- ⎪⎝⎭. 所以结论成立.。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(上海.文)含答案.docx
1CCB1B1AA2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.方程9131=-x 的解是 . 2.函数11)(-=x x f 的反函数=-)(1x f .3.直线014=-+y x 的倾斜角=θ . 4.函数πsec cos 2y x x ⎛⎫=+⎪⎝⎭g 的最小正周期=T . 5.以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .6.若向量a b r r ,的夹角为ο60,1==b a ,则()a ab -=r r r g . 7.如图,在直三棱柱111C B A ABC -中,ο90=∠ACB , 21=AA ,1==BC AC ,则异面直线B A 1与AC 所成角的 大小是 (结果用反三角函数值表示).8.某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工 序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C , 完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 . 9.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). 10.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 11.如图,A B ,是直线l 上的两点,且2=AB A B ,点,C 是这两个圆的公共点,则圆弧AC ,CB 线段AB 围成图形面积S 的取值范围是 .二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 12.已知a b ∈R ,,且i 3,i 2++b a (i 是虚数单位)是一个实系数一元二次方程的两个根,那么a b ,的值分别是( )A.32a b =-=, B.32a b ==-, C.32a b =-=-, D.32a b ==,13.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x14.数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( ) A.等于0 B.等于1 C.等于0或1D.不存在15.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( ) A.若1)1(<f 成立,则100)10(<f 成立 B.若4)2(<f 成立,则(1)1f ≥成立C.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 D.若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)在正四棱锥ABCD P -中,2=PA ,直线PA 与平面ABCD 所成的角为ο60,求正四棱锥ABCD P -的体积V .17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S . 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%. 以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)当2=a 时,解不等式12)1()(->--x x f x f ; (2)讨论函数)(x f 的奇偶性,并说明理由.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123ma a a a L ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m =L ,,,),我们称其为“对称数列”. 例如,数列12521,,,,与数列842248,,,,,都是“对称数列”. (1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中252649c c c L ,,,是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d L ,,,是首项为2,公差为3的等1差数列.求{}n d 前n 项的和n S (12100)n =L ,,,.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分9分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,设点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 是“果圆” 与x ,y轴的交点,M 是线段21A A 的中点.(1)若012F F F △是边长为1的等边三角形,求该 “果圆”的方程;(2)设P 是“果圆”的半椭圆12222=+cx b y(0)x ≤上任意一点.求证:当PM 取得最小值时,P 在点12B B ,或1A 处;(3)若P 是“果圆”上任意一点,求PM 取得最小值时点P 的横坐标.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)答案要点一、填空题(第1题至第11题) 1. 1-=x 2. )0(11≠+x x3. 4arctan π- 4. π 5. x y 122= 6.217. 66arccos8. 39. 3.010. ② ④11. π022⎛⎤- ⎥⎝⎦,二、选择题(第12题至第15题)16.解:作⊥PO 平面ABCD ,垂足为O .连接AO ,O 是 正方形ABCD 的中心,PAO ∠是直线PA 与平面 ABCD 所成的角.PAO ∠=ο60,2=PA .∴ 3=PO .1=AO ,2=AB ,11233ABCD V PO S ∴===g17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=g .18.解:(1) 由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 %36,%38,%40,%42. 则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥. 解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61.19.解: (1)1212)1(222->----+x x x x x , 0122>--x x ,0)1(<-x x . ∴ 原不等式的解为10<<x . (2)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞U ,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.20.解:(1)设数列{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)4921c c c S +++=Λ25492625)(2c c c c -+++=Λ ()122212242-++++=Λ()3211222625-=--==67108861.(3)51100223(501)149d d ==+⨯-=,.由题意得 1250d d d L ,,,是首项为149,公差为3-的等差数列. 当50n ≤时,n n d d d S +++=Λ21 n n n n n 230123)3(2)1(1492+-=--+=. 当51100n ≤≤时,n n d d d S +++=Λ21()n d d d S ++++=Λ525150 (50)(51)37752(50)32n n n --=+-+⨯g75002299232+-=n n . 综上所述,22330115022329975005110022n n n n S n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩,≤≤,,≤≤.21.解:(1)Θ((012(0)00F c F F ,,,,,021211F F b F F ∴====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.(2)设()P x y ,,则2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222()1()04b a c x a c x b c x c ⎛⎫-=---++- ⎪⎝⎭,≤≤, 0122<-cb Θ,∴ 2||PM 的最小值只能在0=x 或c x -=处取到.即当PM 取得最小值时,P 在点12B B ,或1A 处.(3)||||21MA M A =Θ,且1B 和2B 同时位于“果圆”的半椭圆22221(0)x y x a b +=≥和半椭圆22221(0)y x x b c +=≤上,所以,由(2)知,只需研究P 位于“果圆”的半椭圆22221(0)x y x a b +=≥上的情形即可. 2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222222224)(4)(2)(c c a a c a b c c a a x a c ---++⎥⎦⎤⎢⎣⎡--=. 当22()2a a c x a c -=≤,即2a c ≤时,2||PM 的最小值在222)(c c a a x -=时取到, 此时P 的横坐标是222)(c c a a -.当a cc a a x >-=222)(,即c a 2>时,由于2||PM 在a x <时是递减的,2||PM 的最小值在a x =时取到,此时P 的横坐标是a .综上所述,若2a c ≤,当||PM 取得最小值时,点P 的横坐标是222)(c c a a -;若c a 2>,当||PM 取得最小值时,点P 的横坐标是a 或c -.。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(山东.文)含答案.docx
高中数学学习材料马鸣风萧萧*整理制作2007年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项.1.复数43i1+2i+的实部是( ) A .2- B .2C .3D .42.已知集合11{11}|242x M N x x +⎧⎫=-=<<∈⎨⎬⎩⎭Z ,,,,则M N =( )A .{11}-,B .{0}C .{1}-D .{10}-, 3.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④ 4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位5.已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )①正方形②圆锥 ③三棱台 ④正四棱锥A .1B .2C .2D .46.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x = B .()sin f x x =C .2()log f x x =D .()tan f x x =7.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,8.某班50名学生在一次百米测试中,成绩全部介 于13秒与19秒之间,将测试结果按如下方式分成六组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于17秒 的学生人数占全班人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方 图中可以分析出x 和y 分别为( ) A .0.935, B .0.945,C .0.135,D .0.145,9.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB .212pC .136p D .1336p10.阅读右边的程序框,若输入的n 是100,则输出的变量S 和T 的值依次是( ) A .2550,2500 B .2550,2550 C .2500,2500 D .2500,255011.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,0 13 14 15 16 17 18 19秒频率0.020.04 0.060.18 0.34 0.36开始输入n00S T ==,2?x <1n n =-T T n=+结束输出S ,TS S n=+否是则0x 所在的区间是( ) A .(01),B .(12),C .(23),D .(34),12.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n+=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分,答案须填在题中横线上.13.设函数1()f x =21323()()x f x x f x x -==,,,则123(((2007)))f f f = .14.函数1(01)xy a a a -=>≠,的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n+的最小值为 . 15.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 . 16.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .三、解答题:本大题共5小题,共74分.解答写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角A B C ,,的对边分别为tan 37a b c C =,,,. (1)求cos C ; (2)若52CB CA =,且9a b +=,求c . 18.(本小题满分12分)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .19.(本小题满分12分) 本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元? 20.(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC AB DC ⊥,∥. (1)求证:11D C AC ⊥;(2)设E 是DC 上一点,试确定E 的位置,使1D E ∥平面1A BD ,并说明理由.21.(本小题满分12分) 设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数()f x 没有极值点;当0ab <时,函数()f x 有且只有一个极值点,并求出极值. 22.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.2007年普通高等学校招生全国统一考试(山东文卷)答案一、选择题 1.B 2.C 3.D 4.A 5.C 6.B 7.C 8.A 9.B10.A11.B12.D二、填空题 13.1200714.1 15.5m -≤ 16.22(2)(2)2x y -+-=三、解答题 17.解:(1)sin tan 3737cos CC C=∴=,又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角.1cos 8C ∴=.(2)52CB CA =,5cos 2ab C ∴=,20ab ∴=. 又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.18.解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=, 即22520q q -+=, 解得12122q q ==,. 由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 19.解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥目标函数为30002000z x y =+.二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥作出二元一次不等式组所表示的平面区域,即可行域. 如图:作直线:300020000l x y +=, 即320x y +=.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.∴点M 的坐标为(100200),.max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.0 100 200 300100200 300 400500yxlM20.(1)证明:在直四棱柱1111ABCD A B C D -中, 连结1C D ,1DC DD =,∴四边形11DCC D 是正方形.11DC D C ∴⊥.又AD DC ⊥,11AD DD DC DD D =⊥,⊥,AD ∴⊥平面11DCC D ,1D C ⊂平面11DCC D ,1AD D C ∴⊥.1AD DC ⊂,平面1ADC ,且AD DC D =⊥,1D C ∴⊥平面1ADC ,又1AC ⊂平面1ADC ,1D C AC ∴1⊥.(2)连结1AD ,连结AE , 设11AD A D M =,BD AE N =,连结MN ,平面1AD E平面1A BD MN =,要使1D E ∥平面1A BD , 须使1MN D E ∥, 又M 是1AD 的中点.N ∴是AE 的中点.又易知ABN EDN △≌△, AB DE ∴=.即E 是DC 的中点.BCDA1A1D1C1BB CD A1A1D1C1BME综上所述,当E 是DC 的中点时,可使1D E ∥平面1A BD .21.证明:因为2()ln 0f x ax b x ab =+≠,,所以()f x 的定义域为(0)+∞,.()f x '222b ax bax x x+=+=. 当0ab >时,如果00()0()a b f x f x '>>>,,,在(0)+∞,上单调递增;如果00()0()a b f x f x '<<<,,,在(0)+∞,上单调递减.所以当0ab >,函数()f x 没有极值点.当0ab <时,222()b b a x x a a f x x⎛⎫⎛⎫+--- ⎪⎪⎝⎭⎝⎭'=令()0f x '=,将1(0)2b x a =--∉+∞,(舍去),2(0)2b x a=-+∞,, 当00a b ><,时,()()f x f x ',随x 的变化情况如下表:x02b a ⎛⎫- ⎪ ⎪⎝⎭, 2ba- 2ba ⎛⎫-+∞ ⎪ ⎪⎝⎭,()f x ' -0 +()f x极小值从上表可看出,函数()f x 有且只有一个极小值点,极小值为1ln 222b b b f a a ⎛⎫⎡⎤⎛⎫-=--- ⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎝⎭.当00a b <>,时,()()f x f x ',随x 的变化情况如下表:x02b a ⎛⎫- ⎪ ⎪⎝⎭, 2ba- 2ba ⎛⎫-+∞ ⎪ ⎪⎝⎭,()f x ' -0 +()f x极大值从上表可看出,函数()f x 有且只有一个极大值点,极大值为1ln 222b b b f a a ⎛⎫⎡⎤⎛⎫-=--- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭. 综上所述,当0ab >时,函数()f x 没有极值点; 当0ab <时,若00a b ><,时,函数()f x 有且只有一个极小值点,极小值为1ln 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.若00a b <>,时,函数()f x 有且只有一个极大值点,极大值为1ln 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦. 22.解:(1)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:31a c a c +=-=,,222213a cb ac ==∴=-=,,∴椭圆的标准方程为22143x y +=.(2)设1122()()A x y B x y ,,,.联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得 222(34)84(3)0k x mkx m +++-=,则22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+.因为以AB 为直径的圆过椭圆的右顶点(20)D ,,1AD BD k k ∴=-,即1212122y y x x =---.1212122()40y y x x x x ∴+-++=.2222223(4)4(3)1540343434m k m mk k k k--∴+++=+++. 2271640m mk k ∴++=.解得:12227k m k m =-=-,,且均满足22340k m +->.当12m k =-时,l 的方程(2)y k x =-,直线过点(20),,与已知矛盾;当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.。
苏教版高中数学必修五03答案卷
高中数学学习材料金戈铁骑整理制作江苏省苏州实验中学2010-2011学年度下学期期中测试高一数学参考解答一、填空题(本大题共14小题,每小题5分,共70分. 请把答案填写在答题卷的相应位置.) 1. {x|1≤x ≤4} 2. 10 2 3. 34. 2n -1 5. 20114023 6. 3 7. a<1 8. 129 9. 甲 10. -10 11. [3,9)12. k ≥33或k<0 13. 3 14. ①②③ 得分评卷人二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤) 得分 评卷人15.(本题满分14分)解:(Ⅰ)原不等式即为 0)4)(1(452≤--=+-x x x x ,所以41≤≤x ---------------------------4分 所以不等式的解集}41|{≤≤=x x A -------------------------------------------------------6分 (Ⅱ)不等式等价于0)2)((≤--x a x ------------------------------------------------------7分 若2<a ,则]2,[a M =,要A M ⊆,只需21<≤a -----------------------------------------9分 若2>a ,则],2[a M =,要A M ⊆,只需42≤<a ---------------------------------------11分 若2=a ,则}2{=M ,符合A M ⊆ ----------------------------------------13分 综上所述,a 的取值范围为]4,1[. ----------------------------------14分说明:也可用根的分布解决问题得分评卷人 16.(本题满分14分) 解:(Ⅰ)由已知,得816317a a a a +=+= -------------------------1分又8181,38a a a a <=,∴12a =-,819a =,∴{}n a 的公差d=3 -----3分 ∴a n =a 1+(n -1)d=-2+3(n -1)=3n -5. ---------------------------6分 (Ⅱ)由(Ⅰ),得a 1=-2,a 2=1,a 3=4.依题意可得:数列{b n }的前三项为b 1=1,b 2=-2,b 3=4或b 1==4,b 2=-2,b 3=1 --------------8分 (i )当等比数列{b n }的前三项为b 1=1,b 2=-2,b 3=4时,则q=-2 .1(1)1[1(2)]1[1(2)]11(2)3n n n n b q S q -⋅--∴===-----. --------------------------------------11分 (ii )当第比数列{b n }的前三项为b 1=4,b 2=-2,b 3=1时,则21-=q . ])21(1[38)21(1])21(1[41)1(1n n n n q q b S --=----=--=∴ ------------------------------14分说明:第(Ⅱ)问只做一种情况给4分.得分评卷人 17.(本题满分15分) 解:(Ⅰ)在△ABC 中,由sin B +sin C =2sin A 及正弦定理得b +c =2a …………① -----------------------------------------------3分又周长a +b +c =2+1 …………②由①②联立解得a =1,即BC =1 ------------------------------------------------6分(Ⅱ)△ABC 的面积S =12bcsinA ,即12bcsinA =16sinA ,所以bc =13----------------------8分 又结合(Ⅰ)知,b +c =2+1-a = 2∴在△ABC 中由余弦定理,得cos A =b 2+c 2-a 22bc------------------------------------------------10分 =(b +c )2-2bc -a 22bc =(2)2-2×13-12×13=12 ----------------------------------------12分 又△ABC 的内角A ∈(0,π),所以A =π3----------------------------------------13分 所以△ABC 的面积S =16sinA =16×sin π3=312-------------------------------------------------15分得分评卷人 18.(本题满分15分) 解:(1)当*,800N x x ∈<<时,2504031250103150)(22-+-=---=x x x x x x L -------------------------------------------3分 当80≥x ,*N x ∈时,)10000(12002501450100005150)(x x x x x x L +-=-+--=---------6分 *),80(*),800()10000(12002504031)(2N x x N x x x x x x x L ∈≥∈<<⎪⎩⎪⎨⎧+--+-=∴ -------------------------------------------------7分 (2)当*,800N x x ∈<<时,950)60(31)(2+--=x x L ∴当60=x 时,)(x L 取得最大值950)60(=L ------------------------------------------------10分 当80≥x ,*N x ∈时,,100020012001000021200)10000(1200)(=-=⋅-≤+-=x x x x x L ------------------12分 ∴当且仅当xx 10000=,即100=x 时,)(x L 取得最大值9501000)100(>=L . -------14分 答:当100=x 时)(x L 取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. ----------------------------------------------------------------------------------------15分得分评卷人 19.(本题满分16分) 解:(Ⅰ)由(x,y)∈M 知,x,y 均为正数,从而t=xy 4)2(22k y x =+≤, --- 2分 当且仅当2k y x ==时取等号,所以xy 取值范围为]4,0(2k -------------------------------------------4分 (Ⅱ)令t=xy ,则由(1)知t ∈]4,0(2k ,从而 xy xyxy y x xy xy x y y x xy y y x x +-+-=++-=--2)(1)(1)1)(1(2 2121)(22+--=+-+-=tk t xy y x xy --------------------------------6分 令)(t f 212+--=t k t ,t ∈]4,0(2k 01,12≥-∴≥k k ,则易证)(t f 212+--=t k t ,t ∈]4,0(2k 为增函数, ------------------------8分 2222222)22(4242414)4()(k k kk k k k k f t f -=+-=+--=≤∴即2)22()1)(1(kk y y x x -≤-- ---------------------------------------------------------------------------10分 (Ⅲ)由(2)知,即求)4()(2k f t f ≥对∈t ]4,0(2k 恒成立的k 的范围 ---------------------------------11分 ∵10<<k ,则012>-k∴则由函数单调性的定义易证)(t f 212+--=t k t ]k -1(02122,在+-+=tk t 上递减,在),k -1[2+∞上递增, ------------------------------------------------------------------------------------------------------------13分要使函数)(t f 在]4,0(2k 上恒有)4()(2k f t f ≥,则必须2214k k -≤, ------------------------------14分 结合10<<k 解得,2520-≤<k --------------------------------------------------------------------16分得分评卷人 20.(本题满分16分) 解:(Ⅰ)当2n ≥时,)1(1)1(111-----=-=--n n n n n a q q a q q S S a ,整理得1-=n n qa a ------------2分 又由111(1)1q S a a q ==--,得1a q =----------------------------------------------------------------------3分 结合q>0知,数列{}n a 是首项为q 公比为q 的等比数列, ∴ 1n n n a q q q -=⋅=-------------------5分(Ⅱ) 结合(Ⅰ)知,当q=2时,n n a 2=,所以n n n c 32+=假设存在实数λ,使数列}{1n n c c λ++是等比数列,则对任意n ≥2有(c n +1+λc n )2=(c n +2+λc n +1)(c n +λc n -1),将c n =2n +3n 代入上式,得:[2n +1+3n +1+λ(2n +3n )]2=[2n +2+3n +2+λ(2n +1+3n +1)]·[2n +3n +λ(2n -1+3n -1)],即 [(2+λ)2n +(3+λ)3n ]2=[(2+λ)2n +1+(3+λ)3n +1][(2+λ)2n -1+(3+λ)3n -1],整理得61(2+λ)(3+λ)·2n ·3n =0,解得λ=-2或λ=-3. --------------------------------------10分 故存在实数实数λ=-2或-3,使使数列}{1n n c c λ++是等比数列. ----------------------------11分 (Ⅲ)数列}{n c 不可能为等比数列. -------------------------------------------------------12分理由如下:设等比数列{b n}的公比分别为p,则由题设知p≠q,则c n=q n+b1p n-1为证{c n}不是等比数列只需证c22≠c1·c3.事实上,c22=(q2+b1p)2=q4+2q2b1p+b12p2,...........①c1·c3=(q+b1)(q3+b1p2)=q4+b12p2+b1q(p2+q2),….②②-①得c1c3-c22=b1q(p2+q2-2pq)由于p≠q时,p2+q2>2pq,又q及等比数列的首项b1均不为零,所以c1c3-c22≠0,即c22≠c1·c3. 故{c n}不是等比数列. ------------------------------------16分。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(北京.理)含答案.docx
2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =5.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a -0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( )A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥7.如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+ .10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.11.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若AB =∅,则实数a 的取值范围是 .13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 . 14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式. 16.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分)矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点x1 2 3 ()f x 131x1 23 ()g x321 OCADB(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. 18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域; (II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k =,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;(II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.1231020 30 40 50 参加人数 活动次数4rC DAB2r2007年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.D 4.A5.B6.D7.A 8.D二、填空题(本大题共6小题,每小题5分,共30分) 9.i - 10.211n - 311.10212.(23),13.72514.12三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,.当1n =时,上式也成立,所以22(12)n a n n n =-+=,,. 16.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, 又二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,225CE CO OE ∴=+=. 又132DE AO ==.∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3. (III )由(I )知,CO ⊥平面AOB ,CDO ∴∠是CD 与平面AOB 所成的角,且2tan OC CDO OD OD==. 当OD 最小时,CDO ∠最大, 这时,OD AB ⊥,垂足为D ,3OA OBOD AB==,23tan 3CDO =, CD ∴与平面AOB 所成角的最大值为23arctan3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,,(0023)OA ∴=,,,(213)CD =-,,,ADzOCADBEcos OA CD OA CD OA CD∴<>=,6642322==. ∴异面直线AO 与CD 所成角的大小为6arccos4. (III )同解法一 17.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心. 又22(20)(02)22AM =-++=.从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切, 所以22PM PN =+, 即22PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为22的双曲线的左支. 因为实半轴长2a =,半焦距2c =.所以虚半轴长222b c a =-=.从而动圆P 的圆心的轨迹方程为221(2)22x y x -=-≤.18.(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40. (I )该合唱团学生参加活动的人均次数为1102503402302.3100100⨯+⨯+⨯==.(II )从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为222105040021004199C C C P C ++==. (III )从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知(1)()()P P A P B ξ==+111110505040241001005099C C C C C C =+=; (2)()P P C ξ==1110402100899C C C ==; ξ的分布列:ξ0 1 2P41995099 899ξ的数学期望:4150820129999993E ξ=⨯+⨯+⨯=. 19.(共13分)解:(I )依题意,以AB 的中点O 为原点建立直角坐标系O xy -(如图),则点C 的横坐标为x .点C 的纵坐标y 满足方程22221(0)4x y y r r+=≥,解得222(0)y r x x r =-<<221(22)22S x r r x =+-222()x r r x =+-,CDA B Oxy其定义域为{}0x x r <<.(II )记222()4()()0f x x r r x x r =+-<<,, 则2()8()(2)f x x r r x '=+-. 令()0f x '=,得12x r =. 因为当02r x <<时,()0f x '>;当2rx r <<时,()0f x '<,所以12f r ⎛⎫⎪⎝⎭是()f x 的最大值. 因此,当12x r =时,S 也取得最大值,最大值为213322f r r ⎛⎫= ⎪⎝⎭.即梯形面积S 的最大值为2332r . 20.(共13分)(I )解:集合{}0123,,,不具有性质P .集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,,{}(21)23T =-(),,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个.因为0A ∉,所以()(12)i i a a T i k ∉=,,,,; 又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12j i a a T i j k ∉=,,,,,.从而,集合T 中元素的个数最多为21(1)()22k k k k --=, 即(1)2k k n -≤. (III )解:m n =,证明如下:(1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,. 如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤, 由(1)(2)可知,m n =.。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(天津.理)含答案.docx
高中数学学习材料马鸣风萧萧*整理制作2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分.参考公式:·如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =·如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =··一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,32i 1i=-( ) A.1i +B. 1i -+C.1i -D.1i --2.设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A.4B.11C.12D.143.“2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( ) A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件4.设双曲线22221(00)x y a b a b-=>>,的离心率为3,且它的一条准线与抛物线24y x=的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= 5.函数2log (42)(0)y x x =++>的反函数是( ) A.142(2)xx y x +=-> B.142(1)x x y x +=-> C.242(2)x x y x +=->D.242(1)xx y x +=->6.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A.若a b ,与α所成的角相等,则a b ∥ B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥ D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[12],上是减函数,则()f x ( )A.在区间[21]--,上是增函数,在区间[34],上是增函数 B.在区间[21]--,上是增函数,在区间[34],上是减函数 C.在区间[21]--,上是减函数,在区间[34],上是增函数D.在区间[21]--,上是减函数,在区间[34],上是减函数8.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2B.4C.6D.89.设a b c ,,均为正数,且122log a a =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<10.设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,中央电视台mλ的取值范围是( ) A.B.[48],C.D.2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答案前将密封线内的项目填写清楚.2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.11.若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中2x 的系数为52,则a = (用数字作答). 12.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .13.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n na n S →∞-= .14.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则直线AB 的方程是 .15.如图,在ABC △中,12021BAC AB AC ∠===,,°,ABDCD 是边BC 上一点,2DC BD =,则ADBC =· . 16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.18.(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.(Ⅰ)证明CD AE ⊥;(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C --的大小.20.(本小题满分12分)已知函数2221()()1ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;ABCDPE(Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值. 21.(本小题满分14分)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立. 22.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明2a b =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.D 7.B 8.B 9.A 10.A二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.2 12.14π 13.3 14.30x y +=15.83-16.390三、解答题17.本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:π()2cos (sin cos )1sin 2cos 22sin 24f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()2sin 24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫=⎪⎝⎭,3π28f ⎛⎫= ⎪⎝⎭,3π3πππ2sin 2cos 14244f ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭, 故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最大值为2,最小值为1-. 解法二:作函数π()2sin 24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:间π3π84⎡⎤⎢⎥⎣⎦,由图象得函数()f x 在区上的最大值为2,最小值为3π14f ⎛⎫=-⎪⎝⎭. 18.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件A B ,相互独立,且23241()2C P A C ==,24262()5C P B C ==.故取出的4个球均为黑球的概率为121()()()255P A B P A P B ==⨯=··. (Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C D ,互斥,且21132422464()15C C C P C C C ==··,123422461()5C C PD C C ==·. 故取出的4个球中恰有1个红球的概率为417()()()15515P C D P C P D +=+=+=. (Ⅲ)解:ξ可能的取值为0123,,,.由(Ⅰ),(Ⅱ)得1(0)5P ξ==,7(1)15P ξ==, 13224611(3)30C P C C ξ===·.从而3(2)1(0)(1)(3)10P P P P ξξξξ==-=-=-==.ξ的分布列为ξ123P15 715 310130ξ的数学期望17317012351510306E ξ=⨯+⨯+⨯+⨯=.yxO22-π8 3π85π83π47π89π819.本小题考查直线与直线垂直、直线与平面垂直、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故PA CD ⊥.AC CD PA AC A ⊥=,∵,CD ⊥∴平面PAC .而AE ⊂平面PAC ,CD AE ⊥∴.(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =. E ∵是PC 的中点,AE PC ⊥∴.由(Ⅰ)知,AE CD ⊥,且PC CD C =,所以AE ⊥平面PCD .而PD ⊂平面PCD ,AE PD ⊥∴.PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴. 又AB AE A =∵,综上得PD ⊥平面ABE .(Ⅲ)解法一:过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥. 因此AME ∠是二面角A PD C --的平面角. 由已知,得30CAD ∠=°.设AC a =, 可得23212332PA a AD a PD a AE a ====,,,. 在ADP Rt △中,AM PD ⊥∵,AM PD PA AD =∴··,则232737213a aPA AD AM a PDa ===··. 在AEM Rt △中,14sin 4AE AME AM ==. 所以二面角A PD C --的大小是14arcsin4. 解法二:由题设PA ⊥底面ABCD ,PA ⊂平面PAD ,则平面PAD ⊥平面ACD ,交线为AD .过点C 作CF AD ⊥,垂足为F ,故CF ⊥平面PAD .过点F 作FM PD ⊥,垂足为M ,连结CM ,故CM PD ⊥.因此CMP ∠是二面角A PD C --的平面角. 由已知,可得30CAD ∠=°,设AC a =, 可得2321133326PA a AD a PD a CF a FD a =====,,,,. FMD PAD ∵△∽△,FM FDPA PD=∴. AD PEFM ABCDPEM于是,37614213a aFD PA FM a PD a ===··. 在CMF Rt △中,12tan 7714aCFCMF FM a ===.所以二面角A PD C --的大小是arctan 7.20.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分. (Ⅰ)解:当1a =时,22()1x f x x =+,4(2)5f =, 又2222222(1)2222()(1)(1)x x x x f x x x +--'==++·,6(2)25f '=-. 所以,曲线()y f x =在点(2(2))f ,处的切线方程为46(2)525y x -=--, 即62320x y +-=.(Ⅱ)解:2222222(1)2(21)2()(1)()(1)(1)a x x ax a x a ax f x x x +--+--+'==++. 由于0a ≠,以下分两种情况讨论. (1)当0a >时,令()0f x '=,得到11x a=-,2x a =.当x 变化时,()()f x f x ',的变化情况如下表:x1a ⎛⎫-- ⎪⎝⎭,∞1a1a a ⎛⎫- ⎪⎝⎭, a ()a +,∞()f x ' - 0 +0 -()f x+极小值极大值所以()f x 在区间1a ⎛⎫-- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数.函数()f x 在11x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭, 函数()f x 在21x a=处取得极大值()f a ,且()1f a =.(2)当0a <时,令()0f x '=,得到121x a x a==-,,当x 变化时,()()f x f x ',的变化情况如下表:x()a -,∞a1a a ⎛⎫- ⎪⎝⎭,1a- 1a ⎛⎫- ⎪⎝⎭,+∞ ()f x ' +0 -0 +()f x极大值极小值所以()f x 在区间()a -,∞,1a ⎛⎫- ⎪⎝⎭,+∞内为增函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为减函数. 函数()f x 在1x a =处取得极大值()f a ,且()1f a =. 函数()f x 在21x a=-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭. 21.本小题以数列的递推关系式为载体,主要考查等比数列的前n 项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)解法一:22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+, 3343444(22)(2)232a λλλλλ=+++-=+.由此可猜想出数列{}n a 的通项公式为(1)2n nn a n λ=-+.以下用数学归纳法证明.(1)当1n =时,12a =,等式成立.(2)假设当n k =时等式成立,即(1)2k kk a k λ=-+,那么111(2)2k k k a a λλλ++=++-11(1)222k k k k kk λλλλλ++=-+++-11[(1)1]2k k k λ++=+-+.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n nn a n λ=-+对任何n *∈N 都成立.解法二:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, 所以2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n nn a n λ=-+. (Ⅱ)解:设234123(2)(1)n n n T n n λλλλλ-=++++-+-, ①345123(2)(1)n n n T n n λλλλλλ+=++++-+- ②当1λ≠时,①式减去②式, 得212311(1)(1)(1)1n n n n n T n n λλλλλλλλλ+++--=+++--=---,21121222(1)(1)(1)1(1)n n n n n n n n T λλλλλλλλλ++++----+=-=---. 这时数列{}n a 的前n 项和21212(1)22(1)n n n n n n S λλλλ+++--+=+--. 当1λ=时,(1)2n n n T -=.这时数列{}n a 的前n 项和1(1)222n n n n S +-=+-. (Ⅲ)证明:通过分析,推测数列1n n a a +⎧⎫⎨⎬⎩⎭的第一项21a a 最大,下面证明: 21214,22n n a a n a a λ++<=≥. ③ 由0λ>知0n a >,要使③式成立,只要212(4)(2)n n a a n λ+<+≥, 因为222(4)(4)(1)(1)2n nn a n λλλλ+=+-++124(1)424(1)2n n n n n n λλλ++>-+⨯=-+·1212222n n n n a n λ++++=,≥≥.所以③式成立. 因此,存在1k =,使得1121n k n k a a aa a a ++=≤对任意n *∈N 均成立. 22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即222221a b y a b-+=. 解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,.直线1AF 的方程为2()2b y x c ac=+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF ,即242234c b cb a c=+,将222c a b =-代入上式并化简得222a b =,即2a b =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,.过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故211BO F AOF F A=. 由椭圆定义得122AF AF a +=,又113BO OF =, 所以2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即2a b =. (Ⅱ)解法一:设点D 的坐标为00()x y ,.当00y ≠时,由12OD Q Q ⊥知,直线12Q Q 的斜率为0x y -,所以直线12Q Q 的方程为0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,200x m y y =+.点111222()()Q x y Q x y ,,,的坐标满足方程组22222y kx m x y b =+⎧⎨+=⎩,. 将①式代入②式,得2222()2x kx m b ++=, 整理得2222(12)4220k x kmx m b +++-=,AO1F 2FBxy于是122412kmx x k +=-+,21222212m b x x k -=+.由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++2222222222242121212m b km m b k k km m k k k---=++=+++··. 由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得22222322012m b b k k --=+, 22232(1)m b k =+.将200000x x k m y y y =-=+,代入上式,整理得2220023x y b +=.当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组022222x x x y b =⎧⎨+=⎩,.所以120x x x ==,221222b x y -=±,. 由12OQ OQ ⊥知12120x x y y +=,即2220202b x x --=, 解得22023x b =. 这时,点D 的坐标仍满足2220023x y b +=. 综上,点D 的轨迹方程为 22223x y b +=.解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD Q Q ⊥,垂足为D ,可知直线12Q Q 的方程为220000x x y y x y +=+.记2200m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组0022222x x y y m x y b +=⎧⎪⎨+=⎪⎩, ①. ② 由①式得00y y m x x =-. ③由②式得22222200022y x y y y b +=. ④ 将③式代入④式得222220002()2y x m x x y b +-=. 整理得2222220000(2)4220x y x mx x m b y +-+-=,于是222122200222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥由②式得22222200022x x x y x b +=. ⑦ 将⑥式代入⑦式得22222000()22m y y x y x b -+=, 整理得2222220000(2)220x y y my y m b x +-+-=,于是22212220022m b x y y x y -=+. ⑧ 由12OQ OQ ⊥知12120x x y y +=.将⑤式和⑧式代入得2222220022220000222022m b y m b x x y x y --+=++, 22220032()0m b x y -+=.将2200m x y =+代入上式,得2220023x y b +=. 所以,点D 的轨迹方程为22223x y b +=.。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(安徽.理)含答案.docx
高中数学学习材料马鸣风萧萧*整理制作2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致. 2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,反函数是其自身的函数为( )A .2()[0)f x x x =∈+∞,,B .3()()f x x x =∈-∞+∞,,C .()e ()xf x x =∈-∞+∞,,D .1()(0)f x x x=∈+∞,, 2.设l m n ,,均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意x ∈R ,不等式x ax ≥恒成立,则实数a 的取值范围是( ) A .1a <- B .1a ≤C .1a <D .1a ≥4.若a 为实数,2i2i 1+2ia +=-,则a 等于( )A .2B .2-C .22D .22-5.若22{228}{log 1}xA xB x x -=∈<=∈>Z R≤,,则()A B R ð的元素个数为( ) A .0B .1C .2D .36.函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C , ①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0 B .1 C .2D .37.如果点P 在平面区域22021020x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A .51-B .415- C .221- D .21-8.半径为1的球面上的四点A B C D ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( ) A .3arccos 3⎛⎫-⎪ ⎪⎝⎭B .6arccos 3⎛⎫-⎪ ⎪⎝⎭C .1arccos 3⎛⎫- ⎪⎝⎭D .1arccos 4⎛⎫-⎪⎝⎭Ay9.如图,1F 和2F 分别是双曲线22221(00)x y a b a b-=>>,的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为( ) A .3B .5C .52D .13+10.以()x ∅表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于( )A .()()μσμσ∅+-∅-B .(1)(1)∅-∅-C .1μσ-⎛⎫∅⎪⎝⎭D .2()μσ∅+11.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .52007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.12.若312nx x ⎛⎫+ ⎪⎝⎭的展开式中含有常数项,则最小的正整数n 等于 .13.在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).第9题图y1Q 2Q14.如图,抛物线21y x =-+与x 轴的正半轴交于点A , 将线段OA 的n 等分点从左至右依次记为121n P P P -,,,, 过这些分点分别作x 轴的垂线,与抛物线的交点依次为121n Q Q Q -,,,,从而得到1n -个直角三角形11Q OP △, 212121n n n Q PP Q P P ---△,,△.当n →∞时,这些三角形 的面积之和的极限为 .15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且a b m =.求22cos sin 2()cos sin ααβαα++-的值. 17.(本小题满分14分)如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为 2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面 1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示). 18.(本小题满分14分)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.ABCD1A1B1C 1D第14题图第17题图19.(本小题满分12分)如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C .(Ⅰ)求点A 的横坐标a 与点C 的横坐标c 的关系式(Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 20.(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子,6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇.....的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程); (Ⅱ)求数学期望E ξ; (Ⅲ)求概率()P E ξξ≥.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+,.以n T 表示到第n 年末所累计的储备金总额.x y B A O a 2a + C D2:2G y x =第19题图(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分. 1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.713.111244++a b c 14.1315.①③④⑤三、解答题16.本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分. 解:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭ab ··. 故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以 222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·.17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分.解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11AC 平行,DB 与11D B 平行,于是11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-=,,,,··, (220)(220)0DB AC =-=,,,,··,1DD AC ⊥∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+=n ·,111120BB x y z =--+=n ·.于是10y =,取11z =,则12x =,(201)=,,n .ABCD1A 1B 1C 1D xyz设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+=m ·,12220CC y z =-+=m ·.于是20x =,取21z =,则22y =,(021)=,,m .1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DA DC ,的中点,连结11EF A E C F ,,,有111111A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11A C EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴. 1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),ABCD1A1B1C 1DMOEF1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面11ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角. 根据勾股定理,有111556A A C C B B ===,,. 1OM B B ⊥∵,有1123B O OB OM B B ==·,23BM =,103AM =,103CM =. 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分. (Ⅰ)解:根据求导法则有2ln 2()10x af x x x x'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22()10x F x x x x-'=-=>,, 列表如下:x(02),2 (2)+,∞ ()F x ' -0 +()F x极小值(2)F故知()F x 在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x =处取得极小值(2)22ln 22F a =-+.(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>. 于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>. 故当1x >时,恒有2ln 2ln 1x x a x >-+.19.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力.本小题满分12分.解:(Ⅰ)由题意知,(2)A a a ,. 因为OA t =,所以222a a t +=.由于0t >,故有22t a a =+. (1) 由点(0)(0)B t C c ,,,的坐标知, 直线BC 的方程为1x yc t+=. 又因点A 在直线BC 上,故有21a a c t+=, 将(1)代入上式,得21(2)a a c a a +=+, 解得22(2)c a a =+++.(Ⅱ)因为(22(2))D a a ++,,所以直线CD 的斜率为2(2)2(2)2(2)122(22(2))2(2)CD a a a k a c a a a a +++====-+-+-+++-+.所以直线CD 的斜率为定值.20.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(Ⅰ)ξ的分布列为:xyB AO a2a + C D2:2G y x =马鸣风萧萧 ξ0 1 2 3 4 5 6 P728 628 528 428 328 228 128(Ⅱ)数学期望为2(162534)228E ξ=⨯+⨯+⨯=.(Ⅲ)所求的概率为5432115()(2)2828P E P ξξξ++++===≥≥.21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥.(Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++,① 在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++ ②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n d r r a r a r=+--++-. 即1122(1)n n a r d a r d d T r n r r r++=+--. 如果记12(1)n n a r d A r r +=+,12n a r d d B n r r +=--, 则n n n T A B =+.其中{}n A 是以12(1)a r d r r++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,d r-为公差的等差数列.。
2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅱ卷)含答案
2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅱ卷)1.已知,则( ).1i z =--||z =A.0B.1 D.22.已知命题:,,命题,,则( ).:R p x ∀∈|1|1x +>:0q x ∃>3x x =A.p 和q 都是真命题 B.和q 都是真命题p ⌝C.p 和都是真命题D.和都是真命题q ⌝p ⌝q ⌝3.已知向量,满足,,且,则( ).a b ||1a = |2|2a b += (2)b a b -⊥ ||b =A. D.1124.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:)并部分整理如下表所示.kg 亩产[900,950)[950,1000)[1000,1050)[1050,1150)[1150,1200)频数612182410根据表中数据,下列结论正确的是( )A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于的稻田所占比例超过1100kg 40%C.100块稻田亩产量的极差介于到之间200kg 300kg D.100块稻田亩产量的平均值介于到之间900kg 1000kg 5.已知曲线,从C 上任意一点P 向x 轴作垂线,为垂足,则线段22:16(0)C x y y +=>PP 'P '的中点M 的轨迹方程为( ).PP 'A. B.221(0)164x y y +=>221(0)168x y y +=>C. D.221(0)164y x y +=>221(0)168y x y +=>6.设函数,,当时,曲线和2()(1)1f x a x =+-()cos 2g x x ax =+(1,1)x ∈-()y f x =恰有一个交点,则( )()y g x =a =A.-1 B. C.1 D.2127.已知正三棱台的体积为,,,则与平面ABC 所成角的正111ABC A B C -5236AB =112A B =1A A 切值为( ).A. B.1 C.2D.3128.设函数,若,则的最小值为( ).()()ln()f x x a x b =++()0f x ≥22a b +A. B. C. D.11814129.对于函数和,下列正确的有( ).()sin 2f x x =π()sin 24g x x ⎛⎫=-⎪⎝⎭A.与有相同零点B.与有相同最大值()f x ()g x ()f x ()g xC.与有相同的最小正周期D.与的图像有相同的对称轴()f x ()g x ()f x ()g x 10.拋物线的准线为l ,P 为C 上的动点,对P 作的一条切线,Q2:4C y x =22:(4)1A x y +-= 有切点,对P 作C 的垂线,垂足为B .则( ).A.l 与相切B.当P ,A ,B 三点共线时,A ||PQ =C.当时,D.满足的点A 有且仅有2个||2PB =PA AB⊥||||PA PB =11.设函数,则( ).32()231f x x ax =-+A.当时,有一个零点1a >()f x B.当时是的极大值点0a <0x =()f x C.存在a ,b 使得为曲线的对称轴x b =()y f x =D.存在a 使得点为曲线的对称中心(1,(1))f ()y f x =12.记为等差数列的前n 项和,若,,则__________.n S {}n a 347a a +=2535a a +=10S =13.已知为第一象限角,为第三象限角,,,则αβtan tan 4αβ+=tan tan 1αβ=+__________.sin()αβ+=14.在如图的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有44⨯__________种选法,在所有符合上述要求的选法中,选中方格的4个数之和的最大值是__________.15.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知.ABC △sin 2A A +=(1)求A ;(2)若,求周长.2a =sin 2C c B =ABC △16.已知函数.3()e x f x ax a =--(1)当时,求曲线在点处的切线方程;1a =()y f x =(1,(1))f (2)若有极小值,且极小值小于0,求a 的取值范围.()f x 17.如图,平面四边形ABCD 中,,,,,,点E ,F 满足,8AB =3CD =AD =90APC ∠=︒30BAD ∠=︒25AE AD =,将沿EF 对折至,使得,12AF AB = AEF △PEF △PC =(1)证明::EF PD ⊥(2)求面PCD 与PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分,若至少被投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分,该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5的概率;0.4p =0.5q =(2)假设,0p q <<(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,则该由谁参加第一阶段的比赛?(ii )为使得甲、乙,所在队的比赛成绩的数与期望最大,应该由谁参加第一阶段比赛?19.已知双曲线,点在C 上,k 为常数,,按照如下公式依22:(0)C x y m m -=>1(5,4)P 01k <<次构造点,过点作斜率为k 的直线与C 的左支点交于点,令为关于(2,3,)n P n = 1n P -1n Q -n P 1n Q -y 轴的对称点,记的坐标为.n P (),n n x y (1)若,求,;12k =2x 2y (2)证明:数列是公比为的等比数列;{}n n x y -11k k +-(3)设为的面积,证明:对任意的正整数n ,.n S 12n n n P P P ++△1n n S S +=2024年普通高等学校招生全国统一考试数学答案答案:C解析.||z =1.答案:B解析:时,,错误,和q 是真命题.1x =-|1|1x +<p ∴P ∴⌝2.答案:A解析:,(2)0b a b -⋅= 220b a b ∴-⋅= 又,,||1a = |2|4a b += 得.1||2b = 3.答案:C解析:中位数错误,标差介于之间,选C.200kg ~300kg ∴4.答案:A解析:设,将坐标代入原方程联立,得M 方程.(,)P x y 221(0)164x y y +=>5.答案:D解析:联立,,代入方程,恰好得到一个极点,()()f x g x =2(1)1cos 2a x x ax ∴+-=+2a =.2a ∴=6.答案:B解析:,.πtan 4α=tan 1α∴=7.答案:C 解析:,,,()()ln()f x x a x b =++()()()f x x a h x =+⋅(1)0g b -=,,10b a -+= 1a b ∴=-.222221(1)2212a b b b b b +=-+=-+=8.答案:BC 解析:A.令,,零点不同;()0f x =()0g x =B.,最大值相同;()f x ()g x C.,,C 正确;π()sin 22f x x Tf ===π()2g x =∴D.,对称轴显然不同,D 错误.()f x ()g x ∴9.答案:ABD解析:依次代入抛物线方程,联立求解,所以C 错,ABD 对.10.答案:D解析:依次带入质检即可后为直角三角形,,,,12AF F△12212c F F =≥=6C =22||8a AF AF =-=4a =.32c e a ==11.答案:95解析:命题意图是考察正确应用等差数列的通项公式和求和公式以及会解相关方程得,3412512573475a a a d a a a d +=+=⎧⎨+=+=⎩143a d =-⎧⎨=⎩10110931040135952S a ⨯⨯∴=+=-+=12.解析:考察三角恒等式变形tan tan tan()1tan tan αβαβαβ⋅+===--⋅222sin ()cos ()19cos ()1a αββαβ+++=⇒+=1cos()3αβ∴+=-1sin()3αβ⎛⎫+=--= ⎪⎝⎭13.答案:24;58解析:(1)41432124=⨯⨯⨯=(2)分别列出,13,14,15,16最大,.1314151658+++=14.答案:(1)π6A =(2)2ABC C =+△解析:(1)sin 2A A=2R ===2sin()2A φ+=π2A φ+=.tan φ=π6A =(2)24πsin 6aR ==sin 2sin cos C c B B=⋅,2cos B =π4B ∴=54sin π12c=⋅22ABC C a b c ∴=++=++=+△15.答案:(1)(e 3)2y x =-+(2)2e 8a >解析:(1)(1)e 1f =-当,时1a =1x =(1)e 3f '=-(e 1)(e 3)(1)y x --=--(e 3)3e e 1y x ∴=-+-+-;(e 3)2x =-+(2),2()e 3x f x ax '=-()0f x '=2e 30x ax -=2e 3x ax =,,()e 6x f x ax ''=-2e 3x ax = ()3(2)f x ax x ''=-时,2x =2e 12a =232(2)e 2e 8f a a=-⋅=-代入,得2222e 2e (2)e 8e e 1233k f =-⋅=-=(2)0f < 2e 80a ∴-<28e a >2e 8a >.2e ,8a ⎡⎫∴∈+∞⎪⎢⎣⎭16.答案:(1)EF PD⊥(2)正弦值为0解析:(1)证明:设A 的坐标为,则B 为,(0,0)(8,0)依次求出,,,E (4,0)F (1,EF = 152D ⎛ ⎝P 关于EF 的中点M 对称,34722M ⎛⎛+== ⎝⎝设,,(,)P xy 7(2x t =+⋅1y t =⋅15922C ⎛⎛=-= ⎝⎝PC ∴=将x ,y表达式代PC ==152PD x y ⎛⎫∴=-- ⎪ ⎪⎝⎭0EF PD ⋅= EF PD∴⊥建立坐标系求出各点坐标,再利用向量相乘之积为0证明垂直(2)(8,0)PC = 求出面PCD 与面PBF 的法向量,1a 2a 又1212sin 0||a a a a θ⋅==⋅ 正弦值为0.∴17.答案:(1)0.686(2)(i )乙(ii )甲18.答案:(1),23x =20y =(2)证明见解析(3)证明见解析解析:(1)设(),n n n P x y 2221n n x x a m∴-=()n n y y k x x -=-.()12n n y y x x -=--22211221n n x x y x a m⎛⎫-++ ⎪⎝⎭-=1122n y x xn yn -=-++2n nx x y =-代入得,.222()1x yn y a m+-=23x =20y =(2)()2221n n kx y kx x a m +--=22222222221n n n n n n k x kxx kx y k x y k x x a m++-+∴-=111n n x k x k++=-利用等性证明。
苏教版高中数学必修5试卷参考答案.doc
11. 45°8^3 2 ------313. 40° 14.30^217.60°专题一《正弦定理、余弦定理及其应用》综合检测、选择题二、填空题三、解答题15. a=亦 + 血,A=105°, C=30°16.略专题一《正弦定理、余弦定理及其应用》模拟试卷13 ・ 45°14. 5A /215. (V2,A /3)16. 9 17. (A /5, A /13) 1& 厉:3三、解答题19.468m 20 •等腰三角形或直角三角形21.Q = 6, b=5, c=4 22.-23. (I)sin6^-V3 cos^ + —A /3(2)2+-A /3944【选做题】方法1正确.专题二《等差数列、等比数列》综合检测、选择题二、填空题12.713. 1三、解答15.(1) a = 16. (1) a = 2n⑵ = 2x(1-.r")⑵ 到第6年这个县的养鸡业比第1年(3)第2年的规模最13. —14. 2n3三、解答题19. 60 20.略【选做题】(1)40220311023~T~16. ±1617.»(H+1) 11 丄2"18.1 22. 2996na aq(l — q") i_q (i-/(3)592814. h •/?= h 'b. h (n < 17,n e N*)12n1 217-n \7/(兀=1),17.⑴第2年养鸡场的个数为26个,全县出产鸡的总只数是31.2万只18. 3n -n-l专题二《等差数列、等比数列》模拟试卷一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CCBCACCCDABD二、填空题专题三《不等关系、一元二次不等式》综合检测、选择题题号1 2 3 4 5 6 7 8 9 10 答案DCCACDACAD二、填空题11. (-8, 8) 12. +oo| 13. -2V2 14. 1821.12 ----- n5三、解答题15. 当时解集为;当时[鯉橐扯<1}a16. 卩,19) 17.半圆直径与矩形的高的比为2 :118. [0, +8)U[-1, 0)专题三《不等关系、一元二次不等式》模拟试卷、选择题 题号1 2 3 4 5 6 7 8 9 10 11 12 答案ADCCBDBACDCB二、填空题13. (-1, 3) 14.(ci,-) a 15-1<6?<116. {—2, -1, 0, 1, 2, 3, 4, 5}17[-5V2,5^2 ] 18.a {~~二解答题19. [-1, 1]2O.(-2,l)21.(-1, 3)22. 79.94km/h23.4 2 4【选做题】(1)卜 8, ⑵ - ¥,1专题四《二元一次不等式组和简单的线性规划》综合检测一、选择题题号1 2 3 4 5 6 7 8 9 10答案DBACCBAAAc%1. 填空题11. -12.5 12. 3, 2, 1113.把ySxl 中的等号去掉,也可把6.r+3y<15中的等号去掉 14.2, 0三、 解答题15. 3 16. -17.派轮船7艘,不派飞机能完成运输任务218.安排中、乙二种柜的日产量分别为4台和8台可获最大利润272元{兀II <兀<a13.0, 114. 1三、解答题15. —1816. 1(Ov*l), a (a 〉l)0<^<1,17.j<2x,18. (0, 5)x < 1.519.2520.(1)⑵最大值为7+3a,最小值为 -1 一2a(° >专题四《二元一次不等式组和简单的线性规划》模拟试卷、选择题21. 每天安排I 级车工6人,II 级车工7人22. 甲、乙钢板各5张 23. 34专题五《基本不等式》综合检测一、选择题— 填空题1-x/2-11 12.360013・714.对22三、 解答题15y[ab16.略17.(1)1⑵7 718.存在,c =—、43专题五《基本不等式》模拟试卷113. A>B 14.215.— 16. -82三、解答题19. 72 20.当a>l时,1, ,^log。
2025届全国普通高等学校招生统一考试高三(最后冲刺)数学试卷含解析
2025届全国普通高等学校招生统一考试高三(最后冲刺)数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( ) A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈ ⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 2.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .193.执行如图所示的程序框图,输出的结果为( )A .78B .158C .3116D .15164.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .-256C .32D .-325.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( )A .3B .2C .4D .236.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( ) A .2B .3C .2D .37.已知四棱锥E ABCD -,底面ABCD 是边长为1的正方形,1ED =,平面ECD ⊥平面ABCD ,当点C 到平面ABE 的距离最大时,该四棱锥的体积为( ) A .26B .13C .23D .18.如图是函数sin()R,A 0,0,02y A x x πωφωφ⎛⎫=+∈>><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到这个函数的图象,只需将sin (R)y x x =∈的图象上的所有的点( )A .向左平移3π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 B .向左平移3π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移6π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 D .向左平移6π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 9.若双曲线222:14x y C m -=的焦距为5C 的一个焦点到一条渐近线的距离为( )A .2B .4C 19D .1910.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为3(21)-,则b c +=( ) A .5B .22C .4D .1611.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319-D .12-12.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )A .356B .328C .314D .14二、填空题:本题共4小题,每小题5分,共20分。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(四川.理)含详解.docx
2007年普通高等学校招生全国统一考试(四川卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题: (1)复数211i ii +-+的值是 (A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)2211lim 21x x x x →-=-- (A )0 (B)1 (C)21 (D)32 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1 (D )异面直线AD 与CB 1角为60° (5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A )364 (B )362 (C )62 (D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且 三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A )67π (B )45π (C )34π (D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于(A )3 (B )4 (C )23 (D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(A )288个 (B )240个 (C )144个 (D )126个 (11)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上, 则△ABC 的边长是(A )32(B )364 (C )4173 (D )3212 (12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上.(13)若函数f (x )=e -(m -u )2 (c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1, 则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ’所引的切线长相等,则动点P 的轨迹方程是 . (16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值.(Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(21)(本小题满分12分)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫ ⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.2007年普通高等学校招生全国统一考试(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π(15)32x = (16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(全国卷Ⅱ.理)含答案.docx
2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =g g球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题1.sin 210=o( )A .32B .32-C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i + 4.下列四个数中最大的是( ) A .2(ln 2)B .ln(ln 2)C .ln 2D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+u u u r u u u r u u u r u u u r u u u r,,则λ=( ) A .23 B .13 C .13- D .23-6.不等式2104x x ->-的解集是( )A .(21)-,B .(2)+∞,C .(21)(2)-+∞U ,,D .(2)(1)-∞-+∞U ,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A .64B .104C .22D .328.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D .129.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( )A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=o且123AF AF =,则双曲线的离心率为( )A .52B .102C .152D .512.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0u u u r u u u r u u u r,则FA FB FC ++=u u u r u u u r u u u r( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,已知内角A π=3,边23BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.S19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分) 在直角坐标系xOy 中,以O 为圆心的圆与直线34x y -=相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB u u u r u u u rg 的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设32n n n b a a =-,证明1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题 13.42- 14.0.815.242+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知23sin sin 4sin sin sin BC AC B x x A ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 2303y x x x ππ⎛⎫⎛⎫=+-+<<⎪ ⎪3⎝⎭⎝⎭,(2)因为14sin cos sin 232y x x x ⎛⎫3=+++ ⎪ ⎪2⎝⎭543sin 23x x ππππ⎛⎫⎛⎫=++<+< ⎪ ⎪6666⎝⎭⎝⎭,所以,当x ππ+=62,即x π=3时,y 取得最大值63. 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去). (2)ξ的可能取值为012,,.若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为ξ 0 1 2P316495 160495 1949519.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.S连结12AG FG CD∥,,又CD AB ∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A =I , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角2tan 21DH DMH HM ∠===. 所以二面角A EF D --的大小为arctan 2. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,,00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭u u u r ,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭u u u r ,,. EF AG EF AG AG =⊂u u u r u u u r,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,. EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭u u uu r u u u r u u u u r u u u r g ,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭u u u r ,,,0EA EF EA EF =u uu r u u u r g ,⊥, A A EBCFSD GM yz x所以向量MD u u u u r 和EA u u u r的夹角等于二面角A EF D --的平面角.3cos 3MD EA MD EA MD EA<>==u u u u r u u u ru u u u r u u u r g u u u u r u u u r g ,. 所以二面角A EF D --的大小为3arccos3. 20.解:(1)依题设,圆O 的半径r 等于原点O 到直线34x y -=的距离,即 4213r ==+.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得222222(2)(2)x y x y x y ++-+=+g ,即 222x y -=. (2)(2)PA PB x y x y =-----u u u r u u u rg g ,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB u u u r u u u rg 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=, 所以111(3)322n nn n n a a b a a +++-=-=.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭g两边开平方得3322nn n n a a a a --<g . 即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-.曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:t (0)-∞, 0 (0)a , a()a +∞, ()g t ' +0 -+()g tZ 极大值a b +]极小值()b f a -Z由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。
苏教版高中数学必修五测试题全套带答案.docx
最新苏教版高中数学必修五测试题全套带答案模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分•请把答案填在题中的横线上)TT 7T1.在£\ABC 中,a,b,c 所对的角分别为C,若则b 等于 ______________________________.2X 丄【解析】 由正弦定理得b =豊晋=话 =©2【答案】^22. ________________________________________________________ 已知等比数列{a”}的公比g 为正数,且05应7 = 4必 血=1,贝Uai= _______________ • 【解析】T {a”}成等比数列, ・•.血5二尿, ••- dg 二 4^4 !• •孑=4 ]:・ q = ±2.又 q>0 ,:・q 二 2. ・ °2 1 ・・©二严. 【答案】I3. ________________________________________ 设兀>0,尹>0,下列不等式中等号不成立的是 __________________________________________②(*+叨1+册4;因为毎刁上2 ,故应用不等式时,等号不成立. 【答案】④4. ___________________________________________________ 等差数列仪”}满足a ;+t^+2<24Q7 = 9,则其前10项之和为 ___________________________【解析】 由 «4 + «7 + 2fl4«7 = 9,可知 04 + ^7 = ±3. . 10(如 + <710) 10(血 + 07)丄仁 • •510 — r\ 一 ° 一 ±13.x 2+ 3 【解析】④中,主壬=归花+:7^眉®x+y24;【答案】±155. __ 已知点A (3, -1), 5(-1,2)在直线ax+2y~1^0的同侧,则实数a 的取值范围 为__________ •【解析】由题意可知, (3。
苏教版高中数学必修五普通高等学校招生全国统一考试卷(山东.理)含答案
高中数学学习材料 (灿若寒星 精心整理制作)2007年普通高等学校招生全国统一考试(山东卷)理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.(1)若cos isin z θθ=+(i 为虚数单位),则使21z =-的θ值可能是( ) A .6πB .4π C .3π D .2π (2)已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N =( )A .{}11-,B .{}1-C .{}0D .{}10-,(3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④(4)设11132a ⎧⎫∈-⎨⎬⎩⎭,,,,则使函数ay x =的定义域为R 且为奇函数的所有a 值为( )A .1,3B .1-,1C .1-,3D .1-,1,3(5)函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( ) ①正方形 ②圆锥 ③三棱台 ④正四棱锥A .π,1B .π,2C .2π,1D .2π,2(6)给出下列三个等式:()()()f xy f x f y =+,()()()f x y f x f y +=,()()()1()()f x f y f x y f x f y ++=-,下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =(7)命题“对任意的x ∈R ,3210x x -+≤”的否定是( ) A .不存在x ∈R ,3210x x -+≤ B .存在x ∈R ,3210x x -+≤ C .存在x ∈R ,3210x x -+> D .对任意的x ∈R ,3210x x -+>(8)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,45(9)下列各小题中,p 是q 的充要条件的是( ) ①p :2m <-或6m >;q :23y x mx m =+++有两个不同的零点. ②():1()f x p f x -=;:()q y f x =是偶函数. ③:cos cos p αβ=;:tan tan q αβ=.④:p AB A =;:U Uq B A ⊆痧.A .①②B .②③C .③④D .①④(10)阅读右边的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是( ) A .2500,2500 B .2550,25500 13 14 15 16 17 18 19秒频率/组距0.36 0.340.180.06 0.04 0.02开始 输入n22x <1n n =-T T n=+1n n =-结束输出S T , s s n=+否00ST ==,C .2500,2550D .2550,2500`(11)在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB = B .2BC BA BC = C .2AB AC CD =D .22()()AC AB BA BC CD AB⨯=(12)位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位`于点(23),的概率是( )A .212⎛⎫ ⎪⎝⎭B .3231C 2⎛⎫ ⎪⎝⎭C .2231C 2⎛⎫ ⎪⎝⎭D .312231C C 2⎛⎫⎪⎝⎭第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案须填在题中横线上. (13)设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为 .(14)设D 是不等式组21023041x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≥,≤≤,≥表示的平面区域,则D 中的点()P x y ,到直线10x y +=距离的最大值是 .(15)与直线20x y +-=和曲线221212540x y x y +---=都相切的半径最小的圆的标准方程是 .(16)函数lo g (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N . (Ⅰ)求数列{}n a 的通项; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S .(18)(本小题满分12分)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(Ⅰ)求方程20x bx c ++=有实根的概率; (Ⅱ)求ξ的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率. (19)(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥.(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ; (Ⅱ)求二面角11A BD C --的余弦值.(20)(本小题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?(21)(本小题满分12分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. (22)(本小题满分14分) 设函数2()ln(1)f x x b x =++,其中0b ≠.BCD A1A1D1C1BE北 1B2B 1A2A120 105 乙甲(Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>- ⎪⎝⎭都成立.2007年普通高等学校招生全国统一考试(山东卷)理科数学参考答案第Ⅰ卷一、选择题(1)D (2)B (3)D(4)A (5)A (6)B (7)C (8)A(9)D(10)D(11)C(12)B第Ⅱ卷二、填空题 (13)212p(14)42 (15)22(2)(2)2x y -+-=(16)8三、解答题 (17)(本小题满分12分)解:(Ⅰ)211233333n n na a a a -++++=…, ① ∴当2n ≥时,22123113333n n n a a a a ---++++=…. ②①-②得1133n n a -=,13n n a =.在①中,令1n =,得113a =.13n n a ∴=.(Ⅱ)n nnb a =, 3n n b n ∴=.23323333n n S n ∴=+⨯+⨯++…, ③ 23413323333n n S n +∴=+⨯+⨯++…. ④④-③得12323(3333)n n n S n +∴=-++++….即13(13)2313n n n S n +-=--,1(21)3344n n n S +-∴=+.(18)(本小题满分12分)解:(Ⅰ)由题意知:设基本事件空间为Ω,记“方程20x bx c ++=没有实根”为事件A ,“方程20x bx c ++=有且仅有一个实根”为事件B ,“方程20x bx c ++=有两个相异实数”为事件C ,则{}()126b c b c Ω==,,,,…,,{}2()40126A b c b c b c =-<=,,,,,…,,{}2()40126B b c b c b c =-==,,,,,…,, {}2()40126C b c bc b c =->=,,,,,…,,所以Ω是的基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个. 又因为B C ,是互斥事件, 故所求概率21719()()363636P P B B C =+=+=. (Ⅱ)由题意,ξ的可能取值为012,,,则{}17036P ξ==, {}1118P ξ==,{}17236P ξ==, 故ξ的分布列为:ξ 0 1 2P1736 1181736所以ξ的数学期望171170121361836E ξ=⨯+⨯+⨯=. (Ⅲ)记“先后两次出现的点数有中5”为事件D ,“方程20x bx c ++=有实数”为事件E ,由上面分析得11()36P D =,7()36P D E =, ()7()()11P D E P E D P D ∴==.(19)(本小题满分12分)解法一:(Ⅰ)连结BE ,则四边形DABE 为正方形,11BE AD A D ∴==,且11BE AD A D ∥∥,∴四边形11A D EB 为平行四边形.11D E A B ∴∥.又1D E ⊄平面1A BD ,1A B ⊂平面1A BD ,1D E ∴∥平面1A BD .(Ⅱ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设1DA =,则(000)D ,,,(100)A ,,,(110)B ,,,(022)C ,,,1(102)A ,,, 1(102)DA ∴=,,,(110)DB =,,, 设()x y z =,,n 为平面1A BD 的一个法向量.由1DA ⊥n ,DB ⊥n , 得200.x z x y +=⎧⎨+=⎩,取1z =,则(231)=-,,n . 又2(023)DC =,,,(110)DB =,,, 设111()x y z =,,m 为平面1C BD 的一个法向量, 由DC ⊥m ,DB ⊥m , 得11112200.y z x y +=⎧⎨+=⎩,取11z =,则(111)=-,,m ,BCD A1A1D1C1BE G BCD A 1A1D1C1BEzyxF M设m 与n 的夹角为a ,二面角11A BD C --为θ,显然θ为锐角,33cos 393θ-∴===-m n m n . 3cos 3θ∴=, 即所求二面角11A BD C --的余弦为33. 解法二:(Ⅰ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设DA a =,由题意知:(000)D ,,,(00)A a ,,,(0)B a a ,,,(020)C a ,,,1(022)C a a ,,,1(02)A a a ,,,1(002)D a ,,,(00)E a ,,.1(02)D E a a ∴=-,,,1(02)DA a a =,,,(0)DB a a =,,, 又(02)(0)(02)a a a a a a -=-,,,,,,,1D E DB DA ∴=-.1DA DB ⊂,平面1A BD ,1D E ⊄平面1A BD , 1D E ∴∥平面1A BD .(Ⅱ)取DB 的中点F ,1DC 的中点M ,连结1A F ,FM , 由(Ⅰ)及题意得知:022a a F ⎛⎫ ⎪⎝⎭,,,(0)M a a ,,, 1222a a FA a ⎛⎫∴=- ⎪⎝⎭,,,22a a FM a ⎛⎫=- ⎪⎝⎭,,,12(0)022a a FA DB a a a ⎛⎫=-= ⎪⎝⎭,,,,,(0)022a a FM DB a a a ⎛⎫+=-+= ⎪⎝⎭,,,,.BCD A 1A 1D1C1BExyzF M1FA DB ∴⊥,FM DB ⊥, 1A FM ∴∠为所求二面角的平面角.111cos FA FM A FM FA FM∴=∠2222232622a a a a a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=,,,, 222223443332a a a a--+==. 所以二面角11A BD C --的余弦值为33. 解法三:(Ⅰ)证明:如解法一图,连结1AD ,AE , 设11AD A D G =,AEBD F =,连结GF ,由题意知G 是1A D 的中点,又E 是CD 的中点,∴四边形ABED 是平行四边形,故F 是AE 的中点, ∴在1AED △中,1GF D E ∥,又GF ⊂平面1A BD ,1D E ⊄平面1A BD ,1D E ∴∥平面1A BD .(Ⅱ)如图,在四边形ABCD 中,设AD a =, AB AD =,AD DC ⊥,AB DC ∥, AD AB ∴⊥. 故2BD a =,由(Ⅰ)得2222222BC BE EC a a a =+=+=,2DC a =, 90DBC ∴=∠,即BD BC ⊥.又1BD BB ⊥,BCDA1A1D1C1BEF M HBD ∴⊥平面11BCC B ,又1BC ⊂平面11BCC B ,1BD BC ∴⊥,取1DC 的中点M ,连结1A F ,FM , 由题意知:1FM BC ∴∥,FM BD ∴⊥.又11A D A B =,1A F BD ∴⊥.1A FM ∴∠为二面角11A BD C --的平面角.连结1A M ,在1A FM △中, 由题意知:1322A F a =,2211116222FM BC BC CC a ==+=, 取11D C 的中点H ,连结1A H ,HM , 在1Rt A HM △中,12A H a =,HM a =, 13A M a ∴=.2221111cos 2A F FM A M A FM A F FM +-∴=∠ 2229332236222a a a a a +-= 33=. ∴二面角11A BD C --的余弦值为33. (20)(本小题满分12分)解法一:如图,连结11A B ,由已知22102A B =,北1B2B1A2A120 105甲122030210260A A =⨯=, 1221A A A B ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形,1212102A B A A ∴==,由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22220(102)2201022=+-⨯⨯⨯200=.12102B B ∴=.因此,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里.解法二:如图,连结21A B ,由已知1220A B =,122030210260A A =⨯=,112105B A A =∠, cos105cos(4560)=+cos 45cos60sin 45sin 60=- 2(13)4-=, sin105sin(4560)=+sin 45cos60cos 45sin 60=+ 2(13)4+=. 北1B2B1A2A120 105 乙甲在211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-222(13)(102)202102204-=+-⨯⨯⨯100(423)=+.1110(13)A B ∴=+.由正弦定理1112111222202(13)2sin sin 4210(13)A B A A B B A A A B +===+∠∠, 12145A A B ∴=∠,即121604515B A B =-=∠,2(13)cos15sin1054+==.在112B A B △中,由已知12102A B =,由余弦定理,22212112221222cos15B B A B A B A B A B =++2222(13)10(13)(102)210(13)1024+=++-⨯+⨯⨯200=.12102B B ∴=,乙船的速度的大小为1026030220⨯=海里/小时. 答:乙船每小时航行302海里. (21)(本小题满分12分)解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:3a c +=,1a c -=,2a ∴=,1c =,2223b a c ∴=-=.∴椭圆的标准方程为22143x y +=. (Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=,22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,则, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 因为以AB 为直径的圆过椭圆的右焦点(20)D ,,1AD BD k k ∴=-,即1212122y y x x =---,1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k --∴+++=+++,2291640m mk k ∴++=.解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫ ⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.(22)(本小题满分14分)解:(Ⅰ)由题意知,()f x 的定义域为(1)-+∞,,322()211b x x bf x x x x ++'=+=++ 设2()22g x x x b =-+,其图象的对称轴为1(1)2x =-∈-+∞,, max 11()22g x g b ⎛⎫∴=-=-+ ⎪⎝⎭.当12b >时,max 1()02g x b =-+>, 即2()230g x x x b =+->在(1)-+∞,上恒成立,∴当(1)x ∈-+∞,时,()0f x '>, ∴当12b >时,函数()f x 在定义域(1)-+∞,上单调递增. (Ⅱ)①由(Ⅰ)得,当12b >时,函数()f x 无极值点.②12b =时,3122()01x f x x ⎛⎫+ ⎪⎝⎭'==+有两个相同的解12x =-, 112x ⎛⎫∈-- ⎪⎝⎭,时,()0f x '>,12x ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '>,12b ∴=时,函数()f x 在(1)-+∞,上无极值点. ③当12b <时,()0f x '=有两个不同解,11122b x ---=,21122b x -+-=,0b <时,111212b x ---=<-,211202bx ---=>,即1(1)x ∈-+∞,,[)21x ∈-+∞,.0b ∴<时,()f x ',()f x 随x 的变化情况如下表:x1(1)x -, 1x 2()x +∞,()f x ' -+()f x极小值由此表可知:0b <时,()f x 有惟一极小值点11122bx ---=,当102b <<时,111212b x ---=>-, 12(1)x x ∴∈-+∞,,此时,()f x ',()f x 随x 的变化情况如下表:x1(1)x -,1x 12()x x , 1x 1()x -∞, ()f x ' +-+()f x极大值极小值由此表可知:102b <<时,()f x 有一个极大值11122b x ---=和一个极小值点21122bx -+-=;综上所述:0b <时,()f x 有惟一最小值点1122bx -+-=;102b <<时,()f x 有一个极大值点1122b x ---=和一个极小值点112b x x -+-=;12b ≥时,()f x 无极值点.(Ⅲ)当1b =-时,函数2()ln(1)f x x x =-+, 令函数222()()ln(1)h x x f x x x x =-=-++,则22213(1)()3211x x h x x x x x +-'=-+=++. ∴当[)0x ∈+∞,时,()0f x '>,所以函数()h x 在[)0+∞,上单调递增,又(0)0h =.(0)x ∴∈+∞,时,恒有()(0)0h x h >=,即23ln(1)x x x >-+恒成立.故当(0)x ∈+∞,时,有23ln(1)x x x +>-. 对任意正整数n 取1(0)x n =∈+∞,,则有23111ln 1n n n⎛⎫+>- ⎪⎝⎭. 所以结论成立.。
2024年高考新课标Ⅰ卷数学真题卷和答案
启用前·机密2024年普通高等学校招生全国统一考试数 学 试 题姓名:准考证号:本试题卷分选择题和非选择题两部分,共4页, 满分150分, 考试时间120分钟。
考生注意:1.答题前, 请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时, 请按照答题纸上 “注意事项” 的要求, 在答题纸相应的位置上规范作答, 在本试题卷上的作答一律无效。
3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内, 作图时可先使用 2B 铅笔, 确定后必须使用黑色字迹的签字笔或钢笔描黑。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集体A=x-5<x3<5,B={-3,-1,0,2,3}, 则A∩B=A.{-1,0}B.{2,3}C.{-3,-1,0}D.{-1,0,2}2.若zz-1=1+i, , 则z=A.-1-iB.-1+iC.1-iD.1+i3.已知向量a=(0.1),b=(2.x), 若b⊥(b-4a)则x=A.-2B.-1C.1D.24.已知cos(a+β)=m,tan a tanβ=2, 则cos(a-β)=A.-3mB.-m3C.m3D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23πB.33πC.63πD.93π6.已知函数f(x)=-x2-2ax-a,x<0e x+ln(x+1),x≥0在R上单调递增,则a的取范围是A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)7.当x∈[0,2π]时,曲线y=sin x与y=2sin3x-π6的交点个数为A.3B.4C.6D.88.已知函数f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时,f (x )=x ,则下列结论中一定正确的是A.f (10)>100 B.f (20)>1000C.f (10)<1000D.f (20)<10000二、选择题:本大题共 3小题,每小题 6分,共 18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数3)4lg(--=x x y 的定义域是 .2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m .3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x -∙-=的解是 .5.若x y ∈+R ,,且14=+y x ,则x y ∙的最大值是 . 6.函数⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T . 7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个 相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异 面直线的充分条件: .11.已知P 为圆1)1(22=-+y x 上任意 一点(原点O 除外),直线OP 的倾斜角为θ弧度,记||OP d =. 在右侧的坐标系中,画出以()d θ, 为坐标的点的轨迹的大致图形为二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程02=++q px x 的两个根,那么p q ,的值分别是( ) A.45p q =-=, B.43p q =-=, C.45p q ==,D.43p q ==,13.设a b ,是非零实数,若b a <,则下列不等式成立的是( ) A.22b a < B.b a ab 22< C.ba ab 2211< D.b a a b < 14.直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形CB1C 1B1A AABC 中,若j k i AC j i AB+=+=3,2,则k 的可能值个数是( )A.1 B.2 C.3 D.415.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立 C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB.求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示). 17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n =,,,),我们称其为“对称数列”.例如,由组合数组成的数列01m m m m C C C ,,,就是“对称数列”.(1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +-,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m -,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y轴的交点.(1)若012F F F △是边长为1的等边三角形,求“果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围; (3)连接“果圆”上任意两点的线段称为“果圆” 的弦.试研究:是否存在实数k ,使斜率为k 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.y1BO 1A2B 2A . .1F 0F2F x.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)答案要点一、填空题(第1题至第11题) 1. {}34≠<x x x 且 2. 32-3.)(11≠-x x x4.7log 3 5.161 6. π 7. 3.0 8. )3(122+=x y 9.②④10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)11.二、选择题(第12题至第15题)题 号 1213 1415答 案ACB D三、解答题(第16题至第21题) 16.解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ====△, ∴ 211==CC AA .CB1B1A 1CC1A A1C1BBxyz连接1BC .1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC ,51t a n11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . 即直线B A 1与平面C C BB 11所成角的大小为55arctan. 解法二: 由题意,可得 体积11111122ABC V CC S CC AC BC CC ∆====, 21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,, 1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,, 平面C C BB 11的法向量为(100)n =,,. 设直线B A 1与平面C C BB 11所成的角为θ,B A 1与n 的夹角为ϕ, 则116cos 6A B n A Bn ϕ==-, 66arcsin ,66|cos |sin ===∴θϕθ,即直线B A 1与平面C C BB 11所成角的大小为66arcsin. 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 %36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥.解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61. 19.解:(1)当0=a 时,2)(x x f =, 对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f ff ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. (2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,.解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数, xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)12112112-+--+++++++=k k k k k c c c c c c Sk k k k c c c c -+++=-+)(2121 ,50134)13(42212-⨯+--=-k S k ,∴当13=k 时,12-k S 取得最大值.12-k S 的最大值为626. (3)所有可能的“对称数列”是: ① 22122122222221m m m ---,,,,,,,,,,; ② 2211221222222221m m m m ----,,,,,,,,,,,; ③ 122221222212222m m m m ----,,,,,,,,,,; ④ 1222212222112222m m m m ----,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S . 当15002007m <≤时,200922122008222221----+++++++=m m m m S 2009212212---+-=m m m 1222200921--+=--m m m .对于②,当2008m ≥时,1220082008-=S . 当15002007m <≤时,2008S 122200821--=-+m m .对于③,当2008m ≥时,2008200822--=m m S .当15002007m <≤时,2008S 3222009-+=-mm .对于④,当2008m ≥时,2008200822--=m m S .当15002007m <≤时,2008S 2222008-+=-mm .21. 解:(1) ()()2222012(0)00F c F b c F b c ---,,,,,, ()222220212121F F bc c b F F b c ∴=-+===-=,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.—————————— 新学期 新成绩 新目标 新方向 ——————————桑水(2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b .2425b a ⎛⎫∴∈ ⎪ ⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b +=≥的交点是P 221t a t b ⎛⎫- ⎪ ⎪⎝⎭,,与半椭圆22221(0)y x x b c +=≤的交点是Q 221t c t b ⎛⎫-- ⎪ ⎪⎝⎭,. ∴ P Q ,的中点M ()x y ,满足 221,2a ct x b y t ⎧-⎪=-⎨⎪=⎩,得 122222=+⎪⎭⎫⎝⎛-b y c a x . b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b +=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x kab y 22-=上,即不在某一椭圆上. 当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。