海原县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
海原县高中2018-2019学年上学期高二数学12月月考试题含解析
海原县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数满足,且,分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )(0,2]x ∀∈(2)()0g x ah x -≥A .B .C .D .(,-∞(,-∞(0,)+∞2. 若复数z=2﹣i ( i 为虚数单位),则=()A .4+2iB .20+10iC .4﹣2iD .3. 集合,,,则,{}|42,M x x k k Z ==+∈{}|2,N x x k k Z ==∈{}|42,P x x k k Z ==-∈M ,的关系( )N P A . B . C .D .M P N =⊆N P M =⊆M N P =⊆M P N==4. 双曲线=1(m ∈Z )的离心率为()A .B .2C .D .35. 如果集合 ,同时满足,就称有序集对,A B {}{}{}{}1,2,3,41,1,1A B B A B =≠≠ ,A =为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么(),A B (),A B A B ≠(),A B (),B A “好集对” 一共有( )个A .个B .个C .个D .个6. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >87. 已知函数f (x )=,则=()A .B .C .9D .﹣98. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .9. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A .4B .8C .12D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.10.如图是一个多面体的三视图,则其全面积为()A .B .C .D .11.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个12.某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图二、填空题13.不等式的解为 .14.设平面向量,满足且,则,的最大()1,2,3,i a i =1i a = 120a a ⋅= 12a a += 123a a a ++值为.【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.15.已知为常数,若,则_________.,a b ()()224+3a 1024f x x x f x b x x =++=++,5a b -=16.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为2,M N 、24y x =F MN ,则直线的方程为_________.||||10MF NF +=MN 17.下列命题:①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;R ()f x (0)0f =③既不是奇函数又不是偶函数;2()(21)2(21)f x x x =+--④,,,从集合到集合的对应关系是映射;A R =B R =1:||f x x →A B f ⑤在定义域上是减函数.1()f x x=其中真命题的序号是.18.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .三、解答题19.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:22⨯患心肺疾病患心肺疾病合计男20525女101525合计302050(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量,判断心肺疾病与性别是否有关?2K 下面的临界值表供参考:)(2k K P ≥15.010.005.0025.0010.0005.0001.0k 2.0722.7063.841 5.024 6.6357.879828.10(参考公式:,其中)))()()(()(22d b c a d c b a bc ad n K ++++-=d c b a n +++=20.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.21.(本小题12分)在多面体中,四边形与是边长均为正方形,平面ABCDEFG ABCD CDEF a CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.4a =G ADE -【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.22.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P (K 2≥k )0.050.01k 3.8416.635附:K 2=.23.(本小题满分12分)已知函数,数列满足:,().21()x f x x +={}n a 12a =11n n a f a +⎛⎫= ⎪⎝⎭N n *∈(1)求数列的通项公式;{}n a (2)设数列的前项和为,求数列的前项和.{}n a n n S 1n S ⎧⎫⎨⎬⎩⎭n n T【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.24.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.海原县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()(),g x h x R 使得不等式()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 恒成立, 即恒成立, ()()20g x ah x -≥22022xxx xe ee e a --+--≥A()2222xx x xx xx xe e e e a e e e e -----++∴≤=--, 设,则函数在上单调递增,, 此时不等()2x x x xe e e e--=-++x x t e e -=-x x t e e -=-(]0,2220t e e -∴<≤-式当且仅当,即时, 取等号,,故选B.2t t +≥2t t=t =a ∴≤考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0fx ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.2. 【答案】A 【解析】解:∵z=2﹣i ,∴====,∴=10•=4+2i ,故选:A .【点评】本题考查复数的运算,注意解题方法的积累,属于基础题. 3. 【答案】A 【解析】试题分析:通过列举可知,所以.{}{}2,6,0,2,4,6M P N ==±±=±±± M P N =⊆考点:两个集合相等、子集.14. 【答案】B【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1∴a 2=1,b 2=3,∴c 2=a 2+b 2=4∴a=1,c=2,∴离心率为e==2.故选:B .【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.5. 【答案】B 【解析】试题分析:因为,所以当时,;当{}{}{}{}1,2,3,41,1,1A B B A B =≠≠ ,A ={1,2}A ={1,2,4}B =时,;当时,;当时,;当时,{1,3}A ={1,2,4}B ={1,4}A ={1,2,3}B ={1,2,3}A ={1,4}B ={1,2,4}A =;当时,;所以满足条件的“好集对”一共有个,故选B.{1,3}B ={1,3,4}A ={1,2}B =考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]6. 【答案】C【解析】解:由f ′(x )=3x 2﹣3=3(x+1)(x ﹣1)=0得到x 1=1,x 2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f ′(x )<0,(1,2)上f ′(x )>0,∴函数f (x )在区间(0,1)单调递减,在区间(1,2)单调递增,则f (x )min =f (1)=m ﹣2,f (x )max =f (2)=m+2,f (0)=m 由题意知,f (1)=m ﹣2>0 ①;f (1)+f (1)>f (2),即﹣4+2m >2+m ②由①②得到m >6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值 7. 【答案】A【解析】解:由题意可得f ()==﹣2,f[(f ()]=f (﹣2)=3﹣2=,故选A . 8. 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k ,则过P 的直线方程为y=kx ﹣2,即kx ﹣y ﹣2=0,若过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则圆心到直线的距离d ≤1,即≤1,即k 2﹣3≥0,解得k ≤﹣或k ≥,即≤α≤且α≠,综上所述,≤α≤,故选:A . 9. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为62,故选C.1231231=⨯⨯10.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C .【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小. 11.【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题. 12.【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D .【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答. 二、填空题13.【答案】 {x|x >1或x <0} .【解析】解:即即x (x ﹣1)>0解得x >1或x <0故答案为{x|x >1或x <0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出 14..1+【解析】∵,∴,22212112221012a a a a a a +=+⋅+=++= 12a a +=而,222123121233123()2()21cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅<+>+≤+∴,当且仅当与.1231a a a ++≤+ 12a a + 3a 1+15.【答案】【解析】试题分析:由,得,()()224+3a 1024f x x x f x b x x =++=++,22()4()31024ax b ax b x x ++++=++即,比较系数得,解得或222224431024a x abx b ax b x x +++++=++22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩1,7a b =-=-,则.1,3a b ==5a b -=考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.()f ax b +16.【答案】20x y --=【解析】解析: 设,那么,,∴线段1122(,)(,)M x y N x y 、12||||210MF NF x x +=++=128x x +=MN 的中点坐标为.由,两式相减得,而,∴(4,2)2114y x =2224y x =121212()()4()y y y y x x +-=-1222y y +=,∴直线的方程为,即.12121y y x x -=-MN 24y x -=-20x y --=17.【答案】①②【解析】试题分析:子集的个数是,故①正确.根据奇函数的定义知②正确.对于③为偶函数,故错误.2n ()241f x x =-对于④没有对应,故不是映射.对于⑤减区间要分成两段,故错误.0x =考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于2n奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要0x =()00f =根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个()()()(),f x f x f x f x -=-=-A 元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B 18.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:. 三、解答题19.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.20.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin (x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.21.【答案】【解析】(1)连接,由题意,知,,∴平面.FH CD BC ⊥CD CF ⊥CD ⊥BCFG 又∵平面,∴.GH ⊂BCFG CD ⊥GH 又∵,∴……………………………2分EF CD A EF GH ⊥由题意,得,,,∴,14BH a =34CH a =12BG a =2222516GH BG BH a =+=,,22225()4FG CF BG BC a =-+=22222516FH CF CH a =+=则,∴.……………………………4分222FH FG GH =+GH FG ⊥又∵,平面.……………………………5分EF FG F = GH ⊥EFG ∵平面,∴平面平面.……………………………6分GH ⊂AGH AGH ⊥EFG22.【答案】【解析】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成2×2列联表如下:非歌迷歌迷合计男301545女451055合计7525100将2×2列联表中的数据代入公式计算,得:K 2==≈3.030因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i=1,2,3,b i 表示女性,i=1,2.Ω由10个等可能的基本事件组成.…用A 表示“任选2人中,至少有1个是女性”这一事件,则A={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )= (12)【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.23.【答案】【解析】(1)∵,∴. 211()2x f x x x +==+11(2n n na f a a +==+即,所以数列是以首项为2,公差为2的等差数列,12n n a a +-={}n a ∴.(5分)1(1)22(1)2n a a n d n n =+-=+-=(2)∵数列是等差数列,{}n a ∴,1()(22)(1)22n n a a n n n S n n ++===+∴. (8分)1111(1)1n S n n n n ==-++∴1231111n nT S S S S =++++ 11111111(()()()1223341n n =-+-+-++-+ . (12分)111n =-+1n n =+24.【答案】【解析】解:(1)当a=1时,Q={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2}则P∩Q={1}(2)∵a≤a+1,∴Q={x|(x﹣a)(x﹣a﹣1)≤0}={x|a≤x≤a+1}∵x∈P是x∈Q的充分条件,∴P⊆Q∴,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型. 。
海原县第二中学2018-2019学年上学期高二数学12月月考试题含解析
海原县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2-B.1-C. 1D.2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.2. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .3. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形4. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN <<5. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .± 6. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞) C .(2,+∞)D .(﹣1,0)7. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .588. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.659.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有()A.20种B.24种C.26种D.30种10.下列函数中,在区间(0,+∞)上为增函数的是()A.y=x﹣1B.y=()x C.y=x+D.y=ln(x+1)11.已知复数z满足z•i=2﹣i,i为虚数单位,则z=()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i12.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A.B.C.D.二、填空题13.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是.14.已知f(x+1)=f(x﹣1),f(x)=f(2﹣x),方程f(x)=0在[0,1]内只有一个根x=,则f(x)=0在区间[0,2016]内根的个数.15.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是.16.若函数f(x),g(x)满足:∀x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=a x与g(x)=log a x(a>0,且a≠1)关于y=x分离,则a的取值范围是.17.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于.18.设x R∈,记不超过x的最大整数为[]x,令{}[]x x x=-.现有下列四个命题:①对任意的x,都有1[]x x x-<≤恒成立;②若(1,3)x∈,则方程{}22sin cos[]1x x+=的实数解为6π-;③若3nna⎡⎤=⎢⎥⎣⎦(n N*∈),则数列{}n a的前3n项之和为23122n n-;④当0100x≤≤时,函数{}22()sin[]sin1f x x x=+-的零点个数为m,函数{}()[]13xg x x x=⋅--的零点个数为n,则100m n+=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
2018-2019学年上学期高二数学12月月考试题含解析(336)
印江土家族苗族自治县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直2. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )A .1B .C .2D .43. 已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .34. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .5. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .26. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)7. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.8. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5D69. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .210.已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣11.如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1,=﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .3112.将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点)0,43(π,则ω的最小值是( ) A .31 B . C .35D .二、填空题13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号) ①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .14.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a . 15.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .16.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .17.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 18.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题19.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?20.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=()x . (1)求当x >0时f (x )的解析式; (2)画出函数f (x )在R 上的图象; (3)写出它的单调区间.21.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC在矩阵N应对的变换作用下得到矩形区域OA′B′C′,如图所示.(1)求矩阵M;(2)求矩阵N及矩阵(MN)﹣1.22.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.23.已知函数f(x)=|x﹣m|,关于x的不等式f(x)≤3的解集为[﹣1,5].(1)求实数m的值;(2)已知a,b,c∈R,且a﹣2b+2c=m,求a2+b2+c2的最小值.24.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.印江土家族苗族自治县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l⊥α.故选:B.2.【答案】A【解析】解:∵向量=(1,n),=(﹣1,n﹣2),且与共线.∴1×(n﹣2)=﹣1×n,解之得n=1故选:A3.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.4.【答案】C【解析】解:由于q=2,∴∴;故选:C.5.【答案】B【解析】解:∵圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B.【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.6.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.7.【答案】C【解析】由已知得双曲线的一条渐近线方程为=y,设00(,)A x y,则02>px,所以2002322ì=ïï-ïïïï+=íïï=ïïïïîypxpxy px,解得2=p或4=p,因为322->p p,故03p<<,故2=p,所以抛物线方程为24y x.8.【答案】B【解析】由题意知x=a+b,a∈A,b ∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B9.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.10.【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣.故选:C.【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.11.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A 、P n D 作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n +1,∴x n+1+1=2(x n +1),则{x n +1}构成以2为首项,以2为公比的等比数列,∴x 5+1=2•24=32,则x 5=31. 故选:D .【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.12.【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换.二、填空题13.【答案】 ①④⑤【解析】解:由题意知:A ≠,B ≠,C ≠,且A+B+C=π∴tan (A+B )=tan (π﹣C )=﹣tanC ,又∵tan (A+B )=,∴tanA+tanB=tan (A+B )(1﹣tanAtanB )=﹣tanC (1﹣tanAtanB )=﹣tanC+tanAtanBtanC , 即tanA+tanB+tanC=tanAtanBtanC ,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA ,tanB ,tanC 中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA :tanB :tanC=1:2:3,则6tan 3A=6tanA ,则tanA=1,故A=45°,故④正确;当tanB ﹣1=时, tanA •tanB=tanA+tanB+tanC ,即tanC=,C=60°,此时sin 2C=,sinA •sinB=sinA •sin (120°﹣A )=sinA •(cosA+sinA )=sinAcosA+sin 2A=sin2A+﹣cos2A=sin (2A ﹣30°)≤,则sin 2C ≥sinA •sinB .故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.14.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.115.【答案】2【解析】解:设f(x)=﹣,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0.将函数f(x)向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣(x∈R)的最大值与最小值的和为2.故答案为:2.【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.16.【答案】(﹣∞,﹣1).【解析】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)-17.【答案】[]1,1【解析】考点:函数的定义域.18.【答案】1【解析】三、解答题19.【答案】【解析】解:设至少需要同时开x个窗口,则根据题意有,.由①②得,c=2b,a=75b,代入③得,75b+10b≤20bx,∴x≥,即至少同时开5个窗口才能满足要求.20.【答案】【解析】解:(1)若x>0,则﹣x<0…(1分)∵当x<0时,f(x)=()x.∴f(﹣x)=()﹣x.∵f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),∴f(x)=﹣()﹣x=﹣2x.…(4分)(2)∵(x)是定义在R上的奇函数,∴当x=0时,f(x)=0,∴f(x)=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.21.【答案】【解析】解:(1)根据题意,可得,故,解得所以矩阵M=;(2)矩阵N所对应的变换为,故N=,MN=.∵det(MN)=,∴=.【点评】本题考查矩阵与变换、矩阵的特征值、特征向量等基础知识,考查运算求解能力,考查函数与方程的思想.22.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)23.【答案】【解析】解:(1)|x﹣m|≤3⇔﹣3≤x﹣m≤3⇔m﹣3≤x≤m+3,由题意得,解得m=2;(2)由(1)可得a﹣2b+2c=2,由柯西不等式可得(a2+b2+c2)[12+(﹣2)2+22]≥(a﹣2b+2c)2=4,∴a2+b2+c2≥当且仅当,即a=,b=﹣,c=时等号成立,∴a2+b2+c2的最小值为.【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题.24.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.。
海原县第三中学2018-2019学年上学期高二数学12月月考试题含解析
海原县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A .B .C .D .2. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 33. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.64. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x 5. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .136. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞) C .(﹣9,+∞) D .(﹣∞,﹣9)7. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( )A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)8. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分9. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤10.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111] 11.已知直线l :2y kx =+过椭圆)0(12222>>=+b ay x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L ,若L ≥e 的取值范围是( ) (A ) ⎥⎦⎤ ⎝⎛550, ( B ) 0⎛ ⎝⎦ (C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 12.已知集合,则A0或 B0或3C1或D1或3二、填空题13.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .17.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).18.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn是向量与i的夹角,则++…+= .三、解答题19.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .20.设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示)(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.21.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.22.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A⊆C,求实数a的取值范围.23.(本小题满分12分)某市拟定2016年城市建设,,A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C三项重点工程竞标成功的概率分别为a,b,14()a b,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34.(1)求a与b的值;(2)公司准备对该公司参加,,A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.24.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.海原县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0当x>0,当0<x<时,f(x)>0,此时xf(x)>0综上xf(x)>0的解集为故选B2.【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S1==2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=28×20=560m3.故选:A.【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.3.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.4.【答案】D【解析】考点:直线方程5.【答案】D【解析】解:∵S n为等比数列{a n}的前n项和,=4,∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),解得=13.故选:D.【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.6.【答案】B【解析】解:原函数是由t=x2与y=()t﹣9复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=()t﹣9其定义域上为减函数,∴f(x)=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff(x)=()x2﹣9的单调递减区间是(0,+∞).故选:B.【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.7.【答案】C【解析】解:f(x)=e x+x﹣4,f(﹣1)=e﹣1﹣1﹣4<0,f(0)=e0+0﹣4<0,f(1)=e1+1﹣4<0,f(2)=e2+2﹣4>0,f(3)=e3+3﹣4>0,∵f(1)•f(2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C.8.【答案】C【解析】解:x=两边平方,可变为3y2﹣x2=1(x≥0),表示的曲线为双曲线的一部分;故选C.【点评】本题主要考查了曲线与方程.解题的过程中注意x的范围,注意数形结合的思想.9.【答案】D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.10.【答案】D【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)11.【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =≥解得2165d ≤。
海原县第一中学校2018-2019学年高二上学期第二次月考试卷数学
海原县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()A.7 B.6 C.5 D.42.执行如图所示的程序框图,如果输入的t=10,则输出的i=()A.4 B.5C.6 D.73.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()A.6B.9C .12D .184. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0 C .1D .﹣1或15. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 6. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 37. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 8. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错9. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6π B .[,)6ππ C. (0,]3π D .[,)3ππ10.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-111.设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣12.已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )A .B .C .D .二、填空题13.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .14.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.15.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.16.已知数列{a n}满足a n+1=e+a n(n∈N*,e=2.71828)且a3=4e,则a2015=.17.抛物线y2=﹣8x上到焦点距离等于6的点的坐标是.18.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是;①直线l的倾斜角为α;②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;③存在定圆C,使得对任意l∈L都有直线l与圆C相交;④任意l1∈L,必存在唯一l2∈L,使得l1∥l2;⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2.三、解答题19.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.20.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .21.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程; (Ⅱ)若,求实数k 的值; (Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.22.已知数列{a n }的首项为1,前n 项和S n 满足=+1(n ≥2).(Ⅰ)求S n 与数列{a n }的通项公式;(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.23.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.24.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。
2018-2019学年上学期高二数学12月月考试题含解析(211)
兴海县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <02. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直3. 已知a=5,b=log 2,c=log 5,则( )A .b >c >aB .a >b >cC .a >c >bD .b >a >c4. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 6. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形7. sin (﹣510°)=( )A .B .C .﹣D .﹣8. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++=9. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.10.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种11.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <012.ABC ∆中,“A B >”是“cos2cos2B A >”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.二、填空题13.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .14.下图是某算法的程序框图,则程序运行后输出的结果是____.15.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________. 16.【盐城中学2018=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x .17.数列{ a n }中,a 1=2,a n +1S 10=200,则c =________.18.已知正四棱锥O ABCD -三、解答题19.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.20.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.21.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]22.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.23.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.24.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.兴海县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:∵函数是R 上的增函数设g (x )=﹣x 2﹣ax ﹣5(x ≤1),h (x )=(x >1)由分段函数的性质可知,函数g (x )=﹣x 2﹣ax ﹣5在(﹣∞,1]单调递增,函数h (x )=在(1,+∞)单调递增,且g (1)≤h (1)∴∴解可得,﹣3≤a ≤﹣2 故选B2. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1考点:两条直线的位置关系. 3. 【答案】C【解析】解:∵a=5>1,b=log 2<log 5=c <0,∴a >c >b . 故选:C .4. 【答案】D 【解析】考点:1.斜率;2.两点间距离.5.【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
2018-2019学年上学期高二数学12月月考试题含解析(529)
正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 112. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=3. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q 是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( ) A .①④B .②③C .③④D .②④4. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.5. f ()=,则f (2)=( )A .3B .1C .2D .6. 设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i7. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .08. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .369. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)10.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .311.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞12.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种二、填空题13.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .14.已知平面向量a ,b 的夹角为3π,6=-b a,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .18.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.三、解答题19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.20.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.24.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积.正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵a n =29﹣n ,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C2. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .3. 【答案】D【解析】解:∵命题p ;对任意x ∈R ,2x 2﹣2x+1≤0是假命题, 命题q :存在x ∈R ,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D .4. 【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2c o s (2)6f x x π=-,则5(0)2c o s (36f π=-=,故选D.5. 【答案】A【解析】解:∵f ()=,∴f(2)=f()==3.故选:A.6.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.7.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.8.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1). 故答案为:A .10.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .11.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8k x =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
海原县第二中学校2018-2019学年上学期高二数学12月月考试题含解析
海原县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .2. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .3. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ4. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .5. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]6. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x7. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)8. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A. B. C. D.9. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=10.,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )13 ( B ) 49 (C ) 23 (D ) 8911.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1B .y=lnxC .y=x 3D .y=|x|12.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}C .{1,2,3,4,5}D .∅二、填空题13.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= . 14.已知函数f (x )=,若f (f (0))=4a ,则实数a= .15.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .16.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a的值为______.17.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .18.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.三、解答题19.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按log 5(2A+1)进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出奖金y 关于销售利润x 的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?20.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .21.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.22.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.23.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.24.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.海原县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2,故选C .【点评】本题主要考查不等式的基本性质的应用,属于基础题.2. 【答案】 D【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m ,焦距为2n ,则2m=|AF2|﹣|AF 1|=y ﹣x=2,2n=2c=2,∴双曲线C 2的离心率e===.故选D .【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.3. 【答案】B【解析】解:∵y=x 2+2x ﹣3=(x+1)2﹣4,∴y ≥﹣4. 则A={y|y ≥﹣4}. ∵x >0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y ≥2}, ∴B ⊆A . 故选:B .【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.4.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.5.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.6.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.7.【答案】C【解析】解:y=x2﹣4x+1=(x﹣2)2﹣3∴当x=2时,函数取最小值﹣3当x=5时,函数取最大值6 ∴函数 y=x 2﹣4x+1,x ∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答8. 【答案】A【解析】直线x ﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A .【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a ,b ,c 即可,属于基础题型.9. 【答案】B 【解析】考点:圆的方程.1111]10.【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.11.【答案】D【解析】解:选项A :y=在(0,+∞)上单调递减,不正确;选项B :定义域为(0,+∞),不关于原点对称,故y=lnx 为非奇非偶函数,不正确;选项C:记f(x)=x3,∵f(﹣x)=(﹣x)3=﹣x3,∴f(﹣x)=﹣f(x),故f(x)是奇函数,又∵y=x3区间(0,+∞)上单调递增,符合条件,正确;选项D:记f(x)=|x|,∵f(﹣x)=|﹣x|=|x|,∴f(x)≠﹣f(x),故y=|x|不是奇函数,不正确.故选D12.【答案】B【解析】解:∵C U A={1,5}∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.故选B.二、填空题13.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1814.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.15.【答案】6.【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.16.【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则: 当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有ln xa x =有且只有一个实根。
海原县实验中学2018-2019学年上学期高二数学12月月考试题含解析
海原县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.2. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(1,2)3. α是第四象限角,,则sin α=()A .B .C .D .4. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1C .a <﹣1D .a >﹣15. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直6. 若关于的不等式的解集为或,则的取值为( )2043x ax x +>++31x -<<-2x >A . B . C .D .1212-2-7. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=()A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4) 8. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .569. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .10.设函数f (x )=,则f (1)=()A .0B .1C .2D .311.在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .212.如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是()A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}二、填空题13.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)14.用“<”或“>”号填空:30.8 30.7. 15.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-16.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.17.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .18.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①m ,使曲线E 过坐标原点;∃ ②对m ,曲线E 与x 轴有三个交点;∀ ③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
原州区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
原州区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数的定义域为()A .B .C .D .(,1)2. 已知函数,则( )1)1(')(2++=x x f x f =⎰dx x f 1)(A . B .C .D .67-676565-【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.3. 过点,的直线的斜率为,则( )),2(a M -)4,(a N 21-=||MN A .B .C .D .1018036564. 已知函数满足,且,分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )(0,2]x ∀∈(2)()0g x ah x -≥A .B .C .D .(,-∞(,-∞(0,)+∞5. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.6. 若直线:圆:交于两点,则弦长L 047)1()12(=--+++m y m x m C 25)2()1(22=-+-y x B A ,的最小值为( )||AB A .B .C .D .58545257. 如图框内的输出结果是()A .2401B .2500C .2601D .27048. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )A .1B .2C .3D .49. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )A .0<a ≤B .0≤a ≤C .0<a <D .a >10.函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π11.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( )A .1B .2C .3D .412.在ABC ∆中,若60A ∠=,45B ∠=,BC =,则AC =( )A .B .C.D 二、填空题13.在正方形中,,分别是边上的动点,当时,则ABCD 2==AD AB N M ,CD BC ,4AM AN⋅=MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.14.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .15.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .16.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .17.设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方01,02,…,19,206法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.18.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 .三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.(本小题满分12分)已知分别是椭圆:的两个焦点,是椭圆上12,F F C 22221(0)x y a b a b+=>>P成等差数列.1122|,|||PF F F PF (1)求椭圆的标准方程;、C (2)已知动直线过点,且与椭圆交于两点,试问轴上是否存在定点,使得l F C A B 、x Q 716QA QB ⋅=-恒成立?若存在,求出点的坐标;若不存在,请说明理由.Q 21.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623822.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.23.24.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.原州区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】C【解析】解:要使原函数有意义,则log 2(4x ﹣1)>0,即4x ﹣1>1,得x .∴函数的定义域为.故选:C .【点评】本题考查函数的定义域及其求法,是基础的计算题. 2. 【答案】B3. 【答案】D【解析】考点:1.斜率;2.两点间距离.4. 【答案】B 【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()(),g x h x R 使得不等式()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 恒成立, 即恒成立, ()()20g x ah x -≥22022xxx xe ee e a --+--≥A()2222xx xxx x x xe e e e a e e e e -----++∴≤=--, 设,则函数在上单调递增,, 此时不等()2x x x xe e e e--=-++x x t e e -=-x x t e e -=-(]0,2220t e e -∴<≤-式当且仅当,即时, 取等号,,故选B. 2t t +≥2t t=t =a ∴≤考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.5. 【答案】D.【解析】6. 【答案】B 【解析】试题分析:直线,直线过定点,解得定点,当点:L ()()0472=-++-+y x y x m ⎩⎨⎧=-+=-+04072y x y x ()1,3(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长AB ()()5123122=-+-=d ,故选B.545252=-=AB 考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.222d R l -=1111]7. 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B .【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.8.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.9.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.10.【答案】C【解析】解:函数y=2sin2x+sin2x=2×+sin2x=sin(2x﹣)+1,则函数的最小正周期为=π,故选:C.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.11.【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A .【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目. 12.【答案】B【解析】考点:正弦定理的应用.二、填空题13.【答案】2](,)上的点到定点,最大值为,故的取值02x ££02y ££(,)x y (2,2)2MN 范围为.2]x14.【答案】 0.3 .【解析】离散型随机变量的期望与方差.【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500,∵P(400<ξ<450)=0.3,∴根据对称性,可得P(550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.15.【答案】12考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.16.【答案】 (﹣1,﹣1) .【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).17.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.18.【答案】 ﹣2 .【解析】解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数,得,解得:a=﹣2.故答案为:﹣2.三、解答题19.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C2中,根据勾股定理得:A′C2=2,则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.20.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明时,恒成立.54m =716QA QB ⋅=- 当直线的斜率为0时,结论成立;l 当直线的斜率不为0时,设直线的方程为,,,l l 1x ty =+()11,A x y ()22,B x y 由及,得,1x ty =+2212x y +=22(2)210t y ty ++-=所以,∴.0∆>12122221,22t y y y y t t +=-=-++,,111x ty =+221x ty =+∴==112212125511(,)(,)()4444x y x y ty ty y y -⋅-=--+2(1)t +121211()416y y t y y -++.22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++综上所述,在轴上存在点使得恒成立.x 5(,0)4Q 716QA QB ⋅=- 21.【答案】【解析】解:(1)S n =2n 2﹣19n+1=2﹣,∴n=5时,S n 取得最小值=﹣44.(2)由S n =2n 2﹣19n+1,∴n=1时,a 1=2﹣19+1=﹣16.n ≥2时,a n =S n ﹣S n ﹣1=2n 2﹣19n+1﹣[2(n ﹣1)2﹣19(n ﹣1)+1]=4n ﹣21.由a n ≤0,解得n ≤5.n ≥6时,a n >0.∴n ≤5时,T n =|a 1|+|a 2|+…+|a n |=﹣(a 1+a 2+…+a n )=﹣S n =﹣2n 2+19n ﹣1.n ≥6时,T n =﹣(a 1+a 2+…+a 5)+a 6+…+a n=﹣2S 5+S n=2n 2﹣19n+89.∴T n =.【点评】本题考查了等差数列的通项公式及其前n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)当p=时,B={x|0≤x ≤},∴A ∩B={x|2<x ≤};(2)当A ∩B=B 时,B ⊆A ;令2p ﹣1>p+3,解得p >4,此时B=∅,满足题意;当p ≤4时,应满足,解得p 不存在;综上,实数p 的取值范围p >4.23.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可.(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可.【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:X0123P即E(X)=0×=.【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力24.【答案】【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),∴a2=3+3p,a3=3+12p,∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.∵a n+1=a n+p•3n,∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,将这些式子全加起来得a n﹣a1=3n﹣3,∴a n=3n.(2)证明:∵{b n}满足b n=,∴b n=.设f(x)=,则f′(x)=,x∈N*,令f′(x)=0,得x=∈(1,2)当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,且f(1)=,f(2)=,∴f(x)max=f(2)=,x∈N*.∴b n≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用. 。
宁夏海原县第一中学2019-2020学年高二上学期期末考试数学(理)试题 含答案
海原一中2019--2020学年第一学期第三次月考高二数学(理)试卷一、选择题(本大题共12个小题,各5分,共60分)1.若命题“p q ∧”为假,且“p ⌝”为假,则( )A . p 或q 为假B .q 假C . q 真D .不能判断q 的真假2.已知△ABC ,内角A 、B 、C 的对边分别是︒===60,3,2,,,B b a c b a ,则A 等于( )A .45°B .30°C .45°或135°D .30°或150°3.顶点在原点,且过点(4,4)-的抛物线的标准方程是( )A.24y x =-B.24x y =C.24y x =-或24x y =D. 24y x =或24x y =-4. 在ABC ∆中,若::1:2:3A B C ∠∠∠=,则::a b c 等于( ) A.1:2:3 B.3:2:1 C.23 D.325.若x ,y 满足条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则Z=2x+y 的最大值是( )A .3B .1.5C .1D .46.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( )A .13B .35C .49D . 63 7. 双曲线3x 2-y 2=3的渐近线方程是( ).A .y =±3xB .y =±13xC .y 3xD .y 3 8.不等式2340x x -++<的解集为 ( ) A .{|14}x x -<<B .{|41}x x x ><-或C .{}|14x x x ><-或D .{|41}x x -<<9.如图,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点.若AB a =u u u r r ,AD b =u u u r r ,1AA c =u u u r r则下列向量中与BM u u u u r相等的向量是( )A.1122a b c -++r r rB.1122a b c ++r r rC.1122a b c --+r r rD.1122a b c -+r r r 10.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A. (0,+∞)B. (0,2)C. (1,+∞)D. (0,1)11.在平面直角坐标系xOy 中,双曲线的中心在坐标原点,焦点在y 轴上,一条渐近线的方程为x -2y =0,则它的离心率为( ).5 B.52 3 D .2 12.若0)1(3)1()1(2<-+--+m x m x m 对任何实数x 恒成立,则实数m 的取值范围是( )A .m >1B .m <-1C .1113-<m D .m >1或1113-<m 二、填空题(本大题共4题,每小题5分,共20分。
海原县高中2018-2019学年高二上学期第一次月考试卷数学
海原县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<2. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.3. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .64. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+1 5. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥0 6. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台 7. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)8. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.9.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa210.已知=(2,﹣3,1),=(4,2,x),且⊥,则实数x的值是()A.﹣2 B.2 C.﹣D.11.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.12.在长方体ABCD﹣A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()A.B.C.D.二、填空题13.设i是虚数单位,是复数z的共轭复数,若复数z=3﹣i,则z•=.14.一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60°,行驶4小时后,到达C处,看到这个灯塔B在北偏东15°,这时船与灯塔相距为海里.15.如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.16.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.17.函数f(x)=a x+4的图象恒过定点P,则P点坐标是.18.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数的取值范围为______.三、解答题19.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.20.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.21.(理)设函数f (x )=(x+1)ln (x+1). (1)求f (x )的单调区间;(2)若对所有的x ≥0,均有f (x )≥ax 成立,求实数a 的取值范围.22.已知命题p :“存在实数a ,使直线x+ay ﹣2=0与圆x 2+y 2=1有公共点”,命题q :“存在实数a ,使点(a ,1)在椭圆内部”,若命题“p 且¬q ”是真命题,求实数a 的取值范围.23.已知函数f (x )=|x ﹣a|.(1)若不等式f (x )≤3的解集为{x|﹣1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x+5)≥m 对一切实数x 恒成立,求实数m 的取值范围.24.(14分)已知函数1()ln ,()ex x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分海原县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】D 2. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 3. 【答案】 B【解析】解:画出x ,y 满足的可行域如下图:z=3x+y 的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B .【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值.4. 【答案】A【解析】解:∵x ∈(0,1)时,f (x )=x+1,f (x )是以2为周期的偶函数, ∴x ∈(1,2),(x ﹣2)∈(﹣1,0), f (x )=f (x ﹣2)=f (2﹣x )=2﹣x+1=3﹣x , 故选A .5. 【答案】D【解析】解:∵命题“∃x ∈R ,使x 2+1<0”是特称命题∴否定命题为:∀x ∈R ,都有x 2+1≥0.故选D .6. 【答案】C【解析】解:①是底面为梯形的棱柱; ②的两个底面不平行,不是圆台; ③是四棱锥; ④不是由棱锥截来的,故选:C .7. 【答案】C【解析】解:y=x 2﹣4x+1=(x ﹣2)2﹣3 ∴当x=2时,函数取最小值﹣3 当x=5时,函数取最大值6 ∴函数 y=x 2﹣4x+1,x ∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答8. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。
原州区高级中学2018-2019学年上学期高二数学12月月考试题含解析
原州区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④2. 已知点P (1,﹣),则它的极坐标是( )A .B .C .D .3. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .4. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.5. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)6. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案7. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β8. 设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .139. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<10.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .4811.方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分12.在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .5二、填空题13.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx﹣2)+f (x )<0恒成立,则x 的取值范围为_____. 15.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=()﹣x是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.16.已知函数f (x )=恰有两个零点,则a 的取值范围是 .17.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .18.函数y=lgx 的定义域为 .三、解答题19.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x )>恒成立,求实数k 的取值范围.20.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力. 21.(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF . (1)求证EF ∥BC ;(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.22.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.23.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.24.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.原州区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】解::①sin100°>0,②cos (﹣100°)=cos100°<0,③tan (﹣100°)=﹣tan100>0,④∵sin>0,cos π=﹣1,tan<0,∴>0,其中符号为负的是②, 故选:B .【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.2. 【答案】C【解析】解:∵点P 的直角坐标为,∴ρ==2.再由1=ρcos θ,﹣=ρsin θ,可得,结合所给的选项,可取θ=﹣,即点P 的极坐标为 (2,),故选 C .【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.3. 【答案】D【解析】解:抛物线y 2=4x 的焦点(1,0),直线y=ax+1经过抛物线y 2=4x 的焦点,可得0=a+1,解得a=﹣1, 直线的斜率为﹣1,该直线的倾斜角为:.故选:D .【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.4. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以AB ={1,1}-,故选C .5. 【答案】A解析:抛物线C :y x 82 的焦点为F (0,2),准线为l :y=﹣2, 设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .6. 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x ,y ,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
海原县二中2018-2019学年上学期高二数学12月月考试题含解析
海原县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关2. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 3. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6 C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.65 4. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i5. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣206. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( )A .﹣iB .iC .1D .﹣17. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A.B.12C.12-D.2-8.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11? B.12? C.13? D.14?9.函数f(x)=3x+x的零点所在的一个区间是()A.(﹣3,﹣2) B.(﹣2,﹣1) C.(﹣1,0)D.(0,1)10.设命题p:函数y=sin(2x+)的图象向左平移个单位长度得到的曲线关于y轴对称;命题q:函数y=|2x﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是()A.p为假B.¬q为真C.p∨q为真 D.p∧q为假11.已知e为自然对数的底数,若对任意的1[,1]xe∈,总存在唯一的[1,1]y∈-,使得2ln1yx x a y e-++=成立,则实数a的取值范围是()A.1[,]eeB.2(,]eeC.2(,)e+∞ D.21(,)ee e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.12.由直线与曲线所围成的封闭图形的面积为()AB1C D二、填空题13.S n =++…+= .14.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.15.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 16.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.17.若函数y=ln (﹣2x )为奇函数,则a= .18.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .三、解答题19.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.(1)若cos ∠ADC=,求AB 的值;(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?20.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n na a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)21.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为的直线交抛物线于11A x y (,)和22B x y (,)(12x x <)两点,且92AB =.(I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.22.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f (x )在[﹣2,﹣]的最值.23.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.24.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.海原县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:根据茎叶图中的数据,得; 甲得分的众数为a=85, 乙得分的中位数是b=85; 所以a=b . 故选:C .2. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算. 3. 【答案】【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入y ^=bx +2.6得b =0.95,即y ^=0.95x +2.6,当y ^=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差e 的均值为0,∴C 正确.样本点(3,4.8)的残差e ^=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D. 4. 【答案】D【解析】解:i 2015=i 503×4+3=i 3=﹣i ,故选:D【点评】本题主要考查复数的基本运算,比较基础.5. 【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a (0≤a <7), ∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x ﹣3的系数为=﹣4320,故选:B .. 6. 【答案】D【解析】解:由zi=1+i ,得,∴z 的虚部为﹣1. 故选:D .【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.7. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 8. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.9.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.10.【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q为假命题;则¬q为真命题;p∨q为假命题;p∧q为假命题,故只有C判断错误,故选:C11.【答案】B【解析】12.【答案】D【解析】由定积分知识可得,故选D 。
海原县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
海原县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )A .B .C .2D .2. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}3. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π4. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A .11B .11.5C .12D .12.55. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(6. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点)0,43(π,则ω的最小值是( )A .31 B . C .35D .7. 与椭圆有公共焦点,且离心率的双曲线方程为( )A .B .C .D .8. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i9. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]10.已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D .+11.已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)12.如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2 D .34-二、填空题13.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .14.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3cos()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .16.函数y=sin 2x ﹣2sinx 的值域是y ∈ .17.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .18.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .三、解答题19.已知函数.(1)求f (x )的周期和及其图象的对称中心;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,满足(2a ﹣c )cosB=bcosC ,求函数f (A )的取值范围.20.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点.(1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.21.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.22.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值; (Ⅲ)若,使得不等式成立,求实数的取值范围.23.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)24.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i ,求实数a ,b 的值.海原县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:设F1(﹣c,0),F2(c,0),则l的方程为x=﹣c,双曲线的渐近线方程为y=±x,所以A(﹣c,c)B(﹣c,﹣c)∵AB为直径的圆恰过点F2∴F1是这个圆的圆心∴AF1=F1F2=2c∴c=2c,解得b=2a∴离心率为==故选D.【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.2.【答案】B【解析】解:∵x(x﹣1)<2,∴x2﹣x﹣2<0,即(x﹣2)(x+1)<0,∴﹣1<x<2,即不等式的解集为{x|﹣1<x<2}.故选:B3.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题. 4. 【答案】C【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .5. 【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10a a ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.6. 【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 7. 【答案】 A【解析】解:由于椭圆的标准方程为:则c 2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.8.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.9.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.10.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.11.【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点, 即方程f (x )=k 有两个不同的实根, 故选:A12.【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得x =,即菱形1BED F 44=,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法.二、填空题13.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值14.【答案】 【解析】15.【答案】①④.【解析】解:由所给的正方体知,△PAC在该正方体上下面上的射影是①,△PAC在该正方体左右面上的射影是④,△PAC在该正方体前后面上的射影是④故答案为:①④16.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.17.【答案】300.【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.18.【答案】4.【解析】解:∵f′(x)=3cosx+4sinx,∴f ′()=3cos +4sin =4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.三、解答题19.【答案】【解析】解:(1)由,∴f (x )的周期为4π.由,故f (x )图象的对称中心为.(2)由(2a ﹣c )cosB=bcosC ,得(2sinA ﹣sinC )cosB=sinBcosC ,∴2sinAcosB ﹣cosBsinC=sinBcosC ,∴2sinAcosB=sin (B+C ),∵A+B+C=π,∴sin (B+C )=sinA ,且sinA ≠0,∴.∴,故函数f (A )的取值范围是.20.【答案】(1)证明见解析;(2)18. 【解析】试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以4ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式.21.【答案】【解析】解:(1),令f'(x)>0,则;令f'(x)<0,则.∴f(x)在x=a时取得最大值,即①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞∴f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;②当,即a=1时,f(x)有1个零点;③当,即a>1时f(x)没有零点;(2)由得(0<x1<x2),=,令,设,t∈(0,1)且h(1)=0则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0即,又,∴f'(x0)=<0.【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.22.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).【解析】试题分析:(Ⅰ)利用导函数研究函数的切线,得到关于实数a,b的方程组,求解方程组可得;(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:(Ⅰ)∵,∴,由题设得,∴;(Ⅱ)由(Ⅰ)得,∴,∴,∴函数在是增函数,∵,,且函数图像在上不间断,∴,使得)∴函数存在极小值;(Ⅲ),使得不等式成立,即,使得不等式成立……(*),令,,则,∴结合(Ⅱ)得,其中,满足,即,∴,,∴,∴,,∴在内单调递增,∴,结合(*)有,即实数的取值范围为.23.【答案】【解析】解:证明:2()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴21122211λλλλ⎧-=⎪⎨-=⎪⎩. ∵12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)11120a a λλ-≠-,120λλ≠,∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列. (4分)(Ⅱ)证明:设12m =,则()f m m =. 由112a =及111n na a +=+得223a =,335a =,∴130a a m <<<.∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *∈时,2121222n n n n a a m a a -++<<<<.①当1n =时,命题成立. (9分)②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)由①②知,对一切n N *∈命题成立,即存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.24.【答案】【解析】解:(1).∴=1﹣i .(2)a (1+i )+b=1﹣i ,即a+b+ai=1﹣i ,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.。
海原县民族中学2018-2019学年上学期高二数学12月月考试题含解析
海原县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 2. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种3. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=( )A .2或0B .0C .﹣2或0D .﹣2或24. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .35. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .46. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 7. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .28. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()9. 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )(A ) 8( B ) 4 (C ) 83 (D )4310.下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x xx = D 、44550x x -=11.已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .12.函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π二、填空题13.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.14.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅= ,若12PF F ∆______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.15.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.已知f (x )=,则f[f (0)]= .18.若等比数列{a n }的前n 项和为S n ,且,则= .三、解答题19.全集U=R ,若集合A={x|3≤x <10},B={x|2<x ≤7}, (1)求A ∪B ,(∁U A )∩(∁U B );(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.20.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。
海兴县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
海兴县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( )A .8B .5C .9D .272. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是()A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到3. 双曲线=1(m ∈Z )的离心率为()A .B .2C .D .34. 如图所示,阴影部分表示的集合是()A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )5. 以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.6. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为()[]90,100A .20,2B .24,4C .25,2D .25,47. 某几何体的三视图如图所示,该几何体的体积是()A .B .C .D .8. 已知函数,则( )1)1(')(2++=x x f x f =⎰dx x f 1)(A . B .C .D .67-676565-【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.9. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .10.若复数满足(为虚数单位),则复数的虚部为( )71i i z+=A .1 B . C .D .1-i-11.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则()A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一12.四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3B .C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.二、填空题13.已知f (x )=x (e x +a e -x )为偶函数,则a =________.14.已知,,与的夹角为,则.||2=a ||1=b 2-a 13b 3π|2|+=a b15.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .16.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.17.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .18.若直线:与直线:垂直,则.012=--ay x 2l 02=+y x =a 三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设,函数.1a >()()21xf x x ea =+-(1)证明在上仅有一个零点;((2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤20.(本小题满分12分)已知直三棱柱中,上底面是斜边为的直角三角形,分别是的中点.111C B A ABC -AC F E 、11AC B A 、(1)求证:平面; //EF ABC (2)求证:平面平面.⊥AEF B B AA 1121.(本小题满分12分)如图,多面体中,四边形ABCD 为菱形,且,,,ABCDEF 60DAB∠= //EF AC 2AD =.EA ED EF ===(1)求证:;AD BE ⊥(2)若,求三棱锥的体积.BE =-F BCD22.(本小题满分12分)椭圆C :+=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,Bx 2a 2y 2b 2是C 的长轴上的两个顶点,已知|PF |=1,k PA ·k PB =-.12(1)求椭圆C 的方程;(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.23.(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变C 2sin cos 10ρθρθ+=1cos :sin x C y θθ=⎧⎨=⎩α换后得到曲线.32x xy y'=⎧⎨'=⎩2C (1)求曲线的参数方程;2C (2)若点的在曲线上运动,试求出到曲线的距离的最小值.M 2C M C24.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.y Q 22,PF QO O =(1)求椭圆的方程;C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.12,k k 122k k +=AB海兴县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log2(x2+1)=2,得x2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.2.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.3.【答案】B【解析】解:由题意,m2﹣4<0且m≠0,∵m∈Z,∴m=1∵双曲线的方程是y2﹣x2=1∴a2=1,b2=3,∴c2=a2+b2=4∴a=1,c=2,∴离心率为e==2.故选:B.【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b2.4.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,∴对应的集合表示为A∩∁U B.故选:A.5.【答案】D6.【答案】C【解析】考点:茎叶图,频率分布直方图.7.【答案】A【解析】解:几何体如图所示,则V=,故选:A .【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键. 8. 【答案】B9. 【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.10.【答案】A 【解析】试题分析:,因为复数满足,所以,所以复数的42731,1i i i i i ==-∴==- 71i i z+=()1,1i i i i z i z +=-∴=-A 虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算.11.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C .【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键. 12.【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA A OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为O 12PC ==可得,解得,故选B .34243316ππ=72PA =二、填空题13.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立,即(-x )(e -x +a e x )=x (e x +a e -x ),∴a (e x +e -x )=-(e x +e -x ),∴a =-1.答案:-114.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.与的夹角为,,a b 23π1⋅=-a b∴.|2|+=a b 2==15.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.16.【答案】64 9【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.17.【答案】 38 .【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=2×3+4×8=6+32=32,故答案为:3818.【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.()02-12=⨯+⨯a 1=a 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,,,当两直线垂直时,需满足,当两直线平行时,0:1111=++c y b x a l 0:2222=++c y b x a l 02121=+b b a a 需满足且,或是,当直线是斜截式直线方程时,两直线垂直01221=-b a b a 1221c b c b ≠212121c cb b a a ≠=,两直线平行时,,.1121-=k k 21k k =21b b ≠三、解答题19.【答案】(1)在上有且只有一个零点(2)证明见解析f x ()∞+∞(﹣,)【解析】试题分析:试题解析:(1),,()()()22211xx f x ex x e x +='=++()0f x ∴'≥在上为增函数.()()21xf x x ea ∴=+-(),-∞+∞,,1a > ()010f a ∴=-<又,()1fa a =-=-,即,0,1>∴>0f>由零点存在性定理可知,在上为增函数,且,()f x (),-∞+∞()00f f⋅<在上仅有一个零点。
海原县高中2018-2019学年高二上学期第二次月考试卷数学
海原县高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.已知集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{x|x≥0} B.{x|x≤1} C.{﹣1,0,1} D.R2.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.3.如图所示,在三棱锥P ABC-的六条棱所在的直线中,异面直线共有()111]A.2对B.3对C.4对D.6对4.若函数y=|x|(1﹣x)在区间A上是增函数,那么区间A最大为()A.(﹣∞,0)B.C.[0,+∞)D.5.命题“若α=,则tan α=1”的逆否命题是()A.若α≠,则tan α≠1 B.若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=6. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形7. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:18. ()0﹣(1﹣0.5﹣2)÷的值为( )A .﹣B .C .D .9. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β10.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .11.若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.12.函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)二、填空题13.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .14.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .15.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.16.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .17.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题: ①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)18.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.三、解答题19.在平面直角坐标系xOy 中,点P (x ,y)满足=3,其中=(2x+3,y),=(2x ﹣﹣3,3y ).(1)求点P 的轨迹方程;(2)过点F (0,1)的直线l 交点P 的轨迹于A ,B 两点,若|AB|=,求直线l 的方程.20.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.21.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长22.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. (Ⅰ)求a 的值;(Ⅱ)若恒成立,求k 的取值范围.23.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).24.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 32=,且0=⋅. (1)求曲线C 的方程;(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为23,求AOB 面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.海原县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:由A={x|x ≥0},且A ∩B=B ,所以B ⊆A .A 、{x|x ≥0}={x|x ≥0}=A ,故本选项正确;B 、{x|x ≤1,x ∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C 、若B={﹣1,0,1},则A ∩B={0,1}≠B ,故本选项错误;D 、给出的集合是R ,不合题意,故本选项错误.故选:A .【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.2. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 3. 【答案】B 【解析】试题分析:三棱锥P ABC -中,则PA 与BC 、PC 与AB 、PB 与AC 都是异面直线,所以共有三对,故选B .考点:异面直线的判定. 4. 【答案】B【解析】解:y=|x|(1﹣x )=,再结合二次函数图象可知函数y=|x|(1﹣x )的单调递增区间是:. 故选:B .5.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C.6.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:D.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.7.【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则πr2=×4πR2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为:=1:3.故选:D.8.【答案】D【解析】解:原式=1﹣(1﹣)÷=1﹣(1﹣)÷=1﹣(1﹣4)×=1﹣(﹣3)×=1+=.故选:D.【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.9.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.10.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C.【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.11.【答案】A12.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.二、填空题13.【答案】300.【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.14.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.15.【答案】2【解析】16.【答案】.【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.17.【答案】①③⑤【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.18.【答案】D【解析】三、解答题19.【答案】【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,可化为4x2+3y2=12,即:;∴点P的轨迹方程为;(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,∴x1+x2=,x1x2=,∴|AB|=•|x1﹣x2|==,∴k=±,∴直线l的方程y=±x+1.【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.20.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.21.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.22.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2 ∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. ∴当a ≤0时,不合题意;当a >0时,,∴a=2;(Ⅱ)记,∴h (x )=∴|h (x )|≤1∵恒成立,∴k ≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.23.【答案】【解析】解:(1)∵f (5)=3,∴,即log a 27=3 解锝:a=3…(2)由(1)得函数,则=… (3)不等式f (x )<f (x+2),即为化简不等式得…∵函数y=log 3x 在(0,+∞)上为增函数,且的定义域为R .∴x 2+2<x 2+4x+6…即4x >﹣4, 解得x >﹣1,所以不等式的解集为:(﹣1,+∞)…24.【答案】【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x MN ME -=-==,∴),31(y x E 则)1,(-=y x QM ,)1,31(+=y x …………2分∵0=⋅PE QM ,∴0)1)(1(31=+-+⋅y y x x ,即1322=+y x ∴曲线C 的方程为1322=+y x …………4分。
海原县一中2018-2019学年高二上学期第二次月考试卷数学
海原县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259 B .2516 C .6116 D .31152. 函数y=2|x|的图象是( )A .B .C .D .3. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .4. 已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( )A .B .2C .D .5. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .6. (2011辽宁)设sin (+θ)=,则sin2θ=( )A .﹣B .﹣C .D .7. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 8. 若,则下列不等式一定成立的是( ) A . B .C .D .9. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±=10.设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-11.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( ) A.B.C. D.12.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3D .﹣1或﹣3二、填空题13.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .14.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .15.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.16.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .17.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .18.若直线y ﹣kx ﹣1=0(k ∈R)与椭圆恒有公共点,则m 的取值范围是 .三、解答题19.设函数f (x )=lnx ﹣ax+﹣1.(Ⅰ)当a=1时,求曲线f (x )在x=1处的切线方程;(Ⅱ)当a=时,求函数f (x )的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数g (x )=x 2﹣2bx ﹣,若对于∀x 1∈[1,2],∃x 2∈[0,1],使f (x 1)≥g (x 2)成立,求实数b 的取值范围.20.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.21.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.22.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.23.已知命题p :∀x ∈[2,4],x 2﹣2x ﹣2a ≤0恒成立,命题q :f (x )=x 2﹣ax+1在区间上是增函数.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.24.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.海原县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由2123n a a a a n =,则21231(1)n a a a a n -=-,两式作商,可得22(1)n n a n =-,所以22352235612416a a +=+=,故选C .考点:数列的通项公式.2. 【答案】B【解析】解:∵f (﹣x )=2|﹣x|=2|x|=f (x )∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C 错误.且当x=0时,y=1;x=1时,y=2,故A ,D 错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.3. 【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 4. 【答案】D【解析】解:设等比数列{a n }的公比为q ,则q >0,∵a 4•a 8=2a 52,∴a 62=2a 52, ∴q 2=2,∴q=,∵a 2=1,∴a 1==.故选:D5. 【答案】C【解析】函数f (x )=sin (2x+θ)(﹣<θ<)向右平移φ个单位,得到g (x )=sin (2x+θ﹣2φ),因为两个函数都经过P (0,),所以sin θ=,又因为﹣<θ<,所以θ=,所以g (x )=sin (2x+﹣2φ),sin (﹣2φ)=,所以﹣2φ=2k π+,k ∈Z ,此时φ=k π,k ∈Z ,或﹣2φ=2k π+,k ∈Z ,此时φ=k π﹣,k ∈Z ,故选:C .【点评】本题考查的知识点是函数y=Asin (ωx+φ)的图象变换,三角函数求值,难度中档6. 【答案】A【解析】解:由sin (+θ)=sincos θ+cossin θ=(sin θ+cos θ)=,两边平方得:1+2sin θcos θ=,即2sin θcos θ=﹣,则sin2θ=2sin θcos θ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.7. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.8. 【答案】D 【解析】因为,有可能为负值,所以排除A ,C ,因为函数为减函数且,所以,排除B ,故选D答案:D9.【答案】A【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|=x0+p2,得5=x0+2.∴x0=3,则y20=24,所以M3,26,又点M在双曲线上,∴32a2-24=1,则a 2=925,a=35,因此渐近线方程为5x±3y=0.10.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 11.【答案】C【解析】解:如图所示,△BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是.故选C.【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.12.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.二、填空题13.【答案】(﹣,).【解析】解:∵,,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A (x 1,y 1),B (x 2,y 2).及点C 分线段AB 所成的比,求分点C 的坐标,可将A ,B 两点的坐标代入定比分点坐标公式:坐标公式进行求解.14.【答案】 16 .【解析】解:∵等比数列{a n }的前n 项积为Πn ,∴Π8=a 1•a 2a 3•a 4•a 5a 6•a 7•a 8=(a 4•a 5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.15.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(. 16.【答案】 1 .【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.17.【答案】≤a <1或a ≥2 .【解析】解:①当a=1时,f (x )=,当x <1时,f (x )=2x﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x+2)=4(x ﹣)2﹣1,当1<x <时,函数单调递减,当x >时,函数单调递增,故当x=时,f (x )min =f ()=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,所以a >0,并且当x=1时,h (1)=2﹣a >0,所以0<a <2,而函数g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以2a ≥1,且a <1,所以≤a <1,若函数h (x )=2x﹣a 在x <1时,与x 轴没有交点,则函数g (x )=4(x ﹣a )(x ﹣2a )有两个交点,当a ≤0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1)=2﹣a ≤0时,即a ≥2时,g (x )的两个交点满足x 1=a ,x 2=2a ,都是满足题意的,综上所述a 的取值范围是≤a <1,或a ≥2.18.【答案】 [1,5)∪(5,+∞) .【解析】解:整理直线方程得y ﹣1=kx ,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y 轴上,而该椭圆关于原点对称,故只需要令x=0有 5y 2=5m得到y 2=m要让点(0.1)在椭圆内或者椭圆上,则y ≥1即是y 2≥1得到m ≥1∵椭圆方程中,m ≠5m 的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.三、解答题19.【答案】【解析】解:函数f(x)的定义域为(0,+∞),(2分)(Ⅰ)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,,∴f′(1)=0,∴f(x)在x=1处的切线方程为y=﹣2(5分)(Ⅱ)=(6分)令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,∴函数f(x)在[1,2]上的最小值为f(1)=(9分)若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值(*)(10分)又,x∈[0,1]①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾②当0≤b≤1时,,由及0≤b≤1得,③当b>1时,g(x)在[0,1]上为减函数,,此时b>1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.20.【答案】【解析】解:(1)由已知得:f ′(x )=.要使函数f (x )在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a >0可知,只需a ,x ∈[1,+∞)即可.易知,此时=1,所以只需a ≥1即可.(2)结合(1),令f ′(x )==0得.当a ≥1时,由(1)知,函数f (x )在[1,e]上递增,所以f (x )min =f (1)=0;当时,,此时在[1,)上f ′(x )<0,在上f ′(x )>0,所以此时f (x )在上递减,在上递增,所以f (x )min =f ()=1﹣lna ﹣;当时,,故此时f ′(x )<0在[1,e]上恒成立,所以f (x )在[1,e]上递减,所以f (x )min =f (e )=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.21.【答案】(1)详见解析;(2. 【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分 ∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分∴DE BC ⊥,DE VC ⊥,又∵VC BC C =,∴DE VBC ⊥面;…………7分(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得1133BCEBCD DE S d S ∆∆⨯⨯=⨯⨯,解得2d =,…………12分 设BE 与平面BCD 所成角为θ,∵8BC ==,BE =sin 146d BE θ==.…………15分 22.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请23.【答案】【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).24.【答案】【解析】解:(1)∵a>0,是R上的偶函数.∴f(﹣x)=f(x),即+=,∴+a•2x=+,2x(a﹣)﹣(a﹣)=0,∴(a﹣)(2x+)=0,∵2x+>0,a>0,∴a﹣=0,解得a=1,或a=﹣1(舍去),∴a=1;(2)证明:由(1)可知,∴∵x>0,∴22x>1,∴f'(x)>0,∴f(x)在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海原县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是()A .B .C .D .2. ,则( )4213532,4,25a b c ===A . B .C .D .b a c <<a b c <<b c a <<c a b<<3. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .4. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为()A1B1-C. 1- D1-5. 函数f (x )=3x +x 的零点所在的一个区间是( )A .(﹣3,﹣2)B .(﹣2,﹣1)C .(﹣1,0)D .(0,1)6. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A7. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为()A .1B .2C .3D .48. 是平面内不共线的两向量,已知,,若三点共线,则的值是12,e e 12AB e ke =- 123CD e e =-,,A B D( )A .1B .2C .-1D .-29. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .10.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )A .0<a ≤B .0≤a ≤C .0<a <D .a >11.已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2-12.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =()A .-2或-1B .1或2C.1±或2D .2±或-1二、填空题13.已知,则不等式的解集为________.,0()1,0x e x f x x ì³ï=í<ïî2(2)()f x f x ->【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.14.设函数f (x )=若f[f (a )],则a 的取值范围是 .15.在复平面内,复数与对应的点关于虚轴对称,且,则____.16.已知α为钝角,sin (+α)=,则sin (﹣α)= .17.设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方01,02,…,19,206法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623818.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 三、解答题19.(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.P ABCD -ABCD PA ⊥ABCD E PD (1)证明:平面;//PB AEC(2)设,的体积,求到平面的距离.1AP =AD =P ABD -V =A PBC111]20.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC =.(1)若22BD DC ==,求AD ;(2)若AB AD =,求角B .21.已知椭圆:(),点在椭圆上,且椭圆的离心率为.C 22221x y a b +=0a b >>3(1,)2C C 12(1)求椭圆的方程;C (2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别C F C P Q A C PA QA 交直线:于、两点,求证:.4x =M N FM FN ⊥22.已知椭圆C 1: +x 2=1(a >1)与抛物线C :x 2=4y 有相同焦点F 1.(Ⅰ)求椭圆C 1的标准方程;(Ⅱ)已知直线l 1过椭圆C 1的另一焦点F 2,且与抛物线C 2相切于第一象限的点A ,设平行l 1的直线l 交椭圆C 1于B ,C 两点,当△OBC 面积最大时,求直线l 的方程. 23.(本题满分12分)已知向量,,,记函数(sin cos ))a x x x =+ )cos sin ,(cos x x x b -=R x ∈.b a x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在中,角的对边分别为且满足,求的取值范围.ABC ∆C B A ,,c b a ,,C a c b cos 22=-)(B f 【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.24.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.海原县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】B【解析】解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则B (2,0,0),E (0,0,1),A (0,0,0),C (2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE 与AC 所成角为θ,则cos θ===.故选:B .2. 【答案】A 【解析】试题分析:,由于为增函数,所以.应为为增函数,所以,故2223534,4,5a b c ===4xy =a b >23y x =c a >.b ac <<考点:比较大小.3. 【答案】D 【解析】解:双曲线(a >0,b >0)的渐近线方程为y=±x联立方程组,解得A (,),B (,﹣),设直线x=与x 轴交于点D∵F 为双曲线的右焦点,∴F (C ,0)∵△ABF 为钝角三角形,且AF=BF ,∴∠AFB >90°,∴∠AFD >45°,即DF <DA∴c ﹣<,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2<2,e <又∵e >1∴离心率的取值范围是1<e <故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式. 4. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值.5. 【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f (﹣1)f (0)<0,可知:函数f (x )的零点所在的区间是(﹣1,0).故选:C .【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.6.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.7.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.8.【答案】B【解析】考点:向量共线定理.9.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.10.【答案】B【解析】解:当a=0时,f (x )=﹣2x+2,符合题意当a ≠0时,要使函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a ≤综上所述0≤a ≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a 的范围的问题,以及分类讨论的数学思想,属于基础题. 11.【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =.考点:1、复合函数;2、导数的几何意义.12.【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质.二、填空题13.【答案】(-【解析】函数在递增,当时,,解得;当时,,()f x [0,)+¥0x <220x ->0x -<<0x ³22x x ->解得,综上所述,不等式的解集为.01x £<2(2)()f x f x ->(-14.【答案】 或a=1 .【解析】解:当时,.∵,由,解得:,所以;当,f(a)=2(1﹣a),∵0≤2(1﹣a)≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a)]=4a﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.15.【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-216.【答案】 ﹣ .【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.17.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.18.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).三、解答题19.【答案】(1)证明见解析;(2【解析】试题解析:(1)设和交于点,连接,因为为矩形,所以为的中点,又为的BD AC O EO ABCD O BD E PD 中点,所以,且平面,平面,所以平面.//EO PB EO ⊂AEC PB ⊄AEC //PB AEC(2),由,可得,作交于.由题设知16V PA AB AD AB ==A A V =32AB =AH PB ⊥PB H BC ⊥平面,所以,故平面,又,所以到平面的距离PAB BC AH ⊥AH ⊥PBC PA AB AH PB==A A PBC考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.20.【答案】(1)2=AD ;(2)3π=B .【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.21.【答案】(1) ;(2)证明见解析.22143x y +=【解析】试题分析: (1)由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;c b a ,,b a ,(2)可设直线的方程,联立椭圆方程,由根与系数的关系得,,得P Q 122634m y y m -+=+122934y y m -=+直线,直线,求得点 、坐标,利用得.PA l QA l M N 0=⋅FN FM FM FN ⊥试题解析: (1)由题意得解得22222191,41,2,a b c a a b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩2,a b =⎧⎪⎨=⎪⎩∴椭圆的方程为.C22143x y +=又,,111x my =+221x my =+∴,,则,,112(4,)1y M my -222(4,)1y N my -112(3,1y FM my =- 222(3,1y FN my =- 1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++ 22222363499906913434m m m m m -+=+=-=---+++∴FM FN⊥考点:椭圆的性质;向量垂直的充要条件.22.【答案】【解析】解:(Ⅰ)∵抛物线x2=4y的焦点为F1(0,1),∴c=1,又b2=1,∴∴椭圆方程为:+x2=1.…(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,设直线l1:y=kx﹣1由消去y并化简得x2﹣4kx+4=0∵直线l1与抛物线C2相切于点A.∴△=(﹣4k)2﹣4×4=0,得k=±1.…∵切点A在第一象限.∴k=1…∵l∥l1∴设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l 的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.23.【答案】【解析】(1)由题意知,)cos )(sin cos (sin 23cos sin )(x x x x x x x f +-+=⋅=……………………………………3分32sin(2cos 232sin 21π-=-=x x x 令,,则可得,.223222πππππ+≤-≤-k x k Z k ∈12512ππππ+≤≤-k x k Z k ∈∴的单调递增区间为().…………………………5分)(x f ]125,12[ππππ+-k k Z k ∈24.【答案】【解析】【分析】(1)因为直线l 过点A (4,0),故可以设出直线l 的点斜式方程,又由直线被圆C 1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 的方程.(2)与(1)相同,我们可以设出过P 点的直线l 1与l 2的点斜式方程,由于两直线斜率为1,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,故我们可以得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 1与l 2的方程.【解答】解:(1)由于直线x=4与圆C 1不相交;∴直线l 的斜率存在,设l 方程为:y=k (x ﹣4)(1分)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1(2分)d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)(6分)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)(12分)。