(人教A必修五):第三章不等式

合集下载

高中新课程数学(新课标人教A版)必修五《三不等式》归纳整合

高中新课程数学(新课标人教A版)必修五《三不等式》归纳整合

网络构建
专题归纳
解读高考
高考真题
3.二元一次不等式(组)表示的平面区域 (1)二元一次不等式(组)的几何意义 二元一次不等式(组)的几何意义是二元一次不等式(组)表示 的平面区域.一般地,二元一次不等式Ax+By+C>0在平面 直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的 平面区域.区域不包括边界时,边界直线(Ax+By+C=0)应 画成虚线. (2)二元一次不等式表示的平面区域的判定 对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+ By+C的符号相同,所以只需在此直线的某一侧取一个特殊 点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表 示直线哪一侧的平面区域,可简记为“直线定界,特殊点定 域”.特别地,当C≠0时,常取原点作为特殊点.
网络构建
专题归纳
解读高考
高考真题
【例3】 f(x)=ax2+ax-1在R上满足f(x)<0,则a的取值范围是 ________. 解析 (1)当a=0时,f(x)<0恒成立,故a=0符合题意;
(2)当 a≠0 时,由题意得:aΔ<=0a2+4a<0 ⇔a-<40<a<0 ⇔
-4<a<0,综上所述:-4<a≤0. 答案 (-4,0]
(1)当Δ<0时,-1<a<2,M=∅⊆[1,4];
(2)当Δ=0时,a=-1或2;
当a=-1时,M={-1}⃘[1,4];
当a=2时,M={2}⊆[1,4].
(3)当Δ>0时,a<-1或a>2.
设方程f(x)=0的两根x1,x2,且x1<x2, 那么M=[x1,x2],M⊆[1,4]⇔1≤x1≤x2≤4

人教版数学高二必修五第三章《不等式》知识总结

人教版数学高二必修五第三章《不等式》知识总结

一、本章概述不等关系是中学数学中最基本、最广泛、最普遍的关系.不等关系起源于实数的性质,产生了实数的大小关系、简单不等式、不等式的基本性质,如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、基本不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法.不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,以及三角、数列、立体几何、解析几何中的最大值、最小值问题,这些问题无一不与不等式有着密切的联系.不等式还可以解决现实世界中反映出来的数学问题,许多问题最终归结为不等式的求解或证明.解决这类综合问题的一般思维方法是:引参,建立不等关系,解某一主元的不等式(实为分离变元),适时活用基本不等式.其中建立不等关系的常用途径是:①根据题设条件;②判别式法;③基本不等式法;④依据某些变量(如sin x,cos x)的有界性等.二、主干知识1.不等式与不等关系.不等式的性质刻画了在一定条件下两个量的不等关系.不等式的性质包括“单向性”和“双向性”.单向性主要用于证明不等式,双向性是解不等式的基础.因为解不等式要求的是同解变形.要正确理解不等式的性质,必须先弄清每一性质的条件和结论、注意条件和结论的放宽和加强,以及条件与结论之间的相互联系.双向性主要有:(1)不等式的基本性质:⎩⎪⎨⎪⎧a >b ⇔a -b >0,a =b ⇔a -b =0,a <b ⇔a -b <0,这是比较两个实数的大小的依据;(2)a >b ⇔b <a ;(3)a >b ⇔a +c >b +c .单向性主要有:(1)a >b ,b >c ⇒a >c ;(2)a >b ,c >d ⇒a +c >b +d ;(3)a >b ,c >0(c <0)⇒ac >bc (ac <bc );(4)a >b >0,c >d >0⇒ac >bd ;(5)a >b >0,0<c <d ⇒a c >b d; (6)a >b >0,m ∈N *⇒a m >b m ;(7)a >b >0,n ∈N *,n >1⇒n a >n b .特别提醒:(1)同向不等式可以相加,异向不等式可以相减.即:若a >b ,c >d ,则a +c >b +d ;若a >b ,c <d ,则a -c >b -d .但异向不等式不可以相加,同向不等式不可以相减.(2)左右同正不等式,同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.即:若a >b >0,c >d >0,则ac >bd ;若a >b >0,0<c <d ,则a c >b d. (3)左右同正不等式,两边可以同时乘方或开方.即:若a >b >0,n ∈N *,n >1,则a n >b n 或n a >n b .(4)若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b. 如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.2.一元二次不等式及其解法.解一元二次不等式常用数形结合法,基本步骤如下:①将一元二次不等式化成ax 2+bx +c >0的形式;②计算判别式并求出相应的一元二次方程的实数解;③画出相应的二次函数的图象;④根据图象和不等式的方向写出一元二次不等式的解集.设相应二次函数的图象开口向上,并与x 轴相交,则有口诀:大于取两边,小于取中间.解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.要注意对字母参数的讨论,如果遇到下述情况则一般需要讨论:(1)在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析Δ),比较两个根的大小,设根为x 1,x 2,要分x 1>x 2、x 1=x 2、x 1<x 2讨论.(2)不等式两端乘或除一个含参数的式子时,则需讨论这个式子的正负.(3)求解过程中,需用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.注意解完之后要写上:“综上,原不等式的解集是…”.若按参数讨论,最后应按参数取值分别说明其解集;若按未知数讨论,最后应求并集.一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解集:设相应的一元二次方程ax2+bx+c=0(a>0)的两根为x1、x2且x1≤x2,Δ=b2-4ac,则不等式的解的各种情况如下表所示:特别提醒:(1)解题中要充分利用一元二次不等式的解集是实数集R和空集∅的几何意义,准确把握一元二次不等式的解集与相应一元二次方程的根及二次函数图象之间的内在联系.(2)解不等式的关键在于保证变形转化的等价性.简单分式不等式可化为整式不等式求解:先通过移项、通分等变形手段将原不等式化为右边为0的形式,然后通过符号法则转化为整式不等式求解.转化为求不等式组的解时,应注意区别“且”、“或”,涉及最后几个不等式的解集是“交”,还是“并”.注意:不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(3)在解决实际问题时,先要从实际问题中抽象出数学模型,并寻找出该数学模型中已知量与未知量,再建立数学关系式,然后用适当的方法解决问题.(4)解含参数的不等式是高中数学中的一类较为重要的题型,解决这类问题的难点在于对参数进行恰当分类.分类相当于增加了题设条件,便于将问题分而治之.在解题过程中,经常会出现分类难以入手或者分类不完全的现象.强化分类意识,选择恰当的解题切入点,掌握一些基本的分类方法,善于借助直观图形找出分类的界值是解决此类问题的关键.3.二元一次不等式(组)与简单的线性规划问题.(1)确定二元一次不等式表示的区域的步骤:①在平面直角坐标系中作出直线Ax+By+C=0.②在直线的一侧任取一点P(x0,y0),当C≠0时,常把原点作为特殊点.③将P(x0,y0)代入Ax+By+C求值,若Ax0+By0+C>0,则包含点P 的半平面为不等式Ax+By+C>0所表示的平面区域,不包含点P的半平面为不等式Ax+By+C<0所表示的平面区域.也可把二元一次不等式改写成y>kx+b或y<kx+b的形式,前者表示直线的上方区域,后者表示直线的下方区域.(2)线性规划的有关概念:①满足关于x,y的一次不等式或一次方程的条件叫线性约束条件;②关于变量x,y的解析式叫目标函数,关于变量x,y一次式的目标函数叫线性目标函数;③求目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题;④满足线性约束条件的解(x,y)叫可行解,由所有可行解组成的集合叫做可行域;⑤使目标函数取得最大值或最小值的可行解叫做最优解.特别提醒:(1)画不等式Ax+By+C≥0所表示的平面区域时,区域包括边界线,因此,将边界直线画成实线;无等号时区域不包括边界线,用虚线表示不包含直线l.(2)Ax +By +C >0表示在直线Ax +By +C =0(B >0)的上方,Ax +By +C <0表示在直线Ax +By +C =0(B >0)的下方.(3)设点P (x 1,y 1),Q (x 2,y 2),直线l :Ax +By +C =0,若Ax 1+By 1+C 与Ax 2+By 2+C 同号,则P ,Q 在直线l 的同侧,异号则在直线l 的异侧.(4)在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范.4.基本不等式ab ≤a +b 2. (1)基本不等式:设a ,b 是任意两个正数,那么ab ≤a +b 2.当且仅当a =b 时,等号成立.①基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.②如果把a +b 2看做是正数a ,b 的等差中项,ab 看做是正数a ,b 的等比中项,那么基本不等式也可以叙述为:两个正数的等差中项不小于它们的等比中项. ③基本不等式ab ≤a +b 2几何意义是“半径不小于半弦”. (2)对基本不等式的理解:①基本不等式的左式为和结构,右式为积的形式,该不等式表明两正数a ,b 的和与两正数a ,b 的积之间的大小关系,运用该不等式可作和与积之间的不等变换.②“当且仅当a =b 时,等号成立”的含义:a.当a=b时等号成立的含意是:a=b⇒a+b2=ab;b.仅当a=b时等号成立的含意是:a+b2=ab⇒a=b;综合起来,其含意是:a+b2=ab⇔a=b.(3)设a,b∈R,不等式a2+b2≥2ab⇔ab≤a2+b22⇔ab≤⎝⎛⎭⎪⎫a+b22.(4)基本不等式的几种变式:设a>0,b>0,则a+1a≥2,ba+ab≥2,a2b≥2a-b.(5)常用的几个不等式:①a2+b22≥a+b2≥ab≥21a+1b(根据目标不等式左右的运算结构选用);②设a,b,c∈R,则a2+b2+c2≥ab+bc+ca(当且仅当a=b=c时,取等号);③真分数的性质:若a>b>0,m>0,则ba<b+ma+m(糖水的浓度问题).特别提醒:(1)用基本不等式求函数的最值时,要特别注意“一正、二定、三相等,和定积最大,积定和最小”这17字方针.常用的方法为:拆、凑、平方.(2)用基本不等式证明不等式时,应重视对所证不等式的分析和化归,应观察不等式左右两边的结构,注意识别轮换对称式,此时可先证一部分,其他同理可证,然后再累加或累乘.题型1 恒成立问题(1)若不等式f(x)>A 在区间D 上恒成立,则等价于在区间D 上f(x)min >A ;(2)若不等式f(x)<B 在区间D 上恒成立,则等价于在区间D 上f(x)max <B.例 1 设函数f(x)=x ,g(x) =x +a(a>0),若x ∈[1,4]时不等式⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1恒成立,求a 的取值范围. 解析:由⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1⇔-1≤f (x )-ag (x )f (x )≤1,得0≤ag (x )f (x )≤2, 即ax +a 2x≤2在x ∈[1,4]上恒成立,也就是ax +a 2≤2x 在x ∈[1,4]上恒成立.令t =x ,则t ≥0,且x =t 2,由此可得 at 2-2t +a 2≤0在t ∈[1,2]上恒成立,设g(t) = at 2-2t +a 2,则只需⎩⎨⎧g (1)≤0,g (2)≤0⇒⎩⎨⎧a -2+a 2≤0,4a -4+a 2≤0,解得 0<a ≤22-2,即满足题意的a 的取值范围是(0,22-2].题型2 能成立问题(1)若在区间D 上存在实数x 使不等式f(x)>A 成立,则等价于在区间D 上的f(x)max >A ;(2)若在区间D 上存在实数x 使不等式f(x)<B 成立,则等价于在区间D 上的f(x)min <B.例2 若存在x ∈R ,使不等式|x -4|+|x -3|<a 成立,求实数a 的取值范围.解析:设f (x )=|x -4|+|x -3|,依题意f (x )的最小值小于a .又f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1(等号成立的条件是3≤x ≤4).故f (x )的最小值为1,∴a >1.即实数a 的取值范围是(1,+∞).题型3 恰成立问题(1)若不等式f(x)>A 在区间D 上恰成立,则等价于不等式f(x)>A 的解集为D ;(2)若不等式f(x)<B 在区间D 上恰成立,则等价于不等式f(x)<B 的解集为D.例4 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,求实数a 的取值集合. 解析:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,∴Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件).再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,∴Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0.综上即知a =-8或a =0时,y min =1,故所求实数a 的取值集合是{-8,0}.题型4 利用基本不等式求最值基本不等式通常用来求最值问题:一般用a +b ≥2ab(a >0,b >0)解“定积求和,和最小”问题,用ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22求“定和求积,积最大”问题,一定要注意适用的范围和条件:“一正、二定、三相等”,特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,和对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用基本不等式解决实际问题.例5 已知0<x <2,求函数y =x(8-3x)的最大值.解析:∵0<x <2,∴0<3x <6,8-3x >0,∴y =x(8-3x)=13·3x ·(8-3x) ≤13⎝ ⎛⎭⎪⎪⎫3x +8-3x 22=163, 当且仅当3x =8-3x ,即x =43时,取等号, ∴当x =43时,y =x(8-3x)有最大值为163. 设函数f(x)=x +2x +1,x ∈[0,+∞). 求函数f(x)的最小值.解析:f(x)=x +2x +1=(x +1)+2x +1-1, ∵x ∈[0,+∞),∴x +1>0,2x +1>0,∴x +1+2x +1≥2 2.当且仅当x +1=2x +1, 即x =2-1时,f(x)取最小值.此时f(x)min =22-1.题型5 简单线性规划问题求目标函数在约束条件下的最优解,一般步骤为:一是寻求约束条件和目标函数,二是作出可行域,三是在可行域内求目标函数的最优解,特别注意目标函数z =ax +by +c 在直线ax +by =0平移过程中变化的规律和图中直线斜率关系.简单的线性规划应用题在现实生活中的广泛应用也是高考的热点.例6若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73B .37C .43D .34解析:不等式组表示的平面区域如图所示:由于直线y =kx +43过定点⎝⎛⎭⎪⎫0,43,因此只有直线过AB 中点时,直线y=kx +43能平分平面区域,因为A(1,1),B(0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73. 答案:A题型6 三个二次(二次函数、二次不等式、二次方程)问题一元二次方程、一元二次不等式与二次函数三者之间形成一个关系密切、互为关联、互为利用的知识体系.将二次函数看作主体,一元二次方程和一元二次不等式分别为二次函数的函数值为零(零点)和不为零的两种情况,一般讨论二次函数主要是将其通过一元二次方程和一元二次不等式来讨论,而讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象揭示解(集)的几何特征.例7 当m 为何值时,方程2x 2+4mx +3m -1=0有两个负根?解析:方程2x 2+4mx +3m -1=0有两个负根,则有⎩⎪⎨⎪⎧Δ=(4m )2-4×2×(3m -1)≥0,-b a =-4m 2=-2m <0,c a =3m -12>0,即⎩⎪⎨⎪⎧m ≤12或m ≥1,m >0,m >13. ∴当m ∈⎩⎨⎧⎭⎬⎫m|13<m ≤12或m ≥1时,原方程有两个负根. 题型7 不等式与函数的综合问题例8 定义在(-1,1)上的奇函数f(x)在整个定义域上是减函数,且f(1-a)+f(1-a 2)<0,求实数 a 的取值范围.解析:∵f(x)的定义域为(-1,1),∴⎩⎨⎧-1<1-a <1,-1<1-a 2<1,∴⎩⎨⎧0<a <2,-2<a <2且a ≠0,∴0<a <2,①原不等式变形为f(1-a)<-f(1-a 2).由于f(x)为奇函数,有-f(1-a 2)=f(a 2-1),∴f(1-a)<f(a 2-1).又f(x)在(-1,1)上是减函数,∴1-a >a 2-1,解得-2<a <1.②由①②可得0<a <1,∴a 的取值范围是(0,1).题型8 求分式函数的最值例9 求函数y =x 4+3x 2+3x 2+1的最小值. 解析:y =(x 4+2x 2+1)+(x 2+1)+1x 2+1=(x 2+1)+1x 2+1+1≥2(x 2+1)·1x 2+1+1=3,当且仅当x 2+1=1x 2+1,即x 2+1=1,即x =0时等号成立.题型9 数轴标根法(1)将不等式化为标准形式:一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积.(2)求出各因式为0的实数根,并在数轴上标出.(3)自最右端上方起,用曲线自右至左,依次由各根穿过数轴,遇奇次重根一次穿过,遇偶次重根穿而不过(奇过偶不过).(4)记数轴上方为正,下方为负,根据不等式的符号写出解集.例10解不等式(x+2)(x+1)(x-1)(x-2)≤0.分析:本题考查高次不等式的解法,应用等价转化的方法显得较繁琐,可利用数轴标根法来解.解析:设y=(x+2)(x+1)(x-1)(x-2),则y=0的根分别是-2,-1,1,2,将其分别标在数轴上,并画出示意图如下:∴不等式的解集是{x|-2≤x≤-1或1≤x≤2}.点评:利用数轴标根法解不等式,需注意:(1)要注意所标出的区间是否是方程根的取值范围,可取特殊值检验,以防不慎造成失误.(2)有些点是否要舍掉,要仔细检验.题型10变换主元法例11设f(x)=mx2-mx-6+m.(1)若对于m∈[-2,2],f(x)<0恒成立,求实数x的取值范围;(2)若对于x∈[1,3],f(x)<0恒成立,求实数m的取值范围;分析:根据题意,f(x)可看作是m 的一次函数,也可以看作是x 的二次函数来解.解析:(1)依题意,设g(m)=(x 2-x +1)m -6,则g(m)是关于m 的一次函数且一次项系数x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,∴g(m)在[-2,2]上递增. ∴欲使f(x)<0恒成立.需g(m)max =g(2)=2(x 2-x +1)-6<0,解得-1<x <2.∴实数x 取值范围是(-1,2).(2)方法一 ∵f(x)=m ⎝ ⎛⎭⎪⎫x -122+34m -6<0, 在x ∈[1,3]上恒成立.∴⎩⎨⎧m >0,f (x )max =f (3)=7m -6<0或⎩⎨⎧m =0,f (x )=-6<0或 ⎩⎨⎧m <0,f (x )max =f (1)=m -6<0.解得m <67. 方法二 要使f(x)=m(x 2-x +1)-6<0在[1,3]上恒成立,则有m <6x 2-x +1在x ∈[1,3]上恒成立. 而当x ∈[1,3]时,6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34≥69-3+1=67.∴6x2-x+1的最小值为67.∴m<67.点评:若给出m的取值范围,则看作是m的一次函数,若给出x的取值范围,则看作是x的二次函数.。

高中数学人教A版必修五第三章3.1.1不等式及其性质1教学设计

高中数学人教A版必修五第三章3.1.1不等式及其性质1教学设计

3.1.1 不等式及其性质1通过本节课的学习让学生从一系列的具体问题情境中感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用,这是学习本章的基础,也是不等关系在本章内容的地位与作用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较的过程,即能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,这是学习本章第三节的基础.在本节课的学习过程中还安排了一些简单的学生易于处理的问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望,这也是学生学习本章的情感基础.根据本节课教学内容,应用观察、抽象归纳、思考、交流、探究,得出数学模型,进行启发式教学并使用投影仪辅助.教学重点1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性;2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题;3.理解不等式或不等式组对于刻画不等关系的意义和价值. 教学难点1.用不等式或不等式组准确地表示不等关系;2.用不等式或不等式组解决简单的含有不等关系的实际问题.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.二、过程与方法1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的现实问题,激发学生的学习兴趣和积极性三、情感态度与价值观1.通过具体情境,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度;2.学习过程中,通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的简洁美,激发学生的学习兴趣.教学过程导入新课师日常生活中,同学们发现了哪些数量关系.你能举出一些例子吗?生实例1:某天的天气预报报道,最高气温32℃,最低气温26℃.生实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则x a<x b.(老师协助画出数轴草图)生实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.(学生迫不及待地说出这么多,说明课前的预习量很充分,学习数学的兴趣浓,此时老师应给以充分的肯定和表扬)推进新课师同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好.而且大家已经考虑到本节课的标题不等关系与不等式,所举的实例都是反映不等量关系,这将暗示我们这节课的效果将非常好.(此时,老师用投影仪给出课本上的两个实例)实例6:限时40 km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.[过程引导]师能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人来说必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?生可以用不等式或不等式组来表示.师什么是不等式呢?生用不等号将两个解析式连结起来所成的式子叫不等式.(老师给出一组不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.目的是让同学们回忆不等式的一些基本形式,并说明不等号“≤,≥”的含义,是或的关系.回忆了不等式的概念,不等式组学生自然而然就清楚了)师能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,通过对不等式数学模型的研究,反过来作用于我们的现实生活,这才是我们学习数学的最终目的.(此时,同学们已经迫不及待地想说出自己的观点.)[合作探究]生我们应该先像实例2那样用不等式或不等式组把上述实例中的不等量关系表示出来.师说得非常好,下面我们就把上述实例中的不等量关系用不等式或不等式组一一表示出来.那应该怎么样来表示呢?(学生轮流回答,老师将答案相应地写在实例后面)生上述实例中的不等量关系用不等式表示应该为32℃≤t≤26℃.生可以表示为x≥0.(此时,学生有疑问,老师及时点拨,可以画出图形.让学生板演)(老师顺便画出三角形草画)生|AC|+|BC|>|AB|(只需结合上述三角形草图).生|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.生|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.生如果用v表示速度,则v≤40 km/h.生f≥2.5%或p≥2.3%.(此时,一片安静,同学们在积极思考)生 这样表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示此实际问题中的不等量关系,即可以表示为⎩⎨⎧≥≥%.3.2%,5.2p f 生 也可表示为f ≥2.5%且p ≥2.3%. 师 同学们看这两位同学的观点是否正确?生 (齐答)大家齐声说,都可以.师 同学们的思考很严密,很好!应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达.课堂练习 教科书第83页练习1、2.(老师让学生轮流回答,学生回答很好.此时,同学们已真正进入了本节课的学习状态,老师再用投影仪给出课本上的三个问题.问题是数学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识)【问题1】 设点A 与平面α的距离为d,B 为平面α上的任意一点.[活动与探究]师 请同学们用不等式或不等式组来表示出此问题中的不等量关系.(此时,教室一片安静,同学们在积极思考,时间较长,老师应该及时点拨)[方法引导]师 前面我们借助图形来表示不等量关系,这个问题是否可以?(可以让学生板演,结合三角形草图来表达)过点A 作AC ⊥平面α于点C ,则d=|AC |≤|AB |.师 这位同学做得很好,我们在解决问题时应该贯穿数形结合的思想,以形助数,以数解形.师 请同学们继续来处理问题2.[合作探究]【问题2】 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?生 可设杂志的定价为x 元,则销售量就减少2.01.05.2⨯-x 万本. 师 那么销售量变为多少呢?如何表示?生 可以表示为)2.01.05.28(⨯--x 万本,则总收入为x x )2.01.05.28(⨯--万元.〔老师板书,即销售的总收入为不低于20万元的不等式表示为)2.01.05.28(⨯--x x ≥20〕师 是否有同学还有其他的解题思路?生 可设杂志的单价提高了0.1n 元,(n ∈N *),(下面有讨论的声音,有的同学存在疑问,此时老师应密切关注学生的思维状况)师为什么可以这样设?生我只考虑单价的增量.师很好,请继续讲.生那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.师这位同学回答得很好,表述得很准确.请同学们对两种解法作比较.(留下让学生思考的时间)师请同学们继续思考第三个问题.[合作探究]【问题3】某钢铁厂要把长度为4 000 mm的钢管截成500 mm 和600 mm两种,按照生产的要求,600 mm钢管的数量不能超过500 mm钢管的3倍.怎样写出满足上述所有不等关系的不等式?师假设截得500 mm的钢管x根,截得600 mm的钢管y根.根据题意,应当有什么样的不等量关系呢?生截得两种钢管的总长度不能超过4 000 mm.生截得600 mm钢管的数量不能超过500 mm钢管的3倍.生截得两种钢管的数量都不能为负.师上述的三个不等关系是“或”还是“且”的关系呢?生它们要同时满足条件,应该是且的关系.生 由实际问题的意义,还应有x,y ∈N. 师 这位同学回答得很好,思维很严密.那么我们该用怎样的不等式组来表示此问题中的不等关系呢?生 要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥≥≤+.,,0,0,3,40000600500N y x y x y x y x 师 这位同学回答很准确.通过上述三个问题的探究,同学们对如何用不等式或不等组把实际问题中所隐含的不等量关系表示出来,这一点掌握得很好.请同学们再完成下面这个练习.课堂练习 练习:若需在长为 4 000 mm 的圆钢上,截出长为698 mm 和518 mm 两种毛坯,问怎样写出满足上述所有不等关系的不等式组?分析:设截出长为698 mm 的毛坯x 个和截出长为518 mm 的毛坯y 个,把截取条件数学化地表示出来就是:⎪⎪⎩⎪⎪⎨⎧∈≥≥≤+.,,0,0,4000518698N y x y x y x (练习可让学生板演,老师结合学生具体完成情况作评析,特别应注意x ≥0,y ≥0,x,y ∈N )课堂小结师通过今天的学习,你学到了什么知识,有何体会?生我感到学习数学可以帮助我们解决生活中的实际问题.生数学就在我们的身边,与我们的生活联系非常紧密,我更加喜爱数学了.生本节课我们还进一步巩固了初中所学的二元一次不等式及二元一次不等式组,并且用它来解决现实生活中存在的大量不等量关系的实际问题.师我来补充一下,在用二元一次不等式及二元一次不等式组表示实际问题中的不等关系时,思维要严密、规范,并且要注意数形结合等思想方法的综合应用.(慢慢培养学生学会自己来归纳总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.进而培养学生的概括能力和语言表达能力)布置作业第84页习题3.1A组4、5.板书设计不等关系与不等式(一)实例方法引导方法归纳如何用不等式或不等式组表示实例剖析(知识方法应用)小结实际问题中不等量关系?示范解题备课资料一、备用习题1.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需要的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设x,y 分别为计划生产甲、乙两种混合肥料的车皮数,则⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,661518,104y x y x y x 2.某年夏天,我国遭受特大洪灾,灾区学生小李家中经济发生困难.为帮助小李解决开学费用问题,小李所在班级学生(小李除外)决定承担这笔费用.若每人承担12元人民币,则多余84元;若每人承担10元,则不够;若每人承担11元,又多出40元以上.问该班共有多少人?这笔开学费用共多少元?请用不等式或不等式组把此实例中的不等量关系表示出来,不必解答.分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <.3.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意,知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x 4.某企业生产A 、B 两种产品,A 产品的单位利润为60元,B 产品的单位利润为80元,两种产品都需要在加工车间和装配车间进行生产,每件A 产品在加工车间和装配车间各需经过0.8 h 和2.4 h ,每件B 产品在两个车间都需经过1.6 h ,在一定时期中,加工车间最大加工时间为240 h ,装配车间最大生产时间为288 h.请用不等式或不等式组把此实例中的不等量关系表示出来. 分析:设该企业分别生产A 产品x 件、B 产品y 件,则⎪⎪⎩⎪⎪⎨⎧∈≥≤+≤+.,0,,2886.14.2,2406.18.0Z y x y x y x y x 二、课外探究开放性问题 已知:不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥=+≥+,,,1,1,100,50N y x y x y x y x 你能举出符合此不等式组的实际问题吗?。

人教A版高中数学必修五 第三章 不等式.docx

人教A版高中数学必修五 第三章 不等式.docx

人教A 版必修5 第三章 不等式
3.2一元二次不等式及其解法
对于一元二次方程()20y ax bx c a =++≠,设2
4b ac ∆=-,填表格:
1.求不等式24410x x -+>的解集.
2.求不等式2230x x -+->的解集.
3.求解下列不等式的解集.
(1)23710x x -≤; (2)2
250x x -+-<; (3)2440x x -+-<; (4)2
0.250x x -+>; (5)223x x -+<-; (6)2
1231200x x -+>; 4.自变量x 取何值时,对应的函数值为正数.零.负数.
(1)2362y x x =-+; (2)2
25y x =-; (3)2610y x x =++;
(4)2
31212y x x =-+-; 5.求下列函数的定义域:
(1)y = (2)y =
6.①若关于x 的一元二次方程()210x m x m -+-=有两个不同的实数根,求m 的范围; ②若关于x 的方程有()210mx m x m -++=两个不同的实数根,求m 的范围;
7.某文具店购进一批钢笔,若按每支15的价格销售,每天可卖30支;若售价每提高1元,则销售量减少2支.为了使这批钢笔每天获得400元以上的销售收入,售价应该定为多少?
8.若不等式2
2180x bx --<的解集为()1.5,6-,求b。

人教A版高中数学必修5第三章不等式

人教A版高中数学必修5第三章不等式

精选资料精选资料精选资料精选资料3.5 二元一次不等式 (组)与简单的线性规划问题知识梳理1.平面地区的表示方法(1)当 B>0 时,Ax+By+C>0 表示直线 Ax+By+C=0上方的地区 ;Ax+By+C<0表示直线 Ax+By+C=0下方的地区 .当 B<0 时,Ax+By+C>0 -Ax-By-C<0,表示直线下方的地区 ;Ax+By+C<0 - Ax-By-C>0,表示直线上方的地区 .(2)已知 M(x1,y1),N(x2,y2),直线 l:Ax+By+C=0,①若(Ax1+By1+C) × (Ax2+By2+C)>0,则点M、N在直线l 的同侧;②若(Ax1+By1+C) × (Ax2+By2+C)<0,则点M、N在直线l 的异侧;2.线性规划(1)对于变量 x,y 的拘束条件,都是对于 x,y 的一次不等式,称其为线性拘束条件; z=f(x,y)是欲达到最值所波及的变量 x,y 的分析式,叫目标函数 . 当f(x,y)是对于 x,y 的一次函数分析式时, z=f(x,y)叫做线性目标函数 .(2)求线性目标函数在线性拘束条件下的最大值和最小值问题,统称为线性规划 .知足线性拘束条件的解( x,y)叫做可行解,由全部可行解构成的会合叫做可行域,使目标函数获得最大值或最小值的解叫做最优解 .知识导学能正确地画出给定的二元一次不等式(组)表示的平面地区是学习简单线性规划问题图解法的重要基础;理解线性规划及线性拘束条件、线性目标函数、可行解、可行域、最优解等观点是解决实质生活中简单的最优化问题的有效方法,在本节的学习过程中,要注意领会数形联合与化归转变的数学思想.疑难打破1.二元一次不等式表示的平面地区.分析:在平面直角坐标系中,已知直线l:Ax+By+C=0,坐标平面内的点 P(x 0,y0).如有 Ax0+By0+C=0,则点 P 在直线 lxx;如有 Ax0+By0+C>0 或许 Ax0+By0+C<0,则点 P 在直线 l 的某一侧 .即二元一次不等式Ax+By+C>0 和 Ax+By+C <0分别表示直线 l 双侧的平面地区 .往常把直线画成虚线以表示地区不包含界限直线 ,若画不等式 Ax+By+C≥0或 Ax+By+C≤0表示的平面地区时 ,此地区包含界限直线,则把界限直线画成实线 .2.利用线性规划解决实质问题的问题种类及步骤.分析:利用线性规划来进行优化设计 ,解决生活中的实质问题往常有以下几种种类 :第一类 :给定必定数目的人力、物力资源 ,分析如何合理利用这些资源 ,才能使收到的效益最大 ;第二类 :给定一项任务 ,分析如何安排 ,能使达成这项任务的人力、物力资源最小,还要依据条件求最优解 ,有时还要分析整数解 .解线性规划应用题的步骤以下:第一步 :列表 ,转变为线性规划问题 ;第二步 :设出有关变元 ,列出线性拘束条件对应的不等式(组),写出目标函数 ;第三步 :正确画出可行域 ,依据条件求出目标函数的最大值或最小值及对应的变元 ;第四步 :写出实质问题的答案 .最新精选资料。

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.

高中数学新人教A版必修5第三章 3.1 不等关系与不等式

高中数学新人教A版必修5第三章  3.1   不等关系与不等式

不等关系与不等式预习课本P72~74,思考并完成以下问题 (1)如何用不等式(组)来表示不等关系?(2)比较两数(或式)的大小有哪些常用的方法?(3)不等式的性质有哪几条?[新知初探]1.不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.2.比较两个实数a ,b 大小的依据3.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇒a +c >b +c ; 推论(同向可加性):⎭⎬⎫a >bc >d ⇒a +c >b +d ;(4)可乘性:⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc ; 推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd ;(5)正数乘方性:a >b >0⇒a n >b n (n ∈N *,n ≥1); (6)正数开方性:a >b >0⇒n a >nb (n ∈N *,n ≥2).[点睛] (1)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.(2)要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)不等式x ≥2的含义是指x 不小于2( )(2)若a <b 或a =b 之中有一个正确,则a ≤b 正确( ) (3)若a >b ,则ac >bc 一定成立( ) (4)若a +c >b +d ,则a >b ,c >d ( )解析:(1)正确.不等式x ≥2表示x >2或x =2,即x 不小于2,故此说法是正确的. (2)正确.不等式a ≤b 表示a <b 或a =b .故若a <b 或a =b 中有一个正确,则a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式两端同乘以一个正数时,不等号方向不变,因此由a >b ,则ac >bc 不一定成立,故此说法是错误的.(4)错误.取a =4,c =5,b =6,d =2,满足a +c >b +d ,但不满足a >b ,故此说法错误.答案:(1)√ (2)√ (3)× (4)×2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b解析:选C 法一:∵A 、B 、C 、D 四个选项中,每个选项都是唯一确定的答案,∴可用特殊值法.令a =2,b =-1,则有2>-(-1)>-1>-2, 即a >-b >b >-a .法二:∵a +b >0,b <0,∴a >-b >0,-a <b <0, ∴a >-b >0>b >-a ,即a >-b >b >-a .3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2bD.b a <a b解析:选C 因为a <b ,故b -a >0, 所以1a 2b -1ab 2=b -a a 2b 2>0,故1a 2b >1ab 2. 4.当m >1时,m 3与m 2-m +1的大小关系为________. 解析:∵m 3-(m 2-m +1)=m 3-m 2+m -1=m 2(m -1)+(m -1) =(m -1)(m 2+1).又∵m >1,故(m -1)(m 2+1)>0. 答案:m 3>m 2-m + 1用不等式(组)表示不等关系[典例] 某家电生产企业计划在每周工时不超过40 h 的情况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时如下表:家电名称 空调 彩电 冰箱 工时(h)121314若每周生产空调x [解] 由题意,知x ≥0,y ≥0,每周生产冰箱(120-x -y )台.因为每周所用工时不超过40 h ,所以12x +13y +14(120-x -y )≤40,即3x +y ≤120;又每周至少生产冰箱20台, 所以120-x -y ≥20,即x +y ≤100. 所以满足题意的不等式组为⎩⎪⎨⎪⎧3x +y ≤120,x +y ≤100,x ≥0,x ∈N *,y ≥0,y ∈N *.1.将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接. (3)多个不等关系用不等式组表示.2.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.[活学活用]1.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 0002.一辆汽车原来每天行驶x km ,如果该汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程将超过2 200 km ,用不等式表示为________.解析:因为该汽车每天行驶的路程比原来多19 km ,所以汽车每天行驶的路程为(x +19)km ,则在8天内它的行程为8(x +19)km ,因此,不等关系“在8天内它的行程将超过2 200 km ”可以用不等式8(x +19)>2 200来表示.答案:8(x +19)>2 200不等式的性质[典例] (1)已知b <2a,3d <c ,则下列不等式一定成立的是( ) A .2a -c >b -3d B .2ac >3bd C .2a +c >b +3dD .2a +3d >b +c(2)下列说法不正确的是( ) A .若a ∈R ,则(a 2+2a -1)3>(a -2)3 B .若a ∈R ,则(a -1)4>(a -2)4 C .若0<a <b ,则⎝⎛⎭⎫13a >⎝⎛⎭⎫13bD .若0<a <b ,则a 3<b 3[解析] (1)由于b <2a,3d <c ,则由不等式的性质得b +3d <2a +c ,故选C.(2)对于A ,因为(a 2+2a -1)-(a -2)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,所以a 2+2a -1>a -2,则(a 2+2a -1)3>(a -2)3,故A 选项说法正确;对于B ,当a =1时,(a -1)4=0,(a -2)4=1,所以(a -1)4>(a -2)4不成立;对于C 和D ,因为0<a <b ,所以由指数函数与幂函数的性质知C 、D 选项说法正确,故选B.[答案] (1)C (2)B1.利用不等式判断正误的2种方法(1)直接法:对于说法正确的,要利用不等式的相关性质或函数的相关性质证明;对于说法错误的只需举出一个反例即可.(2)特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.[活学活用]1.已知a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>|b |c解析:选C 因为a >b >c ,且a +b +c =0,所以a >0,c <0,所以ab >ac . 2.若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,则(a -c )2>(b -d )2>0,即1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e(b -d )2.数式的大小比较[典例] (1)已知x <1,比较x 3-1与2x 2-2x 的大小; (2)已知a >0,试比较a 与1a 的大小. [解] (1)(x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34.∵x <1,∴x -1<0.又⎝⎛⎭⎫x -122+34>0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0. ∴x 3-1<2x 2-2x .(2)因为a -1a =a 2-1a =(a -1)(a +1)a, 因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a =0,有a =1a ; 当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ; 当a =1时,a =1a ; 当0<a <1时,a <1a .1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.2.作商法比较大小的步骤及适用范围 (1)作商法比较大小的三个步骤. ①作商变形; ②与1比较大小; ③得出结论.(2)作商法比较大小的适用范围. ①要比较的两个数同号;②比较“幂、指数、对数、含绝对值”的两个数的大小时,常用作商法. [活学活用]若m >2,比较m m 与2m 的大小.解:因为m m 2m =⎝⎛⎭⎫m 2m ,又因为m >2,所以m 2>1,所以⎝⎛⎭⎫m 2m >⎝⎛⎭⎫m 20=1,所以m m >2m.用不等式性质求解取值范围 [典例] 已知1<a <4,2<b <8,试求2a +3b 与a -b 的取值范围. [解] ∵1<a <4,2<b <8,∴2<2a <8,6<3b <24. ∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2), 即-7<a -b <2.故2a +3b 的取值范围是(8,32),a -b 的取值范围是(-7,2).同向不等式具有可加性与可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.1.在本例条件下,求ab 的取值范围. 解:∵2<b <8,∴18<1b <12,而1<a <4,∴1×18<a ·1b <4×12,即18<a b <2.故ab 的取值范围是⎝⎛⎭⎫18,2.不等式两边同乘以一个正数,不等号方向不变,同乘以一个负数,不等号方向改变,求解中,应明确所乘数的正负.2.已知-6<a <8,2<b <3,求ab 的取值范围. 解:∵-6<a <8,2<b <3. ∴13<1b <12, ①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab <0. 由①②得:-3<ab <4.故ab的取值范围为(-3,4). 利用不等式性质求范围,应注意减少不等式使用次数. 3.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.解:设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,解得λ1=53,λ2=-23.又-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23,所以-113≤a +3b ≤1.故a +3b 的取值范围为⎣⎡⎦⎤-113,1.层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( )A .M >NB .M <NC .M =ND .不确定解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.两种药片的有效成分如下表所示:应满足怎样的不等关系?用不等式的形式表示出来.解:设提供A 药片x 片,B 药片y 片,由题意可得:⎩⎪⎨⎪⎧2x +y ≥12,5x +7y ≥70,x+6y ≥28,x ≥0,x ∈N ,y ≥0,y ∈N.10.(1)若a <b <0,求证:b a <a b ; (2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab, ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab.(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy -1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.某厂技术科组织工人参加某项技能测试,某职工参加完测试后对自己的成绩进行了如下估计:理论考试成绩x 超过85分,技能操作成绩y 不低于90分,答辩面试成绩z 高于95分,用不等式组表示为( )A.⎩⎪⎨⎪⎧ x >85y ≥90z ≥95B.⎩⎪⎨⎪⎧ x ≥85y >90z >95C.⎩⎪⎨⎪⎧ x >85y ≥90z >95D.⎩⎪⎨⎪⎧x ≥85y >90z ≥95 解析:选C x 超过85分表示为x >85,y 不低于90分表示为y ≥90,z 高于95分,表示为z >95,故选C.5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1.∴1+a >0,1-a >0.即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1, ∴11+a≥1-a . 答案:11+a ≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1; ③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a -b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1. 对于③,取特殊值,a =9,b =4时,|a -b |>1.对于④,∵|a 3-b 3|=1,a >0,b >0,∴a ≠b ,不妨设a >b >0.∴a 2+ab +b 2>a 2-2ab +b 2>0,∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2.即a 3-b 3>(a -b )3>0,∴1=|a 3-b 3|>(a -b )3>0,∴0<a -b <1,即|a -b |<1.因此正确.答案:①④7.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1), 所以当a >b 时,x -y >0,所以x >y ;当a =b 时,x -y =0,所以x =y ;当a <b 时,x -y <0,所以x <y .8.已知x ,y 为正实数,且1≤lg(xy )≤2,3≤lg x y ≤4,求lg(x 4y 2)的取值范围.解:由题意,设a =lg x ,b =lg y ,∴lg(xy )=a +b ,lg x y =a -b ,lg(x 4y 2)=4a +2b .设4a +2b =m (a +b )+n (a -b ),∴⎩⎪⎨⎪⎧ m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 又∵3≤3(a +b )≤6,3≤a -b ≤4,∴6≤4a +2b ≤10,∴lg(x 4y 2)的取值范围为[6,10].。

人教A版高中数学必修五第三章不等式

人教A版高中数学必修五第三章不等式

式的解法求解
人教A版数学 ·必修5
课前自主预习
高效互动课堂
课时演练广场
【规范解答】(1)由题意知 Δ=a2-16.
①当 Δ<0,即-4<a<4 时,方程 2x2+ax+2=0 无实根, 所以原不等式的解集为 R;2 分 ②当 Δ≥0,即 a≤-4 或 a≥4 时,方程 2x2+ax+2=0 的 1 2 根为 x1=4-a- a -16, 1 x2=4-a+ a -16 .
人教A版数学 ·必修5
课前自主预习
高效互动课堂
课时演练广场
(1)(2012 广东高考)已知变量 x,y 满足约束条件 x+y≤1, x-y≤1, x+1≥0, A.3 C.-5
则 z=x+2y 的最小值为( B.1 D.-6
)
人教A版数学 ·必修5
课前自主预习
高效互动课堂
课时演练广场
人教A版数学 ·必修5
课前自主预习
高效互动课堂
课时演练广场
二、有关一元二次不等式恒成立的问题
1.关于 x 的不等式 f(x)≥0(≤0)对于 x 在某个范围内的每个 值不等式都成立,就叫不等式在这个范围内恒成立. 2.一元二次不等式恒成立的类型及解法. 设 f(x)=ax2+bx+c(a≠0). (1)f(x)>0 在 x∈R 上恒成立⇔
解:原不等式可化为(x-a)(x-a2)>0.
∴当a<0时,a<a2,解集为{x|x<a或x>a2}; 当a=0时,a2=a,解集为{x|x≠0}; 当0<a<1时,a2<a,解集为{x|x<a2或x>a}; 当a=1时,a2=a,解集为{x|x≠1};
当a>1时,a<a2,解集为{x|x<a或x>a2}.

最新人教版高中数学必修5第三章《不等式》本章概览1

最新人教版高中数学必修5第三章《不等式》本章概览1

第三章不等式
本章概览
三维目标
三角在具体的情境中会用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值.
三角理解不等式的基本性质,掌握不等式性质的简单应用,了解比较两个实数(代数式)大小的数学思维过程.
三角理解一元二次方程、一元二次不等式与二次函数之间的关系,能借助二次函数图象解一元二次不等式,并会解简单的分式不等式,会应用函数与方程、不等式之间的关系解决一些问题.
三角了解二元一次不等式(组)的几何意义,能用平面区域表示二元一次不等式(组),能够画出图形,并能从实际问题中抽象出二元一次不等式组.
三角知道线性规划的意义,能正确的利用图解法中的求解程序解决线性规划问题,能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
三角了解基本不等式的证明过程,并能用数形结合的思想来理解基本不等式,解决简单的最大值或最小值问题.
知识网络。

人教A版高中数学必修5第三章 不等式3.2 一元二次不等式及其解法课件

人教A版高中数学必修5第三章 不等式3.2 一元二次不等式及其解法课件
2.高考对一元二次不等式解法的考查常有以下几个 命题角度:
(1)直接考查一元二次不等式的解法; (2)与函数的奇偶性等相结合,考查一元二次不等式 的解法; (3)已知一元二次不等式的解集求参数.
[例 1] 为( )
(1)(2014·全国高考)不等式组xx+2>0, 的解集 |x|<1
ax2+bx+c<0 对一切 x∈R 都成立的条件为a<0, Δ<0.
2.可用(x-a)(x-b)>0 的解集代替xx- -ab>0 的解集,你认为 如何求不等式xx- -ab<0,xx- -ab≥0 及xx- -ab≤0 的解集?
提示:xx--ab<0⇔(x-a)(x-b)<0; xx--ab≥0⇔xx--ba≠0x-;b≥0, xx--ab≤0⇔xx--ba≠0x-. b≤0,
考点二
一元二次不等式的恒成立问题
[例 2] 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范 围; (2)若对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取 值范围.
[自主解答] (1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0;
xx≠-2ba
R
判别式 Δ=b2-4ac
Δ>0
ax2+bx+c<0
(a>0)的解集 {x|x<x1<x2}
Δ=0

续表 Δ<0

1.ax2+bx+c>0,ax2+bx+c<0(a≠0)对一切 x∈R 都成立 的条件是什么?
提示:ax2+bx+c>0 对一切 x∈R 都成立的条件为a>0, Δ<0.

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案
A.[
答案: A 解析: 只需
1 2
x
)
1 ] 4 7 D.(−∞, − ) 2
B.(−∞,
f (x) min ⩾ g(x) min 即可.
4. 三位同学合作学习,对问题"已知不等式 xy ⩽ ax2 + 2y 2 对于 x ∈ [1, 2] , y ∈ [2, 3] 恒成立,求 a 的 取值范围"提出了各自的解题思路. 甲说:"可视 x 为变量,y 为常量来分析". 乙说:"寻找 x 与 y 的关系,再作分析". 丙说:"把字母 a 单独放在一边,再作分析". 参考上述思路,或自已的其它解法,可求出实数 a 的取值范围是 ( A.[1, +∞)
1. 若关于 x 的方程 9 x + (4 + a) ⋅ 3 x + 4 = 0 有解,则实数 a 的取值范围是 ( A.(−∞, −8) C.[−8, +∞)
答案: B 解析:
)Hale Waihona Puke B.(−∞, −8]D.(−∞, +∞)
由 9 x + (4 + a) ⋅ 3 x + 4 = 0,得 a = −3 x −
答案: B 解析:
)
D.[−1, 6]
B.[−1, +∞)
C.[−1, 4)
y y y 2 − 2( ) ,由 x ∈ [1, 2] , y ∈ [2, 3] ,x 、 y 构成正方形区域, 表示过 x x x y y 原点直线与正方形区域相交时直线的斜率的取值范围,则有 ∈ [1, 3] ,当 = 1 时, x x y y 2 − 2( ) 有最大值为 −1,则 a 的取值范围是 [−1, +∞) x x

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

(2)因为
为整式不等式
解得 x <
3 或 x > 4,所以原不等式的解集为 2 3 ∣ {x ∣ x < 或x > 4} . ∣ 2
4.高次不等式的解法 描述: 高次不等式的解法 解一元高次不等式一般利用数轴穿根法(或称根轴法)求解,其步骤是: (1)将 f (x) 最高次项系数化为正数; (2)将 f (x) 分解为若干个一次因式的乘积或二次不可分因式的乘积; (3)求出各因式的零点,并在数轴上依次标出; (4)从最右端上方起,自右至左依次通过各根画曲线,遇到奇次重根要一次穿过,遇到偶次重根 要穿而不过; (5)记数轴上方为正,下方为负,根据曲线显现出的 f (x) 的值的符号变化规律,写出不等式 的解集. 例题: 解不等式 (x + 2)(x + 1)2 (x − 1)3 (x − 2) < 0 . 解:不等式中各因式的实数根为 −2,−1,1 ,2 . 利用根轴法,如图所示.
2 )(x − a) ⩽ 0 . a 2 2 ① 当 < a ,即 a > √2 时,原不等式的解集为 {x| ⩽ x ⩽ a}. a a 2 2 ② 当 > a ,即 0 < a < √2 时,原不等式的解集为 {x|a ⩽ x ⩽ }. a a 2 ③ 当 = a ,即 a = √2 时,原不等式的解集为 {x|x = √2 } . a 2 (3)当 a < 0 时,原不等式化为 (x − )(x − a) ⩾ 0 . a 2 2 ① 当 < a ,即 −√2 < a < 0 时,原不等式的解集为 {x|x ⩽ 或x ⩾ a} . a a 2 2 ② 当 > a ,即 a < −√2 时,原不等式的解集为 {x|x ⩽ a或x ⩾ }. a a 2 ③ 当 = a ,即 a = −√2 时,原不等式的解集为 R. a

人教A版必修五第三章《不等式》--含不等式恒成立问题

人教A版必修五第三章《不等式》--含不等式恒成立问题

教学内容:人教A版必修五第三章《不等式》复习参考题(第二课时)课题——含参不等式恒成立问题一.【教学目标】(1)理解恒成立问题的充要条件,掌握解决此类问题的基本方法;(2)培养分析、解决问题的能力,体验函数思想、分类讨论的思想、数形结合与转化思想;(3)通过问题的探究,体验成功的喜悦教学内容分析:.......本章的重点是通过具体情境,感受现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;并通过一元二次不等式的解法和基本不等式,体会不等式、方程、函数之间的内在联系。

课本在82页习题3.2A(3)、B(2),103页复习参考题A组(3)、B组(1)(3)都涉及到含参不等式恒成立问题问题。

这些问题把不等式、函数、方程内容有机的结合起来,内涵丰富,对学生的转化能力有较高的要求,在解决此类问题时,又涉及“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等重要数学思想,因此有必要对学生做一个系统的复习。

本节课是复习课的第二课时,是在学生掌握了三个二次的内在联系,熟练掌握基本不等式的基础上进行的。

教学设计的重要目标是“解决学生化归难...——大...——难以将不等式恒成立问题化归成函数问题;表达难部分学生有想法,却不能很好的进行等价转化,本专题力求培养学生规范、科学的数学表达,通过学生口述、板演、解题过程错解投影展示等方式,充分暴露学生的思维过程,促使学生在错误中成长,在反思中进步;下笔难...——很多同学对这部分内容心生怯意,无从下手。

归其因是知识没有系统,方法凌乱、知识间没有建立恰当的联系。

本专题力求将分散的方法集中、归纳,形成解决一类问题的方法体系,以系统掌握方法、思想为主线,查漏补缺,提高分析问题、解决问题的能力。

二.【教学重、难点】【教学重点】理解解决恒成立问题的实质,有效掌握恒成立问题的基本技能【教学难点】利用转化思想,通过函数性质和图像化归至最值问题来处理恒成立问题三.【学情分析】经过全章的系统学习,学生对恒成立问题都有所涉及,但缺乏系统的归纳整理。

(人教版)高中数学必修5课件:第3章 不等式3.4

(人教版)高中数学必修5课件:第3章 不等式3.4

第三章 不等式
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.已知 a,b,c∈(0,+∞),且 a+b+c=1. 求证:a+1a+b+1b+c+1c≥10.
证明: a+1a+b+1b+c+1c =a+a+ab+c+b+a+bb+c+c+a+bc +c =4+ba+ab+ac+ac+bc+bc
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.若 a,b∈R,且 ab>0,则下列不等式中,恒成立的是( )
A.a2+b2>2ab
B.a+b≥2 ab
C.1a+1b>
2 ab
D.ba+ab≥2
解析: ∵a2+b2-2ab=(a-b)2≥0,∴A 错误.
对于 B,C,当 a<0,b<0 时,明显错误.
合作探究 课堂互动
高效测评 知能提升
(4)∵x>1,y>2, ∴x-1>0,y-2>0. 又由 x+y=15,得(x-1)+(y-2)=12 ∴z=(x-1)(y-2)≤x-1+2 y-22=36. 当且仅当 x-1=y-2 时,z 有最大值 36.
数学 必修5
第三章 不等式
自主学习 新知突破
合作探究 课堂互动
数学 必修5
第三章 不等式
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
方 法 二 :1x + 1y =1x+1y ·1 =1x+1y (2x + y) =3 +2yx + yx ≥3 + 2 yx·2yx=3+2 2,
以下同方法一.
答案: (1)C
数学 必修5
第三章 不等式
自主学习 新知突破

人教A版高中数学必修5第三章 不等式3.4 基本不等式课件

人教A版高中数学必修5第三章 不等式3.4 基本不等式课件

学家大会的会标,它是根据中国古代数
学家赵爽的弦图设计的,颜色的明暗使
它看上去象一个风车,代表中国人民热
情好客.在这个图案中既有一些相等关系,
也有一些不等关系,
对这
些等与不等的关系,
我们作些相应研究.
精品PPT
精品PPT
探究(一):基本不等式的原理
思考1:将图中的“风车”
抽象成如图,在正方形
ABCD中有4个全等的直角
2
两边平方可得什么结论?它与不等式 a2+b2≥2ab有什么内在联系?
( a + b)2 ³ ab 2
精品PPT
思考2:在不等式a2+b2≥2ab两边同加
上a2+b2可得什么结论?所得不等式有
什么特色? a 0
y ax2 bx c x1, x2 (x1 x2 )
a2 + b2 ³
2
(a + b)2 2
b

ab 分别为a,
2
b的算术平均数和几何平均数,如何用 文字语言表述基本不等式?
两个正数的算术平均数不小于它们的 几何平均数.
精品PPT
a+b
思2 考8:如图,在直角三角形ABC中,CD
为斜边上的高, CO为斜边上中线,你能
利用这个图形对基本不等式作出几何解
释吗?
C
A
O
DB
精品PPT
探究(二):基本不等式的变通 思考1:将基本不等式 a b ab
三角形.设直角三角形的
两a2b2 条直角边长为a,b那么 正方形ABCD和EFGH的边长 D
分别为多少?
A
F GE
C
H
a2 b2
|a-b |
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考数学按章节分类汇编(人教A 必修五)第三章不等式一、选择题1 .(2012年高考(辽宁文理))设变量x,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则2x +3y 的最大值为( )A .20B .35C .45D .552 .(2012年高考(辽宁理))若[0,)x ∈+∞,则下列不等式恒成立的是 ( )A .21x e x x ++…B211124x x <-+C .21cos 12x x -…D .21ln(1)8x x x +-… 3 .(2012年高考(重庆文))不等式102x x -<+ 的解集是为 ( )A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞ 4.(2012年高考(重庆理))设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为( )A .34πB .35πC .47πD .2π5 .(2012年高考(重庆理))不等式0121≤+-x x 的解集为 ( )A .⎥⎦⎤⎝⎛-1,21B .⎥⎦⎤⎢⎣⎡-1,21C .[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121.D .[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,6 .(2012年高考(浙江文))若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是( )A .245B .285C .5D .67 .(2012年高考(天津文))设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为 ( )A .5-B .4-C .2-D .3 8 .(2012年高考(四川文))若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是 ( )A .12B .26C .28D .33 9 .(2012年高考(四川理))某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是 ( ) A .1800元 B .2400元C .2800元D .3100元 10 .(2012年高考(陕西文))小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则 ( )A .B .v=C2a b + D .v=2a b+11 .(2012年高考(山东文理))设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y=-的取值范围是 ( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2-12.(2012年高考(课标文))已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 ( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)13.(2012年高考(湖南文))设 a >b >1,0c < ,给出下列三个结论:① c a >cb;② c a <c b ; ③ log ()log ()b a a c b c ->-,其中所有的正确结论的序号是__. ( )A .①B .① ②C .② ③D .①②③14.(2012年高考(广东文))(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y=+的最小值为 ( )A .3B .1C .5-D .6-15.(2012年高考(福建文))若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为 ( )A .-1B .1C .32D .216.(2012年高考(安徽文))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的最小值是( )A .3-B .0C .32D .3 17 .(2012年高考(江西理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩每吨售价黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30.0 C .20,30 D .0,5018 .(2012年高考(湖北理))设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14B .13C .12D .3419 .(2012年高考(广东理))已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为 ( )A .12B .11C .3D .1-20.(2012年高考(福建理))若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为( )A .12B .1C .32D .221.(2012年高考(福建理))下列不等式一定成立的是 ( )A .21lg()lg (0)4x x x +>>B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈ D .211()1x R x >∈+ 二、填空题22.(2012年高考(浙江文))设z=x+2y,其中实数x,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 则z 的取值范围是_________. 23.(2012年高考(四川文))设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<;②若111b a-=,则1a b -<;③若1=,则||1a b -<; ④若33||1a b -=,则||1a b -<.其中的真命题有____________.(写出所有真命题的编号)24.(2012年高考(江西文))不等式2902x x ->-的解集是___________. 25.(2012年高考(湖南文))不等式2560x x -+≤的解集为______。

26.(2012年高考(湖北文))若变量,x y 满足约束条件1133x y x y x y -≥-⎧⎪⎪+≥⎨⎪-≤⎪⎩,则目标函数23z x y=+的最小值是________.27.(2012年高考(大纲文))若函数1030330x y y x y x y -+≥⎧⎪=+-≤⎨⎪+-≥⎩,则3z x y =-的最小值为_____.28.(2012年高考(新课标理))设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为_______ 29.(2012年高考(浙江理))设a ∈R,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 30.(2012年高考(上海春))若不等式210x kx k -+->对(1,2)x ∈恒成立,则实数k 的取值范围是______.31.(2012年高考(陕西理))设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.32.(2012年高考(江苏))已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是____. 33.(2012年高考(江苏))已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为____.34.(2012年高考(大纲理))若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为_________________.35.(2012年高考(安徽理))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____参考答案一、选择题1. 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中.该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值. 2. 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+所以()g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C 【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大. 3. 【答案】:C【解析】:10(1)(2)0212x x x x x -<⇒-+<⇒-<<+ 【考点定位】本题考查解分式不等式时,利用等价变形转化为整式不等式解. 4. 【答案】D【考点定位】本小题主要考查二元一次不等式(组)与平面区域,圆的方程等基础知识,考查运算求解能力,考查数形结合思想,化归与转化思想,属于基础题. 5. 【答案】A【解析】(1)(21)01101212210x x x x x x -+≤⎧-⎪≤⇒⇒<≤⎨++≠⎪⎩ 【考点定位】本题主要考查了分式不等式的解法,解题的关键是灵活运用不等式的性质,属于基础试题,属基本题. 6. 【答案】C【命题意图】本题考查了基本不等式证明中的方法技巧.【解析】x+3y=5xy,135y x+=, 113131213(34)()()555x y x y y x y x +⋅+=++≥1132555⨯=. 7. 【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B. 8. [答案]C[解析]目标函数34z x y =+可以变形为443z x y +-=,做函数x y 43-=的平行线,当其经过点B(4,4)时截距最大时,即z 有最大值为34z x y =+=284443=⨯+⨯.[点评]解决线性规划题目的常规步骤: 一列(列出约束条件)、 二画(画出可行域)、三作(作目标函数变形式的平行线)、 四求(求出最优解). 9. [答案]C[解析]设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得 利润为Z 元/天,则由已知,得 Z=300X+400Y且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X画可行域如图所示,目标函数Z=300X+400Y 可变形为Y=400z x 43+- 这是随Z 变化的一族平行直线解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ⎩⎨⎧==∴4y 4x 即A(4,4) 280016001200max =+=∴Z[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).10. 解析:设从甲地到乙地距离为s ,则全程的平均时速2211s v s s a ba b==++,因为a b <,221111a a aa b==<<++,故选A.11. 解析:作出可行域,直线03=-y x ,将直线平移至点)0,2(处有最大值,点)3,21(处有最小值,即623≤≤-z .答案应选A.12. 【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知作出直线0l :0x y -+=,平移直线0l ,有图像知,直线:l z x y =-+过B 点时,max z =2,过C 时,min z=1z x y =-+取值范围为(1-3,2),故选A. 13. 【答案】D【解析】由不等式及a >b >1知11a b <,又0c <,所以c a >cb,①正确;由指数函数的图像与性质知②正确;由a >b >1,0c <知11a c b c c ->->->,由对数函数的图像与性质知③正确. 【点评】本题考查函数概念与基本初等函数Ⅰ中的指数函数的图像与性质、对数函数的图像与性质,不等关系,考查了数形结合的思想.函数概念与基本初等函数Ⅰ是常考知识点.14. 解析:C.画出可行域,可知当代表直线过点A 时,取到最小值.联立11x y x =-⎧⎨=-⎩,解得12x y =-⎧⎨=-⎩,所以2z x y =+的最小值为5-.15. 【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确. 【考点定位】本题主要考查一元二次不等式表示平面区域,考查分析判断能力.逻辑推理能力和求解能力. 16. 【解析】选A【解析】x y -的取值范围为[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-17. B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y 亩,总利润为z 万元,则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+.线性约束条件为 50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组50,43180,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩表示的可行域,易求得点()()()0,50,30,20, 0,45A B C .平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).故选B.【点评】解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系; (4)作答——就应用题提出的问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.18. 考点分析:本题主要考察了柯西不等式的使用以及其取等条件.解析:由于222222)())((2cz by ax z y x c b a ++≥++++ 等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x c b a z y x c b a z c y b x a 所以,答案选C. 19. 解析:B.画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11.20. 【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确. 【考点定位】本题主要考查一元一次不等式组表示平面区域,考查分析判断能力、逻辑推理能力和求解计算能力21. 【答案】C【解析】由基本不等式得212||()x x x R +≥∈,答案C 正确.【考点定位】此题主要考查基本不等式和均值不等式成立的条件和运用,考查综合运用能力,掌握基本不等式的相关内容是解本题的关键. 二、填空题22. 【答案】72【命题意图】本题主要考查线性规划的求解范围问题.只要作图正确,表示出区域,然后借助于直线平移大得到最值.【解析】利用不等式组,作出可行域,可知区域表示的四边形,但目标函数过点(0,0)时,目标函数最小,当目标函数过点13,22⎛⎫⎪⎝⎭时最大值为72.23. [答案] ①④[解析]若a,b 都小于1,则a-b<1若a,b 中至少有一个大于等于1, 则a+b>1,由a 2-b 2=(a+b)(a-b)=1 ,所以,a-b<1 故①正确. 对于|a 3-b 3|=|(a-b)(a 2+ab+b 2)|=1,若a,b 中至少又一个大于等于1,则a 2+ab+b 2>1,则|a-b|<1 若a,b 都小于1,则|a-b|<1,所以④正确. 综上,真命题有 ① ④ .[点评]此类问题考查难度较大,要求对四个备选项都要有正确的认识,需要考生具备扎实的数学基础,平时应多加强这类题的限时性练习. 24. 【答案】(3,2)(3,)-⋃+∞【解析】不等式可化为(3)(2)(3)0x x x +-->采用穿针引线法解不等式即可. 【考点定位】本题考查将分式不等式等价转化为高次不等式,考查高次不等式的解法. 25. 【答案】{}23x x ≤≤【解析】由x 2-5x+6≤0,得(3)(2)0x x --≤,从而的不等式x 2-5x+6≤0的解集为{}23x x ≤≤.【点评】本题考查一元二次不等式的解法,考查简单的运算能力.26. 2 【解析】作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23z x y =+在ABM ∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值.来年需注意线性规划在生活中的实际应用. 27.答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z .28. 【解析】2z x y =-的取值范围为[3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C 则2[3,3]z x y =-∈-29. 【解析】本题按照一般思路,则可分为一下两种情况:(A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,—1).考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:302a or=,舍去0a =,得答案:32a =. 【答案】32a = 30. (,2]-∞31.解析:1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-,围成的封闭区域为三角形,2z x y =-在点(0,1)-处取得最大值2. 32. 【答案】[] 7e ,.【考点】可行域.【解析】条件4ln 53ln b c a a c c c a c b -+-≤≤≥,可化为:354a c a bc c a bc cb e c⎧⋅+≥⎪⎪⎪+≤⎨⎪⎪⎪≥⎩. 设==a b x y c c,,则题目转化为:已知x y ,满足35400xx y x y y e x >y >+≥⎧⎪+≤⎪⎨≥⎪⎪⎩,,求y x 的取值范围. 作出(x y ,)所在平面区域(如图).求出=x y e 的切 线的斜率e ,设过切点()00P x y ,的切线为()=0y ex m m +≥,则00000==y ex m m e x x x ++,要使它最小,须=0m . ∴yx的最小值在()00P x y ,处,为e .此时,点()00P x y ,在=x y e 上,A B 之间. 当(x y ,)对应点C 时, =45=205=7=7=534=2012y x y x yy x y x y xx --⎧⎧⇒⇒⇒⎨⎨--⎩⎩,∴y x的最大值在C 处,为7.∴yx的取值范围为[] 7e ,,即b a 的取值范围是[] 7e ,.33. 【答案】9.【考点】函数的值域,不等式的解集.【解析】由值域为[0)+∞,,当2=0x ax b ++时有240a b =-=V ,即24a b =,∴2222()42a a f x x ax b x ax x ⎛⎫=++=++=+ ⎪⎝⎭.∴2()2a f x x c ⎛⎫=+< ⎪⎝⎭解得2a x +<,22a a x <<.∵不等式()f x c <的解集为(6)m m +,,∴)()622aa -=,解得9c =. 34. 答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z .35. 【解析】x y -的取值范围为_____[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C则[3,0]t x y =-∈-。

相关文档
最新文档