高中数学《球的体积和表面积 》导学案
8.3.2.2球的体积和表面积+教学设计-高一下学期数学人教A版(2019)必修第二册
“球的体积和表面积”教学设计一、教学内容解析本节课的内容是人教A版《普通高中教科书数学必修第二册》(以下统称“教材”)“球的体积和表面积”,是在学习了柱体、锥体、台体等基本几何体的基础上,学习另一种几何体——球体的体积与表面积.研究球的体积方向很多,教材介绍了“分割、求近似值、再由近似求和转化为球体的体积”的极限思想方法,这也是球的体积的教学重点.从知识结构上讲,球是进一步研究空间组合体结构特征的基础,具有承上启下的作用;从思想方法上讲,在球的体积公式的教学中充分运用极限思想,为以后学习导数做好铺垫.这节课在章节、模块甚至数学课程的角度全面整合教材,突出学科知识的系统性和教学的方向性,形成有生命、有灵魂的整体的知识.本节课教学重点:研究球的体积和表面积.二、教学目标设置结合课标要求,本节课制定如下教学目标:1.通过类比研究圆的周长和面积的方法,能得出研究球的体积和面积的方法,发展数学抽象、直观想象等核心素养;2.通过应用祖暅原理,能推导出球的体积公式,提高数学建模、逻辑推理等核心素养;3.通过探究球的体积的过程,发展研究数学问题的思维体系.三、学生学情分析(一)已具备的认知基础1.在学习本节课内容之前,通过柱体、锥体、台体的体积和表面积的探究和学习,学生已具备了一定的空间想像能力、综合分析、归纳总结的能力;2.通过小学研究了圆的周长和面积,已经初步具备了极限、等价转化、分割的思想或方法.(二)可能存在的认知困难对球体的研究已经超越了学生能把握的直观化对象,是教材中学生最难理解的内容之一.极限法怎样分割?应用祖暅原理怎样进行等价转化?因此,本节课难点:极限法的分割方式;应用祖暅原理怎样构造组合体. 四、教学策略分析本节课贯彻以“学生为主体,教师为主导”的理念,采用主动探究、合作交流、“设置问题序列”的方式,引导学生独立思考.利用小组实验、学生讲解等方式,调动学生学习的积极性.本节课倡导学生主动参与,在师生互动、生生互动中,完成了对球体积和表面积的研究,以及公式的推导.安排学生在课前查阅资料,类比探究出球的不同切割方法.充分发挥多媒体的优势,生动形象地演示了各种研究球体积的方法,突破了传统教学不好解决的教学重、难点,实现了教学目标.五、教具准备各种球模型(实心球、空心球)、橙子、圆葱、马铃薯、自制圆形切割模板、圆规、多媒体课件、geogebra软件.六、教学过程设计(一)复习引入、提出问题1.复习引入前面我们研究了柱、锥、台体的体积和表面积,这节课我们来研究球的体积和表面积. 我们知道“半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体”. 那么我们能否借鉴研究圆的周长和面积的方法来研究球的体积和表面积呢?2.提出问题问题1:通过前期的学习和查阅资料,发现了有哪些方法可以研究圆的周长?预设回答1:测量法求周长.预设回答2:极限法求周长.【设计意图】1.通过查阅资料,让学生回顾以直代曲,转化的思想,为测量法研究球的体积做铺垫;2.引入极限思想,为极限法研究球的体积做好铺垫.问题2:你们又发现了哪些研究圆面积的方法呢?预设回答:极限法求面积.a) 如图1所示.图1b) 如图2所示.图2c) 如图3所示.图3【设计意图】自主探究圆的不同切割方法,通过对圆的面积无限分割,体现极限思想,为研究球的体积做好铺垫.(二)自主探究、合作交流问题3:刚刚同学们展示了圆的周长和面积的研究方法,那么我们能不能类比研究圆的方法来研究球的体积和表面积呢?下面请同学们分小组讨论.预设回答1:测量法求球的体积.预设回答2:极限法求球体积.a) 如图4所示.图4b) 如图5所示.图5c) 如图6所示.图6【设计意图】1.让学生动手实验,如切割实物马铃薯和橙子及多媒体动画展示,化抽象为具体. 帮助学生提升直观想象的核心素养;2.通过小组合作,培养学生合作交流的能力,增强团队意识.(三)数学建模、公式推导以上有两名同学通过分割的方法,将球的体积等价转化为可求体积的几何体,这种等价转化的方法,我国古代数学家祖暅已经给我们提供了理论依据.祖暅原理告诉我们这样一个事实:幂势既同,则积不容异.如图7所示.图7祖暅给出上面的原理,要比其他国家的数学家早一千多年,在欧洲,直到17世纪,意大利数学家卡瓦列里才给出上述结论. 卡瓦列里提出线是由点构成的、面是由线构成的、体是由面构成的无限细分积零为整的概念,并把面积称为体积的不可分量.卡瓦列里原理不难用现代的微积分理论给出严格证明,但是作为一名中学生,还没有学习微积分时,如果作为直观上的显然结果,而承认这个原理,就能解决许多求体积的问题.只用初等数学方法,而不需用微积分方法.师:怎样通过祖暅原理求球的体积?师:根据祖暅原理构造几何体的要点是?师:半球更容易稳定的放置在桌面上,球是关于轴截面对称的几何体,如图8所示,我们研究半球的体积V与半径R的关系,就可以得到球的体积V与半径R的关系.图8问题4:能否用已经学过的几何体组合成一个新的几何体来代替半球的体积?这个新的组合体应该怎样组合?如图9所示.图9师:为什么挖去的倒置圆锥截面圆半径为h?如图10所示.图10师:用动画演示,来更好的理解等高下截面积相等. 如图11所示.图11师:请同学们一起推导球体积与半径的关系,由学生代表到黑板前演示推导过程.生:12V球=V柱−V锥=23πR3,所以V球=43πR3.师:我们运用祖暅原理得到了球体积与半径之间的关系V球=43πR3,通过之前推导出的球体积和表面积的关系,可以得到球表面积S球=4πR2.师:还有哪些构造与球等体积的几何体的方式?可以课下再进行研究. 如图12所示.图12师:我们今天能够推导出球的体积公式,都要归功于祖暅.让我们怀着敬意,一起来回顾祖暅的生平.【设计意图】利用祖暅原理,推导出球的体积公式,进而得到球的表面积公式.介绍祖暅原理蕴含的数学思想方法. 通过介绍中国古代优秀的数学家,增强民族文化自信,激发学生勤奋好学的斗志.(四)知识总结、心得体会1.师生共同进行知识总结2.学生谈体会和收获(五)作业布置、拓广探索1.复习巩固:教材119页练习2,3,4题;2.拓广探索:教材120页9题;3.合作探究:查阅资料,试着用微积分的方法推导球的体积公式.结束语:学习是无止境的,科学探索的道路是充满艰辛、充满乐趣的,希望同学们能勤于钻研、勇于创新,创造出属于我们更加卓越的未来.。
球的体积和表面积
球的体积和表面积
——西宁28中“4.16”教学法导学案
一、创设情景,引入新课:
提出问题:
1.曹冲称象的故事,你是否还记得?
2.你认为用什么样的方法可以快速的的测量出一个鸡蛋的体积?
3.是否可以用这一方法测出地球月球的体积呢?
4.如果不能,我们是否可以推导出一般的方法,来计算所有的球体的体积呢?
二、学导结合:
1.先通过已学知识,运用类比的方法猜想出球的体积
圆锥的体积: 球的体积: 圆柱的体积:
2. 探究球的体积运算公式:
构想:
方法:
结论:
3.运用极限法推导出球的表面积公式。
三、探究深化
径。
化为一个铁球,求其半如果将两铁球经熔铸后别是已知两个铁球的半径分例,4,2.121==R R
例2.如图,已知正方体的棱长为a,它的各个顶点都在球O 的球面上,则球O 的体积和表面积分别是多少。
四、总结反思
作业:
1.球的体积为12时,内接正三棱锥的体积是多少?
2.球外切三棱锥的各棱长为2,球的表面积是多少?
——————说说你对本堂课的感受。
刘伟老师的信箱:421244717@
C B A。
《圆柱、圆锥、圆台、球的表面积和体积》教案、导学案、课后作业
《8.3.2圆柱、圆锥、圆台、球的表面积和体积》教案【教材分析】本节是在学生已从圆柱、圆锥、圆台、球的结构特征和直观图两个方面认识了旋转体的基础上,进一步从度量的角度认识圆柱、圆锥、圆台、球,主要包括表面积和体积.【教学目标与核心素养】课程目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.数学学科素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.【教学重点和难点】重点:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;难点:圆台的体积公式的理解.【教学过程】一、情景导入前面已经学习了三种多面体的表面积与体积公式,那么如何求圆柱、圆锥、圆台、球的表面积与体积公式?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-119页,思考并完成以下问题1.圆柱、圆锥、圆台、的侧面积、底面积、表面积公式各是什么?2.圆柱、圆锥、圆台的体积公式各是什么?3.球的表面积与体积公式各式什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究(一)圆柱、圆锥、圆台的表面积(二)棱柱、棱锥、棱台的表面积1.棱柱:柱体的底面面积为S,高为h,则V=Sh.2.棱锥:锥体的底面面积为S,高为h,则V=13 Sh.3.棱台:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.(三) 球的体积公式与表面积公式1.球的体积公式V=43πR3 (其中R为球的半径).2.球的表面积公式S=4πR2.四、典例分析、举一反三题型一圆柱、圆锥、圆台的表面积例1 若一个圆锥的轴截面是边长为4 cm的等边三角形,则这个圆锥的侧面积为________cm2,表面积为________cm2.【答案】8π12π.【解析】如图所示,∵轴截面是边长为4 cm的等边三角形,∴OB=2 cm,PB=4 cm,∴圆锥的侧面积S侧=π×2×4=8π (cm2),表面积S表=8π+π×22=12π (cm2).解题技巧(求旋转体表面积注意事项)旋转体中,求面积应注意侧面展开图,上下面圆的周长是展开图的弧长.圆台通常还要还原为圆锥.跟踪训练一1.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( )A.81π B.100πC.168π D.169π【答案】C【解析】选C 先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r,下底面半径为R,则它的母线长为l==5r=10,所以r=2,R=8.故S侧=π(R+r)l=π(8+2)×10=100π,S表=S侧+πr2+πR2=100π+4π+64π=168π.题型二圆柱、圆锥、圆台的体积例2 如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m,圆柱高0.6m 如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(π取3.14)【答案】423.9kg【解析】一个浮标的表面积是,所以给1000个这样的浮标涂防水漆约需涂料. 解题技巧(求几何体积的常用方法) (1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的几何体即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积. 跟踪训练二1.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.【答案】10π.【解析】用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.()2220.150.640.150.8478m ππ⨯⨯+⨯=0.84780.51000423.9(kg)⨯⨯=2. 梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内过点C作l⊥BC,以l为轴将梯形ABCD旋转一周,求旋转体的表面积和体积.【答案】见解析【解析】由题意知以l为轴将梯形ABCD旋转一周后形成的几何体为圆柱中挖去一个倒置的且与圆柱等高的圆锥,如图所示.在梯形ABCD中,∠ABC=90°,AD∥BC,AD=a,BC=2a,∠DCB=60°,∴CD=BC-ADcos60°=2a,AB=CD sin60°=3a,∴DD′=AA′-2AD=2BC-2AD=2a,∴DO=12DD′=a.由上述计算知,圆柱的母线长为3a,底面半径为2a;圆锥的母线长为2a,底面半径为a.∴圆柱的侧面积S1=2π·2a·3a=43πa2,圆锥的侧面积S2=π·a·2a =2πa2,圆柱的底面积S3=π(2a)2=4πa2,圆锥的底面积S4=πa2,∴组合体上底面面积S5=S3-S4=3πa2,∴旋转体的表面积S=S1+S2+S3+S5=(43+9)πa2.又由题意知形成的几何体的体积为圆柱的体积减去圆锥的体积,且V柱=π·(2a)2·3a=43πa3,V锥=13·π·a2·3a=33πa3.∴旋转体的体积V=V柱-V锥=43πa3-33πa3=1133πa3.题型三 球的表面积与体积例3 如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比.【答案】【解析】 设球的半径为R ,则圆柱的底面半径为R ,高为2R .球的体积,圆柱的体积,.例4 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( )A.6π B.43π C .46π D.63π 【答案】B【解析】如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1.∴OM =(2)2+1= 3. 即球的半径为 3.∴V =43π(3)3=43π.解题技巧(与球有关问题的注意事项)1.正方体的内切球233143V R π=23222V R R R ππ=⋅=123342::233V V R R ππ∴==球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r1=a2,过在一个平面上的四个切点作截面如图(1).2.球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r2=√2a2,如图(2).3.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a,b,c,则过球心作长方体的对角面有球的半径为r3=√a2+b2+c22,如图(3).4.正方体的外接球正方体棱长a与外接球半径R的关系为2R=3a. 5.正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=62a.6、有关球的截面问题常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.跟踪训练三1、将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是V 球=43×π×13=4π3. 2.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 2 【答案】B.【解析】选B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,P 为三棱柱上底面的中心,O 为球心,易知AP =23×32a =33a ,OP=12a ,所以球的半径R =OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故S 球=4πR 2=73πa 2. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本119页练习,119页习题8.3的剩余题.本节课的重点是掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用,通过本节课的例题及练习,学生基本掌握.须注意的是:①求面积时看清求的是侧面积,还是底面积,还是表面积;②对本节课的难点的理解类比棱台与棱锥、棱锥的联系;③解决实际问题时先抽象出几何图形,再利用相关公式解决.《8.3.2圆柱、圆锥、圆台、球的表面积和体积》导学案【学习目标】知识目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.核心素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.【学习重点】:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;【学习难点】:圆台的体积公式的理解.【学习过程】一、预习导入阅读课本116-119页,填写。
高中数学人教A版必修2《1.3.2球的体积和表面积》教学案1
必修二《1.3.2球的体积和表面积》教学案一、教材分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.二、教学目标1.知识与技能(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式.(不要求记忆公式)(2)熟悉台体与柱体和锥体之间体积的转换关系.(3)培养学生空间想象能力和思维能力.2.过程与方法(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系.(2)通过相关几何体的联系,寻找已知条件的相互转化,解决一些特殊几何体体积的计算.3.情感、态度与价值观通过柱体、锥体、台体体积公式之间的关系培养学生探索意识.三、重点难点教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.四、课时安排约1课时五、教学设计(一)导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.(二)推进新课、新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S =4πR 2,V =334R π.注意:球的体积和表面积公式的证明以后证明.(三)应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R .[来源:学+科+网] 则有V 球=334R π,V 圆柱=πR 2·2R =2πR 3,所以V 球=圆柱V 32. (2)因为S 球=4πR 2,S 圆柱侧=2πR ·2R =4πR 2,所以S 球=S 圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R ,正四棱柱底面边长为a ,则轴截面如图2(2),所以AA ′=14,AC =a 2,又∵4πR 2=324π,∴R =9.∴AC =28''22=-CC AC .∴a =8.∴S 表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g ,测得外径(直径)等于5 cm ,求它的内径(钢的密度为7.9 g /cm 3,精确到0.1 cm ).解:设空心球内径(直径)为2x cm ,则钢球质量为 7.9·[3334)25(34x ππ-•]=142, ∴x 3=14.349.73142)25(3⨯⨯⨯-≈11.3,∴x ≈2.24,∴直径2x ≈4.5.答:空心钢球的内径约为4.5 cm .例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积.解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2), 半球形物体的表面积为S 2≈2×3.1×(21)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力. 变式训练有一个轴截面为正三角形的圆锥容器,内放一个半径为R 的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决. 解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r =R R330tan =︒,圆锥母线l =2r =R 32,圆锥高为h =r 3=3R , ∴V 水=334332πππ=-R h r ·3R 2·3R 333534R R ππ=-, 球取出后,水形成一个圆台,下底面半径r =R 3,设上底面半径为r ′, 则高h ′=(r -r ′)tan 60°=)'3(3r R -, ∴'3353h R ππ=(r 2+r ′2+rr ′),∴5R 3=)3'3')('3(322R Rr r r R ++-, ∴5R 3=)'33(333r R -, 解得r ′=6331634R R =, ∴h ′=(3123-)R .答:容器中水的高度为(3123-)R .思路2例1 (2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形. 分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R =233,则该球的表面积为S =4πR 2=27π.答案:27π点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R 的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键.变式训练1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π 分析:由V =Sh ,得S =4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R =642221222=++,所以球的表面积为S =4πR 2=24π.答案:C2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为a 22,于是球的半径为a 42,V =3242a π. 答案:3242a π3.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为14321222=++,则球的半径为214,则球的表面积为4π(214)2=14π. 答案:14π例2 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?图5活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm 的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度.解:因为圆锥形铅锤的体积为2)26(31⨯⨯π×20=60π(cm 3), 设水面下降的高度为x ,则小圆柱的体积为x 2)220(π=100πx ( cm 3). 所以有60π=100πx ,解此方程得x =0.6( cm ). 答:杯里的水下降了0.6 cm .点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键.变式训练1.一个空心钢球,外直径为12 cm ,壁厚0.2 cm ,问它在水中能浮起来吗?(钢的密度为7.9 g /cm 3)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g /cm 3)分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没.解:空心钢球的体积为V 钢=348.53463433πππ=⨯-⨯×20.888≈87.45(cm 3), ∴钢的质量为m 钢=87.45×7.9=690.86(g ). ∵水的体积为V 水=34π×63=904.32(cm 3), ∴水的质量为m 水=904.32×1=904.32(g )>m 钢.∴钢球能浮起来,而铅球的质量为m 铅=87.45×11.4=996.93(g )>m 水. ∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm 3.分析:设四个实心铁球的球心为O 1、O 2、O 3、O 4,其中O 1、O 2为下层两球的球心,A 、B 、C 、D 分别为四个球心在底面的射影,则ABCD 是一个边长为22cm 的正方形,所以注水高为(1+22) cm .故应注水π(1+22)-4×)2231()21(343+=ππ cm 3. 答案:(31+22)π(四)知能训练1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍C .59倍 D .47倍 分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r ,则另两个为2r 、3r ,所以各球的表面积分别为4πr 2、16πr 2、36πr 2,5916436222=+rr r πππ(倍). 答案:C2.(2006安徽高考,理9)表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A .32π B .3π C .32π D .322π分析:此正八面体是每个面的边长均为a 的正三角形,所以由8×32432=a 知,a =1,则此球的直径为2.答案:A3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为2234+=5,所以球的表面积是4π×52=100π.答案:100π4.某街心花园有许多钢球(钢的密度是7.9 g /cm 3),每个钢球重145 kg ,并且外径等于50 cm ,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm ).解:由于外径为50 cm 的钢球的质量为7.9×3)250(34⨯π≈516 792(g ), 街心花园中钢球的质量为145 000 g ,而145 000<516 792, 所以钢球是空心的.设球的内径是2x cm ,那么球的质量为7.9·[3334)250(34x ππ-•]=145 000, 解得x 3≈11 240.98,x ≈22.4,2x ≈45(cm ). 答:钢球是空心的,其内径约为45 cm .5.(2007海南高考,文11)已知三棱锥S —ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =r 2,则球的体积与三棱锥体积之比是( )A .πB .2πC .3πD .4π分析:由题意得SO =r 为三棱锥的高,△ABC 是等腰直角三角形,所以其面积是21×2r ×r =r 2,所以三棱锥体积是33132r r r =⨯⨯,又球的体积为343r π,则球的体积与三棱锥体积之比是4π.答案:D点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用.(五)拓展提升问题:如图6,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A —BEFD 与三棱锥A —EFC 的表面积分别是S 1,S 2,则必有( )图6A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定探究:如图7,连OA 、OB 、OC 、OD ,则V A —BEFD =V O —ABD +V O —ABE +V O —BEFD +V O —ADF ,V A—EFC=V O—AFC+V O—AEC+V O—EFC,又V A—BEFD=V A—EFC,而每个小三棱锥的高都是原四面体的内切球的半径,故S△ABD+S△ABE+S BEFD+S△ADF=S△AFC+S△AEC+S△EFC,又面AEF是公共面,故选C.图7答案:C(五)课堂小结本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高;台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.(六)作业课本本节练习1、2、3.。
高中数学 1.3.2球的体积与表面积导学案新人教版必修2
1.3.2 球的体积与表面积【学习目标】1、掌握球的体积、表面积公式.2、能会用球的表面积公式、体积公式解快相关问题,培养学生应用数学的能力. 重、难点:球的体积、表面积公式及应用【课前导学】 阅读必修2课本P27~28的内容后回答下列问题:1、球的体积:半径为R 的球,其体积V =球___________________2、球的表面积:球面不可展开,半径为R 的球,其表面积S =球面________________ 3、球的截面及其性质:(1)用一个平面去截一个球,截面是圆面。
其中,球面被经过球心的平面截得的圆叫做球的大圆,大圆的半径等于球的半径,被不经过球心的截面截得的圆叫做球的小圆。
(2)球心与截面圆圆心的连线与截面的位置关系是 。
4、边长为a 正三角形的外接圆的半径为 。
【预习自测】1、将一个气球的半径扩大1倍,它的体积扩大到原来的 倍。
2、已知某球的体积与表面积的数值相等,则此球的半径数值为_______________。
3、一个正方体的顶点都在球面上,它的棱长是2cm ,则球的表面积为 ,体积为 。
【典例探究】例1、如图,圆柱的底面直径与高都等于球的直径:求证:(1)球的体积等于圆柱体积的23; (2)球的表面积等于圆柱的侧面积。
例2、设正方体的棱长为a ,球半径为R :①若球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。
如图,截面图为正方形EFGH 的内切圆,则_________=R②若球与正方体的各棱相切,切点为各棱的中点,如图作截面图,圆O 为正方形EFGH 的外接圆,则_________=R③若正方体的八个顶点都在球面上,如图,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,则_________=R例3、已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.【总结与提升】熟练掌握球的体积、表面积公式及其应用。
数学必修2导学案1.3.2球的体积和表面积
研卷知古今;藏书教子孙。
1.3.2球的体积和表面积一、学习目标:知识与技能:⑴通过对球的体积公式的推导,了解推导过程中所用的基本数学思想方法,知道祖暅原理。
⑵能运用球的公式灵活解决实际问题。
培养空间想象能力。
过程与方法:通过球的体积公式的推导,从而得到一种推导球体积公式的方法,情感与价值观:通过学习,使我们对球的表面积、体积公式的推导方法有了一定的了解,提高空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。
二、学习重难点:学习重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
学习难点:推导体积和面积公式中空间想象能力的形成。
三、使用说明及学法指导:1、限定45分钟完成,认真阅读教材内容,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。
3、小班完成A,B,C 全部内容;实验班完成B 级以上;平行班完成A~B.(其中A 、B 级问题自主完成;C 级问题可由合作探究方式完成)四、知识链接:什么是球?球的半径?球的直观图怎样画?球的半径,截面圆的半径,球心与截面圆心的距离间有何关系?五、学习过程:B 问题1:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?(阅读32页了解球的体积的推导即可,球的表面积的推导不要求了解)B 问题2:球的表面积的公式怎样?球的体积怎样?A 例1:圆柱的底面直径与高都等于球的直径。
求证:(1)球的体积等于圆柱的体积的32;(2)球的表面积等于圆柱的侧面积;A 例2:已知:钢球直径是5cm,求它的体积.B (变式1)一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2)六、达标训练一、选择题A1一个正方体的顶点都在球面上,此球与正方体的表面积之比是( ) A. 3π B. 4π C. 2π D. πB2.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )A B C DB3正方体的全面积为a ,它的顶点都在球面上,则这个球的表面积是:( ) A.3aπ; B.2aπ; C.a π2; D.a π3.B4已知正方体外接球的体积是323π,那么正方体的棱长等于 ( )(A)(B(C(D二、填空题A5、球的直径伸长为原来的2倍,体积变为原来的倍.B6、一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为cm3.B7、长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是。
高中数学必修二 8 3 2 圆柱、圆锥、圆台、球的表面积和体积 导学案
8.3.2 圆柱、圆锥、圆台、球的表面积和体积1.通过对圆柱、圆锥、圆台的研究,掌握圆柱、圆锥、圆台、球的表面积与体积的求法;2.会求与圆柱、圆锥、圆台、球有关的组合体的表面积与体积;3.会用球的体积与表面积公式解决实际问题;4.会解决球的切、接问题.1.教学重点:圆柱、圆锥、圆台、球的表面积与体积;2.教学难点:与圆柱、圆锥、圆台、球有关的组合体的表面积与体积会解决球的切、接问题。
1.圆柱、圆锥、圆台的表面积2.圆柱、圆锥、圆台的体积公式V圆柱=(r是底面半径,h是高),V圆锥=(r是底面半径,h是高),V圆台=(r′、r分别是上、下底面半径,h是高).3.球的表面积设球的半径为R,则球的表面积S=,即球的表面积等于它的大圆面积的倍.4.球的体积设球的半径为R ,则球的体积V = 3.一、探索新知思考1:圆柱的展开图是什么?怎么求它的表面积?思考2:圆锥的展开图是什么?怎么求它的表面积?思考3:参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 ,它的表面积是什么?思考4:圆柱、圆锥、圆台三者的表面积公式之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?思考5:根据圆台的特征,如何求圆台的体积?思考6:圆柱、圆锥、圆台的体积公式之间有什么关系?结合棱柱、棱锥、棱台的体积公式,你能将它们统一成柱体、锥体、台体的体积公式吗?柱体、椎体、台体的体积公式之间又有什么关系?1.球的表面积公式:24S R π=球(R 为球的半径)例1.如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m ,如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?思考7:在小学,我们学习了圆的面积公式,你记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积吗?例2.如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比。
8.3.2(2)球的表面积和体积-导学案【新教材】
8.3.2(2)球的表面积和体积一、知识梳理1.球的表面积:=_____S球。
2.球的体积:=____V球。
3.球内接正方体的体对角线长为球的_______,即3____a 。
二、重要题型知识点一:球的表面积1.将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为()A.2πB.3π C.4πD.6π2.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A.316B.916C.38D.932知识点二:球的体积3.把半径分别为6 cm,8 cm,10 cm的三个铁球熔成一个大铁球,这个大铁球的半径为() A.3 cm B.6 cm C.8 cm D.12 cm4.若一个球的表面积与其体积在数值上相等,则此球的半径为________.5.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r=1,l=3,试求该组合体的表面积和体积.6.已知过球面上A,B,C三点的截面和球心的距离等于球半径的一半,且AB=18,BC=24,AC=30,求球的表面积和体积.知识点三: 球的切、接问题7.正方体的内切球与外接球的体积之比为( )A .1∶3B .1∶ 3C .1∶3 3D .1∶2 38.已知一个表面积为24的正方体,假设有一个与该正方体每条棱都相切的球,则此球的体积为( )A.4π3 B .43π C.246π3 D.82π39.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.三、巩固练习1.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C.2∶ 3D.8∶272.已知球的表面积为16π,则它的内接正方体的表面积S 的值是( ) A .4π B .32 C .24 D .12π3.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π34.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为( ) A .4∶3 B .3∶1 C .3∶2D .9∶45.一个球与一个正三棱柱(底面为等边三角形,侧棱与底面垂直)的两个底面和三个侧面都相切,若棱柱的体积为483,则球的表面积为________.6.已知球面上的四点P 、A 、B 、C ,PA 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,则这个球的表面积为______.7.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm. 8.已知球的半径为R,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?9.若一个底面边长为62,侧棱长为6的正六棱柱的所有顶点都在一个球面上,求该球的体积和表面积.8.3.2(2)球的表面积和体积 答案一、知识梳理1. 24R π.2.343R π. 3.直径,2R 。
球的表面积和体积
1.3.2《球的表面积和体积》导学案【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组讨论,合作探究。
【学习目标】1.能运用球的面积和体积公式灵活解决实际问题;2.培养学生的空间思维能力和空间想象能力;3.自主自发,极度热情,全力以赴。
【重点】球的表面积和体积公式的应用。
【难点】关于球的组合体的计算。
一、自主学习(一)复习回顾1.柱体、锥体、台体的表面积和体积计算公式?2.球的截面的性质?(二)导学提纲看课本第27页-28页,解决下列问题:1.球的表面积公式:____________________.2.球的体积公式:_________________.思路点拨:关于球的组合体的计算,常过切(接)点作二者的公共轴截面图,将立体图形转化为平面图形研究。
此外,球的组合体问题还常用分割与补形的思想。
二、基础过关例1.(1)(05全国1)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为( )(A )π28 (B )π8 (C )π24 (D )π4(2)(05湖北文)木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A .60倍B .6030倍C .120倍D .12030倍例2.有3个球,一个切正方体各面,一个切正方体各棱,一个过正方体各顶点,分别求着3个球的表面积之比和体积之比。
方法、规律总结:例3.若从球O 的表面上一点P 出发的三条两两互相垂直的弦PC PB PA ,,,其长度分别为c b a ,,,求证:球的半径22221c b a R ++=方法、规律总结:例4.已知正四面体ABCD (1)求该正四面体的外接球的表面积;(2)求该正四面体的内切球的体积。
方法、规律总结:例5.有一个轴截面为正三角形的圆锥容器,内放一个半径为R的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?方法、规律总结:三、拓展探究例6.半径均为R,且两两相切的4个球,分上、下两层放在水平桌面上,下面放3个,上面放1个,求上面一个球的球心到桌面的距离。
《球的体积和表面积》导学案
1.3.2球的体积与表面积学习目标1. 了解球的表面积和体积计算公式;2. 能运用柱锥台球的表面积公式及体积公式进行计算和解决有关实际问题.二、新课导学※探索新知新知:球的体积和表面积·球没有底面,也不能像柱体、锥体、台体那样展成平面图形,它的体积和表面积的求法涉及极限思想(一种很重要的数学方法).经过推导证明:球的体积公式:___________________________球的表面积公式:_________________________其中,R为球的半径.显然,球的体积和表面积的大小只与半径R有关.]※典型例题例1 木星的表面积约是地球的120倍,则体积约是地球的多少倍!变式1:若三个球的表面积之比为1﹕2﹕3,则它们的体积之比为多少^例2、如图,圆柱的底面直径与高都等于球的直径(即圆柱内有一内切球),求证(1)球的体积等于圆柱体积的23;(2)球的表面积等于圆柱的侧面积.变式2:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,~则这个球的表面积是。
体积是__________________.变式3:半径为R的球内有一内接正方体,设正方体的内切球半径为r,则Rr为多少》.三、当堂检测1. 2).2 B.2倍2倍倍—2. 有相等表面积的球及正方体,它们的体积记为1,V2V,球直径为d,正方体的棱长为a,则().A.12,d a V V>> B.12,d a V V>< C.12,d a V V<> D.12,d a V V<<3. 记与正方体各个面相切的球为1O,与各条棱相切的球为2O,过正方体各顶点的球为3O 则这3个球的体积之比为().:2:3 23:2233:4:9(4. 已知球的一个截面的面积为9π,且此截面到球心的距离为4,则球的表面积为__________.5.把一个半径为cm的金属球熔成一个圆锥,倍,则这个圆锥的高应为_______cm.\6. 如图,求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积.》[四、学习小结:[五、反思:}。
示范教案(球的体积和表面积)
一、教学目标1. 知识与技能:(1)理解球的体积和表面积的概念;(2)掌握球体积和表面积的计算公式;(3)能够运用球体积和表面积的知识解决实际问题。
2. 过程与方法:(1)通过观察、操作、思考、讨论等活动,培养学生的空间想象能力和思维能力;(2)学会用数学语言表达问题,提高学生的数学表达能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重难点1. 教学重点:(1)球体积和表面积的概念;(2)球体积和表面积的计算公式。
2. 教学难点:(1)球体积和表面积公式的推导过程;(2)运用球体积和表面积知识解决实际问题。
三、教学准备1. 教具:(1)篮球、足球等球类;(2)体积和表面积的计算器;(3)黑板、粉笔。
2. 学具:(1)学生用书;(2)练习本;(3)测量工具(如卷尺、量筒等)。
四、教学过程1. 导入新课(1)教师出示各种球类,引导学生观察球的形状;(2)提问:同学们,你们知道球有什么特性吗?今天我们要学习球的体积和表面积。
2. 探究球体积和表面积的概念(1)教师引导学生思考:如何计算球的体积和表面积?;(2)学生通过观察、操作、思考,得出球体积和表面积的定义。
3. 推导球体积和表面积的计算公式(1)教师引导学生观察球体的特点,引导学生思考如何推导公式;(2)学生通过小组讨论、操作,推导出球体积和表面积的计算公式。
4. 应用球体积和表面积的知识(1)教师出示实际问题,引导学生运用球体积和表面积的知识解决问题;(2)学生独立思考、解答问题,交流解题过程和方法。
5. 课堂小结(1)教师引导学生回顾本节课所学内容,总结球体积和表面积的计算方法;(2)学生分享学习收获,反思学习过程。
五、课后作业1. 完成学生用书上的练习题;2. 观察生活中常见的球体,尝试计算其体积和表面积;六、教学策略1. 情境创设:利用实物展示和多媒体课件,为学生提供丰富的感性材料,激发学生的学习兴趣。
球的体积和表面积导学案
§1.3.2《球的体积和表面积》导学案学习目标:1 熟记球的体积公式和表面积公式;2.会用球的体积公式343V R π=和表面积公式24S R π=解决有关问题 3.体会其中蕴涵的数学思想,培养空间想象能力;学习过程 一 自学导引:(一)复习旧知1.圆柱的体积公式是怎样的,椎体呢?2.用一个平面截球,截面是圆,该截面圆的半径如何求?(二)教材助读1 球的表面积公式是 S =__________2 球的体积公式是 V =____________3 求一个球的体积或表面积只需哪个量?4 课本例4中的球的半径和圆柱底面的半径、高有什么关系?5 一个球的半径扩大为原来的2倍,则其体积将扩大为原来的几倍?(三)预习检测:1. 将一钢球放入底面半径为cm 3的圆柱形玻璃容器中,水面升高cm 4,则钢球的半径是 .2.两个球的表面积之比是4:1,则其半径之比是_____,体积之比______我的疑惑?: 请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与 老师和同学探究解决.二 课堂互动合学(一)基础知识再现:1、球的体积(1)球的体积公式是 ;(2)两球的体积之比与半径之比是什么关系?2、球的表面积(1)球的表面积公式是 ;(2)两球的表面积之比与半径之比是什么关系?3、在球的体积和表面积中,知其一必能求另一个吗?(二)典例分析题1.如图,圆柱的底面直径与高都等于球的直径.求证:(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.''思考1:球的半径与圆柱的高、底面半径有什么关系?思考2:你能画出该组合体的轴截面吗? 题2.体积为8的一个正方体,其全面积与球O 的表面积相等,求球O 的体积题3.一个边长为a 的正方体的顶点都在球的表面上,试求球的表面积.思考1:正方体和球是否是中心对称几何体,其中心分别是什么?思考2:正方体的体对角线与球的半径有何关系?(1) (2)拓展延伸:已知长方体的共顶点的三个侧面面积分别为3,5,15,试求它的外接球的表面积.三 知识网络构建请同学们对本节所学知识归纳总结后,填写下面的知识网络图1.球的⎩⎨⎧体积公式:表面积公式: 2. 球的内接正方体的体对角线与球的直径关系是______四 当堂检测1、若三个球的表面积之比为3:2:1,求这三个球的体积之比是: .2.若球的大圆面积扩大为原来的4倍,则球的体积比原来增加 倍;3.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是 ;五、课堂小结:六、作业:。
球的体积和表面积 教案
球的体积和表面积教案教案标题:探索球的体积和表面积教案目标:1. 理解球的体积和表面积的概念。
2. 掌握计算球的体积和表面积的方法。
3. 运用所学知识解决与球相关的实际问题。
教案步骤:引入活动:1. 引导学生回顾曾学过的几何图形的体积和表面积概念,如长方体、正方体等。
2. 提问学生,你们知道什么是球的体积和表面积吗?有什么特点?探索球的体积:1. 向学生介绍球的体积公式:V = (4/3)πr³,其中V表示体积,π为圆周率,r为球的半径。
2. 通过实际测量球的直径或半径,让学生运用公式计算球的体积。
3. 提供几个例子,让学生在小组中合作计算球的体积,并互相核对答案。
探索球的表面积:1. 向学生介绍球的表面积公式:A = 4πr²,其中A表示表面积,π为圆周率,r为球的半径。
2. 让学生运用公式计算球的表面积,并与他人分享自己的计算过程和结果。
3. 引导学生思考,球的表面积与球的半径之间有什么关系?为什么球的表面积公式中没有高度或长度的概念?应用实际问题:1. 提供一些与球相关的实际问题,如球形水池的容积、篮球的表面积等,让学生应用所学知识解决问题。
2. 鼓励学生在小组中合作讨论并提出解决方案。
3. 学生展示他们的解决方案,并与其他小组分享。
总结:1. 回顾本节课所学的内容,强调球的体积和表面积的概念和计算方法。
2. 提醒学生在实际生活中运用所学知识解决问题的重要性。
3. 鼓励学生继续探索几何图形的体积和表面积,拓展他们的数学思维。
扩展活动:1. 鼓励学生自主探索其他几何图形的体积和表面积,如圆柱体、圆锥体等。
2. 提供更复杂的实际问题,让学生进一步应用所学知识解决。
3. 引导学生思考,如何证明球的体积和表面积公式的正确性。
教案评估:1. 观察学生在课堂上的参与程度和合作能力。
2. 收集学生在小组活动中的计算过程和解决方案,评估他们对球的体积和表面积的理解和运用能力。
3. 提供一些练习题或考试,测试学生对球的体积和表面积的掌握程度。
高中数学北师大版精品教案《球的表面积和体积》
球的表面积和体积【教学重难点】1.了解球的表面积和体积公式.2.会用球的表面积和体积公式解决实际问题【教学过程】一、基础铺垫1.与球相关的概念:(1)球面被经过球心的平面截得的圆称为球的大圆,被不经过球心的平面截得的圆称为球的小圆(2)与圆和直线相切类似,当直线与球有唯一交点时,称直线与球相切,这一交点称为直线与球的切点(3)过球外一点所有切线的切线长都相等2.球的表面积=4πR2.球的半径为R,那么它的表面积S球思考:球有底面吗?球面能展开成平面图形吗?提示:球没有底面,球面不能展开成平面图形.3.球的体积=错误!πR3.球的半径为R,那么它的体积V球二、合作探究1.球的体积与表面积【例1】(1)球的体积是错误!,则此球的表面积是A.12πB.16πC.错误!D.错误!(2)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比是________.(1)B(2)错误![(1)错误!πR3=错误!π,故R=2,球的表面积为4πR2=16π(2)设圆锥的底面半径为r,高为h,母线长为,球的半径为R,则由题意得错误!∴错误!π2R 2·h =错误!πR 3,∴R =h ,r =2h ,∴=错误!=错误!h ,∴S 圆锥侧=πr =π×2h ×错误!h =2错误!πh 2,S 球=4πR 2=4πh 2,∴错误!=错误!=错误!]【规律方法】求球的体积与表面积的方法 1要求球的体积或表面积,必须知道半径R 或者通过条件能求出半径R ,然后代入体积或表面积公式求解 2半径和球心是球的最关键要素,把握住了这两个要素,计算球的表面积或体积的相关题目也就易如反掌了2.球的表面积及体积的应用【例2】 一个倒立的圆锥形容器,它的轴截面是正三角形.在此容器内注入水并且放入一个半径为r 的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?[思路探究] 设出球未取出时的水面高度和取出后的水面高度,由水面下降后减少的体积来建立一个关系式解决.[解] 设△:(1)求该几何体的表面积结果保留π;(2)求该几何体的体积结果保留π.[解] 由三视图可知,该几何体是一个四棱柱和一个半球构成的组合体,且半球的直径为2,该四棱柱为棱长为2的正方体.(1)该几何体的表面积为S =2πR 2+6×2×2-π×R 2=π+24m 2.(2)该几何体的体积为V =错误!×错误!πR 3+23=错误!π+8m 3.。
数学必修2——1.3.2《球的体积与表面积》导学导练
高中数学必修2个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修二1.3.2《球的体积与表面积》导学导练【知识要点】1、球的体积(重点)2、球的表面积(重点)【范例析考点】考点一.球的体积公式的应用例1:若球的大圆面积扩大为原来的4倍,则球的体积比原来增加 倍; 【针对练习】1、三个球的半径之比为1:2:3,那么最大的球的体积是其余两个球的体积和的 倍;2、正方体全面积是24,它的外接球的体积是 ,内切球的体积是 .3、用与球心距离为1的平面去截球,所得的截面面积为π,求球的体积考点二.球的表面积公式的应用例2:表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积【针对练习】1、已知球的两平行截面的面积为5π和8π,他们位于球心同一侧,且相距为1,求这个球的表面积2、用相距为9cm 的两个平行截面去截一个球,所得的截面面积分别为49πcm 2和400πcm 2求球的表面积3、已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积4、长方体一个顶点上三条棱长分别为3,4,5,且它的顶点都在同一个球面上,求这个球的表面积考点三.球的切、接问题例3:半球内有一个内接正方体,正方体的一个面在半球的底面,求球的表面积和体积个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第1页 解密佛山吉红勇老师扣扣:一0七669八11 第2页【针对练习】1、求体积为V 的正方体的外接球与内切球的表面积与体积2、棱长为a 的正方体内接于球,求球的表面积3、正方体的内切球与外接球的半径之比为多少?4、若一个球的内接正方体的表面积为54,则球的表面积为多少?5、半球内有一内接正方体,求这个半球的表面积与正方体的表面积之比6、正三棱锥的高为1,底面边长为26,内有一个球的四个面都相切,求棱锥的全面积与球的表面积【课后练习】1、把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是 ;2、球O 1、O 2、分别与正方体的各面、各条棱相切,正方体的各顶点都在球O 3的表面上,求三个球的表面积之比.3、三个球的半径之比为1:2:3,那么最大的球的表面积是其余两球的表面积之和的多少倍?4、已知一个球的截面面积为9π,且此截面到球心的距离为4,求球的表面积5、球的大圆面积扩大为原来的4倍,求球的表面积和体积分别过大原来的多少倍?6、过球的一条半径的中点,作垂直于该半径的平面,求所得截面面积与球的表面积的比7、若两个球的表面积之差为48π,它们的大圆周长之和为12π求这两个球的半径之差8、三个球的半径之比为1:2:3,求证:最大球的体积等于其他两球体积和的三倍9、将直径分别为3,4,5的三个锡球熔成一个大球,求这个大球的体积10、若果球的体积增大8倍,求半径增大了多少倍11、若一个球的体积为43π,求其表面积。
高中数学1.3.2球的体积与表面积教案新人教A版必修2
必修2第1章第3节《球的体积和表面积》第1课时教学设计【课标解读】由于球的体积和表面积公式在推导证明上比较繁琐,学生在理解掌握上也比较困难,根据新的《数学课程标准》要求,本节的公式证明和推导应淡化处理,只需让学生简单了解推导过程,体会其中所蕴含的数学思想和方法,以及它们在后续学习中的作用,不要求学生掌握其证明。
在球的体积和表面积公式应用和球与几何体组合体的求解过程中,提高学生的空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
通过应用预设和相应的应用练习提高学生的提出、分析和解决问题(包括简单的实际问题)的能力,利用学生身边熟知的问题预设提高学生学习数学的兴趣,树立学好数学的信心,进而形成锲而不舍的钻研精神和科学态度。
【教材分析】本节课是人教A版高中数学(课程标准实验教材)必修2第一章“空间几何体”第三节“球的体积和表面积”,是在学习了柱体、锥体、台体等基本几何体的基础上,通过空间度量形式了解另一种基本几何体的结构特征。
从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研究空间组合体结构特征的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更重视学生的直观感知和操作确认,为螺旋式上升的学习奠定了基础。
【学情分析】学生刚学习立体几何不久,具备的图形语言表达及空间想象能力相对不足,几何体的内切球、外接球的位置关系较难想象,很难顺利作出正确的直观图,空间图形问题向平面图形问题的转化意识也不够,对于解决组合体的体积和表面积的问题有一定的困难,而且学生的归纳总结能力不够,独立完成自主学习任务有一定困难,还不能从一定高度去体会和感悟数学思想。
这些都是摆在学生面前的难题,也是教学中迫切需要解决的问题。
【教学目标】1.掌握球的体积、表面积公式及其应用。
2会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力,发展逻辑思维能力,加强辩证唯物主义观点。
高二数学教案-球的体积和表面积
球的体积和表面积课型:新授课一. 教学目标1.知识与技能⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。
⑵能运用球的面积和体积公式灵活解决实际问题。
⑶培养学生的空间思维能力和空间想象能力。
2.过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式v=πr3和面积公式s=4πr2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。
3.情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。
二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
难点:推导体积和面积公式中空间想象能力的形成。
三. 学法和教学用具1.学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。
2.教学用具:多媒体课件四. 教学设计(一)创设情景⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。
⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。
(二)探究新知1.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。
步骤:第一步:分割如图:把半球的垂直于底面的半径oa作n等分,过这些等分点,用一组平行于底面的平面把半球切割成n个“小圆片”,“小圆片”厚度近似为,底面是“小圆片”的底面。
【平煤高中学案】8球的表面积和体积
1.3.2 球的表面积和体积学习目标(1)了解球的表面积和体积的计算公式(不要求记忆公式); (2)能运用球的表面积和体积公式进行计算; (3)能解决与球有关的简单的实际问题. 一、课前准备预习理解教材2728P P -的内容: 二、新课导学(一)新知:1. 球的表面积和体积公式(其中R 是球的半径): 球的表面积公式: ; 球的体积公式: . 2.球的截面:(1) .; (2) . (二)典型例题【例1】已知圆柱的底面直径与高都等于球的直径,求证: (1)球的体积等于圆柱体积的32, (2)球的表面积等于圆柱的侧面积。
【例2】正四面体A BCD -的所有棱长都等于2a ,求正四面体的外接球的体积.【例3】在球心同侧有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π,求球的表面积.【例4】一个倒圆锥形容器,它的轴截面是正三角形,在容器内放一个半径为R 的钢球,并注入水,使水面与球正好相切,然后将球取出,求这时容器内水的深度.O 'AOBA OO 2O 1E O 'ODC BAC OPBA四、反馈练习1.一个球的体积是,则它的表面积是.2.球的半径扩大为原来的2倍,它的体积扩大为原来的___ __ 倍.3.若三个球的表面积之比是1:2:3,则它们的体积之比是.4.几个重要关系:(1)球的内接长方体的对角线的长等于.(2)正四面体的内切球及外接球的球心都在正四面体的高线上,且是同一个点5.正方体的内切球和外接球的半径之比为.6.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25πB.50πC.125πD.都不对7.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A. 8:27B. 2:3C. 4:9D. 2:9。
高中数学《球的体积和表面积》导学案
第一章 空间几何体1.3.2 球的体积和表面积一、学习目标1、了解球的表面积与体积公式2、熟悉并掌握球的表面积与体积公式。
3、会解决简单组合体的体积计算问题。
【重点、难点】重点:球的表面积与体积的计算.难点:简单组合体的体积计算.二、学习过程【知识链接】:(使用说明:先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
教师质疑答辩,排难解惑)问题1: 半径为R 的球的体积是_______ 半径为R 的球的表面积是_______问题2:.计算球的表面积与体积,关键需要确定哪个量?问题3:.经过球心的截面圆面积是多少?它与球的表面积有什么关系?问题4;球的半径为R,截面圆半径为r,则球心到截面的距离d = _______问题5:怎样分析与球有关的组合体问题【典型例题】例1:一个球的表面积是16π,则它的体积是( )A .64π B.64π3 C .32π D.323π 【变式拓展1】:把球的表面积扩大到原来的2倍,那么体积扩大到原来的( )A .2倍B .2 2 倍 C. 2 倍 D.32 倍例2:一个球内有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积.【变式拓展2】:已知过球面上三点A ,B ,C 的截面到球心的距离等于球半径的32倍,且AC=8,BC=6,AB=10,求球的表面积与球的体积.例3:某个几何体的三视图如图所示(单位:m).(1)求该几何体的表面积;(2)求该几何体的体积.【变式拓展3】:一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.例4:有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.【变式拓展4】:已知三棱锥A-BCD的表面积为S,其内有半径为r的内切球O(球O与三棱锥A-BCD的每个面都相切,即球心O到A-BCD每个面的距离都为r),求三棱锥A-BCD的体积..三、学习总结1.球的表面积、体积基本性质是解决有关问题的重要依据,它的轴截面图形,球半径、截面圆半径、球心到截面的距离所构成的直角三角形是把空间问题转化为平面问题的主要方法.2.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图3.球与其他几何体切接问题一般有下列结论:(1)长方体的8个顶点在同一球面上,则长方体的体对角线是球的直径;(2)球与正方体的六个面均相切,则球的直径等于正方体的棱长;(3)球与正方体的12条棱均相切,则球的直径是正方体的面对角线.(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径.(5)球与圆台的底面和侧面均相切,则球的直径等于圆台的高.四、随堂检测1.直径为6的球的表面积和体积分别是( )A.36π,144π B.36π,36π C.144π,36π D.144π,144π2.若将气球的半径扩大到原来的2倍,则它的体积增大到原来的( )A.2倍 B.4倍 C.8倍 D.16倍3.某几何体的三视图如图所示,它的体积为( )A.72π B.48π C.30π D.24π4.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高了4 cm ,则钢球的半径为._______5.若半球内有一内接正方体,则这个半球的表面积与正方体的表面积之比为________.6、一个空间几何体的三视图如图所示,则该几何体的体积为( )A.65π cm 3B .3π cm 3 C.23π cm 3 D.73π cm 3 7、已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 球的体积和表面积课前自主预习知识点 球的体积和表面积1.球的体积如果球的半径为R ,那么它的体积V =□143πR 3. 2.球的表面积如果球的半径为R ,那么它的表面积S =□24πR 2.1.判一判(正确的打“√”,错误的打“×”)(1)决定球的大小的因素是球的半径.( )(2)球面被经过球心的平面截得的圆的半径等于球的半径.( )(3)球的体积V 与球的表面积S 的关系为V =R 3S .( )答案 (1)√ (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)表面积为4π的球的半径是________.(2)直径为2的球的体积是________.(3)(教材改编,P 28,T 3)已知一个球的体积为43π,则此球的表面积为_______.答案 (1)1 (2)4π3 (3)4π3.(教材改编,P 27,例4)若球的过球心的圆面圆周长是c ,则这个球的表面积是( )A.c 24πB.c 22πC.c 2π D .2πc 2答案 C课堂互动探究探究1 球的体积与表面积例1 (1)已知球的直径为6 cm ,求它的表面积和体积;(2)已知球的表面积为64π,求它的体积;(3)已知球的体积为5003π,求它的表面积.解 (1)∵直径为6 cm ,∴半径R =3 cm.∴表面积S 球=4πR 2=36π(cm 2),体积V 球=43πR 3=36π(cm 3).(2)∵S 球=4πR 2=64π,∴R 2=16,即R =4.∴V 球=43πR 3=43π×43=2563π.(3)∵V 球=43πR 3=5003π,∴R 3=125,R =5.∴S 球=4πR 2=100π.拓展提升求球的体积与表面积的方法(1)要求球的体积或表面积,必须知道半径R 或者通过条件能求出半径R ,然后代入体积或表面积公式求解.(2)半径和球心是球的关键要素,把握住这两点,计算球的表面积或体积的相关题目也就易如反掌了. 【跟踪训练1】 (1)两个球的半径相差1,表面积之差为28π,则它们的体积和为________.(2)已知球的大圆周长为16π cm ,求这个球的表面积.答案 (1)364π3 (2)见解析解析 (1)设大、小两球半径分别为R ,r ,则由题意可得⎩⎨⎧ R -r =1,4πR 2-4πr 2=28π,∴⎩⎨⎧ R =4,r =3.∴它们的体积和为43πR 3+43πr 3=364π3.(2)设球的半径为R cm ,由题意可知2πR =16π,解得R =8,则S 球=4πR 2=256π(cm 2).探究2 球的三视图例2 某个几何体的三视图如图所示,求该几何体的表面积和体积.解 由三视图可知该几何体的下部是棱长为2的正方体,上部是半径为1的半球,该几何体的表面积为S =12×4π×12+6×22-π×12=24+π.该几何体的体积为V =23+12×43π×13=8+2π3.拓展提升(1)由三视图求球与其他几何体的简单组合体的表面积和体积,关键要弄清组合体的结构特征和三视图中数据的含义.(2)求解表面积和体积时,要避免重叠和交叉.【跟踪训练2】 某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π 答案 C解析 由三视图可知该几何体是半个球体和一个倒立圆锥体的组合体,球的半径为3,圆锥的底面半径为3,高为4,根据体积公式可得组合体的体积为12×43π×33+13π×32×4=30π.探究3 球的截面问题例3 一平面截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46π D .63π解析利用截面圆的性质先求得球的半径长.如图,设截面圆的圆心为O′,M为截面圆上任一点,则OO′=2,O′M=1,∴OM=(2)2+1=3,即球的半径为3,∴V=4=43π.3π×(3)3答案B拓展提升球的截面的性质(1)球的轴截面(过球心的截面)是将球的问题(立体几何问题)转化为平面问题(圆的问题)的关键,因此在解决球的有关问题时,我们必须抓住球的轴截面,并充分利用它来分析解决问题.(2)利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算.【跟踪训练3】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,若不计容器厚度,则球的体积为()A.500π3 cm 3B.866π3 cm 3C.1372π3 cm 3D.2048π3 cm 3答案 A解析 如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5,∴V 球=43π×53=5003π(cm 3).【跟踪训练4】 球的表面积为400π,一个截面的面积为64π,则球心到截面的距离为________.答案 6解析 如图,由已知条件知球的半径R =10,截面圆的半径r =8,∴球心到截面的距离h =R 2-r 2=6.探究3 球的组合体问题例4 设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2解析 作出图形的轴截面如图所示,点O 即为该球的球心,线段AB 即为长方体底面的对角线,长度为a 2+(2a )2=5a ,线段BC 即为长方体的高,长度为a ,线段AC 即为长方体的体对角线,长度为a 2+(5a )2=6a ,则球的半径R =AC 2=62a ,所以球的表面积S =4πR 2=6πa 2.答案 B[条件探究] 将本例中长方体改为棱长为a 的正四面体,则球的表面积如何求?解 如图,过A 作底面BCD 的垂线,垂足为E ,则E 为△BCD 的中心,连接BE .∵棱长为a ,∴BE =32a ×23=33a .∴在Rt △ABE 中,AE =a 2-a 23=63a .设球心为O ,半径为R ,则(AE -R )2+BE 2=R 2,∴R =64a ,∴S 球=4π×⎝ ⎛⎭⎪⎫64a 2=32πa 2. 拓展提升1.正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a 2,过在一个平面上的四个切点作截面如图(1).2.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长分别为a ,b ,c ,过球心作长方体的对角线,则球的半径为r 2=12a 2+b 2+c 2,如图(2).3.正四面体的外接球 正四面体的棱长a 与外接球的半径R 的关系为:2R =62a .【跟踪训练5】 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A.πa 2B.73πa 2C.113πa 2 D .5πa 2 答案 B解析 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,P 为三棱柱上底面的中心,O 为球心,易知AP =23×32a =33a ,OP =12a ,所以球的半径R =OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故S 球=4πR 2=73πa 2.【跟踪训练6】 球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.答案932或332解析①当圆锥顶点与底面在球心两侧时,如图所示,设球的半径为r,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r2-⎝⎛⎭⎪⎫r22=3r2,高为3r2.该圆锥的体积为13×π×⎝⎛⎭⎪⎫3r22×3r2=38πr3,球的体积为43πr3,所以该圆锥的体积和此球体积的比值为38πr343πr3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.1.球的有关性质(1)用一个平面去截一个球,截面是圆面,如图,球的截面有以下性质:①球心和截面圆圆心的连线垂直于截面;②球心到截面的距离d与球的半径R及截面的半径r满足关系d=R2-r2.(2)球面被经过球心的平面截得的圆叫做球的大圆,大圆的半径等于球的半径,被不经过球心的截面截得的圆叫做球的小圆.2.与球有关的组合体与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的轴截面.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合体,通常作出它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”“接点”作出轴截面.课堂达标自测1.将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6答案 A解析 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,所以球的半径为1,其体积是43×π×13=4π3.2.某几何体的三视图如图所示,则该几何体的表面积等于( )A .4πB .8πC .12πD .20π答案 D解析 由该几何体的三视图知,它是由一个球和一个圆柱组成,S 表=S 球+S 圆柱=4π×12+π×22×2+2π×2×2=4π+8π+8π=20π.3.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A.1倍 B .2倍 C.95倍 D.74倍答案 C解析 设最小球的半径为r ,则另外两个球的半径分别为2r,3r ,其表面积分别为4πr 2,16πr 2,36πr 2,故最大球是其余两个球的表面积之和的36πr 24πr 2+16πr2=95倍. 4.一个距离球心为3的平面截球所得的圆面面积为π,则球的体积为________.答案 32π3解析 设所得的圆面的半径为r ,球的半径为R ,则由π=πr2,得r=1,又r2+(3)2=R2,∴R=2.∴V=43πR3=32π3.5.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线的性质知,当球在容器内时,水深CP为3r,水面的半径AC为3r,则容器内水的体积为V=V圆锥-V球=13π·(3r)2·3r-4 3πr3=53πr3,而将球取出后,设容器内水的深度为h,则水面圆的半径为33h,从而容器内水的体积是V′=13π·⎝⎛⎭⎪⎫33h2·h=19πh3,由V=V′,得h=315r.即容器中水的深度为315r.课后课时精练A级:基础巩固练一、选择题1.已知棱长为2的正方体的体积与球O 的体积相等,则球O 的半径为( )A.24πB.6πC. 324πD. 36π答案 D解析 设球O 的半径为r ,则43πr 3=23,解得r = 36π.2.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( ) A.8π3 B.32π3 C .8π D.82π3答案 C 解析 设球的半径为R ,则截面圆的半径为R 2-1, ∴截面圆的面积为S =π(R 2-1)2=(R 2-1)π=π,∴R 2=2,∴球的表面积S =4πR 2=8π.3.一个三棱锥的三条侧棱两两互相垂直且长分别为3、4、5,则它的外接球的表面积是( )A.202π B .252π C .50π D .200π答案 C解析 因为这个三棱锥的三条侧棱两两互相垂直,所以此三棱锥可视为一个长方体的一个角(如图所示),而且此长方体的外接球就是此三棱锥的外接球.设此三棱锥的外接球的半径为r ,则有(2r )2=32+42+52=50,即4r 2=50,故它的外接球的表面积是S =4πr 2=50π.4.某几何体的三视图如图所示,根据图中数据可知该几何体的体积为( )A.4π3B.15π3C.4π3-15π3D.4π3+15π3答案 D解析 由三视图可得,该几何体的上部是一个球,球的直径为2,则V 球=4π3×⎝ ⎛⎭⎪⎫223=4π3,该几何体的下部是一个圆锥,圆锥的底面直径为2,高为15,则V 圆锥=π3×⎝ ⎛⎭⎪⎫222×15=15π3,所以该几何体的体积为V 球+V 圆锥=4π3+15π3.5.一个球与一个正三棱柱(底面为等边三角形,侧棱与底面垂直)的三个侧面和两个底面都相切,已知这个球的体积为32π3,那么这个正三棱柱的体积是( )A.96 3 B .16 3 C .24 3 D .483答案 D解析 设正三棱柱的底面边长为a ,则球的半径R =33×12a =36a ,正三棱柱的高为33a .又V 球=43πR 3=4π3×(3)363a 3=32π3.∴a =4 3.∴V 柱=34×(43)2×33×43=48 3.二、填空题6.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________ cm.答案 4解析 设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r =6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意6πr 3-8πr 2=4πr 3,解得r =4 cm.7.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M .若圆M 的面积为3π,则球O 的表面积等于________.答案 16π解析 由题意得圆M 的半径r =3,又球心到圆M 的距离为R 2,由勾股定理得R 2=r 2+⎝ ⎛⎭⎪⎫R 22,R =2,则球的表面积为16π.8.已知两个正四棱锥有公共底面,且底面边长为4,两棱锥的所有顶点都在同一个球面上,若这两个正四棱锥的体积之比为1∶2,则该球的表面积为________.答案 36π解析 ∵两正四棱锥有公共底,且体积比为1∶2,∴它们的高之比为1∶2,设高分别为h,2h ,球的半径为R ,则h +2h =3h =2R ,∴R =32h ,又∵底面边长为4,∴R 2=⎝ ⎛⎭⎪⎫32h 2=⎝ ⎛⎭⎪⎫h 22+(22)2, 解得h =2,∴R =3,∴S 球=4πR 2=36π.三、解答题9.如图是一个几何体的三视图(单位:cm),试画出它的直观图,并计算这个几何体的体积与表面积.解 这个几何体的直观图如图所示.因为V 长方体=10×8×15=1200(cm 3),又V 半球=12×43πR 3=12×4π3×⎝ ⎛⎭⎪⎫523=125π12(cm 3), 所以所求几何体的体积为V =V 长方体+V 半球=1200+125π12(cm 3).因为S 长方体全=2×(10×8+8×15+10×15)=700(cm 2),S 半球=12×4π×⎝ ⎛⎭⎪⎫522=25π2, S 半球底=π×⎝ ⎛⎭⎪⎫522=25π4,故所求几何体的表面积 S 表面积=S 长方体全+S 半球-S 半球底=700+25π4(cm 2).B 级:能力提升练10.在半径为15的球O 内有一个底面边长为123的内接正三棱锥A-BCD,求此正三棱锥的体积.解①如图甲所示的情形,显然OA=OB=OC=OD=15.设H 为△BCD的中心,则A,O,H三点在同一条直线上.∵HB=HC=HD=23×32×123=12,∴OH=OB2-HB2=9,∴正三棱锥A-BCD的高h=9+15=24.又S△BCD=34×(123)2=1083,∴V三棱锥A-BCD=13×1083×24=864 3.②对于图乙所示的情形,同理,可得正三棱锥A-BCD的高h′=15-9=6,S△BCD=1083,∴V三棱锥A-BCD=13×1083×6=216 3.综上,此正三棱锥的体积为8643或216 3.。