相似图形课件

合集下载

《测量旗杆的高度》相似图形PPT课件 (共21张PPT)

《测量旗杆的高度》相似图形PPT课件 (共21张PPT)

∴ DE CD ∴
AB CA 5 1 AB 2
E C
B
D ∴AB=10 A 答:A.B两点间的距离是10米.
随堂练习
2. 小明测得 2m 高的竹竿在太阳 光下的影长为 1.2m ,同时又测 得一颗树的影长为12m,请你计 算出这棵树的高度。
解:设树高xm ∴
2 x 1.2 12
x=20
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

23.相似三角形PPT课件(华师大版)

23.相似三角形PPT课件(华师大版)

2、作用:本定理是类似三角形判定定理的预备定理: 它通过平行证三角形类似,再由类似证对应角相等、 对应边成比例.
例2 如图,在△ABC中,点D是边AB的三等分点, DE∥BC,DE=5.求BC的长.
解:∵DE∥BC, ∴△ADE∽△ABC(平行于三角形 一边的直线,和其他两边相交所 构成的三角形和原三角形类似), ∴ DE AD 1 , BC AB 3 ∴BC=3DE=15.
23.3 类似三角形
类似三角形
类似三角形及相关概念 平行线判定两三角形类似

习提问Fra bibliotek1、平行线分线段成比例定理及其推论是什么? 2、什么是类似图形?类似多边形?
知识点 1 类似三角形及相关概念
1. 定义:如果两个三角形中,各角对应相等,各边对应成 比例,那么这两个三角形类似. 数学表达式:如图下图,在△ABC和△A′B′C′中,
总结
利用证三角形类似求线段的长的方法:当三角形 被平行线所截形成“A”型或“X”型的图形,并且所 求的线段或已知线段在平行的边上,通常考虑通过 证三角形类似,再利用类似三角形的对应边成比例 构建包含已知与未知线段的比例式,即可求出线段 的长.
1 如图,点P是平行四边形ABCD的边AB上一点, 射线CP交DA的延长线于点E,则图中类似的三 角形有( ) A.0对 B.1对 C.2对 D.3对
2 在△ABC中,DE∥BC,AE∶EC=2∶3,DE
=4,则BC等于( )
A.10
B.8
C.9
D.6
利用平行线证比例式或等积式的方法:当比例式或 等积式中的线段不在平行线上时,可直接利用平行线分 线段成比例定理证明;当比例式或等积式中的线段有的 在平行线上时,可直接利用平行线截三角形类似的对应 边成比例证明;当比例式或等积式中的线段不是对应线 段时,利用转化思想,用等线段、等比例、等积替换进 行论证.

《相似三角形》相似图形PPT课件

《相似三角形》相似图形PPT课件

定义
两个多面体,如果它们的对应角相等,对应边长 成比例,则称这两个多面体相似。
1. 对应角相等
通过测量或计算验证两个多面体的对应角是否相 等。
3
2. 对应边长成比例
通过测量或计算验证两个多面体的对应边长是否 成比例。
性质总结
性质一
相似多面体的对应面面 积之比等于相似比的平
方。
性质二
相似多面体的对应体积 之比等于相似比的立方
案例分析
测量河流宽度
通过构造相似三角形,可以测量 河流的宽度,为水利工程和桥梁
建设提供重要数据支持。
估算森林面积
利用航空照片和相似三角形的原理 ,可以对森林面积进行估算,为林 业资源管理和生态保护提供依据。
分析交通事故原因
在交通事故分析中,相似三角形可 以帮助分析事故原因,确定责任方 ,为交通事故处理提供科学依据。

性质三
相似多面体的对应棱的 中线之比等于相似比。
性质四
相似多面体的对应高的 比、对应中线的比和对 应角平分线的比都等于
相似比。
应用前景展望
建筑设计
在建筑设计中,利用相似多面体 的性质可以方便地按比例缩放建 筑模型,以适应不同规模和需求
的设计项目。
艺术创作
在机械、航空等工程领域,相似 多面体的概念可用于按比例放大 或缩小零部件和装置,以简化设

相似比与对应角关系
01
02
03
相似比
两个相似三角形的对应边 之间的比值称为相似比。
相等性
相似三角形的对应角相等 。
互补性
如果两个角在一个三角形 中是互补的,那么它们在 另一个相似三角形中也是 互补的。
性质总结
对应边成比例

苏教版九年级数学下册第6章图形的相似课件

苏教版九年级数学下册第6章图形的相似课件
1.2m 2.7m
13、皮皮欲测楼房高度,他借助一长5m的标竿,当 楼房顶部、标竿顶端与他的眼睛在一条直线上时, 其他人测出AB=4cm,AC=12m。已知皮皮眼睛离地面 1.6m。请你帮他算出楼房的高度。
F
E D
A
B
C
谢谢
AD CE
∴△ADE∽△ECF
∴∠1+ ∠3=90 ° ∴∠2+ ∠3=90°
∴∠1=∠2
∴ AE⊥EF
画一画
10、在方格纸中,每个小格的顶点叫做格点,以格点 为顶点的三角形叫做格点三角形。在如图4×4的格纸 中,△ABC是一个格点三角形。
(1)在右图中,请你画一个格点三 角形,使它与△ABC类似(类似比 不为1)。
S ADE AE2 25
∴ S EFC = AC2 = 121
∵ S△ADE=25 ∴S △ABC=121
25 E
36
C
7、在平行四边形ABCD中,AE:BE=1:2。
若S△AEF=6cm2 则S△CDF = 54 cm2
S △ADF=_1_8__cm2
D
C
F
A
E
B
8、如图(6), △ABC中,DE⁄⁄FG⁄⁄BC,AD=DF= FB,则S△ADE:S四边形DFGE:S四边形FBCG =_________。
4 位似变换中对应点的坐标变化规律:
在平面直角坐标系中,如果位似变换是以原点 为位似中心,类似比为k,那么位似图形对应点 的坐标的比等于k或-k。
复习题
1、如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,
则需补上哪一个条件?
A
P 2
1
B
C
∠ACP=∠B 或∠APC=∠ACB 或AP:AC=AC:AB

27.1 图形的相似课件(共30张PPT)

27.1  图形的相似课件(共30张PPT)

比)与另两条线段的比相等,如
a b
c
d(即
ad
=
bc),我们就说这四
条线段成比
27.1 图形的相似
观察与思考 1.观察多面体模型与五棱柱教具中的正五边形回答下列问题
27.1 图形的相似
问题1 这些正五边形两两之间相似吗?
相似
问题2 在这两个正五边形中,是否有对应相等的内角?

问题3 在这两个正五边形中,对应内角的两边是否成比例?
78° 83°
B
C
F
α G
27.1 图形的相似
解:∵ 四边形 ABCD 和 EFGH 相似, ∴ 它们的对应角相等.由此可得
∠α = ∠C = 83°,∠A = ∠E=118°.
在四边形 ABCD 中,
β = 360°-(78°+83°+118°) = 81°.
21 D
A
β
18
78° 83°
B
C
x E
27.1 图形的相似 如果放在教室最后面展示又有什么不同? 2. 图形的放大:
两个图形相似,其中一个图形可以 看作由另一个图形放大或缩小得到.
通过上面两 组图形的观 察,发现了 什么?
27.1 图形的相似 例1 放大镜观察学具的一个角和原来的角有什么关系?
放大之后的角与原来的 角是相似关系
27.1 图形的相似
118° 24
F
H
α G
27.1 图形的相似
∵ 四边形 ABCD 和四边形 EFGH 相似, ∴它们的对应边成比例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.

《图形的位似》图形的相似PPT(第1课时)教学课件

《图形的位似》图形的相似PPT(第1课时)教学课件
作位似图形:关键是确定位似中心、 相似比和找关键点的对应点.
导入新课
第四章 图形的相似
图形的位似
第2课时
讲授新课
当堂练习
课堂小结
学习目标
1.理解位似图形的坐标变换规律.(难点) 2.能熟练在坐标系中根据坐标的变化规律做出位似图形.(重点)
导入新课
问题:将图(1)图形如何变换得到图(2)?
y
y
O
例1:在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,
0),B(3,6),C(-3,3).以原点O为位似中心,画出四边形OABC的位似图形,使
它与四边形OABC的相似是2:3.
画法一:如右图所示,
解:将四边形OABC各顶点的坐标都
2
乘 ;在平3面直角坐标系中描点
C C'
yB
OA'
连接的直线A相交于点O. OA
, OB' OB
, OC' OC
, OD' OD
,
OE' OE
有什么关系?
A'
B
E
E'
B'
O
D'
D
C'
C
OA' OB' OC' OD' OE' . OA OB OC OD OE
A
A'
B
E
E'
B'
O
如果C两个相似多D边形任意一组对C应' 顶点PD,' P̍ 所在的直线都过同一点O,且
当堂练习
1.选出下面不同于其他三组的图形( B )
A
B

北师大版九年级数学上册第四章图形的相似PPT课件

北师大版九年级数学上册第四章图形的相似PPT课件
第四章 图形的相似
第1节 成比例线段 第1课时
教学目标
1.结合实例了解线段的比及成比例线段的概念. 2.掌握比例的基本性质及其简单的运用.
教学重难点
重点:成比例线段及比例的基本性质. 难点:比例的基本性质的灵活运用.
情景导入
全等形
回忆
指能够完全重合的两个图形,即中,同学们还见过哪些 形状相同但大小不一定相等的图形?
(请讨论)
情景导入
黄山松
情景导入
情景导入
这几组图片有什么相同的地方?
1.如果选用 同一个 长度单位 量得 两条线段AB、CD
的 长度 分别是m、n,那么就说这两条线段的比AB∶
CD=m∶n,或写成
.其中,线段AB、CD分别叫
课堂小结
1.知道了可用相应线段长度的比来描述形状相同的 图形的大小关系. 2.成比例线段. 3.比例的基本性质.
布置作业
完成《课堂1+1》p36“课后练案”
谢谢!
第四章 图形的相似
第1节 成比例线段 第2课时
教学目标
1.掌握等比性质,并能灵活运用它解决有关问题. 2.了解合比、分比的性质.
(2)∵a=2cm,c=6cm,b=30m=3000cm,d=1000cm, ∴
则 ∴a、c、d、b是成比例线段.
6.直角三角形的斜边与斜边上的中线的比是 2 .
7.某图纸的比例尺是1∶20,图上零件长32mm,则实际长 为 64 cm.
8.已知线段a=3厘米,线段b=13毫米,则a与b的比是 (C)
解:2000m=200000cm, 这个地图的比例尺为:2∶200000=1∶100000.
点评:求线段的比时,要特别注意比的前项与后项的单位要 一致.

九年级数学教学课件:23.2 相似图形(共23张PPT)

九年级数学教学课件:23.2 相似图形(共23张PPT)

我们可以发现: ∠ ABC= ∠ A`B`C`, AB=___cm, BC=___cm; A′B′=___cm,B′C′=___cm. 显然两张地图中AB和 A′B′、BC和B′C′的长度都是 不相等的,那么它们之间 有什么关系呢?小地图是 由大地图缩小得来的,我 们能感到线段A′B′、B′C′与 AB、BC的长度相比都“同 样程度”地缩小了.
2、如图,矩形ABCD和矩形A1B1C1D1相似 D1 吗?为什么? C1
D C
1.5 1
A B
3
A1
2.5
B1
答案:不相似。 分析: 对应边长度的比不相等
思考
两个三角形一定是相似形 吗?两个等腰三角形呢?两 个等边三角形呢?
总结梳理
通过本节课的学习,同学们有了哪些收获?
相似多边形的性质: 对应边成比例,对应角相等。 相似多边形的定义(判定):
合作探究(二)
图23.2.2中两个四边形是相似形, 为了验证你的猜想是 否正确,可以用量角 仔细观察这两个图形,它们的对应 器量量看 边之间是否有以上的关系呢?对应 角之间又有什么关系?
概括:
由此可以得到两个相似多边形的性质:
相似多边形对应边成比例, 对应角相等.
( 你能用几何语言来表述这一性质吗?)
∴ 18:12=X:18; ∴ 12X=18 ×18; 即 X=27。 根据对应角相等,可得: α =360 °-(77 °+83 °+116 °) =84 °
巩固练习:
1、 如图,菱形ABCD和菱形A1B1C1D1相似 吗?为什么?
D D1
A
60
C
A1
45
C1 B1
B
答案:不相似。
分析: 对应角不相等

人教版九年级数学下册相似三角形全章课件

人教版九年级数学下册相似三角形全章课件

∴△A′B′C′∽△ABC
B
E C
A A′
B
B′ C
C′
△ABC∽△A′B′C′
如果一个三角形的三条边和另一个三角形的三条边 对应成比例,那么这两个三角形相似. 简单地说:三边对应成比例,两三角形相似.
【例】在△ABC和△A′B′C′中,已知:AB=6cm,BC= 8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′ =30cm.试证明△ABC与△A′B′C′相似.
A C
B
D
P2 P3
P1 P4
E
P5 F
【解析】(1)△ABC和△DEF相似.根据勾股定理,

, ,BC=5;
,,
.

,∴ △ABC∽△DEF.
(2) 答案不唯一,下面6个三角形中的任意2个均可.
A C
B
P3 E
D P1 P2
P4
P5 F
△P2P5D,△P4P5F,△P2P4D,
△P4P5D,△P2P4 P5,△P1FD.
4.(成都中考)如图,已知线段AB∥CD,AD与B
C相交于点K,E是线段AD上一动点。 (1)若BK= KC,
求 的值;
(2)连接BE,若BE平分∠ABC,则当AE= AD时,猜想线
段AB、BC、CD三者之间有怎样的等量关系?请写出你的
结论并予以证明.再探究:当AE= AD (n>2),而其余
MN∥AB交BC于N,量得MN=38cm,则AB的长为 152c . m
2.如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形;
△ADG∽△AEH∽△AFI∽△ABC
(2)如果AD=1,DB=3,那么DG:BC=_1_:_4__. A

相似三角形的判定PPT课件

相似三角形的判定PPT课件
第三章 图形的类似
3.4.1 类似三角形判定的基本定理
复习导入
定义
全等三
角形
三角、三边对应相等
的两个三角形全等
类似三 三角对应相等, 三边对应
角形
成比例的两个三角形类似
判定方法












斜边与直角边
(直角三角形)
探究新知
如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.


=
=
∠EAO=∠BAC,

∠AEO=∠B,
∠AOE=∠ACB,
当堂练习
2. 如图,已知点O在四边形ABCD的对角线AC上,OE∥CB,OF∥CD.试判
断四边形AEOF与四边形ABCD是否类似,并说明理由.
∵OF∥CD,∴△AFO∽△ADC,


=
=
∠FAO=∠DAC,
DE至点F,使DE=EF. 求证:△CFE∽△ABC.
证明 ∵DE∥BC,点D为△ABC的边AB的中点,
∴AE=CE.
又∵DE=FE,∠AED=∠CEF,
∴△ADE≌△CEF.
∵DE∥BC,
∴△ADE∽△ABC.
∴△CFE∽△ABC.
知识要点
平行于三角形一边的直线与其他两边相交,截得的三角形与原
三角形类似.
求证:只要DE//BC,△ADE与△ABC始终类似.
证明:在△ADE与△ABC中,∠A=∠A.
∵DE∥BC,
分析:根据类似三角形的定
义去证明,三角对应相等,
三边对应成比例。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.正方形网格中有一条简笔画“鱼”,请你将这条“鱼”
放大,使新图形与原图形对应线段的比是2∶1.
解:略
20.在AB=30 m,AD=20 m的矩形花坛四周修筑小路. (1)如图①,如果四周的小路的宽均相等,那么小路四周所围成
的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由;
(2)如图②,如果相对着的两条小路的宽均相等,试问小路的宽 x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′和矩
形ABCD相似?请说明理由.
解:(1)如果四周的小路的宽均相等,那么小路四周所围成的矩 形 A′B′C′D′和矩形 ABCD 不相似;设四周的小路的宽为 x, 30+2x 15+x 20+2x 10+x 30+2x 20+2x ∵ = , = ,∴ ≠ ,∴小 30 15 20 10 30 20 路四周所围成的矩形 A′B′C′D′和矩形 ABC(B )
A.甲和乙 B.甲和丙
C.乙和丙 D.甲、乙和丙
9. 在四边形 ABCD 与四边形 A′B′C′D 中, ∠A=∠A′, ∠B=∠B′, AB BC CD DA 3 ∠C=∠C′,∠D=∠D ′,且 = = = = ,则四 A′B′ B′C ′ C′D ′ D′A′ 4 相似 边形 ABCD 与四边形 A′B′C′D ′__________ ,且它们的对应边的 3∶ 4 . 比是__________
12.如图,正五边形FGHMN与正五边形ABCDE相似,若AB∶FG =2∶3,则下列结论正确的是( B ) A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F 13.如图,两个等边三角形、两个矩形、两个正方形、两个菱形 各成一组,每组中的一个图形在另一个图形的内部,对应边平行, 且对应边之间的距离都相等,那么两个图形不相似的一组是( ) B
23.2 相似图形
1.相似多边形的性质:对应边_________ 成比例 ,对应角_______ 相等 . 2.判定两个多边形相似应同时满足以下三个条件: 成比例 ;(3)各角对应 (1)边数_______ 相同 ;(2)各边对应__________ _______ 相等 .
知识点1:相似多边形的性质
30+2y 20+2x (2)∵当 = 时,小路四周所围成的矩形 A′B′C′D′ 30 20 x 2 和矩形 ABCD 相似, 解得:= , ∴路的宽 x 与 y 的比值为 2∶3 y 3 时,能使小路四周所围成的矩形 A′B′C′D′和矩形 ABCD 相似
1.如图所示的两个四边形相似,则∠α的度数是( C) A.75° B.60° C.87° D.120°
2.两个相似六边形,一组对应边的长分别为 4 cm 和 6 cm,则 这两个多边形的对应边的比可能是( D ) 3 5 1 2 A. B. C. D. 4 6 2 3
3.若四边形ABCD相似于四边形A′B′C′D′,且AB∶A′B′=2∶5,
10.已知菱形ABCD与菱形A′B′C′D′,添加一个条件,使菱形 ABCD与菱形A′B′C′D′相似,这个条件是
______________________________________ .(写出一个即可) ∠A=∠A′或∠B=∠B′ 11.如图,在△ABC中,DE∥BC,AD=3.5,DB=7,DE=3,
(2)由相似可得∠I=∠DEA=92°,∠C=∠G=140°,在五
边形ABCDE中,∠D=540°-(120°+90°+140°+92°) =98°
知识点2:相似多边形的判定
6.观察下列每组图形,相似图形是( D )
7.下列说法:①等边三角形都相似;②等腰三角形都相似;③ 等腰直角三角形都相似;④矩形都相似;⑤正方形都相似.其 中正确的个数有( C ) A.1个 B.2个 C.3个 D.4个
已知BC=8,则B′C′的长是( A.10 B.20 C.24 D.403 )
B
4.如图,有两个形状相同的星星图案,则x的值为( D )
A.15 B.20 C.10 D.8
5.如图,五边形ABCDE与五边形AFGHI相似. (1)求ED的长度; (2)求∠I,∠D的度数.
解:∵五边形 ABCDE 和五边形 AFGHI 相似,∴它们的对应边 DE BC DE 16 的比相等,由此可得 = ,即 = ,解得 DE=20(cm) HI FG 25 20
BC=9,AC=9,EC=6.试证明△ADE与△ABC相似.
解:∵DE∥BC ,∴∠ADE =∠B ,∠AED =∠C. 又∵AC=9,EC=6,∴AE=3.∵AD=3.5,DB= 7 ,∴AB = 10.5.∴ △ABC 相似 AD DE AE 1 = = = .∴△ADE 与 AB BC AC 3
14.如果一个直角三角形的两条边长分别是6和8,另一个与它 相似的直角三角形边长分别是3和4及x,那么x的值( B ) A.只有1个 B.可以有2个 C.有2个以上但有限 D.有无数个 15.如图,它们是两个相似的平行四边形,根据条件可知:
∠α=____________ 125° ,m=______ 12 __.
18.边长为5,6,7的三角形与另一个有一边长为3的三角形相 似,求另一个三角形的另外两边长.
5 6 7 5 6 解:设另外两条边的长为 x,y.根据题意,得 = = 或 = = x y 3 x 3 7 5 6 7 15 18 5 7 或 = = .∴另两边的长为 x= ,y= 或 x= ,y= 或 x y 3 x y 7 7 2 2 18 21 = ,y= 5 5
16.五边形ABCDE的五边长分别为50 cm,20 cm,35 cm,38 cm,40 cm,另一个和它相似的五边形的最短边长是10 cm,则 这个五边形的最长边为__________ 25cm __.
17.如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿 AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC 5 +1 与矩形ABCD相似,则AD=__________ . 2
相关文档
最新文档